WO1997006982A1 - Verfahren und airbagsystem zum abbau der kinetischen energie eines fahrzeuginsassen - Google Patents

Verfahren und airbagsystem zum abbau der kinetischen energie eines fahrzeuginsassen Download PDF

Info

Publication number
WO1997006982A1
WO1997006982A1 PCT/EP1996/003411 EP9603411W WO9706982A1 WO 1997006982 A1 WO1997006982 A1 WO 1997006982A1 EP 9603411 W EP9603411 W EP 9603411W WO 9706982 A1 WO9706982 A1 WO 9706982A1
Authority
WO
WIPO (PCT)
Prior art keywords
airbag
vehicle occupant
vehicle
sensor elements
airbag system
Prior art date
Application number
PCT/EP1996/003411
Other languages
English (en)
French (fr)
Inventor
Franz Fürst
Lothar Maier
Armin Stark
Karl Unterforsthuber
Bernhard Vetter
Siegfried Zeuner
Original Assignee
Temic Bayern-Chemie Airbag Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE1995129794 external-priority patent/DE19529794A1/de
Priority claimed from DE1995129793 external-priority patent/DE19529793A1/de
Application filed by Temic Bayern-Chemie Airbag Gmbh filed Critical Temic Bayern-Chemie Airbag Gmbh
Publication of WO1997006982A1 publication Critical patent/WO1997006982A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
    • B60R21/264Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic
    • B60R21/2644Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic using only solid reacting substances, e.g. pellets, powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/015Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting the presence or position of passengers, passenger seats or child seats, and the related safety parameters therefor, e.g. speed or timing of airbag inflation in relation to occupant position or seat belt use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
    • B60R21/264Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R2021/165Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags reusable, e.g. in case of multiple collisions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
    • B60R21/263Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using a variable source, e.g. plural stage or controlled output
    • B60R2021/2633Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using a variable source, e.g. plural stage or controlled output with a plurality of inflation levels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
    • B60R21/263Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using a variable source, e.g. plural stage or controlled output
    • B60R2021/2633Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using a variable source, e.g. plural stage or controlled output with a plurality of inflation levels
    • B60R2021/2636The volume of gas being continuously adjustable

