WO1997030788A1 - Device and method for the regeneration of mixed ion exchange resin beds - Google Patents
Device and method for the regeneration of mixed ion exchange resin beds Download PDFInfo
- Publication number
- WO1997030788A1 WO1997030788A1 PCT/EP1997/000670 EP9700670W WO9730788A1 WO 1997030788 A1 WO1997030788 A1 WO 1997030788A1 EP 9700670 W EP9700670 W EP 9700670W WO 9730788 A1 WO9730788 A1 WO 9730788A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- column
- regeneration
- resins
- fact
- anionic
- Prior art date
Links
- 238000011069 regeneration method Methods 0.000 title claims abstract description 66
- 230000008929 regeneration Effects 0.000 title claims abstract description 65
- 238000000034 method Methods 0.000 title claims abstract description 51
- 239000003456 ion exchange resin Substances 0.000 title claims abstract description 7
- 229920003303 ion-exchange polymer Polymers 0.000 title claims abstract description 7
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 title claims abstract description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 58
- 239000000243 solution Substances 0.000 claims abstract description 44
- 238000010612 desalination reaction Methods 0.000 claims abstract description 22
- 238000002156 mixing Methods 0.000 claims abstract description 15
- 239000003729 cation exchange resin Substances 0.000 claims abstract description 12
- 239000003957 anion exchange resin Substances 0.000 claims abstract description 10
- 229940023913 cation exchange resins Drugs 0.000 claims abstract description 9
- 239000007864 aqueous solution Substances 0.000 claims abstract description 5
- 239000011347 resin Substances 0.000 claims description 57
- 229920005989 resin Polymers 0.000 claims description 57
- 125000000129 anionic group Chemical group 0.000 claims description 25
- 150000001450 anions Chemical class 0.000 claims description 23
- 125000002091 cationic group Chemical group 0.000 claims description 23
- 150000001768 cations Chemical class 0.000 claims description 19
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 15
- 239000008367 deionised water Substances 0.000 claims description 11
- 229910021641 deionized water Inorganic materials 0.000 claims description 11
- 238000000926 separation method Methods 0.000 claims description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 10
- 239000002253 acid Substances 0.000 claims description 10
- 238000012546 transfer Methods 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 8
- 238000007599 discharging Methods 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 6
- 230000007935 neutral effect Effects 0.000 claims description 6
- 239000002872 contrast media Substances 0.000 claims description 5
- 230000008030 elimination Effects 0.000 claims description 5
- 238000003379 elimination reaction Methods 0.000 claims description 5
- 239000012670 alkaline solution Substances 0.000 claims description 4
- 238000005342 ion exchange Methods 0.000 claims description 4
- 238000005243 fluidization Methods 0.000 claims description 3
- 230000005298 paramagnetic effect Effects 0.000 claims description 3
- 238000002601 radiography Methods 0.000 claims description 3
- NAJWTEKYWYVTIC-UHFFFAOYSA-N 1-n,3-n-bis(2,3-dihydroxypropyl)-5-(3-hydroxy-2-oxopiperidin-1-yl)-2,4,6-triiodobenzene-1,3-dicarboxamide Chemical compound OCC(O)CNC(=O)C1=C(I)C(C(=O)NCC(O)CO)=C(I)C(N2C(C(O)CCC2)=O)=C1I NAJWTEKYWYVTIC-UHFFFAOYSA-N 0.000 claims description 2
- ZFOVUHQJAMLXDS-UHFFFAOYSA-N 3-n,5-n-bis(2,3-dihydroxypropyl)-2,4,6-triiodo-5-n-methylbenzene-1,3,5-tricarboxamide Chemical compound OCC(O)CN(C)C(=O)C1=C(I)C(C(N)=O)=C(I)C(C(=O)NCC(O)CO)=C1I ZFOVUHQJAMLXDS-UHFFFAOYSA-N 0.000 claims description 2
- NNZBBKHCMKTQJQ-UWVGGRQHSA-N 3-n-(1,3-dihydroxypropan-2-yl)-1-n-[3-[[3-(1,3-dihydroxypropan-2-ylcarbamoyl)-5-[[(2s)-2-hydroxypropanoyl]amino]-2,4,6-triiodobenzoyl]amino]-2-hydroxypropyl]-5-[[(2s)-2-hydroxypropanoyl]amino]-2,4,6-triiodobenzene-1,3-dicarboxamide Chemical compound OCC(CO)NC(=O)C1=C(I)C(NC(=O)[C@@H](O)C)=C(I)C(C(=O)NCC(O)CNC(=O)C=2C(=C(C(=O)NC(CO)CO)C(I)=C(NC(=O)[C@H](C)O)C=2I)I)=C1I NNZBBKHCMKTQJQ-UWVGGRQHSA-N 0.000 claims description 2
- RHISTIGVAKTTCM-UHFFFAOYSA-N 5-[[3-[3,5-bis(1,3-dihydroxypropan-2-ylcarbamoyl)-n-(2-hydroxyethyl)-2,4,6-triiodoanilino]-3-oxopropanoyl]-(2-hydroxyethyl)amino]-1-n,3-n-bis(1,3-dihydroxypropan-2-yl)-2,4,6-triiodobenzene-1,3-dicarboxamide Chemical compound IC=1C(C(=O)NC(CO)CO)=C(I)C(C(=O)NC(CO)CO)=C(I)C=1N(CCO)C(=O)CC(=O)N(CCO)C1=C(I)C(C(=O)NC(CO)CO)=C(I)C(C(=O)NC(CO)CO)=C1I RHISTIGVAKTTCM-UHFFFAOYSA-N 0.000 claims description 2
- XUHXFSYUBXNTHU-UHFFFAOYSA-N Iotrolan Chemical compound IC=1C(C(=O)NC(CO)C(O)CO)=C(I)C(C(=O)NC(CO)C(O)CO)=C(I)C=1N(C)C(=O)CC(=O)N(C)C1=C(I)C(C(=O)NC(CO)C(O)CO)=C(I)C(C(=O)NC(CO)C(O)CO)=C1I XUHXFSYUBXNTHU-UHFFFAOYSA-N 0.000 claims description 2
- AMDBBAQNWSUWGN-UHFFFAOYSA-N Ioversol Chemical compound OCCN(C(=O)CO)C1=C(I)C(C(=O)NCC(O)CO)=C(I)C(C(=O)NCC(O)CO)=C1I AMDBBAQNWSUWGN-UHFFFAOYSA-N 0.000 claims description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 2
- DPNNNPAKRZOSMO-UHFFFAOYSA-K gadoteridol Chemical compound [Gd+3].CC(O)CN1CCN(CC([O-])=O)CCN(CC([O-])=O)CCN(CC([O-])=O)CC1 DPNNNPAKRZOSMO-UHFFFAOYSA-K 0.000 claims description 2
- 229960005451 gadoteridol Drugs 0.000 claims description 2
- 229960004108 iobitridol Drugs 0.000 claims description 2
- YLPBXIKWXNRACS-UHFFFAOYSA-N iobitridol Chemical compound OCC(O)CN(C)C(=O)C1=C(I)C(NC(=O)C(CO)CO)=C(I)C(C(=O)N(C)CC(O)CO)=C1I YLPBXIKWXNRACS-UHFFFAOYSA-N 0.000 claims description 2
- 229950002407 iodecimol Drugs 0.000 claims description 2
- 229960004359 iodixanol Drugs 0.000 claims description 2
- NBQNWMBBSKPBAY-UHFFFAOYSA-N iodixanol Chemical compound IC=1C(C(=O)NCC(O)CO)=C(I)C(C(=O)NCC(O)CO)=C(I)C=1N(C(=O)C)CC(O)CN(C(C)=O)C1=C(I)C(C(=O)NCC(O)CO)=C(I)C(C(=O)NCC(O)CO)=C1I NBQNWMBBSKPBAY-UHFFFAOYSA-N 0.000 claims description 2
- 229950003517 iofratol Drugs 0.000 claims description 2
- 229960001025 iohexol Drugs 0.000 claims description 2
- NTHXOOBQLCIOLC-UHFFFAOYSA-N iohexol Chemical compound OCC(O)CN(C(=O)C)C1=C(I)C(C(=O)NCC(O)CO)=C(I)C(C(=O)NCC(O)CO)=C1I NTHXOOBQLCIOLC-UHFFFAOYSA-N 0.000 claims description 2
- 229960000780 iomeprol Drugs 0.000 claims description 2
- NJKDOADNQSYQEV-UHFFFAOYSA-N iomeprol Chemical compound OCC(=O)N(C)C1=C(I)C(C(=O)NCC(O)CO)=C(I)C(C(=O)NCC(O)CO)=C1I NJKDOADNQSYQEV-UHFFFAOYSA-N 0.000 claims description 2
- 229960004647 iopamidol Drugs 0.000 claims description 2
- XQZXYNRDCRIARQ-LURJTMIESA-N iopamidol Chemical compound C[C@H](O)C(=O)NC1=C(I)C(C(=O)NC(CO)CO)=C(I)C(C(=O)NC(CO)CO)=C1I XQZXYNRDCRIARQ-LURJTMIESA-N 0.000 claims description 2
- 229960000824 iopentol Drugs 0.000 claims description 2
- IUNJANQVIJDFTQ-UHFFFAOYSA-N iopentol Chemical compound COCC(O)CN(C(C)=O)C1=C(I)C(C(=O)NCC(O)CO)=C(I)C(C(=O)NCC(O)CO)=C1I IUNJANQVIJDFTQ-UHFFFAOYSA-N 0.000 claims description 2
- -1 iopirol Chemical compound 0.000 claims description 2
- 229960002603 iopromide Drugs 0.000 claims description 2
- DGAIEPBNLOQYER-UHFFFAOYSA-N iopromide Chemical compound COCC(=O)NC1=C(I)C(C(=O)NCC(O)CO)=C(I)C(C(=O)N(C)CC(O)CO)=C1I DGAIEPBNLOQYER-UHFFFAOYSA-N 0.000 claims description 2
- 229950008506 iotriside Drugs 0.000 claims description 2
- 229960003182 iotrolan Drugs 0.000 claims description 2
- 229960004537 ioversol Drugs 0.000 claims description 2
- 229960002611 ioxilan Drugs 0.000 claims description 2
- UUMLTINZBQPNGF-UHFFFAOYSA-N ioxilan Chemical compound OCC(O)CN(C(=O)C)C1=C(I)C(C(=O)NCCO)=C(I)C(C(=O)NCC(O)CO)=C1I UUMLTINZBQPNGF-UHFFFAOYSA-N 0.000 claims description 2
- 239000001117 sulphuric acid Substances 0.000 claims description 2
- 235000011149 sulphuric acid Nutrition 0.000 claims description 2
- 238000005341 cation exchange Methods 0.000 claims 5
- 238000005349 anion exchange Methods 0.000 claims 4
- 238000004891 communication Methods 0.000 claims 1
- 238000005086 pumping Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 150000002500 ions Chemical class 0.000 description 24
- 239000000460 chlorine Substances 0.000 description 21
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 15
- 230000001172 regenerating effect Effects 0.000 description 8
- 239000011780 sodium chloride Substances 0.000 description 7
- 241000196324 Embryophyta Species 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 5
- 229910021642 ultra pure water Inorganic materials 0.000 description 5
- 239000012498 ultrapure water Substances 0.000 description 5
- 238000002835 absorbance Methods 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 235000011121 sodium hydroxide Nutrition 0.000 description 4
- 238000001728 nano-filtration Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910052688 Gadolinium Inorganic materials 0.000 description 2
- 241000220317 Rosa Species 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 2
- 125000000350 glycoloyl group Chemical group O=C([*])C([H])([H])O[H] 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 238000002595 magnetic resonance imaging Methods 0.000 description 2
- 125000000250 methylamino group Chemical group [H]N(*)C([H])([H])[H] 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 235000020681 well water Nutrition 0.000 description 2
- 239000002349 well water Substances 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000001033 granulometry Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000011872 intimate mixture Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J49/00—Regeneration or reactivation of ion-exchangers; Apparatus therefor
- B01J49/10—Regeneration or reactivation of ion-exchangers; Apparatus therefor of moving beds
- B01J49/18—Regeneration or reactivation of ion-exchangers; Apparatus therefor of moving beds of mixed beds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J49/00—Regeneration or reactivation of ion-exchangers; Apparatus therefor
- B01J49/05—Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds
- B01J49/09—Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds of mixed beds
Definitions
- This invention concerns a new device for regenerating mixed beds of ion exchangers used for the desalination of water or aqueous solutions deriving from industrial processes (process solutions) and the method of carrying out this regeneration.
- mixed bed processes Another application of mixed bed processes concerns the desalination of process solutions containing non- ionic organic compounds, as, for example, molecules of pharmaceutical or foodstuffs interest. What characterizes mixed bed processes is the fact that water or the solution to be desalinated is percolated through an intimate mixture of a cation exchanger and an anion exchanger.
- Mixed bed treatment allows the reduction of the residual saline content of treated water to quite lower levels as compared with desalination through separate beds of two ion exchangers; in fact, whereas in the case of separate beds, the fraction of ions removed is limited by the equilibrium value corresponding to the maximum degree of regeneration of the ion exchangers and hardly exceeds 99%, in the case of a mixed bed there are no theoretical limits to the fraction of ions removed.
- the resins are separated by hydraulic classification by utilizing the different densities and granulometries of the two exchangers. Once separated, the resins can be regenerated in the same column which contained the mixed bed (internal regeneration) or one or both of them can be transferred into one or more different columns where regeneration is carried out (external regeneration); they are then mixed in a special mixer (or even in the column used for the regeneration of the cation exchanger) and then transferred into the column used for the mixed bed.
- Another possibility consists in transferring said resins, after regeneration, into the column used for the mixed bed and mixing them therein.
- the external regeneration procedure requires a much more complex plant, and is therefore normally used only for the final desalination of water to be fed to steam- boilers in thermoelectric or thermonuclear power stations.
- the most widely used process for small or medium sized units is the internal regeneration.
- the reagents for regeneration of the anion and the cation exchangers enter the column from the top and bottom respectively, either simultaneously or at different times (regeneration of the anionic exchanger is normally carried out first), while the exhausted regenerating solutions are collected from the same discharge line provided with devices (strainers) able to retain the portion of resin situated near the interface between the resins.
- a further object of this invention is the method described below for the preparation of a mixed bed of ion exchangers, characterized by great homogeneity. This proces ⁇ does not require the use of air for mixing the resins and is applicable to units with external regeneration.
- the mixed bed obtained by the method and the plant object of this invention is furthermore able to reduce inorganic and organic ionic impurities to extremely low levels in aqueous solutions of neutral organic products (for example, molecules of pharmaceutical interest and their intermediates or sugar solutions or food products) .
- neutral organic products for example, molecules of pharmaceutical interest and their intermediates or sugar solutions or food products
- two columns are foreseen: a first treatment column containing the mixed bed of ion exchange resins, in which the cation exchange resins are regenerated after the treatment/desalination process, and then a second column into which the anion exchange resins are transferred and regenerated, to be then reinserted at the bottom of the first column where they rise through the cation exchange resins present therein, intimately mixing themselves with these, to give a reconstituted homogeneous mixed bed.
- Fig. 1 is a scheme of the device for the regeneration of fluidized beds according to the invention.
- the device object of this invention consists substantially of two columns, one of which, indicated by Cl is dedicated to contain the mixed bed and to the regeneration of the exhausted cationic exchanger.
- the other, indicated by C2 is dedicated to the regeneration of the exhausted anionic exchanger, said columns being joined according to the diagram in
- Fig. 1 In the device of Fig. 1 in which the salient characteristics are shown, the open and close type valves are indicated with the term V, the regulation valves with the term VR and the circulation pump with the term P.
- the anionic exchange resin is loaded into column C2 and the cationic exchange resin into column Cl.
- Both of the exchange resins are regenerated separately and according to the supplier's instructions (for example, for the regeneration of the anionic exchanger a strong base is used, usually ⁇ odium hydroxide at 4% w/w, whereas for the regeneration of the cationic exchanger, a strong acid is used, normally hydrochloric acid at 8 to 12% w/w or sulphuric acid at the same concentration).
- the acid solution is fed to Cl through valve V4, simultaneously discharging the exhausted regenerating solution through valve V5 and regulating VR4 to maintain the liquid just above the level of the resin.
- the alkaline solution is fed to C2 through V6, discharging the exhausted regenerating solution through V7 and regulating VR5 to maintain the liquid just above the level of the resin.
- both resins are counter-washed with the flow recommended by the supplier for an expansion of between 25% and 100% of the initial volume, supplying deionized water through valves V8 and V9 respectively and first discharging the air and then the water through valves V10 and Vll respectively.
- the counter-wa ⁇ hing is continued m C2, whereas it is stopped in Cl by closing V8 and V10.
- the cation exchange resin bed in Cl is again fluidized by opening valves V12 and V13, starting the pump P and regulating the valve VRl to obtain the flow necessary to expand the bed of cation exchange resin up to 200% - 400% of its initial volume.
- Valves V9 and Vll are then closed and VI is opened to pres ⁇ urize the columns.
- Valve V12 is closed then valve V14, which changes the flow of pumped water from Cl to C2, i ⁇ opened simultaneously to V3, which cau ⁇ es the anionic resin to be transferred from C2 to Cl.
- the mixed bed obtained by this process results extraordinarily homogeneous as compared with tho ⁇ e obtained by known method ⁇ (such as, for example, counter-washing with water and blowing air into the bottom of the column).
- the two resins are found to be homogeneously mixed for at lea ⁇ t 80% of the column length (preferably for at least 90%); minimal non- homogeneous residual zones are observed only at the top of the column.
- column Cl contains the regenerated mixed bed onto which the solution to be desalinated can be loaded (through V4); the resulting desalinated water
- valve V16 When the conductivity of the desalinated solution i ⁇ above the level of acceptability e ⁇ tabli ⁇ hed for the type of occuring purification, or when a predetermined volume of solution has been treated, the desalination pha ⁇ e is ⁇ topped and the separation of the re ⁇ in ⁇ i ⁇ begun for the regeneration of the ⁇ a e.
- column Cl is filled with water, through V8 for example, closing VI and venting the air through V10; when the column is full, V10 is closed and valves VI, V2, V15, and V12 are opened; the pump P i ⁇ started and valve VRl is gradually opened.
- the mixed bed in Cl i ⁇ fluidized and the lighter anionic re ⁇ in gradually ⁇ eparate ⁇ out, above the cationic re ⁇ in.
- the flow regulated by VRl i ⁇ increa ⁇ ed
- the upper part of the anionic fluid bed reache ⁇ the re ⁇ in tran ⁇ fer line and begins to pass over into column C2 through valve V2, together with the flow of fluidization water.
- Valve VRl is gradually opened to give the flow nece ⁇ ary to expand the cation exchanger to a level just below the transfer opening of the anion exchanger (indicated by A in Fig.l): valve V13 can be opened (partially or completely) to reach the maximum flow without exces ⁇ ive loss of load in the anion resin bed in C2.
- the step is terminated by stopping the pump P and closing the valve ⁇ which were opened at the beginning of the transfer.
- the technicians can then proceed with emptying excess water from the column ⁇ and with the regeneration of the ion exchanger ⁇ by the procedure which has already been described.
- this variant brings an easier and more complete separation of the ion exchangers and is often advantageous in cases of desalination of concentrated solutions of organic molecules.
- the device and the method object of this invention are very useful in the pharmaceutical field, for example, because they consent to reduce the amount of inorganic and organic ionic impurities to extremely low levels in aqueou ⁇ solution ⁇ of drug ⁇ and of diagnostic ⁇ agents.
- compounds of non-ionic type such as, for example, iodinated contrast agents for radiography or paramagnetic contrast agents for magnetic resonance imaging (MRI), product ⁇ which often u ⁇ t be admini ⁇ tered in particularly high concentration ⁇ and for which an high degree of purity i ⁇ essential.
- neutral iodinated contrast agents for radiography the following can be, by way of an example, mentioned iopamidol, iomeprol, iohexol, ioversol, iopentol, iopromide, ioxilan, iotriside, iobitridol, iodixanol, iofratol, iotrolan, iodecimol, iopirol, iopiperidol.
- neutral paramagnetic contrast agents for MRI particularly preferred resulted to be the gadolinium complex of 10-(2-hydroxypropyl)-l,4,7,10-tetraazacyclo- dodecane-l,4,7-triacetic acid (gadoteridol) .
- the columns Cl and C2 which have effective volumes (mea ⁇ ured from the ⁇ upport plate to the height of the feed di ⁇ tributor) of 36 and 22 L, were loaded re ⁇ pectively with 12 L of ⁇ ulphonic cation exchanger Rohm & Haa ⁇ Amberjet (R) 1200 Na and with 22 L of strong anion exchanger, type I Rohm & Haas Amberjet (R) 4200 Cl.
- the ion exchangers were regenerated respectively with 26 kg HCl 10% w/w at a flow of 40 L/h and with 135 kg of sodium hydroxide 4% w/w at a flow of 90 kg/h.
- Both of the ion exchangers were then washed with deionized water until the eluate conductivity fell below 50 ⁇ S/cm. Then the anion exchanger wa ⁇ tran ⁇ ferred to Cl and mixed with the cation exchanger according to the method subject of this invention.
- To the mixed bed ⁇ o prepared were fed 100 L of a solution of 1.3 kg (22 mol) of NaCl in 100 L of water (conductivity 28,000 ⁇ S/cm) at a rate of 100 L/h.
- the conductivity of the treated water wa ⁇ at the beginning, a little less than 1 ⁇ S/cm but rapidly fell, becoming stable, at 0.1 ⁇ S/cm until 80 L of water had been treated.
- the total capacity of the anion and cation exchangers was determined by dividing the molar quantity of exchanged ions by the volume of the anion and cation exchangers. The molar quantity was obtained deducting from the total quantity of sodium chloride fed, respectively, the total quantity of chloride ions determined with silver nitrate in fraction 2 and the difference between the total quantity of chloride ion ⁇ and the free acidity titrated with caustic soda.
- the total capacity of the anion exchanger resulted to be 0.84 mol/L (referred to the exchanger volume in the form of chlorine) and that of the cation exchanger 1.7 eq/L (referred to the exchanger volume in the form of Na), in accordance with what declared from the ion exchanger manufacturer.
- the effective capacity of the mixed bed (defined as the quantity of ions fixed before the conductivity rises above 0.5 ⁇ S/cm) resulted to be 17.6 eq. , which, when referred to the quantity of anion exchanger correspond ⁇ to 0.8 eq/L.
- Example 2 For purposes of comparison, the same ion exchangers from Example 1 were loaded into two separate columns, regenerated in the same conditions, counter-washed and washed with deionized water to the same final conductivity. The two columns were joined in series in such a way that the anion exchanger followed the cation exchanger.
- Example 2 A solution of sodium chloride in water in the same quantities as in Example 1 was fed to the two columns at a rate of 100 L/h.
- the conductivity of the treated water was initially a little les ⁇ than 50 ⁇ S/cm, but rose moving up to 100 and then to 300 ⁇ S/cm up to 70 L of treated water (pH alkaline). The conductivity then went out of the limit of the in ⁇ trument (3,000 ⁇ S/cm) indicating that the deionizer was exhausted.
- the effective bed capacity (defined in this case as the quantity of ions fixed before the conductivity rises above 400 ⁇ S/cm) resulted to be 0.68 eq/L.
- Example 1 appear evident, both in terms of quality of the treated water and of capacity before exhaustion, at equal reagent consumption.
- Example 3
- solution A contains 80 kg of the de ⁇ ired product, about 0.05 mol/L of organic ionic impurities (aromatic carboxyiic acid ⁇ ) and 0.03 mol/L of inorganic salts (prevalently NaCl) B) Desalination of solution A.
- the eluate line was equipped with a conductivity analyser and also with a photometer to measure the absorbance at 280 nm, to detect the presence of organic substance ⁇ in the eluant.
- Example 3 The mixed bed to be regenerated was counter-washed with 10 L of water. The water level was lowered to just above the level of the resin and then, through the feed- line were fed, firstly 60 kg of 8.5% w/w HCl at a flow rate of 40 kg/h and then 200 kg of deionized water, the first 30 L at the ⁇ ame flow rate and the remainder at a rate of 150 kg/h.
- solution A' 100 kg of an aqueou ⁇ solution containing 25 kg of the compound in question, (solution A'), obtained by the method described in patent application EP 292689, was fed at a rate of 40 L/h to the same unit of Example 1, filled with the same quantities of the ⁇ ame ion exchangers, previously regenerated according to the ⁇ ame method of Example 1.
- the eluate line was equipped with a conductivity analyser and also with a photometer to measure the absorbance at 280 nm, to detect the presence of organic sub ⁇ tances in the eluate.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Preliminary Treatment Of Fibers (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP97904434A EP0888190B1 (en) | 1996-02-20 | 1997-02-13 | Device and method for the regeneration of mixed ion exchange resin beds |
AU17248/97A AU715894B2 (en) | 1996-02-20 | 1997-02-13 | Device and method for the regeneration of mixed ion exchange resin beds |
US09/125,461 US6187826B1 (en) | 1996-02-20 | 1997-02-13 | Device and method for the regeneration of mixed ion exchange resin beds |
CA002246649A CA2246649C (en) | 1996-02-20 | 1997-02-13 | Device and method for the regeneration of mixed ion exchange resin beds |
DE69700626T DE69700626T2 (de) | 1996-02-20 | 1997-02-13 | Vorrichtung und verfahren zur regenerierung eines ionenaustauschermischbettes |
NO19983806A NO315935B1 (no) | 1996-02-20 | 1998-08-19 | Anordning og fremgangsmåte for regenerering av blandede ionutbytteharpikssjikt |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IT96MI000314A IT1282653B1 (it) | 1996-02-20 | 1996-02-20 | Dispositivo e metodo per la rigenerazione di letti misti di resine a scambio ionico |
ITMI96A000314 | 1996-02-20 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/693,964 Division US6437010B1 (en) | 1996-02-20 | 2000-10-23 | Device and method for the regeneration of mixed ion exchange resin beds |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997030788A1 true WO1997030788A1 (en) | 1997-08-28 |
Family
ID=11373325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1997/000670 WO1997030788A1 (en) | 1996-02-20 | 1997-02-13 | Device and method for the regeneration of mixed ion exchange resin beds |
Country Status (9)
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002026383A3 (en) * | 2000-09-25 | 2003-04-17 | United States Filter Corp | Systems and methods for regeneration of mixed bed demineralizers |
US7253198B2 (en) | 2002-12-05 | 2007-08-07 | Glaxo Group Limited | Hydroxyethylamine derivatives for the treatment of Alzheimer's disease |
CN102079716A (zh) * | 2009-11-26 | 2011-06-01 | 浙江台州海神制药有限公司 | 碘克沙醇的制备与纯化 |
WO2011063551A1 (en) * | 2009-11-26 | 2011-06-03 | Hovione China Holding Limited | Preparation and purification of iodixanol |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4210403B2 (ja) * | 1999-12-20 | 2009-01-21 | オルガノ株式会社 | 混床式糖液精製装置の再生法 |
IT1319671B1 (it) | 2000-12-01 | 2003-10-23 | Bracco Spa | Processo per la preparazione di (s)-n,n'-bis(2-idrossi-1-(idrossimetil)etil)-5-((2-idrossi-1-ossopropil)ammino) |
CA2502554C (en) * | 2002-10-16 | 2014-08-05 | Aquatech International Corporation | Method for preparing an ion exchange media |
US20110021828A1 (en) * | 2009-07-21 | 2011-01-27 | Ge Healthcare As | Recovering unreacted intermediate from desalinated and desolventized dimerisation reaction mixture by ultrafiltration |
US10287186B2 (en) * | 2015-04-15 | 2019-05-14 | Ovivo Inc. | Regeneration of mixed bed resins |
CN110624611A (zh) * | 2019-03-27 | 2019-12-31 | 兆德(南通)电子科技有限公司 | 一种阳树脂再生工艺 |
CN114618596B (zh) * | 2021-12-16 | 2023-07-25 | 华润电力(贺州)有限公司 | 一种在线氢电导率表树脂再生装置及树脂再生方法 |
EP4389250A1 (de) | 2022-12-21 | 2024-06-26 | MionTec GmbH | Regeneration von misckett-ionenauschern sowies ensprechendes verfahren |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2461506A (en) * | 1946-10-18 | 1949-02-15 | Sun Chemical Corp | Process for regeneration of ion exchange material |
US3429807A (en) * | 1966-12-08 | 1969-02-25 | William R Burgess | Method of regenerating ion exchange material from service demineralizers |
DE2703044B1 (de) * | 1977-01-26 | 1978-07-27 | Steinmueller Gmbh L & C | Vorrichtung zum Entmischen und zur anschliessenden raeumlichen Trennung von ganz oder teilweise erschoepften Kationen- und Anionenaustauschern |
DE2800194A1 (de) * | 1978-01-03 | 1979-07-12 | Mitsubishi Chem Ind | Verfahren zur regenerierung eines gemischten anionen- und kationen-austauscherharzes |
US4622141A (en) * | 1984-10-29 | 1986-11-11 | The Graver Company | Method and apparatus for withdrawing a layer of material from a vessel |
US5322934A (en) * | 1991-09-25 | 1994-06-21 | Mallinckrodt Medical, Inc. | Purification of a crude MRI agent using continuous deionization |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3711401A (en) * | 1971-03-08 | 1973-01-16 | Sybron Corp | Regeneration method for dual beds of ion exchange resins |
US4017262A (en) * | 1973-08-06 | 1977-04-12 | The Dow Chemical Company | Chromatographic apparatus for analysis of ionic species |
US3933631A (en) * | 1974-05-06 | 1976-01-20 | The Permutit Company, Inc. | Method of operating ion exchange system |
GB2037608B (en) * | 1978-11-25 | 1983-05-05 | Kernforschungsz Karlsruhe | Regeneration of anion exchange resins |
US5019542A (en) * | 1990-01-08 | 1991-05-28 | RAR - Refinarias De Accucar Reunidas, S.A. | Processing for regenerating sugar decolorizing ion exchange resins, with regenerant recovery |
US5665239A (en) * | 1996-01-16 | 1997-09-09 | Culligan International Company | Processes for deionization and demineralization of fluids |
-
1996
- 1996-02-20 IT IT96MI000314A patent/IT1282653B1/it active IP Right Grant
-
1997
- 1997-02-13 ES ES97904434T patent/ES2138444T3/es not_active Expired - Lifetime
- 1997-02-13 EP EP97904434A patent/EP0888190B1/en not_active Expired - Lifetime
- 1997-02-13 DE DE69700626T patent/DE69700626T2/de not_active Expired - Lifetime
- 1997-02-13 AU AU17248/97A patent/AU715894B2/en not_active Ceased
- 1997-02-13 US US09/125,461 patent/US6187826B1/en not_active Expired - Lifetime
- 1997-02-13 WO PCT/EP1997/000670 patent/WO1997030788A1/en active IP Right Grant
- 1997-02-19 ZA ZA9701402A patent/ZA971402B/xx unknown
-
1998
- 1998-08-19 NO NO19983806A patent/NO315935B1/no not_active IP Right Cessation
-
2000
- 2000-10-23 US US09/693,964 patent/US6437010B1/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2461506A (en) * | 1946-10-18 | 1949-02-15 | Sun Chemical Corp | Process for regeneration of ion exchange material |
US3429807A (en) * | 1966-12-08 | 1969-02-25 | William R Burgess | Method of regenerating ion exchange material from service demineralizers |
DE2703044B1 (de) * | 1977-01-26 | 1978-07-27 | Steinmueller Gmbh L & C | Vorrichtung zum Entmischen und zur anschliessenden raeumlichen Trennung von ganz oder teilweise erschoepften Kationen- und Anionenaustauschern |
DE2800194A1 (de) * | 1978-01-03 | 1979-07-12 | Mitsubishi Chem Ind | Verfahren zur regenerierung eines gemischten anionen- und kationen-austauscherharzes |
US4622141A (en) * | 1984-10-29 | 1986-11-11 | The Graver Company | Method and apparatus for withdrawing a layer of material from a vessel |
US5322934A (en) * | 1991-09-25 | 1994-06-21 | Mallinckrodt Medical, Inc. | Purification of a crude MRI agent using continuous deionization |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002026383A3 (en) * | 2000-09-25 | 2003-04-17 | United States Filter Corp | Systems and methods for regeneration of mixed bed demineralizers |
US7253198B2 (en) | 2002-12-05 | 2007-08-07 | Glaxo Group Limited | Hydroxyethylamine derivatives for the treatment of Alzheimer's disease |
CN102079716A (zh) * | 2009-11-26 | 2011-06-01 | 浙江台州海神制药有限公司 | 碘克沙醇的制备与纯化 |
WO2011063551A1 (en) * | 2009-11-26 | 2011-06-03 | Hovione China Holding Limited | Preparation and purification of iodixanol |
AU2009355814A1 (en) * | 2009-11-26 | 2012-06-07 | Imax Diagnostic Imaging Holding Ltd | Preparation and purification of iodixanol |
KR20120105015A (ko) * | 2009-11-26 | 2012-09-24 | 호비온 차이나 홀딩 리미티드 | 이오딕사놀의 제조 및 정제 |
CN102725249A (zh) * | 2009-11-26 | 2012-10-10 | 好利安中国控股有限公司 | 碘克沙醇的制备和纯化 |
CN102079716B (zh) * | 2009-11-26 | 2014-03-05 | 浙江台州海神制药有限公司 | 碘克沙醇的制备与纯化 |
US8766002B2 (en) | 2009-11-26 | 2014-07-01 | Imax Diagnostic Imaging Holding Limited | Preparation and purification of iodixanol |
AU2009355814B2 (en) * | 2009-11-26 | 2016-06-30 | Imax Diagnostic Imaging Holding Ltd | Preparation and purification of iodixanol |
KR101699226B1 (ko) * | 2009-11-26 | 2017-01-24 | 호비온 차이나 홀딩 리미티드 | 이오딕사놀의 제조 및 정제 |
Also Published As
Publication number | Publication date |
---|---|
NO983806L (no) | 1998-08-19 |
NO983806D0 (no) | 1998-08-19 |
AU1724897A (en) | 1997-09-10 |
ES2138444T3 (es) | 2000-01-01 |
DE69700626D1 (de) | 1999-11-18 |
EP0888190A1 (en) | 1999-01-07 |
US6187826B1 (en) | 2001-02-13 |
ITMI960314A1 (it) | 1997-08-20 |
ITMI960314A0 (enrdf_load_stackoverflow) | 1996-02-20 |
EP0888190B1 (en) | 1999-10-13 |
AU715894B2 (en) | 2000-02-10 |
IT1282653B1 (it) | 1998-03-31 |
ZA971402B (en) | 1997-09-22 |
DE69700626T2 (de) | 2000-01-27 |
NO315935B1 (no) | 2003-11-17 |
US6437010B1 (en) | 2002-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0888190B1 (en) | Device and method for the regeneration of mixed ion exchange resin beds | |
JPS60132693A (ja) | 脱イオン装置 | |
US5955510A (en) | Process for the regeneration of ion exchange resins in a fixed double-bed type apparatus | |
US6508939B2 (en) | Mixed bed type sugar solution refining system and regeneration method for such apparatus | |
US3414508A (en) | Condensate purification process | |
CN103347850B (zh) | 包含造影剂的组合物的脱盐 | |
US2841550A (en) | Process of operating a demineralizing installation | |
CA2246649C (en) | Device and method for the regeneration of mixed ion exchange resin beds | |
DE102006009522A1 (de) | Kombinationsverfahren zur Demineralisation von Wasser | |
DE69500952T2 (de) | Solebehandlungsmethode | |
JP4931178B2 (ja) | 復水脱塩方法及び装置 | |
US6066259A (en) | Method for the deionization of substances that are not stable at acidic pH | |
US3642616A (en) | Continuous method for treating liquids | |
JP2002361245A (ja) | 復水脱塩装置内のイオン交換樹脂の再生方法および装置 | |
GB2063094A (en) | Water purification by ion exchange | |
US4163717A (en) | Removal of silica from mixed bed demineralizer | |
JP3963025B2 (ja) | イオン交換樹脂の分離、再生方法 | |
JP2004330154A (ja) | 復水脱塩装置およびその装置へのイオン交換樹脂の充填方法 | |
JP2654053B2 (ja) | 復水脱塩装置 | |
CA2055206C (en) | Method of mixed-bed filtration and demineralization with ion-exchange resins | |
JP3472658B2 (ja) | アニオン交換樹脂の回生方法 | |
US6432306B1 (en) | Device for the deionization of substances that are not stable at acidic pH | |
JP2007105558A (ja) | 復水脱塩方法及び装置 | |
JP3051005B2 (ja) | 復水脱塩装置のNa/Clモル比調整方法 | |
NL1017993C2 (nl) | Ionenwisselaar, vervaardiging en toepassing ervan. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN YU AM AZ BY KG KZ MD RU TJ TM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1997904434 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2246649 Country of ref document: CA Ref country code: CA Ref document number: 2246649 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09125461 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: JP Ref document number: 97529761 Format of ref document f/p: F |
|
WWP | Wipo information: published in national office |
Ref document number: 1997904434 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1997904434 Country of ref document: EP |