WO1996027905A1 - Circuit amplificateur haute frequence - Google Patents

Circuit amplificateur haute frequence Download PDF

Info

Publication number
WO1996027905A1
WO1996027905A1 PCT/JP1995/000358 JP9500358W WO9627905A1 WO 1996027905 A1 WO1996027905 A1 WO 1996027905A1 JP 9500358 W JP9500358 W JP 9500358W WO 9627905 A1 WO9627905 A1 WO 9627905A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplifier circuit
frequency amplifier
silicon
groove structure
oxide film
Prior art date
Application number
PCT/JP1995/000358
Other languages
English (en)
French (fr)
Inventor
Shiroo Kamohara
Satoshi Tanaka
Toshio Shinmi
Goichi Yokomizo
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1995/000358 priority Critical patent/WO1996027905A1/ja
Publication of WO1996027905A1 publication Critical patent/WO1996027905A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type

Definitions

  • the present invention relates to a high-frequency amplifier circuit, and more particularly to a monolithic high-frequency amplifier circuit in which active elements and passive elements are formed on a single silicon substrate.
  • the high-frequency amplifier must not only always work for waiting for reception but also transmit high power. For this reason, its power consumption accounts for about 70% or more of the whole.
  • it is essential to reduce the size and number of batteries, and reducing the power consumption of the high-frequency amplifier is an important issue.
  • the development of a microphone mouth-wave monolithic IC in which a high-frequency amplifier composed of a hybrid integrated circuit composed of individual components, ie, a hybrid IC, is formed on a semiconductor substrate, is being developed.
  • the microwave monolithic IC is a high-frequency amplifier circuit in which active elements such as transistors and passive elements such as resistors, capacitors, and inductor coils are integrated on a semiconductor substrate.
  • active elements such as transistors
  • passive elements such as resistors, capacitors, and inductor coils
  • G a As (gallium arsenide) substrates have high resistance and are semi-insulating, so the parasitic capacitance between the passive element and the substrate is small, and a high-performance high-frequency amplifier circuit with low loss can be realized.
  • the distance between the passive element and the silicon substrate via the insulator must be sufficiently large.
  • the groove is formed along the path of the conductive wire, so that the coil area becomes large.
  • the distance is 10 / m or more.
  • the problem to be solved by the present invention is to reduce the parasitic capacitance between the passive element and the silicon substrate sufficiently without increasing the chip area, and to easily perform the wiring between the passive element and the active element. It is to provide a silicon microphone mouth-wave monolithic 1C.
  • a groove structure is formed in advance on a silicon substrate and filled with an insulator. Passive elements are formed on the filled insulator, and active elements are formed on the silicon substrate outside the trench structure. As another means for solving the problem, a part of silicon on the oxide film in the SOI substrate is removed, and a passive element is formed on the exposed oxide film. The active element is formed on silicon on the oxide film that has not been removed.
  • a groove structure filled with insulator is formed on a silicon substrate, and a groove is formed on the insulator inside the groove structure.
  • the distance between the passive element and the silicon substrate can be made sufficiently large via the insulator.
  • the active element is formed on the silicon substrate outside the groove structure, the height difference between the passive element forming position and the active element forming position can be reduced. Therefore, it is possible to provide a silicon microphone open-wave monolithic IC that can sufficiently reduce the parasitic capacitance between the passive element and the silicon substrate and can easily perform wiring between the passive element and the active element.
  • the oxide film that constitutes the S0I substrate is sufficiently thick, so the passive element And the silicon substrate can have a sufficiently large distance. Further, since the active element is formed on the silicon on the oxide film which has not been removed, the height difference between the position where the passive element is formed and the position where the active element is formed can be reduced. Therefore, it is possible to provide a silicon microwave monolithic IC capable of sufficiently reducing the parasitic capacitance between the passive element and the silicon substrate and easily performing wiring between the passive element and the active element.
  • FIG. 1 is a cross-sectional view of a high-frequency amplifier circuit in which passive elements are formed on a groove structure filled with a silicon oxide film.
  • FIG. 2 is a plan view of a high-frequency amplifier circuit that forms a passive element on a groove structure filled with a silicon oxide film.
  • 3 to 7 are cross-sectional views illustrating a method for manufacturing a high-frequency amplifier circuit in which passive elements are formed on a groove structure filled with a silicon oxide film.
  • 8 to 10 are plan views for explaining a method for manufacturing a high-frequency amplifier circuit in which passive elements are formed on a groove structure filled with a silicon oxide film.
  • FIG. 11 is an equivalent circuit diagram of the high-frequency amplifier circuit according to the present invention.
  • FIG. 11 is an equivalent circuit diagram of the high-frequency amplifier circuit according to the present invention.
  • FIG. 12 is a schematic sectional view of a high-frequency amplifier circuit formed on an S0I substrate.
  • 13 to 16 are cross-sectional views illustrating a method for manufacturing a high-frequency amplifier circuit formed on an S0I substrate.
  • FIG. 17 is a schematic cross-sectional view of a conventional high-frequency amplifier circuit.
  • FIG. 18 is a cross-sectional view illustrating a method of manufacturing a high-frequency amplifier circuit according to the related art.
  • Fig. 19 is a diagram showing the configuration of the system of the high-frequency section of a mobile phone. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows an embodiment of the high-frequency amplifier circuit according to the present invention.
  • FIG. 1 is a cross-sectional view of a high-frequency amplifier circuit structure in which a transistor 1, an inductor coil 2, and a capacitor 3 are formed on a silicon substrate 5, and these elements are wired 6.
  • a transistor 1 as an active element, a MIS or MOS transistor is used, and a source 101 and a drain 102 are formed by introducing a predetermined amount of a predetermined impurity.
  • a source electrode 105 and a drain electrode 104 for forming the wiring 6 are formed above the source 101 and the drain 102.
  • a gate electrode 103 is formed between the source electrode 105 and the drain electrode 104 in order to perform the switching operation of the transistor 1.
  • the inductor coil 2 and the capacitor 3, which are passive elements, are formed inside a groove structure 106 formed by an etching technique.
  • the side wall of the groove structure 106 includes a transistor 1 and a chip peripheral portion 109.
  • an insulating film is provided inside the groove structure 106.
  • the silicon oxide film 4 is filled.
  • FIG. 2 is a plan view of the high-frequency wide-band circuit according to the present invention.
  • FIG. 2 is a perspective plan view showing circuit components formed on a single silicon substrate 5.
  • the high frequency amplifier circuit shown in FIG. 2 is composed of one transistor 1, five inductor coils 2, two capacitors 3, and one resistor 201. Of the elements constituting the high-frequency amplifier circuit, except for the transistor 1, they are formed inside the groove structure 106, and the transistor 1 is formed on the silicon substrate outside the groove structure 106. By providing predetermined wiring 6 to these elements, a high-frequency amplification function is realized.
  • the high-frequency amplifier circuit shown in Fig. 2 meets five bonding pads and is connected to an external circuit. Bonding pad 202 is used for signal output, Ding pad 206 is a signal input pad.
  • the bonding pad 203 is a power supply voltage connection pad, and the bonding pad 204 and the bonding pad 205 are ground connection pads.
  • the sidewall of the trench structure 106 is composed of the transistor 1 and the chip peripheral portion 109.
  • the manufacturing method of the high-frequency amplifier circuit according to the present invention will be described with reference to FIGS.
  • the structure used for the description is the same as that of the embodiment described with reference to FIG.
  • the high-frequency amplifier circuit according to the present invention is formed using a normal silicon substrate shown in FIG.