Definitions

  • the invention relates to a method and an airbag system for reducing the kinetic energy of a vehicle occupant in a vehicle accident with strong, negative acceleration, the airbag system having a control unit for inflating an airbag, which the airbag system provides on the basis of electrical signals provided in the vehicle Acceleration sensor activated.
  • airbag gas generators produce gas for filling an airbag, which the vehicle occupants then in front of the vehicle
  • Pyrotechnic gas generators generally function in such a way that an igniter in the gas generator is ignited by a current pulse from the sensor system that detects a vehicle crash. This ignition is intensified by a so-called ignition charge, which generates hot particles. These hot particles then hit the surface of the fuel, usually in tablet form, which then ignites itself and in the so-called combustion chamber burns under a high pressure. This creates the gas to fill the airbag. Since, in addition to pure gas, liquid or solid components are also formed during combustion, the gas stream is cleaned by appropriate filters in the filter chamber before it exits the gas generator.
  • the temperature of the gas generated is essentially only influenced by the ambient temperature prevailing when the gas generator is ignited. This means nothing other than that the catch effect of the airbag system is essentially influenced by the ambient temperature.
  • the airbag system known from EP 0 449 506 A1 has a two-stage system
  • the two-stage design of the inflator means that the airbag is initially slowly partially inflated in a first stage and fully inflated as quickly as possible in a second stage. A time delay is provided between the first inflation stage and the second inflation stage, which is intended to enable the vehicle occupant to hit the airbag more gently.
  • the known airbag is inflated completely and with great internal pressure, so that injury to the vehicle occupant sitting in front of the airbag due to the hard impact on the airbag cannot be ruled out.
  • a further airbag system is known from US Pat. No. 5,219,178, in which the gas to be generated for inflating the airbag is available in two different ways Chambers is generated one after the other. It can thereby be achieved that, compared to the prior art, a larger amount of gas can be generated for inflating the airbag. Due to the two-stage inflation device, the airbag is nevertheless always inflated completely with the same degree of hardness. Consequently, this known airbag system can also injure a smaller and lighter vehicle occupant who is sitting in front of the airbag, for example a child.
  • the present invention is therefore based on the object of further developing the known method and airbag system in such a way that on the one hand optimal protection of the vehicle occupant sitting in front of the airbag is ensured and on the other hand injury to the vehicle occupant is avoided as far as possible.
  • This object is achieved by a method and an airbag system in which further sensor elements are provided, by means of which parameters are determined which determine the individual kinetic energy of the vehicle occupant and electrical signals from the sensor elements, which represent the parameters, to the control unit for the continuous adjustment of the amount of gas to be generated, the inflation pressure and the inflation speed of the airbag.
  • the vehicle occupant sitting in front of the airbag can be characterized very well for the control electronics, so that optimal protection of the vehicle occupant is ensured by the performance of the airbag system being matched to the vehicle occupant sitting in front of the airbag is.
  • the airbag system can be controlled by the method according to the invention in such a way that the catch effect necessary for the vehicle occupant is always exactly achieved.
  • Control signals from the sensor elements are advantageously used to control ignition processes and / or to start a gas-generating reaction. Gas generation takes place intermittently and is therefore largely variable.
  • the amount of gas generated for the filling process of the airbag is variable and essentially depends on the number of ignition processes. As a result, different degrees of filling of the airbag can be generated
  • the sensor elements can thus have a catching effect on the kinetic Energy of the vehicle occupant sitting in front of the airbag is adjusted.
  • time course of the gas generation can be varied over a wide range by corresponding control signals. This also helps to optimally adjust the catch effect to the kinetic energy of the vehicle occupant.
  • the control unit regulates the amount of gas, the inflation speed and the inflation pressure and specifically adjusts these variables, which determine the inflation behavior of the airbag, to the vehicle occupants characterized by the parameters recorded.
  • the weight of the vehicle occupant sitting in front of and / or next to the corresponding airbag is detected by sensor elements.
  • the seating position of the vehicle occupant sitting in front of and / or next to the corresponding airbag is detected by sensor elements.
  • the detection of the seat position contributes to a further optimization of the method, since it can be determined whether the vehicle occupant is sitting on the front edge of the vehicle seat, for example, or is leaning forward or leaning back on the vehicle seat, or has the backrest folded back.
  • These parameters could be recorded, for example, by pressure sensors attached to the seat cushion.
  • the sensor elements detect whether the seat belt is in front of and / or next to the corresponding one
  • Airbag seated vehicle occupants is created.
  • the control unit can inflate the airbag in such a way that the safety of the vehicle occupant can be at least partially compensated for and guaranteed by the airbag despite the seat belt not being fastened. If the position of the seat of the vehicle occupant sitting in front of and / or next to the corresponding airbag is detected by the sensor elements, the size of the airbag can be specifically adjusted to the distance to the vehicle occupant sitting in front of the airbag.
  • the head height of the vehicle occupant sitting in front of and / or next to the corresponding airbag is detected by the sensor elements.
  • the head height could be detected, for example, by sensors which are designed as pressure sensors in the neck support.
  • sensors which are designed as pressure sensors in the neck support.
  • the expected impact position and impact speed of the head of the vehicle occupant sitting in front of the corresponding airbag is calculated after the parameters which determine the individual kinetic energy of the vehicle occupant have been recorded.
  • the vehicle occupant sitting in front of the airbag is monitored and measured with regard to his body posture, so that it can be achieved that the head always hits the point of impact of the airbag that is optimal for a protective manner in the event of a vehicle accident.
  • the scope of the present invention also includes an airbag system which has further sensor elements which are suitable for detecting those parameters which determine the individual kinetic energy of the vehicle occupant and electrical signals which represent these parameters to the control unit for the continuous adjustment of the transferred gas quantity to be generated, the inflation pressure and the inflation speed of the airbag.
  • the airbag system according to the invention is provided with sensor elements by means of which the vehicle occupant sitting in front of the airbag can be characterized very well with regard to its kinetic energy, so that optimal protection of the vehicle occupant is ensured by the fact that the performance of the airbag system is based on those sitting in front of the airbag Vehicle occupants is coordinated.
  • the sensor elements are used for the advantageous detection of the above-mentioned parameters.
  • the control unit is designed in such a way that the probable impact position and impact speed of the head of the vehicle occupant sitting in front of the corresponding airbag can be calculated after detection of the parameters which determine the individual kinetic energy of the vehicle occupant.
  • a vehicle occupant sitting in front of the airbag is individually protected against the consequences of a traffic accident, ie the impact on the interior of the vehicle.
  • FIG. 1 is a schematic representation of an embodiment of the airbag system according to the invention.
  • FIG. 2 shows another embodiment of the airbag system according to the invention.
  • FIG. 1 schematically shows the functioning of an embodiment of the airbag system according to the invention, in which a fluid fuel 24 is injected from a storage container 26 into the combustion chamber 23 formed by a gas generator housing 22 with a correspondingly stable shape, via an injection nozzle 21, into the combustion chamber 23 Also protrudes an ignition device 25, which ignites the injected fluid fuel 24, so that this enters into an exothermic chemical reaction in the combustion chamber 23, by means of which the desired amount of propellant gas is generated, which has passed into an airbag 11 via gas outlet openings 29 - is used to inflate it according to the respective requirements.
  • a fluid fuel 24 is injected from a storage container 26 into the combustion chamber 23 formed by a gas generator housing 22 with a correspondingly stable shape, via an injection nozzle 21, into the combustion chamber 23
  • an ignition device 25 which ignites the injected fluid fuel 24, so that this enters into an exothermic chemical reaction in the combustion chamber 23, by means of which the desired amount of propellant gas is generated, which has passed into an airbag 11 via gas outlet opening
  • the control unit 13 processes the signals from the sensor elements 12 and determines the individual kinetic energy of the vehicle occupant as well as the probable impact position and speed of impact of his head when it hits the airbag.
  • control unit 13 outputs electrical control signals to the
  • Ignition device 25 to an inlet valve 14, which is connected between the reservoir 26 for the fluid fuel 24 and the injection nozzle 21, and to a drive magnet 15.
  • the drive magnet 15 builds up a magnetic field based on the control signals from the control unit 13, which ei - NEN spring-loaded drive piston 16 in the direction of a delivery piston
  • FIG. 2 shows a further embodiment in which an ignition device is not required because two fluid fuels 34 and 34 ′ which react chemically with one another exothermically from corresponding storage containers 36, 36 ′ via injection nozzles 31, 31 ′ in FIG the combustion chamber
  • control of the two injection processes is initiated by a control device 13 ′′ on the basis of signals from the sensor elements 12, the
  • Control device 13 "emits corresponding control pulses to the two drive magnets 35, 35 'and to the two inlet valves 37, 37" for controlling the injection processes and thus the gas-generating reaction.
  • These sensor elements 12 in turn detect the acceleration of the vehicle as well as the weight, the sitting position and / or the state of the belt buckle of the seat belt. Furthermore, the head height of the vehicle occupant can also be detected with such sensors in order to calculate the probable impact position and impact speed of the head.
  • a first fluid fuel component can also be already filled in the combustion chamber of the gas generation generator, while one or more fuel components which react chemically with the first fuel component are injected into the combustion chamber to generate propellant gas become.
  • the quantity of the propellant gas to be generated can then also be controlled by controlling the corresponding injection quantities.
  • An important advantage of the injection inflator device according to the invention is that the propellant gas is generated intermittently and can therefore be designed to be largely variable.
  • the amount of propellant gas generated for the filling process of the airbag can be freely selected within a wide range and essentially depends on the number of injection processes. As a result, different degrees of filling of the air cushion can be generated, so that the catch effect can be individually fine-tuned to the actual kinetic energy of the vehicle occupant to be protected.
  • the time course of the gas generation reaction can be varied over a wide range by means of corresponding control signals.
  • Impact protection systems have the embodiments with injection systems advantages over the embodiments with solid fuels, since only the corresponding storage containers have to be refilled for refilling and the combustion chamber can remain hermetically sealed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Air Bags (AREA)

Abstract

Bei einem Verfahren und einem Airbagsystem zum Abbau der kinetischen Energie eines Fahrzeuginsassen bei einem Fahrzeugunfall mit starker, negativer Beschleunigung, wobei das Airbagsystem eine Steuereinheit zum Aufblasen eines Luftsackes (11) aufweist, die das Airbagsystem aufgrund von elektrischen Signalen eines im Fahrzeug vorgesehenen Beschleunigungssensors aktiviert, sind weitere Sensorelemente vorgesehen, durch die solche Parameter erfaßt werden, die die individuelle kinetische Energie des Fahrzeuginsassen bestimmen, wobei von den Sensorelementen elektrische Signale, die die Parameter repräsentieren, an die Steuereinheit zur kontinuierlichen Einstellung der zu erzeugenden Gasmenge, des Aufblasdruckes und der Aufblasgeschwindigkeit des Luftsackes (11) übergeben werden. Damit kann ein optimaler Schutz des vor dem Airbag sitzenden Fahrzeuginsassen gewährleistet und eine Verletzung desselben vermieden werden.

Description

Verfahren und Airbagsystem zum Abbau der kinetischen Energie eine«; Fahr- zeuginsassen
Die Erfindung betrifft ein Verfahren und ein Airbagsystem zum Abbau der kinetischen Energie eines Fahrzeuginsassen bei einem Fahrzeugunfall mit starker, negativer Beschleunigung, wobei das Airbagsystem eine Steuerein¬ heit zum Aufblasen eines Luftsackes aufweist, die das Airbagsystem auf¬ grund von elektπschen Signalen eines im Fahrzeug vorgesehenen Be¬ schleunigungssensors aktiviert.
Ein derartiges Verfahren und ein Airbagsystem sind aus der EP 0 449 506 A1 bekannt.
im Falle eines Fahrzeugcrashs erzeugen sogenannte Airbaggasgeneratoren Gas zum Füllen eines Luftsackes, der dann die Fahrzeuginsassen vor dem
Aufprall auf harte Fahrzeuginnenteile wie das Lenkrad schützt. Physikalisch gesehen passiert dabei nichts anderes, als daß der durch den Fahrzeugcrash beschleunigte Insasse durch den relativ weichen Luftsack abgebremst bzw. aufgefangen wird. Dabei strömt Gasmasse durch sogenannten Entlüftungs¬ löcher (Ventholes) aus dem Airbag. Demnach hat der Airbag die Aufgabe, die kinetische Energie des Insassen auf einem kurzen weg möglichst "weich" ab¬ zubauen.
Heutige Airbagkonzepte verwenden meist Gasgeneratoren pyrotechnischer Art. Pyrotechnische Gasgeneratoren funktionieren im allgemeinen derart, daß durch einen Stromimpuls von der einen Fahrzeugcrash erkennenden Sensorik ein Anzünder im Gasgenerator gezündet wird. Diese Anzündung wird durch eine sogenannte Anzündladung, die heiße Partikel erzeugt, ver¬ stärkt. Diese heißen Partikel treffen dann auf die Oberfläche des meist in Tablettenform vorliegenden Treibstoffes, der dann selbst zündet und in der sogenannten Brennkammer unter einem hohen Druck abbrennt. Dadurch entsteht das Gas zum Füllen des Luftsackes. Da neben reinem Gas auch noch flüssige bzw. feste Bestandteile bei der Verbrennung entstehen, wird der Gasstrom durch entsprechende Filter in der Filterkammer vor Austritt aus dem Gasgenerator gereinigt.
Wichtig ist es, daß es immer zu einem vollständigen Abbrand kommt und daher immer die gleiche Menge Gas erzeugt wird, wenn der Treibstoffab¬ brand einmal in Gang gesetzt worden ist. Des weiteren wird die Temperatur des erzeugten Gases im wesentlichen nur durch die bei Zündung des Gasge¬ nerators herrschende Umgebungstemperatur beeinflußt. Dies bedeutet nichts anderes, als daß die Auffangwirkung des Airbagsystems im wesentli¬ chen durch die Umgebungstemperatur beeinflußt wird.
Das aus der EP 0 449 506 A1 bekannte Airbagsystem weist eine zweistufige
Aufblasvorrichtung zum Aufblasen des Luftsackes auf. Die zweistufige Aus¬ bildung der Aufblasvorrichtung führt dazu, daß der Luftsack in einer ersten Stufe zunächst langsam teilweise aufgeblasen wird und in einer zweiten Stufe schnellstmöglich vollständig aufgeblasen wird. Zwischen der ersten Aufblasstufe und der zweiten Aufblasstufe ist eine zeitliche Verzögerung vorgesehen, die ein schonenderes Auftreffen des Fahrzeuginsassen auf den Airbag ermöglichen soll. Der bekannte Airbag wird aber trotzdem vollstän¬ dig und mit großem innendruck aufgeblasen, so daß eine Verletzung des vor dem Airbag sitzenden Fahrzeuginsassen durch den harten Aufprall auf den Luftsack nicht ausgeschlossen werden kann.
Bei dem Airbagsystem nach der Lehre der EP 0 455 435 A2 dringt das Gas zu¬ nächst langsam in den Luftsack ein und bläst anschließend mit maximaler Einströmgeschwindigkeit den Luftsack vollständig auf. Daher kann auch durch dieses zweistufig ausgebildete Airbagsystem keine Abstimmung des aufgeblasenen Luftsacks auf den vor dem Airbag sitzenden Fahrzeugin¬ sassen erreicht werden. Aus diesem Grund können auch bei diesem Airbag¬ system Verletzungen des vor dem Airbag sitzenden Fahrzeuginsassen, insbe¬ sondere bei Kindern, nicht gänzlich verhindert werden.
Aus der US-PS 5,219,178 ist ein weiteres Airbagsystem bekannt, bei dem das zum Aufblasen des Luftsackes zu erzeugende Gas in zwei verschiedenen Kammern nacheinander erzeugt wird. Dadurch läßt sich erreichen, daß ge¬ genüber dem bisherigen stand der Technik eine größere Gasmenge zum Aufblasen des Luftsackes erzeugt werden kann. Durch die zweistufige Auf¬ blasvorrichtung wird der Luftsack aber dennoch immer vollständig mit dem gleichen Härtegrad aufgeblasen. Folglich kann auch dieses bekannte Airbag¬ system einen kleineren und leichteren Fahrzeuginsassen, der vor dem Air¬ bag sitzt, beispielsweise ein Kind, verletzen.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, das be- kannte Verfahren und Airbagsystem derart weiterzuentwickeln, daß einer¬ seits ein optimaler schütz des vor dem Airbag sitzenden Fahrzeuginsassen gewährleistet ist und andererseits eine Verletzung des Fahrzeuginsassen möglichst vermieden wird.
Diese Aufgabe wird durch ein verfahren und ein Airbagsystem gelöst, bei dem weitere Sensorelemente vorgesehen sind, durch die solche Parameter erfaßt werden, die die individuelle kinetische Energie des Fahrzeuginsassen bestimmen und von den Sensorelementen elektrische Signale, die die Pa¬ rameter repräsentieren, an die Steuereinheit zur kontinuierlichen Einstel- lung der zu erzeugenden Gasmenge, des Auf blasdruckes und der Auf blasge¬ schwindigkeit des Luftsackes übergeben werden.
Durch die Sensorelemente läßt sich der vor dem Airbag sitzende Fahrzeug¬ insasse für die Steuerelektronik sehr gut charakterisieren, so daß ein opti- maier Schutz des Fahrzeuginsassen dadurch gewährleistet ist, daß die Lei¬ stung des Airbagsystems auf den vor dem Airbag sitzenden Fahrzeugin¬ sassen abgestimmt ist. Das Airbagsystem ist durch das erfindungsgemäße verfahren derart steuerbar, daß stets die für den Fahrzeuginsassen not¬ wendige Auffangwirkung exakt erzielt wird. Vorteilhafterweise werden Steuersignale von den Sensorelementen zum steuern von Zündvorgängen und/oder dem Starten einer gaserzeugenden Reaktion genutzt. Die Gaser¬ zeugung erfolgt intermittierend und ist damit weitgehend variabel gestal¬ tet. Die für den Füllvorgang des Luftsackes erzeugte Gasmenge ist variabel und hängt im wesentlichen von der Anzahl der Zündvorgänge ab. Dadurch können unterschiedliche Füllgrade des Luftsackes erzeugt werden und die
Auffangwirkung kann somit mit Hilfe der Sensorelemente auf die kinetische Energie des vor dem Airbag sitzenden Fahrzeuginsassen abgestimmt wer¬ den.
Weiterhin kann der Zeitverlauf der Gaserzeugung in einem weiten Bereich durch entsprechende Steuersignale variiert werden. Dies trägt ebenfalls dazu bei, die Auffangwirkung optimal auf die kinetische Energie des Fahr¬ zeuginsassen einzustellen.
Die Steuereinheit regelt die Gasmenge, die Aufblasgeschwindigkeit und den Aufblasdruck und stimmt diese Größen, die das Aufblasverhalten des Luft¬ sackes bestimmen, gezielt auf den durch die erfaßten Parameter charakte¬ risierten Fahrzeuginsassen ab.
Da die aufzufangende kinetische Energie des Fahrzeuginsassen entschei- dend von dem Gewicht des Fahrzeuginsassen abhängt, ist es besonders be¬ vorzugt, daß bei dem erfindungsgemäßen Verfahren das Gewicht des vor und/oder neben dem entsprechenden Airbag sitzenden Fahrzeuginsassen durch Sensorelemente erfaßt wird.
Bei einer weiteren Ausführungsform wird die Sitzposition des vor und/oder neben dem entsprechenden Airbag sitzenden Fahrzeuginsassen durch Sen¬ sorelemente erfaßt. Die Erfassung der Sitzposition trägt zu einer weiteren Optimierung des Verfahrens bei, da erfaßt werden kann, ob der Fahrzeugin¬ sasse beispielsweise auf der Vorderkante des Fahrzeugsitzes oder vorge- beugt oder zurückgelehnt auf dem Fahrzeugsitz sitzt oder die Rückenlehne nach hinten umgeklappt hat. Die Erfassung dieser Parameter könnte bei¬ spielsweise durch im Sitzpolster angebrachte Druckfühler realisiert werden.
Bei einer anderen Ausführungsform wird durch die Sensorelemente erfaßt, ob der Sicherheitsgurt von dem vor und/oder neben dem entsprechenden
Airbag sitzenden Fahrzeuginsassen angelegt ist. Aufgrund dieser Informa¬ tion kann die Steuereinheit den Luftsack derart aufblasen, daß die Sicher¬ heit des Fahrzeuginsassen trotz nichtangelegten Sicherheitsgurtes durch den Airbag zumindest teilweise kompensiert und gewährleistet werden kann. Wenn die Stellung des Sitzes des vor und/oder neben dem entsprechenden Airbag sitzenden Fahrzeuginsassen durch die Sensorelemente erfaßt wird, kann die Größe des Luftsackes auf die Distanz zu den vor dem Airbag sitzen¬ den Fahrzeuginsassen gezielt eingestellt werden.
Bei einer weiteren Ausführungsform wird die Kopfhöhe des vor und/oder neben dem entsprechenden Airbag sitzenden Fahrzeuginsassen durch die Sensorelemente erfaßt. Die Erfassung der Kopfhöhe könnte beispielsweise durch Sensoren, die in der Nackenstütze als Druckfühler ausgebildet sind, durchgeführt werden. Es wäre aber ebenso denkbar, präzisere Meßtechni¬ ken, wie beispielsweise Laser- oder Lichtschranken, einzusetzen.
Bei einer ebenfalls bevorzugten Ausführungsform wird die voraussichtliche Auftreffposition und Auftreffgeschwindigkeit des Kopfes des vor dem ent- sprechenden Airbag sitzenden Fahrzeuginsassen nach Erfassung der Para¬ meter, die die individuelle kinetische Energie des Fahrzeuginsassen be¬ stimmen, berechnet. Durch die Sensorelemente wird der Fahrzeuginsasse, der vor dem Airbag sitzt, hinsichtlich seiner Körperhaltung überwacht und vermessen, so daß erreicht werden kann, daß der Kopf bei einem Unfall des Fahrzeugs stets die für einen schütz optimale Auftreffstelle des Luftsackes trifft.
in den Rahmen der vorliegenden Erfindung fällt auch ein Airbagsystem, das weitere Sensorelemente aufweist, die zur Erfassung solcher Parameter ge- eignet sind, die die individuelle kinetische Energie des Fahrzeuginsassen bestimmen und elektrische Signale, die diese Parameter repräsentieren, an die Steuereinheit zur kontinuierlichen Einstellung der zu erzeugenden Gas¬ menge, des Aufblasdruckes und der Aufblasgeschwindigkeit des Luftsackes übergeben.
Das erfindungsgemäße Airbagsystem ist mit Sensorelementen versehen, durch die sich der vor dem Airbag sitzende Fahrzeuginsasse hinsichtlich sei¬ ner kinetischen Energie sehr gut charakterisieren läßt, so daß ein optimaler Schutz des Fahrzeuginsassen dadurch gewährleistet ist, daß die Leistung des Airbagsystems auf den vor dem Airbag sitzenden Fahrzeuginsassen abge¬ stimmt ist. Die Sensorlelemente dienen der vorteilhaften Erfassung der obengenann¬ ten Paramneter. Die Steuereinheit ist dabei derart ausgebildet, daß die vor¬ aussichtliche Auftreffposition und Auftreffgeschwindigkeit des Kopfes des vor dem entsprechenden Airbag sitzenden Fahrzeuginsassen nach Erfassung der Parameter, die die individuelle kinetische Energie des Fahrzeuginsassen bestimmen, berechnet werden kann. Ein vor dem Airbag sitzender Fahr¬ zeuginsasse wird individuell vor den Folgen eines Verkehrsunfalls, d. h. dem Aufprall auf das Fahrzeuginnere, geschützt.
im folgenden soll die Erfindung anhand von Ausführungsbeispielen im Zu¬ sammenhang mit Zeichnungen dargestellt und erläutert werden.
Es zeigen:
Figur 1 eine schematische Darstellung eines Ausführungsbeispiels des erfindungsgemäßen Airbagsystems, und
Figur 2 eine weitere Ausführungsform des erfindungsgemäßen Airbag¬ systems.
in Fig. 1 ist schematisch die Funktionsweise einer Ausführungsform des er¬ findungsgemäßen Airbagssystems gezeigt, bei der über eine Einspritzdüse 21 ein fluider Treibstoff 24 aus einem vorratsbehalter 26 in die von einem entsprechend formstabil aufgebauten Gasgeneratorgehäuse 22 gebildete Brennkammer 23 eingespritzt wird, in die Brennkammer 23 ragt außerdem eine Zündvorrichtung 25, die den eingespritzten fluiden Treibstoff 24 ent¬ zündet, so daß dieser in der Brennkammer 23 eine exotherme chemische Reaktion eingeht, durch welche Treibgas in der gewünschten Menge er¬ zeugt wird, das über Gasaustrittsöffnungen 29 in einen Luftsack 11 getrie- ben wird, um diesen entsprechend den jeweiligen Anforderungen aufzubla¬ sen.
Diese Anforderungen werden über eine Reihe von im Fahrzeug eingebauten Sensorelementen 12 bestimmt, von denen eines in jedem Falle ein Be- schleunigungssensor sein wird, während die anderen beispielsweise das
Gewicht des vor und/oder neben dem entsprechenden Airbag sitzenden Fahrzeuginsassen, dessen Sitzposition, die Stellung seines Sitzes, seine Kopf- höhe und die Information, ob er seinen Sicherheitsgurt vorschriftsmäßig angelegt hat oder nicht, erfassen und an eine Steuereinheit 13 weiterge¬ ben. Die Steuereinheit 13 verarbeitet die Signale aus den Sensorelementen 12 und bestimmt die individuelle kinetische Energie des Fahrzeuginsassen sowie die voraussichtliche Auftreffposition und Auftreffgeschwindigkeit seines Kopfes beim Auftreffen auf den Airbag. Daraus leitet sie entspre¬ chende Sollwerte für die Treibgaserzeugung im Airbag-Gasgenerator ab, die insbesondere die Einspritzdauer und den Einspritzdruck und/oder ein in¬ termittierendes Starten einer Anzahl von hintereinanderfolgenden kurzen Einspritzvorgängen betreffen, so daß die individuelle, im vorliegenden Ein¬ zelfall jeweils erforderliche Treibgasmenge quasi-kontinuierlich erzeugt und der richtige Aufblasdruck und die entsprechende Aufblasgeschwindigkeit des Luftsackes 11 sichergestellt werden.
Dementsprechend gibt die Steuereinheit 13 elektrische Steuersignale an die
Zündvorrichtung 25, an ein Zulaufventil 14, das zwischen dem Vorratsbehal¬ ter 26 für den fluiden Treibstoff 24 und die Einspritzdüse 21 geschaltet ist, sowie an einen Antriebsmagneten 15. Der Antriebsmagnet 15 baut aufgrund der Steuersignale aus der Steuereinheit 13 ein Magnetfeld auf, welches ei- nen federbelasteten Antriebskolben 16 in Richtung auf einen Förderkolben
17 beschleunigt, der ebenfalls mit einer Feder vorgespannt ist. Nachdem der Antriebskolben 16 auf den Förderkolben 17 aufgeschlagen ist, setzt der letztere den in einer Druckleitung 18 nach Öffnung des Zulaufventils 14 auf¬ grund eines entsprechenden Steuersignals aus der Steuereinheit 13 vorlie- genden fluiden Treibstoff 24 unter Druck. Dadurch wird der Treibstoff 24 durch die Einspritzdüse 21 in die Brennkammer 23 eingespritzt. Aufgrund eines entsprechend getimten Steuersignals an die Zündvorrichtung 25 er¬ zeugt diese im richtigen Moment einen Zündfunken, der den fluiden Treib¬ stoff 24 zu einer explosionsartigen chemischen Reaktion veranlaßt, mit wel- eher das erforderliche Treibgas erzeugt wird.
Fig. 2 schließlich zeigt eine weitere Ausführungsform, bei der eine Zünd¬ vorrichtung nicht erforderlich ist, weil gleichzeitig zwei miteinander exo¬ therm chemisch reagierende fluide Treibstoffe 34 und 34' aus entsprechen- den Vorratsbehältern 36, 36' über Einspritzdüsen 31 , 31 ' in die Brennkammer
33 eingespritzt werden, wobei die chemische Reaktion auch ohne Zufuhr von Zündenergie einfach durch Vermischen der beiden Reaktanten in Gang gesetzt wird.
Die Steuerung der beiden Einspritzvorgänge wird durch eine steuervorrich- tung 13" aufgrund von Signalen der Sensorelemente 12 initiiert, wobei die
Steuervorrichtung 13" entsprechende Steuerimpulse an die beiden An¬ triebsmagneten 35, 35' sowie an die beiden Zulaufventile 37, 37" zum Steu¬ ern der Einspritzvorgänge und damit der gaserzeugenden Reaktion abgibt.
Diese Sensorelemente 12 erfassen wiederum die Beschleunigung des Fahr¬ zeuges als auch das Gewicht, die Sitzposition und/oder den Zustand des Gurtschlosses des Sicherheitsgurtes. Des weiteren kann mit solchen Senso¬ ren auch die Kopfhöhe des Fahrzeuginsassen erfaßt werden, um die voraus¬ sichtliche Auftreffposition und Auftreffgeschwindigkeit des Kopfes zu be- rechnen.
Bei einer in der Zeichnung nicht dargestellten Ausführungsform kann in der Brennkammer des Gaserzeugungsgenerators auch eine erste fluide Treib¬ stoffkomponente bereits eingefüllt sein, während eine oder mehrere Treibstoffkomponenten, die mit der ersten Treibstoffkomponente exo¬ therm chemisch reagieren, zur Erzeugung von Treibgas in die Brennkammer eingespritzt werden. Durch die Steuerung der entsprechenden Einspritz¬ mengen kann dann ebenfalls die Menge des jeweils zu erzeugenden Treib¬ gases gesteuert werden.
Ein wesentlicher vorteil der erfindungsgemäßen Einspritz-Aufblasvorrich- tung liegt darin, daß die Treibgaserzeugung intermittierend erfolgt und damit weitgehend variabel gestaltet werden kann. Die für den Füllvorgang des Luftsackes erzeugte Treibgasmenge ist in weiten Grenzen frei wählbar und hängt im wesentlichen von der Anzahl der Einspritzvorgänge ab. Da¬ durch können unterschiedliche Füllgrade des Luftkissens erzeugt werden, so daß die Auffangwirkung individuell fein auf die jeweils tatsächliche kineti¬ sche Energie des zu schützenden Fahrzeuginsassen abgestimmt werden kann. Der zeitverlauf der Gaserzeugungsreaktion kann in weiten Bereichen durch entsprechende Steuersignale variiert werden. Auf diese Weise ist es einerseits möglich, die normalerweise auftretende Problematik eines nicht¬ zentral auf den Luftsack auftretenden Insassenkopfes zu entschärfen, ande- rerseits kann die Auffang- und Abbremswirkung des Airbags jeweils optimal auf die momentane kinetische Energie des jeweiligen Fahrzeuginsassen ein¬ gestellt werden.
Auch im Hinblick auf die Wiederverwendbarkeit des erfindungsgemäßen
Aufprallschutzsystems haben die Ausführungsformen mit Einspritzsystemen vorteile gegenüber den Ausführungsformen mit Festkörperbrennstoffen, da zur Wiederbefüllung lediglich die entsprechenden vorratsbehalter aufge¬ füllt werden müssen und die Brennkammer hermetisch verschlossen blei- ben kann.

Claims

patentansprüche
1. Verfahren zum Abbau der kinetischen Energie eines Fahrzeuginsassen durch ein Airbagsystem bei einem Fahrzeugunfall mit starker, negativer Be- schleunigung, wobei das Airbagsystem eine Steuereinheit zum Aufblasen eines Luftsackes aufweist, die das Airbagsystem aufgrund von elektrischen Signalen eines im Fahrzeug vorgesehenen Beschleunigungssensors aktiviert, dadurch gekennzeichnet, daß weitere Sensorelemente vorgesehen sind, durch die solche Parameter erfaßt werden, die die individuelle kinetische Energie des Fahrzeuginsassen bestimmen, und daß von den Sensorelemen¬ ten elektrische Signale, die die Parameter repräsentieren, an die Steuerein¬ heit zur kontinuierlichen Einstellung der zu erzeugenden Gasmenge, des Aufblasdruckes und der Aufblasgeschwindigkeit des Luftsackes übergeben werden.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß das Gewicht des vor und/oder neben dem entsprechenden Airbag sitzenden Fahrzeugin¬ sassen durch Sensorelemente erfaßt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Sitz¬ postion des vor und/oder neben dem entsprechenden Airbag sitzenden Fahrzeuginsassen durch Sensorelemente erfaßt wird.
4. verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn- zeichnet, daß durch die Sensorelemente erfaßt wird, ob der Sicherheitsgurt von dem vor und/oder neben dem entsprechenden Airbag sitzenden Fahr¬ zeuginsassen angelegt ist.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn- zeichnet, daß die Stellung des Sitzes des vor und/oder neben dem entspre¬ chenden Airbag sitzenden Fahrzeuginsassen durch die Sensorelemente er¬ faßt wird.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn¬ zeichnet, daß die Kopfhöhe des vor und/oder neben dem entsprechenden Airbag sitzenden Fahrzeuginsassen durch die Sensorelemente erfaßt wird.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn¬ zeichnet, daß die voraussichtliche Auftreffposition und Auftreffgeschwin¬ digkeit des Kopfes des vor dem entsprechenden Airbag sitzenden Fahrzeug¬ insassen nach Erfassung der Parameter, die die individuelle kinetische Energie des Fahrzeuginsassen bestimmen, berechnet wird.
8. Airbagsystem zum Abbau der kinetischen Energie eines Fahrzeuginsassen bei einem Fahrzeugunfall mit starker, negativer Beschleunigung, wobei das Airbagsystem eine Steuereinheit zum Aufblasen eines Luftsackes aufweist, die das Airbagsystem aufgrund von elektrischen Signalen eines im Fahrzeug vorgesehenen Beschleunigungssensors aktiviert, dadurch gekennzeichnet, daß das Airbagsystem weitere Sensorelemente aufweist, die zur Erfassung solcher Parameter geeignet sind, die die individuelle kinetische Energie des Fahrzeuginsassen bestimmen, und daß die weiteren Sensorelemente elektri¬ sche Signale, die diese Parameter repräsentieren, an die Steuereinheit zur kontinuierlichen Einstellung der zu erzeugenden Gasmenge, des Aufblas¬ druckes und der Aufblasgeschwindigkeit des Luftsackes übergeben.
9. Airbagsystem nach Anspruch 8, dadurch gekennzeichnet, daß Sensorele¬ mente zur Erfassung des Gewichts des vor und/oder neben dem entspre- chenden Airbag sitzenden Fahrzeuginsassen vorgesehen sind.
10. Airbagsystem nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß Sensorelemente zur Erfassung der Sitzpostion des vor und/oder neben dem entsprechenden Airbag sitzenden Fahrzeuginsassen vorgesehen sind.
11. Airbagsystem nach einem der Ansprüche 8 bis 10, dadurch gekennzeich¬ net, daß Sensorelemente vorgesehen sind, die erfassen, ob der Sicherheits¬ gurt von dem vor und/oder neben dem entsprechenden Airbag sitzenden Fahrzeuginsassen angelegt ist.
12. Airbagsystem nach einem der Ansprüche 8 bis 11, dadurch gekennzeich¬ net, daß Sensorelemente zur Erfassung der Stellung des Sitzes des vor und/oder neben dem entsprechenden Airbag sitzenden Fahrzeuginsassen vorgesehen sind.
13. Airbagsystem nach einem der Ansprüche 8 bis 12, dadurch gekennzeich- net, daß Sensorelemente zur Erfassung der Kopfhöhe des vor und/oder ne¬ ben dem entsprechenden Airbag sitzenden Fahrzeuginsassen vorgesehen sind.
14. Airbagsystem nach einem der Ansprüche 8 bis 13, dadurch gekennzeich- net, daß die Steuereinheit derart ausgebildet ist, daß die voraussichtliche
Auftreffposition und Auftreffgeschwindigkeit des Kopfes des vor und/oder neben dem entsprechenden Airbag sitzenden Fahrzeuginsassen nach Erfas¬ sung der Parameter, die die individuelle kinetische Energie des Fahrzeugin¬ sassen bestimmen, durch die Steuereinheit berechenbar sind.
PCT/EP1996/003411 1995-08-12 1996-08-02 Verfahren und airbagsystem zum abbau der kinetischen energie eines fahrzeuginsassen WO1997006982A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19529794.6 1995-08-12
DE19529793.8 1995-08-12
DE1995129794 DE19529794A1 (de) 1995-08-12 1995-08-12 Verfahren und Airbagsystem zum Abbau der kinetischen Energie eines Fahrzeuginsassen
DE1995129793 DE19529793A1 (de) 1995-08-12 1995-08-12 Mehrfach wiederverwendbares Airbagsystem

Publications (1)

Publication Number Publication Date
WO1997006982A1 true WO1997006982A1 (de) 1997-02-27

Family

ID=26017661

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP1996/003411 WO1997006982A1 (de) 1995-08-12 1996-08-02 Verfahren und airbagsystem zum abbau der kinetischen energie eines fahrzeuginsassen
PCT/EP1996/003413 WO1997006989A1 (de) 1995-08-12 1996-08-02 Mehrfach wiederverwendbares airbagsystem

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/003413 WO1997006989A1 (de) 1995-08-12 1996-08-02 Mehrfach wiederverwendbares airbagsystem

Country Status (1)

Country Link
WO (2) WO1997006982A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0922616A2 (de) * 1997-12-10 1999-06-16 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Airbagsystem für Kraftfahrzeuge und Verfahren zur Steuerung dieses Systems
EP0961719A1 (de) * 1997-02-03 1999-12-08 General Dynamics Armament Systems, Inc. Aufblasvorrichtung geeignet zur änderung der aufblasleitung in einem fahrzeuginsassen-rückhaltesystem
WO2004069612A1 (de) * 2003-02-03 2004-08-19 Robert Bosch Gmbh Vorrichtung und verfahren zur ansteuerung eines gasgenerators zum aufblasen eines airbags
CN103693004A (zh) * 2012-09-27 2014-04-02 丰田合成株式会社 气囊装置
CN104423279A (zh) * 2013-08-28 2015-03-18 联想(北京)有限公司 一种电子设备及其在移动状态下的保护方法
WO2016045848A1 (de) * 2014-09-24 2016-03-31 Robert Bosch Gmbh Verfahren und vorrichtung zum ansteuern einer adaptiven sicherheitseinrichtung eines fahrzeugs
CN116448463A (zh) * 2023-06-15 2023-07-18 潍坊微科汽车零部件有限公司 一种气囊发生器生产用快速检测设备

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4886295A (en) * 1988-12-05 1989-12-12 General Motors Corporation Vehicle occupant protection system
EP0357225A1 (de) * 1988-07-29 1990-03-07 Mazda Motor Corporation Luftsackvorrichtung für ein Kraftfahrzeug
DE4023109A1 (de) * 1990-07-20 1992-01-23 Messerschmitt Boelkow Blohm Insassenschutzsystem fuer fahrzeuge
EP0481188A1 (de) * 1990-10-16 1992-04-22 Mercedes-Benz Ag Kraftwagen mit einem Sicherheitsgurt und einem Airbag-System
JPH04146851A (ja) * 1990-10-09 1992-05-20 Kansei Corp 車両用乗員保護装置
DE4041049A1 (de) * 1990-12-20 1992-07-02 Siemens Ag Steueranordnung fuer einen airbag eines fahrzeuges
JPH05213142A (ja) * 1992-01-31 1993-08-24 Suzuki Motor Corp エアバッグ制御装置
WO1994022693A1 (en) * 1993-03-31 1994-10-13 Automotive Technologies International, Inc. Vehicle occupant position and velocity sensor
DE9317678U1 (de) * 1993-11-19 1995-03-16 Autoliv Development AB, Vårgårda Fahrzeugsicherheitssystem
WO1995011819A1 (en) * 1993-10-29 1995-05-04 Morton International, Inc. Air bag system for motor vehicle
DE4442841A1 (de) * 1993-12-02 1995-06-08 Trw Vehicle Safety Systems Vorrichtung und Verfahren zum Erfassen und Rückhalten eines Insassen eines Fahrzeugsitzes

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3972545A (en) * 1975-03-10 1976-08-03 Thiokol Corporation Multi-level cool gas generator
DE3435075A1 (de) * 1984-09-25 1986-03-27 Diehl GmbH & Co, 8500 Nürnberg Gasgenerator, verfahren zum gewinnen von reaktionsgasen und verwendung eines metallhydrides sowie seiner reaktionsgase
US5098123A (en) * 1990-12-03 1992-03-24 International Development Corporation Electrothermal inflatable restraint system
DE4135547A1 (de) * 1991-10-28 1993-04-29 Dynamit Nobel Ag Gasgenerator, insbesondere fuer ein aufblasbares aufprallkissen zum schutz eines kraftfahrzeug-insassen vor verletzungen
US5441705A (en) * 1994-03-14 1995-08-15 Morton International, Inc. Combined reaction can and inflator with extruded generant
JPH0891168A (ja) * 1994-09-27 1996-04-09 Nippon Kayaku Co Ltd エアバッグ用ガス発生器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0357225A1 (de) * 1988-07-29 1990-03-07 Mazda Motor Corporation Luftsackvorrichtung für ein Kraftfahrzeug
US4886295A (en) * 1988-12-05 1989-12-12 General Motors Corporation Vehicle occupant protection system
DE4023109A1 (de) * 1990-07-20 1992-01-23 Messerschmitt Boelkow Blohm Insassenschutzsystem fuer fahrzeuge
JPH04146851A (ja) * 1990-10-09 1992-05-20 Kansei Corp 車両用乗員保護装置
EP0481188A1 (de) * 1990-10-16 1992-04-22 Mercedes-Benz Ag Kraftwagen mit einem Sicherheitsgurt und einem Airbag-System
DE4041049A1 (de) * 1990-12-20 1992-07-02 Siemens Ag Steueranordnung fuer einen airbag eines fahrzeuges
JPH05213142A (ja) * 1992-01-31 1993-08-24 Suzuki Motor Corp エアバッグ制御装置
WO1994022693A1 (en) * 1993-03-31 1994-10-13 Automotive Technologies International, Inc. Vehicle occupant position and velocity sensor
WO1995011819A1 (en) * 1993-10-29 1995-05-04 Morton International, Inc. Air bag system for motor vehicle
DE9317678U1 (de) * 1993-11-19 1995-03-16 Autoliv Development AB, Vårgårda Fahrzeugsicherheitssystem
DE4442841A1 (de) * 1993-12-02 1995-06-08 Trw Vehicle Safety Systems Vorrichtung und Verfahren zum Erfassen und Rückhalten eines Insassen eines Fahrzeugsitzes

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"ANNOUNCEMENT", ATZ AUTOMOBILTECHNISCHE ZEITSCHRIFT, vol. 97, no. 2, 1 February 1995 (1995-02-01), pages 107, XP000482858 *
"HEATED AND/OR COOLED LIQUID INFLATOR SYSTEM", RESEARCH DISCLOSURE, no. 370, 1 February 1995 (1995-02-01), pages 116, XP000504464 *
"INFLATOR ASSEMBLY FOR AN INFLATABLE VEHICLE OCCUPANT PROTECTION DEVICE HAVING TALLORABLE OUTPUT", RESEARCH DISCLOSURE, no. 380, 1 December 1995 (1995-12-01), pages 827 - 829, XP000549841 *
"OCCUPANT DETECTION IMPROVES", AUTOMOTIVE ENGINEERING, vol. 103, no. 5, 1 May 1995 (1995-05-01), pages 64/65, XP000505532 *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 428 (M - 1307) 8 September 1992 (1992-09-08) *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 652 (M - 1520) 3 December 1993 (1993-12-03) *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0961719A1 (de) * 1997-02-03 1999-12-08 General Dynamics Armament Systems, Inc. Aufblasvorrichtung geeignet zur änderung der aufblasleitung in einem fahrzeuginsassen-rückhaltesystem
EP0961719A4 (de) * 1997-02-03 2002-10-30 Gen Dynamics Armament Systems Aufblasvorrichtung geeignet zur änderung der aufblasleitung in einem fahrzeuginsassen-rückhaltesystem
EP0922616A2 (de) * 1997-12-10 1999-06-16 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Airbagsystem für Kraftfahrzeuge und Verfahren zur Steuerung dieses Systems
EP0922616A3 (de) * 1997-12-10 2001-08-08 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Airbagsystem für Kraftfahrzeuge und Verfahren zur Steuerung dieses Systems
WO2004069612A1 (de) * 2003-02-03 2004-08-19 Robert Bosch Gmbh Vorrichtung und verfahren zur ansteuerung eines gasgenerators zum aufblasen eines airbags
CN103693004A (zh) * 2012-09-27 2014-04-02 丰田合成株式会社 气囊装置
CN104423279A (zh) * 2013-08-28 2015-03-18 联想(北京)有限公司 一种电子设备及其在移动状态下的保护方法
WO2016045848A1 (de) * 2014-09-24 2016-03-31 Robert Bosch Gmbh Verfahren und vorrichtung zum ansteuern einer adaptiven sicherheitseinrichtung eines fahrzeugs
CN116448463A (zh) * 2023-06-15 2023-07-18 潍坊微科汽车零部件有限公司 一种气囊发生器生产用快速检测设备
CN116448463B (zh) * 2023-06-15 2023-09-08 潍坊微科汽车零部件有限公司 一种气囊发生器生产用快速检测设备

Also Published As

Publication number Publication date
WO1997006989A1 (de) 1997-02-27

Similar Documents

Publication Publication Date Title
EP0866755B1 (de) Airbagsystem mit variablem auslösezeitpunkt
DE19932696C1 (de) Insassenschutzvorrichtung mit zumindest zwei mit Gas auffüllbaren Airbags
DE19720621B4 (de) An einem Aufbaurahmen eines Zweiradkraftfahrzeuges angeordneter, nach oben expandierbarer Airbag
DE4341500B4 (de) Verfahren und Vorrichtung zum Detektieren eines sich außer Position befindlichen Insassen
DE4227559C2 (de) Insassenrückhaltesystem für Kraftfahrzeuge mit einem Gassack (Airbag)
DE69810209T2 (de) Kraftfahrzeuginsassen- Schutzeinrichtung
DE4019677A1 (de) Airbagsystem
EP1157900B1 (de) Kopfschutzeinrichtung für Insassen von Kraftfahrzeugen
EP1417117A1 (de) Airbaganordnung
DE4445737A1 (de) Verfahren und Vorrichtung zum Zurückhalten eines Fahrzeuginsassen
EP0965499A1 (de) Verfahren zum Betreiben eines Fahrzeuginsassen-Rückhaltesystems und Vorrichtung zur Durchführung des Verfahrens
DE4207785C2 (de) Insassen-Schutzvorrichtung
DE9202725U1 (de) Vorrichtung zum Schutz von Kraftfahrzeuginsassen
EP3535167B1 (de) Doppelairbag-system zur absicherung grösserer abstände der insassen
WO1997006982A1 (de) Verfahren und airbagsystem zum abbau der kinetischen energie eines fahrzeuginsassen
DE3829368A1 (de) Sicherheits-airbagsystem
DE2242207A1 (de) Fahrzeug-insassen-auffangsystem
DE10062283A1 (de) Deaktivierung einer zweiten Stufe einer Airbag-Aufblasvorrichtung
DE19529794A1 (de) Verfahren und Airbagsystem zum Abbau der kinetischen Energie eines Fahrzeuginsassen
DE19610299A1 (de) Sicherheitseinrichtung mit einem steuerbaren Gasgenerator für ein Kraftfahrzeug
DE4105821A1 (de) Haltevorrichtung fuer eine ein lenkrad mit airbag aufweisende lenksaeule eines kraftfahrzeuges
DE19631739A1 (de) Schutzvorrichtung für eine Person in einem Fahrzeug
DE3312769A1 (de) Fahrzeug, insbesondere personenkraftfahrzeug
DE60129248T2 (de) Gasgenerator zur verwendung bei airbags und airbagvorrichtung
DE2145050B2 (de) Sicherheitsgurt

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase