WO1997006419A1 - Vorrichtung zur temperaturmessung - Google Patents

Vorrichtung zur temperaturmessung Download PDF

Info

Publication number
WO1997006419A1
WO1997006419A1 PCT/EP1996/003330 EP9603330W WO9706419A1 WO 1997006419 A1 WO1997006419 A1 WO 1997006419A1 EP 9603330 W EP9603330 W EP 9603330W WO 9706419 A1 WO9706419 A1 WO 9706419A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
spot
diffractive optics
measurement
measuring
Prior art date
Application number
PCT/EP1996/003330
Other languages
English (en)
French (fr)
Inventor
Volker Schmidt
Original Assignee
Raytek Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7768633&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1997006419(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Raytek Gmbh filed Critical Raytek Gmbh
Priority to GB9800103A priority Critical patent/GB2317449B/en
Publication of WO1997006419A1 publication Critical patent/WO1997006419A1/de
Priority to US10/039,758 priority patent/US6585409B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/07Arrangements for adjusting the solid angle of collected radiation, e.g. adjusting or orienting field of view, tracking position or encoding angular position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0803Arrangements for time-dependent attenuation of radiation signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0806Focusing or collimating elements, e.g. lenses or concave mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0808Convex mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0879Optical elements not provided otherwise, e.g. optical manifolds, holograms, cubic beamsplitters, non-dispersive prisms or particular coatings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0896Optical arrangements using a light source, e.g. for illuminating a surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S33/00Geometrical instruments
    • Y10S33/21Geometrical instruments with laser

Definitions

  • the invention relates to a device for temperature measurement according to the preamble of claim 1.
  • Such devices for contactless temperature measurement known from practice contain a detector for receiving heat radiation emanating from a measurement spot on a measurement object, an optical system for imaging the heat radiation emanating from the measurement spot onto the detector, and a sighting device for identifying the Position and size of the measurement spot on the measurement object by means of visible light.
  • a further processing device which converts the detector signal into a temperature display, is also connected to the detector.
  • the optical system is designed in such a way that, at a certain measuring distance, only heat radiation from a certain area of the measuring object, namely the so-called measuring spot, is focused on the detector to a large extent.
  • the size of the measurement spot is defined by the area from which 90% of the heat rays focused on the detector strike.
  • use cases are also known in which values between 50% and 100% are referred to.
  • the course of the dependence of the size of the measurement spot on the measurement distance depends on the design of the optical system.
  • a basic distinction is made between long focus and close focus. With remote focusing, the optical system forms the detector at infinity and with close focusing to the Focus level.
  • the measuring spot is linearly increasing with the measuring distance.
  • the measuring spot will first decrease with the measuring distance and enlarge again after the focal plane if the free aperture of the optics is larger than the measuring spot in the focus plane. If the measuring spot in the focal plane is larger than the free aperture of the optical system, the measuring spot also increases in front of the focal plane with the measuring distance. Only the increase in the spot size is smaller in front of the focal plane than after it.
  • a sighting system is also known from practice which uses two laser beams to describe the size of the measuring spot.
  • This system uses two diverging beams from the edge of the optical system for cha- Characterization of a remote-focused system and two laser beams crossing at the focal point for the characterization of a close-focused optical system.
  • the invention is therefore based on the object of further developing the device for temperature measurement according to the preamble of claim 1 in such a way that simple, distance-independent identification of the position and size of the measurement spot is made possible.
  • this object is achieved by the characterizing feature of claim 1, in which the sighting device has diffractive optics for generating a light intensity distribution with which the position and size of the measurement spot on the measurement object can be made visible.
  • Diffractive optics are optical elements whose function is based mainly on the diffraction of light waves.
  • transverse microstructures are provided in the optical element, which can consist, for example, of a surface profile or a refractive index profile.
  • Diffractive optical elements with a surface profile are also known as so-called holographic elements.
  • the surface patterns are produced, for example, by exposure of photoresist layers and subsequent etching.
  • Such a surface profile can also be converted into an embossing printing block by electroplating. convert, with which the hologram profile can be transferred and reproduced in heated plastic films.
  • many holographic elements can be produced inexpensively from a hologram printing block.
  • the pattern of the diffractive optics arises from the interference of an object wave with a reference wave. If, for example, a spherical wave is used as the object wave and a plane wave is used as the reference wave, an intensity distribution results in the image plane, which consists of a point in the middle (0th order), a first intensive circle (first order) and other less intensive circles larger diameter (higher orders). A single circle can be filtered out by hiding the 0th and higher orders. A large number of other intensity distributions can be produced by other object waves, which are explained in more detail below with the aid of some exemplary embodiments.
  • the light intensity distribution generated can be formed, for example, by a circular marking enclosing the measuring spot or a cross-shaped marking.
  • FIG. 1 shows a schematic representation of a device according to the invention for temperature measurement according to a first exemplary embodiment
  • 2a to 2g are schematic representations of various light intensity distributions to identify the position and size of the
  • FIG. 3 shows a schematic representation of a device according to the invention for temperature measurement according to a second
  • FIG. 4 shows a schematic representation of a device according to the invention for temperature measurement according to a third
  • FIG. 5 shows a schematic representation of a device according to the invention for temperature measurement according to a fourth
  • Embodiment. Fig.l shows a first embodiment of an inventive device for temperature measurement, containing
  • the sighting device 5 essentially consists of a light source 5a, a diffractive optic formed, for example, by a holographic element 5b, and an additional refractive and / or. reflective optical element 5c.
  • the light source 5a sends a reference wave 6a to the holographic element 5b, whereby a conical opening hologram 6b is created, which is deformed by the optical element 5c in such a way that it forms an intensity distribution 6c which defines the position and size of the measurement spot 2a describes over all measuring distances.
  • a laser is expediently used as the light source 5a for generating the reference wave.
  • a semiconductor light-emitting diode or a thermal light source it is also possible to use a semiconductor light-emitting diode or a thermal light source.
  • a filter is expediently ter provided to reduce the chromatic errors.
  • the optical system 4 is formed by a dichroic beam splitter 4a and an infrared lens 4b.
  • the heat radiation 3 emanating from the measurement spot 2a first reaches the beam splitter 4a, the heat radiation, i. the infrared radiation, deflected by 90 ° and feeding the infrared lens 4b.
  • the radiation splitter 4a Since the radiation splitter 4a must inevitably lie in the beam path of the sighting device 5, it is designed as a dichromatic beam splitter which is reflective of the heat radiation emanating from the measurement spot 2a and is transparent to the visible light of the sighting device 5.
  • the size of the marking to be generated depends essentially on two parameters, namely the measuring distance and the desired measuring accuracy.
  • the measurement accuracy results from the percentage of the rays emanating from the measurement spot and focused on the detector.
  • the area of the measuring spot can be defined, for example, by 90% of the outgoing radiation reaching the detector. Depending on the application, however, this percentage can also be changed.
  • the optical element 5c is provided, which is matched to the optical system 4.
  • 2a to 2g show light intensity distributions as they can be produced on the measurement object 2 to identify the measurement spot 2a.
  • 2a to 2d show circular markings which essentially paint around the measurement spot 2a.
  • the markings can be configured as a closed circular ring 3a as in FIGS. 2a and 2c or as an interrupted circular ring 3b in FIGS. 2a and 2d. It can also be expedient to represent the center of the measurement spot by a further, for example punctiform, marking 3c.
  • the light intensity distributions are shown as cross-shaped markings 3d and 3e in FIGS. 2e and f.
  • the crossing point represents the center and the four corner points the outer boundaries of the measuring spot 2a.
  • FIG.2g A very useful light intensity distribution is shown in Fig.2g in the form of several concentric circles 3f, 3g, 3h.
  • Each circle represents an area of the measurement spot 2a from which a certain percentage of the energy of the heat radiation received originates.
  • the inner circle 3f could represent the area of the measuring spot from which 90% of the energy that strikes the detector originates.
  • the second ring 3g stands for an energy value of 95% and the third ring 3h would correspond to an energy value of 99%.
  • FIG 3 shows a further device according to the invention for temperature measurement.
  • This second exemplary embodiment differs from the former essentially in its configuration of the optical system 4 and the optical element 5'c of the sighting device 5.
  • the optical element 5'c is designed as an annular lens in FIG of the light intensity distributions according to FIGS. 2a to 2d.
  • the infrared lens 4'b is arranged so that it is surrounded by the annular lens 5'c.
  • the detector 1 is then provided between the holographic element 5b and the infrared lens 4'b.
  • the problem of mounting the detector 1 is avoided by providing the beam splitter 4'a between the holographic element 5b and the arrangement of the ring-shaped lens 5c and infrared lens 4'b.
  • the heat radiation emanating from the measuring spot 2a is thus initially focused by the infrared lens 4'b onto the beam splitter 4'a and deflected there by 90 ° onto the detector 1.
  • FIG. 5 shows an exemplary embodiment in which the course of the measurement spot of a near-focused system can be made visible using diffractive optics.
  • the measuring plane ie the measurement object 2 lies here directly in the focal plane of the optical system 4.
  • two beams 3i, 3k limiting the infrared beam are shown in each case.
  • the beam 3i runs from the upper edge of the infrared lens 4'b to the upper edge of the measuring spot 2a or from the lower edge of the infrared lens 4'b to the lower edge of the measuring spot.
  • the beam 3k runs to the lower edge of the infrared lens 4'b to the upper edge of the measuring spot 2a or from the upper edge of the infrared lens 4'b to the lower edge of the measuring spot.
  • the optical element 5'c of the sighting device 5 is designed in such a way that two intensity cones 6d and 6e are formed, which essentially follow the course of the edge rays 3k and 3i.
  • the intensity cone 6e describes the size of the measuring spot up to the focal plane and the intensity cone 6d describes the diverging measuring spot after the focal plane.
  • a disadvantage of this embodiment is that the intensity cone 6d runs inside the edge beam 3k, while the intensity cone 6e runs outside on the edge beam 3i.
  • this disadvantage can be remedied by a different design of the refractive and / or reflective optical element 5'c.
  • the light intensity distribution could expediently be formed by two circular, concentric markings, the one circular marking the measuring spot lying between the optical element 5'c and the focal plane and the other marking the from the op seen from the table element - marks the measuring spot behind the focal plane.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung zur Temperaturmessung. Die von einem Messfleck (2a) auf einem Messobjekt (2) ausgehende Wärmestrahlung wird durch ein optisches System (4) auf einen Detektor (1) abgebildet. Es ist ferner eine Visiereinrichtung (5) mit einer diffraktiven Optik (5b) vorgesehen, durch die eine Lichtintensitätsverteilung (6) erzeugt wird, die der Lage und Grösse des Messflecks auf dem Messobjekt entspricht.

Description

Vorrichtung zur Ternperaturmessung
Die Erfindung betrifft eine Vorrichtung zur Temperatur- messung entsprechend dem Oberbegriff des Anspruches 1.
Derartige, aus der Praxis bekannte Vorrichtungen zur berührungslosen Temperaturmessung enthalten einen De¬ tektor zum Empfang einer von einem Meßfleck auf einem Meßobjekt ausgehenden Wärmestrahlung, ein optisches Sy¬ stem zur Abbildung der vom Meßfleck ausgehenden Wärme¬ strahlung auf den Detektor sowie eine Visiereinrichtung zur Kennzeichnung der Lage und Größe des Meßflecks auf dem Meßobjekt mittels sichtbarem Licht. Mit dem Detek- tor steht ferner eine weiterverarbeitende Einrichtung in Verbindung, die das Detektorsignal in eine Tempera¬ turanzeige umrechnet.
Das optische System wird dabei so ausgestaltet, daß in einer bestimmten Meßentfernung zu einem großen Teil nur Wärmestrahlung von einer bestimmten Fläche des Meßob¬ jekts, nämlich dem sog. Meßfleck, auf den Detektor fo¬ kussiert wird. In den meisten Fällen wird die Größe des Meßfleckes durch die Fläche definiert, aus der 90 % der auf den Detektor fokussierten Wärmestrahlen treffen. Es sind jedoch auch Anwendungsfälle bekannt, bei denen man sich auf Werte zwischen 50 % und 100 % bezieht.
Der Verlauf der Abhängigkeit der Größe des Meßfleckes von der Meßentfernung hängt von der Gestaltung des op¬ tischen Systems ab. Man unterscheidet grundsätzlich zwischen Fernfokussierung und Nahfokussierung. Bei der Fernfokussierung bildet das optische System den Detek¬ tor ins Unendliche und bei der Nahfokussierung auf die Fokusebene ab. Im Falle der Fernfokussierung hat man es mit einem linear mit der Meßentfernung wachsenden Me߬ fleck zu tun, bei der Nahfokussierung wird der Meßfleck sich zunächst mit der Meßentfernung verkleinern und nach der Fokusebene wieder vergrößern, falls die freie Apertur der Optik größer ist als der Meßfleck in der Fokusebene. Ist der Meßfleck in der Fokusebene größer als die freie Apertur des optischen Systems, vergrößert sich der Meßfleck mit der Meßentfernung auch vor der Fokusebene. Nur der Anstieg der Meßfleckgröße ist vor der Fokusebene geringer als danach.
In der Vergangenheit wurden verschiedene Versuche ge¬ macht, die Lage und Größe des an sich unsichtbaren Meß- fleckes durch Beleuchtung sichtbar zu machen. Gemäß der JP-A-47-22521 werden eine Vielzahl von Strahlen, die von mehreren Lichtquellen stammen, oder durch Reflexion aus einer Lichtquelle gewonnen werden, entlang den Randstrahlen eines fernfokussierten optischen Systems auf das Meßobjekt gerichtet. Auf diese Weise kann die Größe und Lage des Meßflecks für ein fernfokussiertes System durch eine ringförmige Anordnung von beleuchte¬ ten Punkten um den Meßfleck herum sichtbar gemacht wer¬ den. US-A-5,368,392 beschreibt verschiedene Methoden zum Ummalen von Meßflecken durch Laserstrahlen. Dazu gehört die mechanische Ablenkung von einem oder mehre¬ ren Laserstrahlen sowie die Aufspaltung eines Laser¬ strahls durch einen Strahlteiler oder eine Faseroptik in mehrere Einzelstrahlen, die den Meßfleck umgeben.
Aus der Praxis ist ferner ein Visiersystem .bekannt, das zwei Laserstrahlen zur Beschreibung der Meßfleckgröße benutzt. Dieses System benutzt zwei divergierende vom Rand des optischen Systems ausgehende Strahlen zur Cha- rakterisierung eines fernfokussierten Systems und zwei sich im Fokuspunkt kreuzende Laserstrahlen zur Charak¬ terisierung eines nahfokussierten optischen Systems.
Alle bekannten Visiereinrichtungen sind entweder nur für eine bestimmte Meßentfernung brauchbar oder erfor¬ dern einen relativ hohen Justageaufwand und sind oft¬ mals sehr teuer.
Der Erfindung liegt daher die Aufgabe zugrunde, die Vorrichtung zur Temperaturmessung gemäß dem Oberbegriff des Anspruches 1 dahingehend weiterzuentwickeln, daß eine einfache, entfernungsunabhängige Kennzeichnung der Lage und Größe des Meßfleckes ermöglicht wird.
Diese Aufgabe wird erfindungsgemäß durch das kennzei¬ chenende Merkmal des Anspruches 1 gelöst, in dem die Visiereinrichtung eine .diffraktive Optik zur Erzeugung einer Lichtintensitätsverteilung aufweist, mit der die Lage und Größe des Meßflecks auf dem Meßobjekt sichtbar gemacht werden kann.
Eine diffraktive Optik ist ein optisches Element, des¬ sen Funktion hauptsächlich auf der Beugung von Licht- wellen beruht. Zur Erzeugung der Beugung sind in dem optischen Element transversale MikroStrukturen vorgese¬ hen, die beispielsweise aus einem Oberflächenprofil oder einem Brechungsindexprofil bestehen können. Dif- fraktive optische Elemente mit einem Oberflächenprofil sind auch als sog. holografische Elemente bekannt. Die Oberflächenmuster werden beispielsweise durch Belich¬ tung von Fotoresist-Schichten und anschließendem Ätzen hergestellt. Ein solches Oberflächenprofil läßt sich auch durch Galvanisieren in einen Präge-Druckstock um- wandeln, mit dem in erwärmte Plastikfolien das Holo¬ gramm-Profil übertragen und vervielfältigt werden kann. Somit lassen sich preiswert aus einem Hologramm-Druck¬ stock viele holografische Elemente herstellen.
Das Muster der diffraktiven Optik entsteht durch Inter¬ ferenz einer Gegenstandswelle mit einer Referenzwelle. Verwendet man beispielsweise als Gegenstandswelle eine Kugelwelle und als Referenzwelle eine ebene Welle, ent- steht eine Intensitätsverteilung in der Bildebene, die sich aus einem Punkt in der Mitte (0. Ordnung), einem ersten intensiven Kreis (erster Ordnung) und weiteren weniger intensiven Kreisen größerer Durchmesser (höhere Ordnungen) zusammensetzt. Durch Ausblenden der 0-ten und der höheren Ordnungen läßt sich ein einzelner Kreis herausfiltern. Durch andere Gegenstandswellen läßt sich eine Vielzahl anderer IntensitätsVerteilungen herstel¬ len, die nachfolgend anhand einiger Ausführungsbei¬ spiele näher erläutert werden.
Üblicherweise liegen etwa 80 % der von der Lichtquelle ausgehenden Energie in den von der diffraktiven Optik erzeugten Mustern. Die restliche Energie wird innerhalb und außerhalb des Meßfleckes verteilt.
Die erzeugte Lichtintensitätsverteilung kann beispiels¬ weise durch eine kreisringförmige, den Meßfleck ein¬ schließende, oder eine kreuzförmige Markierung gebildet werden.
Eine derartige Vorrichtung ist zudem preiswert her¬ stellbar und erfordert lediglich einen geringen Justa- geaufwand. Weitere Ausgestaltung der Erfindung sind Gegenstand der Unteransprüche und werden im folgenden anhand der Be¬ schreibung einiger Ausführungsbeispiele und der Zeich¬ nung näher erläutert.
In der Zeichnung zeigen:
Fig.l eine schematische Darstellung einer erfindungsgemäßen Vorrichtung zur Tem- peraturmessung gemäß einem ersten Aus¬ führungsbeispiel;
Fig.2a bis 2g schmematische Darstellungen verschie¬ dener Lichtintensitätsverteilungen zur Kennzeichnung der Lage und Größe des
Meßflecks,
Fig.3 eine schematische Darstellung einer erfindungsgemäßen Vorrichtung zur Tem- peraturmessung gemäß einem zweiten
Ausführungsbeispiel;
Fig.4 eine schematische Darstellung einer erfindungsgemäßen Vorrichtung zur Tem- peraturmessung gemäß einem dritten
Ausführungsbeispiel;
Fig.5 eine schematische Darstellung einer erfindungsgemäßen Vorrichtung zur Tem- peraturmessung gemäß einem vierten
Ausführungsbeispiel. Fig.l zeigt ein erstes Ausführungsbeispiel einer erfin¬ dungsgemäßen Vorrichtung zur Temperaturmessung, enthal¬ tend
a) einen Detektor 1 zum Empfang einer von einem Me߬ fleck 2a eines Meßobjektes 2 ausgehenden Wärmestrah¬ lung 3,
b) ein optisches System 4 zur Abbildung der vom Meß- fleck 2a ausgehenden Wärmestrahlung auf den Detek¬ tor 1
c) sowie eine Visiereinrichtung 5 zur Kennzeichnung der Lage und Größe des Meßflecks 2a auf dem Meßobjekt 4 mittels sichtbarem Licht 6.
Die Visiereinrichtung 5 besteht im wesentlichen aus ei¬ ner Lichtquelle 5a, einer beispielsweise durch ein ho- lografisches Element 5b gebildeten diffraktiven Optik und einem zusätzlichen brechenden und/oder . re¬ flektierenden optischen Element 5c. Die Lichtquelle 5a sendet eine Referenzwelle 6a auf das holografische Ele¬ ment 5b, wobei ein sich kegelförmig öffnendes Holo¬ gramm 6b entsteht, das durch das optische Element 5c so umgeformt wird, daß es eine Intensitätsverteilung 6c bildet, die die Lage und Größe des Meßflecks 2a über alle Meßentfernungen beschreibt.
Als Lichtquelle 5a zur Erzeugung der Referenzwelle wird zweckmäßigerweise ein Laser verwendet. Es ist jedoch auch möglich, eine Halbleiter-Leuchtdiode oder eine thermische Lichtquelle einzusetzen. Bei Benutzung einer thermischen Lichtquelle wird zweckmäßigerweise ein Fil- ter vorgesehen, um die chromatischen Fehler zu verrin¬ gern.
Das optische System 4 wird durch einen dichroitischen Strahlteiler 4a und eine Infrarotlinse 4 b gebildet. Die vom Meßfleck 2a ausgehende Wärmestrahlung 3 gelangt zunächst auf den Strahlteiler 4a der, die Wärme¬ strahlung, d.h. die Infrarotstrahlung, um 90 ° umlenkt und der Infrarotlinse 4b zuführt.
Nachdem der Strahlungsteiler 4a zwangsläufig im Strah¬ lengang der Visiereinrichtung 5 liegen muß, ist dieser als dichromatischer Strahlteiler ausgebildet, der für die vom Meßfleck 2a ausgehende Wärmestrahlung reflek- tierend und für das sichtbare Licht der Visiereinrich¬ tung 5 durchlässig ist.
Die Größe der zu erzeugenden Markierung hängt im we¬ sentlichen von zwei Parametern ab, nämlich der Meßent- fernung und der gewünschten Meßgenauigkeit. Die Me߬ genauigkeit ergibt sich aus dem Prozentsatz der vom Meßfleck ausgehenden und auf den Detektor fokussierten Strahlen. Man kann die Fläche des Meßflecks beispiels¬ weise dadurch definieren, daß 90 % der ausgehenden Strahlung auf den Detektor gelangt. Je nach Anwendungs¬ fall kann dieser Prozentsatz jedoch auch verändert wer¬ den.
Um sicherzustellen, daß in jeder Meßentfernung die er- zeugte Markierung zur Kennzeichnung des Meßflecks die richtige Größe für die gewünschte Meßgenauigkeit auf¬ weist, ist das optische Element 5c vorgesehen, das auf das optische System 4 abgestimmt ist. Die Fig.2a bis 2g zeigen Lichtintensitätsverteilungen, wie sie auf dem Meßobjekt 2 zur Kennzeichnung des Me߬ flecks 2a hervorgerufen werden können. Die Fig.2a bis 2d zeigen kreisringförmige Markierungen, die den Meß- fleck 2a im wesentlichen ummalen. Die Markierungen kön¬ nen dabei wie in den Fig.2a und 2c als geschlossener Kreisring 3a oder in den Fig.2b und 2d als unterbroche¬ ner Kreisring 3b ausgestaltet sein. Dabei kann es auch zweckmäßig sein, die Mitte des Meßflecks durch eine weitere, beispielsweise punktförmige Markierung 3c dar¬ zustellen.
In den Fig.2e und f sind die Lichtintensitätsverteilun¬ gen als kreuzförmige Markierungen 3d bzw. 3e darge- stellt. Der Kreuzungspunkt stellt dabei die Mitte und die vier Eckpunkte die äußeren Begrenzungen des Me߬ flecks 2a dar.
Eine sehr zweckmäßige Lichtintensitätsverteilung ist in Fig.2g in Form von mehreren konzentrischen Kreisen 3f, 3g, 3h dargestellt. Jeder Kreis stellt dabei einen Be¬ reich des Meßflecks 2a dar, aus dem ein bestimmter Prozentsatz der Energie der empfangenen Wärmestrahlung stammt. So könnte beispielsweise der innere Kreis 3f für den Bereich des Meßflecks stehen, aus dem 90 % der Energie stammt, die auf den Detektor trifft. Der zweite Ring 3g steht für einen Energiewert von 95 % und der dritte Ring 3h würde einem Energiewert von 99 % ent¬ sprechen. Mit Hilfe einer derartigen Lichtintensitäts- Verteilung kann der Benutzer erkennen, mit welcher Ge¬ nauigkeit er Meßobjekte bestimmter Größe messen kann.
In Fig.3 ist eine weitere erfindungsgemäße Vorrichtung zur Temperaturmessung dargestellt. Dabei wurden für gleiche Bauteile dieselben Bezugszeichen verwendet. Dieses zweite Ausführungsbeispiel unterscheidet sich von ersterem im wesentlichen durch seine Ausgestaltung des optischen Systems 4 und des optischen Elementes 5'c der Visiereinrichtung 5. Das optische Element 5'c ist in Fig.3 als ringförmige Linse ausgebildet und ist dem¬ nach zur Erzeugung einer der Lichtintensitätsvertei¬ lungen gemäß den Fig.2a bis 2d ausgelegt. Die Infrarot¬ linse 4'b ist so angeordnet, daß sie von der ringförmi- gen Linse 5'c umgeben wird. Der Detektor 1 ist dann zwischen holografischem Element 5b und der Infrarot¬ linse 4'b vorgesehen.
Eine derartige Anordnung hat den Vorteil, daß auf einen Strahlteiler verzichtet werden kann. Man muß jedoch eine etwas kompliziertere Befestigung des Detektors in Kauf nehmen, da hierdurch nicht das sich kegelförmig öffnende Hologramm 6b beeinträchtigt werden darf.
In dem in Fig.4 dargestellten dritten Ausführungsbei¬ spiel wird das Problem der Halterung des Detektors 1 dadurch umgangen, daß zwischen holografischem Ele¬ ment 5b und der Anordnung aus ringförmiger Linse 5c und Infrarotlinse 4'b der Strahlteiler 4'a vorgesehen ist. Die vom Meßfleck 2a ausgehende Wärmestrahlung wird so¬ mit zunächst von der Infrarotlinse 4'b auf den Strahl¬ teiler 4'a fokussiert und dort um 90 ° auf den Detek¬ tor 1 abgelenkt.
Während alle bisher beschriebenen Ausführungsbeispiele fernfokussierte Systeme betrafen, wird in Fig.5 ein Ausführungsbeispiel gezeigt, bei dem der Meßfleckver¬ lauf eines nahfokussierten Systems mit Hilfe einer dif¬ fraktiven Optik sichtbar gemacht werden kann. Die Meß- ebene, d.h. das Meßobjekt 2 liegt hier direkt in der Fokusebene des optischen Systems 4. In der Zeichnung sind jeweils zwei das Infrarotstrahlenbündel begren¬ zende Strahlen 3i, 3k dargestellt. Der Strahl 3i ver- läuft vom oberen Rand der Infrarotlinse 4'b zum oberen Rand des Meßflecks 2a bzw. vom unteren Rand der Infrarotlinse 4'b zum unteren Rand des Meßflecks. Der Strahl 3k verläuft hingegen zum unteren Rand der Infra¬ rotlinse 4'b zum oberen Rand es Meßflecks 2a bzw. vom oberen Rand der Infrarotlinse 4'b zum unteren Rand des Meßflecks.
Das optische Element 5'c der Visiereinrichtung 5 ist so ausgelegt, daß zwei Intensitätskegel 6d und 6e entste- hen, die im wesentlichen dem Verlauf der Randstrahlen 3k und 3i folgen. Dabei beschreibt der Intensitätskegel 6e die Größe des Meßflecks bis zur Fokusebene und der Intensitätskegel 6d den divergierenden Meßfleck nach der Fokusebene.
Ein Nachteil dieser Ausführungsform besteht darin, daß der Intensitätskegel 6d innen am Randstrahl 3k ver¬ läuft, während der Intensitätskegel 6e äußern am Rand¬ strahl 3i verläuft. Durch eine andere Gestaltung des brechenden und/oder reflektierenden optischen Ele¬ ments 5'c läßt sich dieser Nachteil jedoch beheben.
Bei dem Ausführungsbeispiel gemäß Fig.5 könnte die Lichtintensitätsverteilung zweckmäßigerweise durch zwei kreisförmige, konzentrische Markierungen gebildet wer¬ den, wobei die eine kreisförmige Markierung den zwi¬ schen dem optischen Element 5'c und der Fokusebene lie¬ genden Meßfleck und die andere Markierung den - vom op- tischen Element aus gesehen - hinter der Fokusebene liegenden Meßfleck kennzeichnet.

Claims

Patentansprüche
1. Vorrichtung zur Temperaturmessung enthaltend
a) einen Detektor (1) zum Empfang einer von einem
Meßfleck (2a) auf einem Meßobjekt (2) ausgehen¬ den Wärmestrahlung (3) ,
b) ein optisches System (4) zur Abbildung der vom Meßfleck ausgehenden Wärmestrahlung auf den De¬ tektor (1)
c) sowie eine Visiereinrichtung (5) zur Kennzeich¬ nung der Lage und Größe des Meßflecks (2a) auf dem Meßobjekt mittels sichtbarem Licht (6) ,
dadurch gekennzeichnet, daß
d) die Visiereinrichtung (5) eine diffraktive Optik (holografisches Element 5b) zur Erzeugung einer
Lichtintensitätsverteilung aufweist.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Visiereinrichtung (5) ferner wenigstens ein zusätzliches, brechendes und/oder reflektierendes optisches Element (5c, 5'c) aufweist.
3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die diffraktive Optik durch ein holografisches Element (5b) gebildet wird.
4. Vorrichtung nach Anspruch 1, gekennzeichnet durch eine derartige Ausgestaltung der diffraktiven Optik, daß die Lichtintensitätsverteilung auf dem Meßobjekt (2) eine kreisringförmige Markierung (3a; 3b) bil¬ det.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, 5 daß die Lichtintensitätsverteilung durch wenigstens zwei kreisförmige, konzentrisch zueinander angeord¬ nete Markierungen (3f, 3g, 3h) gebildet wird.
6. Vorrichtung nach Anspruch 4 oder 5, dadurch gekenn- i.O zeichnet, daß die Lichtintensitätsverteilung zusätz¬ lich eine die Mitte des Meßflecks darstellende wei¬ tere Markierung (3c) aufweist.
7. Vorrichtung nach Anspruch 1, gekennzeichnet durch 15 eine derartige Ausgestaltung der diffraktiven Optik, daß die Lichtintensitätsverteilung auf dem Meßobjekt (2) eine kreuzförmige Markierung (3d, 3e) bildet.
8. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, 0 daß die kreisringförmigen, konzentrischen Markierun¬ gen jeweils einen Bereich des Meßflecks (2a) kenn¬ zeichnen, aus dem ein bestimmter Prozentsatz der En¬ ergie der empfangenen Wärmestrahlung stammt.
5 9. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß das optische Element (5'c) eine Fokusebene auf¬ weist, wobei die eine kreisförmige Markierung den zwischen dem optischen Element und der Fokusebene liegenden Meßfleck (2a) und die andere Markierung 0 den - vom optischen Element aus gesehen - hinter der
Fokusebene liegenden Meßfleck kennzeichnet.
10. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Visiereinrichtung eine Lichtquelle (5a) , insbesondere einen Laser, zur Bestrahlung der dif¬ fraktiven Optik (4) aufweist.
11. Vorrichtung anch Anspruch 1, dadurch gekennzeichnet, daß im Strahlengang der Visiereinrichtung (5) ein Strahlteiler (4a, 4'a) angeordnet ist, der für das sichtbare Licht (6) durchlässig ist und für die vom Meßobjekt ausgehende Wärmestrahlung (3) reflektie¬ rend wirkt.
12. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß das optische Element als Ringlinse (5'c) und das optische System (4) als Infrarotlinse (4'b) ausge¬ bildet ist, wobei die Ringlinse um die Infrarotlinse angeordnet ist.
13. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Strahlteiler (4a) zwischen optischem Element (5c) und dem Meßobjekt (2) angeordnet ist.
14. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß der Strahlteiler (4'a) zwischen diffraktiver Op¬ tik (4) und dem zusätzlichen optischen Element (5'c) angeordnet ist.
PCT/EP1996/003330 1995-08-03 1996-07-29 Vorrichtung zur temperaturmessung WO1997006419A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB9800103A GB2317449B (en) 1995-08-03 1996-07-29 Device for temperature measurement
US10/039,758 US6585409B2 (en) 1995-08-03 2001-10-27 Temperature-measurement device with diffractive optics

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19528590.5 1995-08-03
DE19528590A DE19528590C3 (de) 1995-08-03 1995-08-03 Vorrichtung zur Temperaturmessung

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US08836369 A-371-Of-International 1997-10-20
US09/766,449 Continuation US6290389B2 (en) 1995-08-03 2001-01-19 Device for temperature measurement

Publications (1)

Publication Number Publication Date
WO1997006419A1 true WO1997006419A1 (de) 1997-02-20

Family

ID=7768633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/003330 WO1997006419A1 (de) 1995-08-03 1996-07-29 Vorrichtung zur temperaturmessung

Country Status (4)

Country Link
US (1) US6585409B2 (de)
DE (1) DE19528590C3 (de)
GB (1) GB2317449B (de)
WO (1) WO1997006419A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2327493A (en) * 1997-06-27 1999-01-27 Omega Engineering Sighting system for temperature measuring using a pyrometer
DE19815927A1 (de) * 1998-04-09 1999-10-14 Braun Gmbh Infrarot-Strahlungsthermometer mit Otoskop-Funktion
GB2331581B (en) * 1997-11-21 2002-08-14 Omega Engineering A hand-held instrument for temperature measurement, and a temperature measurement method
DE102015202687B3 (de) * 2015-02-13 2016-05-04 Olympus Winter & Ibe Gmbh Vorrichtung zur Temperaturermittlung

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5823679A (en) * 1993-09-17 1998-10-20 Omega Engineering, Inc. Method and apparatus for measuring temperature including aiming light
FR2773213B1 (fr) * 1996-12-11 2001-08-24 Omega Engineering Procede et dispositif pour la mesure par infrarouge de la temperature d'une surface
DE19654276A1 (de) * 1996-12-24 1998-06-25 Raytek Gmbh Vorrichtung zur berührungslosen Temperaturmessung
IT1298515B1 (it) * 1998-01-30 2000-01-12 Tecnica S R L Termometro ad infrarossi
ATE248356T1 (de) 1998-01-30 2003-09-15 Tecnimed Srl Infrarot thermometer
DE29807075U1 (de) * 1998-04-21 1999-09-02 Keller Gmbh Pyrometer
DE29815618U1 (de) * 1998-09-02 1999-02-25 Steinel GmbH & Co KG, 33442 Herzebrock-Clarholz Vorrichtung zur berührungslosen Temperaturerfassung einer Oberflächentemperatur
US7279001B2 (en) * 1998-11-06 2007-10-09 Neomend, Inc. Systems, methods, and compositions for achieving closure of vascular puncture sites
DE10036720A1 (de) * 2000-07-27 2002-02-07 Raytek Gmbh Vorrichtung und Verfahren zur Infrarot-Temperaturmessung
CA2464163A1 (en) * 2001-10-16 2003-04-24 Walter Laver Alignment apparatus
US20040196888A1 (en) * 2002-10-31 2004-10-07 Fluke Corporation IR thermometer for automotive applications
DE10336097B3 (de) 2003-08-06 2005-03-10 Testo Ag Visiereinrichtung für ein Radiometer sowie Verfahren
GB2417071B (en) * 2004-08-13 2006-12-20 Rolls Royce Plc Temperature measuring system
DE102007042750B4 (de) * 2007-09-07 2009-05-28 Testo Ag Infrarot-Temperaturmessgerät
ITMI20072270A1 (it) 2007-12-04 2009-06-05 Tecnimed Srl Metodo per la misurazione di temperatura, in particolare di un paziente umano o animale
US8240912B2 (en) * 2008-08-15 2012-08-14 Fluke Corporation Multi-zone non-contact spot thermometer
US8167483B2 (en) * 2009-01-15 2012-05-01 Fluke Corporation Temperature measurement instruments and methods for identifying a selected target area
CN101922971B (zh) * 2010-05-06 2012-09-05 袁国炳 一种用于红外测温仪的光学系统和调焦结构
US8958147B2 (en) * 2013-06-14 2015-02-17 Computer Power Supply, Inc. Apparatus for aiding manual, mechanical alignment of optical equipment
US8755114B1 (en) 2013-06-14 2014-06-17 Computer Power Supply, Inc. Apparatus for aiding manual, mechanical alignment of optical equipment
US9660410B2 (en) 2014-12-09 2017-05-23 Parhelion Incorporated Laser lighting device and application thereof
FI127878B (fi) * 2018-01-09 2019-04-30 Safera Oy Liesivahti, joka hyödyntää laajaa näkökenttää
US11022496B2 (en) 2018-06-29 2021-06-01 Tecnimed S.R.L. Infrared thermometer
CN111982345A (zh) * 2019-05-21 2020-11-24 杭州自动化技术研究院传感技术有限公司 一种非接触式光纤点温仪

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4494881A (en) * 1982-03-10 1985-01-22 Everest Charles E Intra-optical light beam sighting system for an infrared thermometer
DE3603464A1 (de) * 1985-04-03 1986-10-16 VEB Meßgerätewerk "Erich Weinert" Magdeburg Betrieb des Kombinates VEB EAW Berlin-Treptow "Friedrich Ebert", DDR 3011 Magdeburg Gleichlichtpyrometer
DE3710486C1 (de) * 1987-03-30 1988-08-04 Testoterm Messtechnik Gmbh Co Vorrichtung zur Messfleckmarkierung bei einem Strahlungsmessgeraet
EP0458200A2 (de) * 1990-05-23 1991-11-27 Horiba, Ltd. Strahlungsthermometer
US5368392A (en) * 1993-09-17 1994-11-29 Omega Engineering, Inc. Method and apparatus for measuring temperature using infrared techniques

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2919889C2 (de) * 1979-05-17 1981-07-16 Dr. Johannes Heidenhain Gmbh, 8225 Traunreut Visiereinrichtung
JPS5722521A (en) * 1980-07-15 1982-02-05 Horiba Ltd Confirming method for radiation or irradiated area
US4315150A (en) * 1980-07-24 1982-02-09 Telatemp Corporation Targeted infrared thermometer
DE3213955A1 (de) 1982-04-16 1982-10-14 Dr. Herbert Specht VisIR-Messtechnik Handels GmbH, 6204 Taunusstein Laserstrahl-visiereinrichtung zur kennzeichnung von lage und durchmesser des messflecks fuer strahlungsthermometer mit fokaler oder afokaler linsen- und spiegeloptik
US4576432A (en) * 1983-08-17 1986-03-18 Messerschmitt-Boelkow-Blohm Gesellschaft Mit Beschraenkter Haftung Aiming or sighting apparatus with synchronously rotating thermal imager and aiming head
US4626686A (en) 1984-04-09 1986-12-02 Exergen Corporation Variable field of view heat scanner
JPS6212848A (ja) 1985-07-10 1987-01-21 Mitsubishi Electric Corp 検査装置
JPS63145929A (ja) * 1986-12-09 1988-06-18 New Japan Radio Co Ltd 赤外温度測定装置
US5090789A (en) 1990-08-03 1992-02-25 Crabtree Allen E Laser light show device and method
US5085525A (en) 1990-10-19 1992-02-04 Square D Company Scanning infrared temperature sensor with sighting apparatus
US5823678A (en) * 1993-09-17 1998-10-20 Omega Engineering, Inc. Light source aiming system and method for hand-held temperature measuring unit
US5727880A (en) * 1993-09-17 1998-03-17 Omega Engineering, Inc. Method and apparatus for measuring temperature using infrared techniques
US5626424A (en) * 1994-07-21 1997-05-06 Raytek Subsidiary, Inc. Dual light source aiming mechanism and improved actuation system for hand-held temperature measuring unit
JP3277776B2 (ja) * 1995-11-20 2002-04-22 ミノルタ株式会社 放射温度計の照準装置
IT1284119B1 (it) * 1996-07-05 1998-05-08 Tecnica S R L Termometro ad infrarosso comprendente un sistema di puntamento ottico
US5836694A (en) * 1996-12-10 1998-11-17 Raytek Subsidiary, Inc. Laser and scope aiming mechanism for a hand-held temperature measuring unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4494881A (en) * 1982-03-10 1985-01-22 Everest Charles E Intra-optical light beam sighting system for an infrared thermometer
DE3603464A1 (de) * 1985-04-03 1986-10-16 VEB Meßgerätewerk "Erich Weinert" Magdeburg Betrieb des Kombinates VEB EAW Berlin-Treptow "Friedrich Ebert", DDR 3011 Magdeburg Gleichlichtpyrometer
DE3710486C1 (de) * 1987-03-30 1988-08-04 Testoterm Messtechnik Gmbh Co Vorrichtung zur Messfleckmarkierung bei einem Strahlungsmessgeraet
EP0458200A2 (de) * 1990-05-23 1991-11-27 Horiba, Ltd. Strahlungsthermometer
US5368392A (en) * 1993-09-17 1994-11-29 Omega Engineering, Inc. Method and apparatus for measuring temperature using infrared techniques
US5368392B1 (en) * 1993-09-17 1998-11-03 Omega Engineering Method and apparatus for measuring temperature using infrared techniques

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2327493A (en) * 1997-06-27 1999-01-27 Omega Engineering Sighting system for temperature measuring using a pyrometer
GB2327493B (en) * 1997-06-27 2002-02-27 Omega Engineering Sighting system for temperature measuring
GB2331581B (en) * 1997-11-21 2002-08-14 Omega Engineering A hand-held instrument for temperature measurement, and a temperature measurement method
DE19815927A1 (de) * 1998-04-09 1999-10-14 Braun Gmbh Infrarot-Strahlungsthermometer mit Otoskop-Funktion
DE102015202687B3 (de) * 2015-02-13 2016-05-04 Olympus Winter & Ibe Gmbh Vorrichtung zur Temperaturermittlung

Also Published As

Publication number Publication date
DE19528590C3 (de) 2003-11-27
DE19528590A1 (de) 1997-02-06
GB2317449A8 (en) 1999-04-08
US6585409B2 (en) 2003-07-01
GB2317449A (en) 1998-03-25
DE19528590C2 (de) 1999-02-18
US20020061048A1 (en) 2002-05-23
GB9800103D0 (en) 1998-03-04
GB2317449B (en) 1999-06-16

Similar Documents

Publication Publication Date Title
WO1997006419A1 (de) Vorrichtung zur temperaturmessung
DE10336458B4 (de) System zur Abstandsmessung mittels Lichtquellen
DE102005043627B4 (de) Optischer Sensor und Verfahren zur optischen Abstands- und/oder Farbmessung
EP1649256B1 (de) Vorrichtung zur beruhrungslosen temperaturmessung
EP0886163B1 (de) Strichplatte und optische Einrichtung mit einer beleuchtbaren Strichplatte
DE3304780C2 (de)
DE102007053852A1 (de) Vorrichtung zur optischen Distanzmessung
EP2548073B1 (de) Vorrichtung zur beleuchtung einer markierung
DE3116247C2 (de)
EP1176407B1 (de) Vorrichtung und Verfahren zur Infrarot-Temperaturmessung
DE3406175A1 (de) Spektralmesskopf
DE3926633C2 (de)
DE19828454B4 (de) Vorrichtung und Verfahren zur Messung der Temperatur einer Zielfläche
DE10343258A1 (de) Vorrichtung zur berührungslosen Temperaturmessung
DE102013202349B3 (de) Kohärenzrasterinterferometer und Verfahren zur ortsaufgelösten optischen Vermessung der Höhengeometriedaten eines Objekts
DE2760430C2 (de)
DE1572670B2 (de) Optische visiereinrichtung
EP2592392A1 (de) Optoelektronische Lagemessvorrichtung
DE4214654A1 (de) Intensitaetsabgleich eines optischen systems
DE10260232A1 (de) Verfahren und Messeinrichtung zur Ermittlung der Fprm einer Oberfläche
DE4203887C2 (de) Positioniervorrichtung für ein Meßgerät
DE102007042750B4 (de) Infrarot-Temperaturmessgerät
DE102014212213B3 (de) Vorrichtung zur interferometrischen Vermessung eines Objekts
DE4004986C2 (de)
DE3903861C1 (de)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN GB JP US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)