  • the passive element is formed inside the groove structure in the silicon substrate 5. Therefore, as shown in FIG. 4, a hole is formed in a portion of the silicon substrate 5 where a passive element is to be formed by using an etching technique, and a groove structure 106 is formed.
  • the inside of the groove structure is filled with silicon oxide 4 in order to reduce the parasitic capacitance between the inductor coil 2 and the silicon substrate 5 and to align the positions of the inductor coil 2 and the transistor 1 in the depth direction.
  • silicon oxide 4 is filled, as shown in FIG. 5, an inductor coil 2 is formed inside the groove structure 106, and a transistor 1 is formed outside the groove structure 106.
  • the inductor coil 2 is formed using a low-resistance material such as metal-silicide.
  • the source 101 and the drain 102 of the transistor 1 are formed by introducing a predetermined amount of a predetermined impurity by ion implantation.
  • the source electrode 105, the drain electrode 104, and the gate electrode 103 of the transistor 1 are formed as shown in FIG.
  • the capacitor 3 is formed. In order to save wiring work, one side of the flat plate constituting the capacitor 3 uses a part of the inductor coil 2.
  • one transistor 1, five inductor coils 2 and two capacitors 3 are formed on a silicon substrate.
  • a high-frequency amplifier circuit is formed.
  • the wiring 6 is formed by connecting the through holes 107 formed in the silicon oxide film 4 with a low-resistance material such as metal-silicide.
  • a bonding pad 108 used for connection to an external circuit is also formed at wiring 6.
  • FIG. 8 is a view corresponding to FIG. 4, and shows a state immediately after the groove structure 106 is formed and the inside of the groove structure 106 is filled with the silicon oxide 4.
  • FIG. 9 corresponds to FIG. 5 and shows a state immediately after the inductor coil 2 is formed inside the groove structure 106 and the transistor 1 is formed outside the groove structure 106.
  • FIG. 10 corresponds to FIG.
  • FIG. 11 shows an equivalent circuit diagram of the high-frequency amplifier circuit shown in FIG.
  • the high-frequency amplifier circuit is composed of three transistors 1, five inductor coils 2, two capacitors 3, and one resistor 201. Elements having necessary electrical characteristics are used for each part so that the circuit has desired amplification characteristics.
  • the high-frequency amplifier circuit meets five bonding pads and is connected to an external circuit.
  • Bonding pad 202 is a signal output pad
  • bonding pad 206 is a signal input pad.
  • the bonding pad 203 is a power supply voltage connection pad, and the bonding pad 204 and the bonding pad 205 are ground connection pads. If the parasitic capacitance between the silicon substrate 5 and the passive element cannot be neglected, the equivalent circuit of the high-frequency amplifier circuit shown in FIG. 2 is different from that in FIG.
  • FIG. 12 is a conceptual cross-sectional view of a high-frequency amplifier circuit formed on an S0I substrate according to another embodiment of the present invention.
  • the SOI substrate has a three-layer structure in which four silicon oxide films are formed on a silicon substrate 5 and a single-crystal silicon layer is formed thereon.
  • a transistor 1 and an inductor coil 2 are formed on four silicon oxide films.
  • Transistor 1 is formed in the single crystal silicon layer on the SOI substrate.
  • the inductor coil 2 is formed by processing a single crystal silicon layer on the coil and then doping impurities at a high concentration.
  • Other methods of forming the inductor coil 2 include: There is a method in which the single-crystal silicon layer other than the one where the transistor is formed is removed and formed using a low-resistance material such as metal and silicide.
  • Capacitors 3 other than transistor 1 and inductor coil 2 source 101 and source electrode 105, drain 102 and drain electrode 104, gate electrode 103, through hole 105 and wiring 6 It is formed using the same method as the embodiment shown in FIG.
  • FIG. 13 to 16 show a manufacturing method of the embodiment shown in FIG. Fig. 13 shows the structure of the S0I substrate.
  • the S01 substrate has a three-layer structure in which four silicon oxide films are formed on a silicon substrate 5 and a single-crystal silicon 131 layer is formed thereon.
  • the transistor 1 is formed on a single crystal silicon layer 1301, and the inductor coil 2 is formed by processing the single crystal silicon layer 301 into a coil shape. Therefore, as shown in FIG. 14, the single crystal silicon layer is processed into a desired shape by using an etching technique.
  • predetermined portions of the processed single-crystal silicon layer are doped with predetermined impurities to form a source 101 and a drain 102 in a portion of the transistor. .
  • FIG. 19 is a block diagram showing a high-frequency section system of a mobile phone.
  • reference numeral 916 denotes a receiving unit
  • reference numeral 917 denotes a transmitting unit
  • Reference numeral 913 denotes a baseband unit which processes and controls audio signals.
  • Radio waves (800 MHz to 1.9 GHz) from the base station are received by the antenna 901, amplified by the low noise amplifier 904 through the filter 903, and passed through the mixer circuit 905. The frequency is then converted to baseband (about 50 kHz).
  • 9 06 is the intermediate frequency (
  • an amplifier 907 is a frequency synthesizer that produces a reference signal for frequency conversion.
  • the audio signal processed by the baseband section 913 is converted to a high frequency by the modulation circuit 912, and then the driver amplifier 909, the filter 903, and the high output are output.
  • Radio waves are transmitted from the antenna 902 via the power amplifier 908 or the like.
  • 911 is a burst switch
  • 914 is an input / output terminal for audio signals
  • 915 is an input / output terminal for display signals.
  • GaAs FETs were used for low-noise amplifiers 904 that handle high frequencies, modulation circuits 912, burst switches 911, driver amplifiers 909, and high-output amplifiers 908.
  • these circuits can be configured by active elements and passive elements using a silicon substrate.
  • the intermediate frequency amplifier 906 and the frequency synthesizer 907 are generally formed using a silicon substrate in order to handle a signal having a relatively low frequency. Therefore, by using the present invention to siliconize the high-frequency part, the entire high-frequency part system including the intermediate frequency amplifier 906 and the frequency synthesizer 907 can be mounted on one silicon semiconductor substrate. It can be formed.
  • FIG. 17 and FIG. 18 show examples in which wiring is practically impossible because the positions of the transistor 1 and the inductor coil 2 in the depth direction are not aligned.
  • FIG. 18 shows the progress of the structure formation shown in FIG.
  • the silicon oxide film 4 is deposited sufficiently thick.
  • the inductor coil 2 is formed on the deposited silicon oxide film 4.
  • the reason why the silicon oxide film 4 is made sufficiently thick is to reduce the parasitic capacitance between the silicon substrate 5 and the inductor coil 2.
  • the silicon oxide film thickness must be 10 m or more.
  • a through hole 107 is formed as shown in FIG. At this time, it is necessary to form a through hole 107 of 10 ⁇ m or more on the transistor side. With the current process technology, it is impossible to form such a through hole 107.
  • a groove structure in which an insulator is filled in a silicon substrate is formed, and a passive element is formed on the insulator inside the groove structure.
  • the distance between the substrate and the silicon substrate can be made sufficiently large.
  • the active element is formed on the silicon substrate outside the groove structure, the height difference between the passive element formation position and the active element formation position can be reduced. Therefore, it is possible to provide a silicon microphone open-wave monolithic IC that can sufficiently reduce the parasitic capacitance between the passive element and the silicon substrate and can easily perform wiring between the passive element and the active element.
  • the oxide film constituting the SOI substrate is sufficiently thick.
  • the distance between the passive element and the silicon substrate can be made sufficiently large via the insulator.
  • the active element is formed on the silicon on the oxide film which has not been removed, the height difference between the passive element forming position and the active element forming position can be reduced. Therefore, it is possible to provide a silicon microphone monolithic IC in which the parasitic capacitance between the passive element and the silicon substrate can be sufficiently reduced and the wiring between the passive element and the active element can be easily performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

明 細 書 高周波増幅回路 技術分野
本発明は、 高周波増幅回路、 特に、 能動素子と受動素子とを単一シリ コン基板 上に形成したモノ リシッ ク高周波増幅回路に関する。 背景技術
移動通信システムの急速な需要の増大に伴い、 小型、 軽量、 低コスト且つ高性 能な携帯電話に対する期待が高まっている。 携帯電話を形成するモジュールの内 、 高周波増幅部は、 受信待ちのために常時働いているだけではなく、 大電力の送 信を行わなければならない。 このため、 その消費電力は、 全体の約 7 0 %以上を 占める。 携帯電話を小型、 軽量化するためには、 電池の小型化、 本数の削減が不 可欠であり、 高周波増幅部の低消費電力化は、 重要な課題である。 このような課 題に対し、 個別部品による混成集積回路つまりハイブリ ツ ド I Cで構成してきた 高周波増幅部を半導体基板上に形成する、 マイク口波モノ リシック I Cの開発が 進められている。
マイクロ波モノ リシック I Cは、 トランジス夕等の能動素子と、 抵抗、 コンデ ンサ、 ィンダクタコイルなどの受動素子を半導体基板上に集積化した高周波増幅 回路である。 損失の少ない高性能な高周波増幅回路を実現するためには、 受動素 子と基板との寄生容量を極力小さくする必要がある。 G a A s (ガリウム ' ヒ素 ) 基板は、 抵抗が高く、 半絶縁性であるため、 受動素子と基板との寄生容量が小 さくなり、 損失の少ない高性能な高周波増幅回路を実現できる。
また最近では、 シリ コン基板上に形成される能動素子も、 高周波回路用トラン ジスタとして利用されるようになってきた。 シリ コン半導体は、 G a A s半導体 と比較し、 能動素子形成技術において高い信頼性を持つ。 従って、 シリ コン半導 体を用いてマイク口波モノリシック I Cを形成できれば、 I Cの低価格化、 高信 頼化を促進できる。 シリコンマイク口波モノリシック I Cを実現するためには、 シリ コン基板の導電性に起因し、 受動素子とシリ コン基板との寄生容量を低減す る構成が必要となる。 特開平 6 - 1 8 1 2 9 0では、 コイルを形成する導電線の 周りを絶縁物質で覆うことによりシリコン基板とコイルとの寄生容量を低減して いる。 発明の開示
発明者の検討によれば、 シリコン基板とコイルとの寄生容量を十分低減するに は、 絶縁体を介した受動素子とシリコン基板との距離を十分大きくとらなければ ならない。 コイルを形成する導電線の周りを絶縁物質で覆う方法では、 導電線の 通過経路に沿って溝を形成するために、 コイル面積が大きく成ってしまう。 また 、 寄生容量を充分小さくするためには、 その距離は 1 0 / m以上となる。 このよ うな構造の実現方法としては、 シリコン基板上に 1 0 μ m以上の酸化シリコンを 堆積し、 その上に受動素子を形成する方法が考えられる。 しかし、 この方法では 、 シリ コン基板上に形成した能動素子と、 酸化シリコン上に形成された受動素子 とを配線するため、 酸化シリコンに 1 0 m以上のコン夕ク ト用スルーホールを 形成する必要がある。 現在の加工技術では、 このようなスルーホールを形成する ことは、 不可能である。 従って、 シリコン半導体を用いてマイク口波モノリシッ ク 1 Cを形成することも不可能となる。
本発明が解決しょうとする課題は、 チップ面積の増大を伴わず、 受動素子とシ リコン基板との寄生容量を十分低減し、 かつ、 受動素子と能動素子との配線を容 易に行うことのできるシリコンマイク口波モノ リシック 1 Cを提供することにあ る。
上述した課題は以下のような構成により解決することができる。
シリ コン基板に、 あらかじめ溝構造を形成、 絶縁体を充填する。 充填した絶縁 体上に、 受動素子を形成し、 溝構造外部のシリ コン基板上に、 能動素子を形成す る。 課題を解決するための他の手段としては、 S 0 I基板における酸化膜上シリ コンの一部を取り去り、 露出した酸化膜上に受動素子を形成する。 能動素子に関 しては、 除去しなかった酸化膜上シリコンに形成する。
シリコン基板に絶縁体を充填した溝構造を形成し、 溝構造内部の絶縁体上に受 動素子を形成すると、 絶縁体を介して受動素子とシリコン基板との距離を充分大 きく取ることができる。 更に、 能動素子を溝構造外部のシリコン基板上に形成す るため、 受動素子形成位置と、 能動素子形成位置との高低差小さくすることがで きる。 従って、 受動素子とシリコン基板との寄生容量を充分低減し、 且つ受動素 子と能動素子との配線を容易に行うことのできる、 シリコンマイク口波モノ リシ ック I Cを提供することができる。
S 0 I基板における酸化膜上シリコンの一部を取り去り、 露出した酸化膜上に 受動素子を形成する場合は、 S 0 I基板を構成する酸化膜は充分厚いため、 絶縁 体を介して受動素子とシリコン基板との距離を充分大きく取ることができる。 更 に、 能動素子を除去しなかった酸化膜上シリコンに形成するため、 受動素子形成 位置と、 能動素子形成位置との高低差小さくすることができる。 従って、 受動素 子とシリコン基板との寄生容量を充分低減し、 且つ受動素子と能動素子との配線 を容易に行うことのできる、 シリコンマィクロ波モノリシック I Cを提供するこ とができる。 図面の簡単な説明
第 1図は、 シリコン酸化膜を充填した溝構造上に受動素子を形成する高周波増 幅回路の断面図。 第 2図は、 シリコン酸化膜を充填した溝構造上に受動素子を形 成する高周波増幅回路の平面図。 第 3図から第 7図は、 シリ コン酸化膜を充填し た溝構造上に受動素子を形成する高周波増幅回路の製造方法の説明するための断 面図。 第 8図から第 1 0図は、 シリコン酸化膜を充填した溝構造上に受動素子を 形成する高周波増幅回路の製造方法を説明するための平面図。 第 1 1図は、 本発 明における高周波増幅回路の等価回路図。 第 1 2図は、 S 0 I基板上に形成する 高周波増幅回路の概略断面図。 第 1 3図から第 1 6図は、 S 0 I基板上に形成す る高周波増幅回路の製造方法を説明する断面図。 第 1 7図は、 従来技術による高 周波増幅回路の概略断面図。 第 1 8図は、 従来技術による高周波増幅回路の製造 方法を説明する断面図。 第 1 9図は、 携帯電話の高周波部のシステムの構成を示 す図。 発明を実施するための最良の形態
第 1図に、 本発明による高周波増幅回路の一実施例を示す。
第 1図は、 シリ コン基板 5上に トランジスタ 1、 イ ンダクタコイル 2、 コンデ ンサ 3を形成し、 これら素子を配線 6 した高周波増幅回路構造の断面図である。 能動素子である トランジスタ 1には、 M I S型又は M O S型 トランジスタを用 いており、 所定の不純物を所定量導入することにより、 ソース 1 0 1及びドレイ ン 1 0 2を形成している。 ソース 1 0 1及びドレイ ン 1 0 2上部には、 配線 6を 行うためのソース電極 1 0 5及びドレイン電極 1 0 4が形成されている。 更に、 トランジス夕 1 のスィツチング動作を行うために、 ソース電極 1 0 5及びドレイ ン電極 1 0 4の間に、 ゲー ト電極 1 0 3が形成されている。
受動素子であるィンダクタコイル 2及びコンデンサ 3は、 エッチング技術によ り形成された溝構造 1 0 6内部に形成する。 溝構造 1 0 6の側壁は、 トランジス タ 1 とチップ周辺部 1 0 9よりなる。 インダクタコイル 2及びコンデンサ 3とシ リコン基板 5との寄生容量を低減し、 且つインダクタコイル 2と トランジスタ 1 の深さ方向での位置を揃えるために、 溝構造 1 0 6内部には絶縁膜であるシリコ ン酸化膜 4が充填されている。 インダクタコイル 2と トランジスタ 1の深さ方向 での位置を揃えた結果、 配線 6用のスルーホール 1 0 7を浅くすることができ、 素子間の配線が平易になる。 なお、 外部回路との接続は、 ボンディ ングパッ ト 1 0 8により行う。
第 2図に、 本発明による高周波增幅回路の平面図を示す。 第 2図は、 単一のシ リコン基板 5上に形成された回路の構成要素を透視平面図により示したものであ る。
第 2図に示した高周波増幅回路は、 一つのトランジスタ 1、 五つのィンダクタ コイル 2、 二つのコンデンサ 3及び、 一つの抵抗 2 0 1 より構成されている。 高 周波増幅回路を構成する素子のうち、 トランジスタ 1以外は、 溝構造 1 0 6の内 部に形成され、 トランジスタ 1は、 溝構造 1 0 6外部のシリコン基板上に形成さ れている。 これら、 素子に対し所定の配線 6を施すことにより、 高周波増幅機能 を実現している。 第 2図に示す高周波増幅回路は、 五つのボンディ ングパッ トを 会して外部回路に接続される。 ボンディ ングパッ ト 2 0 2は、 信号出力用、 ボン ディ ングパッ ト 2 0 6は、 信号入力用のパッ トである。 ボンディ ングパッ ト 2 0 3は、 電源電圧接続用のパッ トであり、 ボンディ ングパッ ト 2 0 4及びボンディ ングパッ ト 2 0 5は、 グランド接続用のパッ トである。 また、 上記溝構造 1 0 6 の側壁は、 トランジスタ 1 とチップ周辺部 1 0 9よりなる。
第 3図から第 7図を用いて、 本発明による高周波増幅回路の製造方法を説明す る。 説明に用いる構造は、 第 1図で説明した実施例と同じものである。 本発明に よる高周波増幅回路は、 第 3図に示す通常のシリコン基板を用いて形成する。 本 発明による高周波増幅回路では、 受動素子をシリコン基板 5中の溝構造内部に形 成する。 従って、 第 4図に示すように、 エッチング技術を用いて、 シリコン基板 5中の受動素子を形成する部分に穴を掘り、 溝構造 1 0 6を形成する。 溝構造内 部には、 インダクタコイル 2とシリコン基板 5との寄生容量を低減し、 且つイン ダクタコイル 2と トランジスタ 1の深さ方向の位置を揃えるために、 酸化シリコ ン 4を充填する。 酸化シリコン 4を充填後、 第 5図に示すように、 溝構造 1 0 6 内部に、 ィンダクタコイル 2を形成し、 溝構造 1 0 6外部にトランジスタ 1を形 成する。 インダクタコイル 2は、 金属ゃシリサイ ドなど低抵抗の材料を用いて形 成する。 トランジスタ 1のソース 1 0 1及びドレイン 1 0 2は、 イオン打ち込み により、 所定の不純物を所定量導入することにより形成される。 インダクタコィ ル 2及びトランジスタ 1を形成した後、 第 6図に示すように、 トランジスタ 1の ソース電極 1 0 5、 ドレイン電極 1 0 4及びゲート電極 1 0 3を形成する。 トラ ンジス夕 1の各電極部を酸化シリコン 4で被覆した後に、 コンデンサ 3を形成す る。 配線の手間を省くために、 コンデンサ 3を構成する平板の片側は、 インダク 夕コイル 2の一部を用いる。
以上の工程を通し、 シリコン基板上に一つのトランジスタ 1、 五つのィンダク 夕コイル 2及び、 二つのコンデンサ 3が形成される。 第 7図に示すように、 これ らの素子に対して所定の配線 6を施すことにより、 高周波増幅回路が形成される 。 配線 6は、 シリコン酸化膜 4に形成されたスルーホール 1 0 7間を金属ゃシリ サイ ド等の低抵抗物質で接続することにより形成される。 外部回路との接続に用 いるボンディ ングパッ ト 1 0 8も、 配線 6時に形成される。
第 3図から第 7図の断面図を用いて説明した製造方法を、 第 8図、 第 9図、 第 1 0図の平面図を用いて説明する。 第 8図、 第 9図、 第 1 0図に示す高周波増幅 回路、 第 2図に示した実施例と同じ構造であり、 一つのトランジス夕 1、 五つの インダクタコイル 2、 二つのコンデンサ 3及び、 一つの抵抗 2 0 1より構成され ている。 第 8図は、 第 4図に対応した図であり、 溝構造 1 0 6を形成し、 溝構造 1 0 6内部に酸化シリコン 4を充填した直後を示したものである。 第 9図は、 第 5図に対応し、 溝構造 1 0 6内部にィンダクタコイル 2を形成し、 溝構造 1 0 6 外部にトランジス夕 1を形成した直後を示したものである。 第 1 0図は、 第 7図 に対応し、 所定の素子間に配線 6を施し、 同時に抵抗 2 0 1、 ボンディ ングパッ ト 2 0 2、 ボンディ ングパッ ト 2 0 3、 ボンディ ングパッ ト 2 0 4、 ボンディ ン グパッ ト 2 0 5、 ボンディ ングパッ ト 2 0 6を形成した直後を示したものである 。 第 1 1図に、 第 2図に示した高周波増幅回路の等価回路図を示す。 高周波増 幅回路は、一^ 3のトランジスタ 1、 五つのィンダクタコイル 2、 二つのコンデン サ 3及び、 一つの抵抗 2 0 1より構成されている。 回路が所望の増幅特性となる よう、 必要な電気的特性を有する素子をそれぞれの部分に用いている。 また、 高 周波増幅回路は、 五つのボンディ ングパッ トを会して外部回路に接続される。 ボ ンディ ングパッ ト 2 0 2は、 信号出力用、 ボンディ ングパッ ト 2 0 6は、 信号入 力用のパッ トである。 ボンディ ングパッ ト 2 0 3は、 電源電圧接続用のパッ 卜で あり、 ボンディ ングパッ ト 2 0 4及びボンディ ングパッ ト 2 0 5は、 グランド接 続用のパッ トである。 シリ コン基板 5と受動素子の寄生容量が無視できない場合 、 第 2図に示した高周波増幅回路の等価回路は、 第 1 1図と異なり複雑なものと なり、 事実上設計が行えなくなる。
第 1 2図に本発明の他の実施例である、 S 0 I基板上に形成する高周波増幅回 路の概念断面図を示す。
S 0 I基板は、 シリコン基板 5上にシリコン酸化膜 4層、 更にその上部に単結 晶シリ コン層を形成した三層構造をなす。 第 1 2図に示す高周波増幅回路は、 シ リコン酸化膜 4層上部に、 トランジスタ 1と、 インダクタコイル 2を形成する。 トランジス夕 1は、 S 0 I基板上の単結晶シリコン層に形成される。 ィンダクタ コイル 2は、 単結晶シリ コン層をコイル上に加工した後、 高濃度に不純物をドー プすることにより形成する。 ィンダクタコイル 2を形成する他の方法としては、 トランジス夕 1形成箇 以外の単結晶シリコン層を除去し、 金属ゃシリサイ ドな どの低抵抗材料を用いて形成する方法がある。 トランジスタ 1及びィンダクタコ ィル 2以外のコンデンサ 3、 ソース 1 0 1及びソース電極 1 0 5、 ドレイン 1 0 2及びドレイン電極 1 0 4、 ゲー卜電極 1 0 3、 スルーホール 1 0 5、 配線 6は 、 第 1図に示す実施例と同じ方法を用いて形成される。
第 1 3図から第 1 6図に、 第 1 2図に示す実施例の製造方法を示す。 第 1 3図 に S 0 I基板の構造を示す。 S 0 1基板は、 シリコン基板 5上にシリコン酸化膜 4層、 更にその上部に単結晶シリコン 1 3 0 1層を形成した三層構造をなす。 卜 ランジスタ 1は、 単結晶シリコン 1 3 0 1層に形成され、 インダクタコイル 2は 単結晶シリコン 1 3 0 1層をコイル状に加工することにより形成される。 従って 、 第 1 4図に示すように、 単結晶シリコン層は、 エッチング技術を用いて、 所望 の形に加工される。 第 1 5図に示すように、 加工された単結晶シリコン層のうち 、 トランジス夕 1部には、 ソース 1 0 1及びドレイン 1 0 2を形成するため、 所 定の不純物が所定量ドープされる。 インダクタコイル 2部には、 コイルを低抵抗 化するために高濃度に不純物がドープされる。 第 1 6図に示すトランジスタ 1及 びインダクタコイル 2以外のコンデンサ 3、 ソース 1 0 1及びソース電極 1 0 5 、 ドレイン 1 0 2及びドレイン電極 1 0 4、 ゲー卜電極 1 0 3、 スルーホール 1
0 5、 配線 6は、 第 1図に示す実施例と同じ方法を用いて形成される。
次に、 第 1 9図を用いて、 本発明を携帯電話の高周波部のシステムに適用した 場合の例を示す。
第 1 9図は、 携帯電話の高周波部システムを示すブロック図である。
第 1 9図の 9 1 6は受信部、 9 1 7は送信部であり併せていわゆる高周波部を 構成する。 9 1 3はベースバンド部でり、 音声信号の処理や制御を行う。 基地局 からの電波 (8 0 0 M H z〜 1 . 9 G H z ) はアンテナ 9 0 1により受信されフ ィルタ 9 0 3を介し低雑音増幅器 9 0 4により増幅され、 ミキサ回路 9 0 5を通 じてベースバンド (約 5 0 k H z ) に周波数変換される。 9 0 6は中間周波数 (
1 F ) 増幅器、 9 0 7は周波数変換の基準信号を作る周波数シンセサイザである 。 電波の送信時には、 ベースバンド部 9 1 3で処理された音声信号を変調回路 9 1 2により高周波に変換した後、 ドライバアンプ 9 0 9、 フィルタ 9 0 3、 高出 力増幅器 9 0 8等を介してアンテナ 9 0 2から電波が送信される。 なお、 9 1 1 はバーストスィッチ、 9 1 4は音声信号の入出力端子、 9 1 5は表示信号などの 入出力端子出ある。
従来、 高周波を扱う低雑音増幅器 9 0 4、 変調回路 9 1 2、 バーストスイッチ 9 1 1、 ドライバアンプ 9 0 9、 高出力増幅器 9 0 8は G a A s F E Tを用いた がしょうされていたが、 本発明を採用することにより、 シリ コン基板を用いた能 動素子及び受動素子によりこれらの回路を構成することが可能となる。
また、 中間周波数増幅器 9 0 6、 周波数シンセサイザ 9 0 7は比較的周波数の 低い信号を取扱うため、 シリ コン基板を用いて形成されるのが一般的である。 従 つて、 本願発明を用いて、 高周波部をシリ コン化することにより、 これら中間周 波数増幅器 9 0 6、 周波数シンセサイザ 9 0 7を含めた高周波部のシステムすべ てを 1つのシリコン半導体基板上に形成することが可能となる。
このように、 本発明を用いて携帯電話などの高周波システムを形成することに より、 コストを大幅に低減できるとともに、 その消費電力を大幅に低減すること が可能となる。
第 1 7図及び第 1 8図に、 トランジスタ 1とインダクタコイル 2の深さ方向の 位置が揃っていないため、 事実上配線不能となる場合の例を示す。 第 1 8図は、 第 1 7図に示す構造形成の途中経過を示したものである。 本実施例では、 第 1 8 図に示すようにシリコン基板 5にトランジスタ 1を形成した後、 シリコン酸化膜 4を十分厚くデポジショ ンする。 デポジショ ンされたシリ コン酸化膜 4上に、 ィ ンダクタコイル 2が形成される。 シリ コン酸化膜 4を十分厚くする理由は、 シリ コン基板 5とィンダクタコイル 2との寄生容量を低減するためである。 寄生容量 を十分低減するためは、 シリ コン酸化膜厚を 1 0 m以上にしなければならない 。 トランジスタ 1及びィンダクタコイル 2形成後、 第 1 7図に示すように、 スル 一ホール 1 0 7を形成し、 配線 6を行う。 この際、 トランジスタ側では、 1 0 〃 m以上のスルーホール 1 0 7を形成する必要がある。 し力、し、 現在のプロセス技 術では、 このようなスルーホール 1 0 7形成不可能である。
これに対し本発明の実施例では、 シリコン基板に絶縁体を充填した溝構造を形 成し、 溝構造内部の絶縁体上に受動素子を形成すると、 絶縁体を介して受動素子 とシリ コン基板との距離を充分大きく取ることができる。 更に、 能動素子を溝構 造外部のシリコン基板上に形成するため、 受動素子形成位置と、 能動素子形成位 置との高低差小さくすることができる。 従って、 受動素子とシリコン基板との寄 生容量を充分低減し、 且つ受動素子と能動素子との配線を容易に行うことのでき る、 シリコンマイク口波モノ リシック I Cを提供することができる。
さらに対し本発明の実施例では、 S 0 I基板における酸化膜上シリコンの一部 を取り去り、 露出した酸化腠上に受動素子を形成する場合は、 S O I基板を構成 する酸化膜は充分厚いため、 絶縁体を介して受動素子とシリコン基板との距離を 充分大きく取ることができる。 更に、 能動素子を除去しなかった酸化膜上シリコ ンに形成するため、 受動素子形成位置と、 能動素子形成位置との高低差小さくす ることができる。 従って、 受動素子とシリ コン基板との寄生容量を充分低減し、 且つ受動素子と能動素子との配線を容易に行うことのできる、 シリコンマイク口 波モノリシック I Cを提供することができる。

Claims

請 求 の 範 囲
1 . 高周波入力信号を増幅する高周波増幅回路において、
シリコン基板に絶縁体を充填した溝構造を形成し、 溝構造内部の絶縁体上に受動 素子を、 溝構造外部のシリコン基板上に能動素子を形成することを特徴とする高 周波増幅回路。
2 . 高周波入力信号を増幅する高周波増幅回路において、
シリ コン基板に絶縁体を充填した溝構造を形成し、 溝構造内部の絶縁体上に、 渦 巻き状をなす金属線であるィンダクタコイルを形成することを特徴とする請求の 範囲第 1項記載の高周波増幅回路。
3 . 高周波入力信号を増幅する高周波増幅回路において、
シリコン基板に絶縁体を充填した溝構造を形成し、 溝構造内部の絶縁体上にコン デンサを形成することを特徴とする請求の範囲第 1項記載の高周波増幅回路。
4 . 高周波入力信号を増幅する高周波増幅回路において、
シリコン基板に絶縁体を充填した溝構造を形成し、 溝構造內部の絶縁体上に外部 回路との接続用のボンディ ングパッ トを形成することを特徴とする請求の範囲第 1項記載の高周波増幅回路。
5 . 高周波入力信号を増幅する高周波増幅回路において、
S0 1基板の酸化膜上のシリコンを加工し、 受動素子及び能動素子を形成すること を特徴とする高周波増幅回路。
6 . 高周波入力信号を増幅する高周波増幅回路において、
S0 I基板の酸化膜上のシリコンをコイル状に加工し、 ィンダクタコイルを形成す ることを特徴とする請求の範囲第 5項記載の高周波増幅回路。
7 . 高周波入力信号を増幅する高周波増幅回路において、
S0 I基板の酸化膜上のシリコンの一部を取り去り、 露出した酸化膜上に受動素子 を、 除去しなかった酸化膜上のシリコンに能動素子を形成することを特徴とする 高周波増幅回路。
8 . 高周波入力信号を増幅する高周波増幅回路において、
S01基板の酸化膜上のシリコンの一部を取り去り、 露出した酸化膜上に渦巻き状 をなす金属線であるィンダクタコイルを形成することを特徴とする請求の範囲第
7項記載の高周波増幅回路。
PCT/JP1995/000358 1995-03-06 1995-03-06 Circuit amplificateur haute frequence WO1996027905A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/000358 WO1996027905A1 (fr) 1995-03-06 1995-03-06 Circuit amplificateur haute frequence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/000358 WO1996027905A1 (fr) 1995-03-06 1995-03-06 Circuit amplificateur haute frequence

Publications (1)

Publication Number Publication Date
WO1996027905A1 true WO1996027905A1 (fr) 1996-09-12

Family

ID=14125692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000358 WO1996027905A1 (fr) 1995-03-06 1995-03-06 Circuit amplificateur haute frequence

Country Status (1)

Country Link
WO (1) WO1996027905A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999046815A1 (de) * 1998-03-12 1999-09-16 Infineon Technologies Ag Integrierte elektronische schaltungsanordnung und verfahren zu ihrer herstellung
EP1374314A1 (en) * 2001-03-14 2004-01-02 International Business Machines Corporation Integrated toroidal coil inductors for ic devices
JP2007049115A (ja) * 2005-07-13 2007-02-22 Seiko Epson Corp 半導体装置
CN100459067C (zh) * 2004-05-18 2009-02-04 日本电信电话株式会社 导电性半导体衬底上的电极焊盘
WO2009025138A1 (ja) * 2007-08-21 2009-02-26 Murata Manufacturing Co., Ltd. 半導体集積回路及び高周波回路モジュール
KR101354232B1 (ko) 2011-01-19 2014-02-04 하만인터내셔날인더스트리스인코포레이티드 전력 변환기용 증폭기 시스템
JP2014127590A (ja) * 2012-12-26 2014-07-07 Shin Etsu Handotai Co Ltd 高周波半導体装置及び高周波半導体装置の製造方法
JP2019004014A (ja) * 2017-06-14 2019-01-10 株式会社豊田中央研究所 半導体装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773965A (en) * 1980-10-28 1982-05-08 Seiko Epson Corp Switched capcitor integrator
JPH03227046A (ja) * 1990-01-31 1991-10-08 Mitsubishi Electric Corp 高周波集積回路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773965A (en) * 1980-10-28 1982-05-08 Seiko Epson Corp Switched capcitor integrator
JPH03227046A (ja) * 1990-01-31 1991-10-08 Mitsubishi Electric Corp 高周波集積回路

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999046815A1 (de) * 1998-03-12 1999-09-16 Infineon Technologies Ag Integrierte elektronische schaltungsanordnung und verfahren zu ihrer herstellung
EP1374314A1 (en) * 2001-03-14 2004-01-02 International Business Machines Corporation Integrated toroidal coil inductors for ic devices
EP1374314A4 (en) * 2001-03-14 2008-03-12 Ibm INTEGRATED TOROID COIL INDUCTS FOR IC COMPONENTS
CN100459067C (zh) * 2004-05-18 2009-02-04 日本电信电话株式会社 导电性半导体衬底上的电极焊盘
JP2007049115A (ja) * 2005-07-13 2007-02-22 Seiko Epson Corp 半導体装置
WO2009025138A1 (ja) * 2007-08-21 2009-02-26 Murata Manufacturing Co., Ltd. 半導体集積回路及び高周波回路モジュール
KR101354232B1 (ko) 2011-01-19 2014-02-04 하만인터내셔날인더스트리스인코포레이티드 전력 변환기용 증폭기 시스템
JP2014127590A (ja) * 2012-12-26 2014-07-07 Shin Etsu Handotai Co Ltd 高周波半導体装置及び高周波半導体装置の製造方法
JP2019004014A (ja) * 2017-06-14 2019-01-10 株式会社豊田中央研究所 半導体装置

Similar Documents

Publication Publication Date Title
US7088964B2 (en) Single chip radio with integrated antenna
US11164891B2 (en) Integrated circuits with components on both sides of a selected substrate and methods of fabrication
US8426941B2 (en) Semiconductor chip comprising a directional coupler having a specific main line and sub-line arrangement
US8441102B2 (en) Semiconductor device having a capacitor
KR101452548B1 (ko) 후면 수동 디바이스 집적을 이용하는 반도체 다이
TWI693676B (zh) Soi基板上之整合式被動裝置
US11335669B2 (en) Wafer level chip scale filter packaging using semiconductor wafers with through wafer vias
JPH0897375A (ja) マイクロ波集積回路装置及びその製造方法
TW201712853A (zh) 用於高效能被動-主動電路整合之方法及設備
US6177716B1 (en) Low loss capacitor structure
US11296023B2 (en) Semiconductor device and method of fabricating the same
WO1996027905A1 (fr) Circuit amplificateur haute frequence
US5880517A (en) Microwave power transistor having matched impedance with integrated DC blocking capacitor and manufacturing method therefor
US6049126A (en) Semiconductor package and amplifier employing the same
WO2011104774A1 (ja) 半導体装置
JP3744828B2 (ja) 半導体装置
JP2991168B2 (ja) 半導体装置およびその製造方法
US11476363B2 (en) Semiconductor device and method of fabricating the same
JP2008235759A (ja) 電子装置
US11515406B2 (en) Heterojunction bipolar transistor with field plates
JP3221420B2 (ja) 半導体高周波集積回路およびその製造方法
US20240213139A1 (en) Backside Deep Trench Capacitor and Inductor Structures
TWI283471B (en) Semiconductor device and electronic apparatus
JPH0927594A (ja) 高周波モノリシック集積回路
JPH10321762A (ja) 半導体装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase