KR101354232B1 - 전력 변환기용 증폭기 시스템 - Google Patents
전력 변환기용 증폭기 시스템 Download PDFInfo
- Publication number
- KR101354232B1 KR101354232B1 KR1020120005799A KR20120005799A KR101354232B1 KR 101354232 B1 KR101354232 B1 KR 101354232B1 KR 1020120005799 A KR1020120005799 A KR 1020120005799A KR 20120005799 A KR20120005799 A KR 20120005799A KR 101354232 B1 KR101354232 B1 KR 101354232B1
- Authority
- KR
- South Korea
- Prior art keywords
- switch device
- substrate
- capacitor
- voltage
- power
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims abstract description 107
- 230000003071 parasitic effect Effects 0.000 claims abstract description 76
- 239000003990 capacitor Substances 0.000 claims abstract description 62
- 239000004065 semiconductor Substances 0.000 claims abstract description 50
- 238000000034 method Methods 0.000 claims description 25
- 230000001965 increasing effect Effects 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000003321 amplification Effects 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 230000005236 sound signal Effects 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000010752 BS 2869 Class D Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/21—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F3/217—Class D power amplifiers; Switching amplifiers
- H03F3/2173—Class D power amplifiers; Switching amplifiers of the bridge type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823892—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the wells or tubs, e.g. twin tubs, high energy well implants, buried implanted layers for lateral isolation [BILLI]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/06—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
- H01L27/0611—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
- H01L27/0617—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
- H01L27/0629—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
- H01L27/0921—Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/52—Circuit arrangements for protecting such amplifiers
- H03F1/523—Circuit arrangements for protecting such amplifiers for amplifiers using field-effect devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/21—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F3/217—Class D power amplifiers; Switching amplifiers
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Amplifiers (AREA)
Abstract
전력 변환기용 증폭기 시스템은 반도체의 기판의 집적 회로에 형성된 적어도 제 1 스위치 장치 및 제 2 스위치 장치를 포함한다. 제 1 스위치 장치 및 제 2 스위치 장치는 하프 브리지 구성에서 형성될 수도 있으며, 반도체의 출력 노드에 증폭된 출력 신호를 생성하도록 협동적으로 동작가능할 수도 있다. 레지스터 및 캐패시터는 반도체에 포함된 전력 인가 입력 노드와 기판 노드 사이에 병렬로 연결될 수도 있다. 캐패시터는 제 1 및 제 2 스위치 장치의 스위칭 주기 동안 디-바이어싱 전압에 선택적으로 충전되어 집적 회로에서 나타나는 기생 스위치 장치를 역바이어싱할 수도 있다.
Description
본 발명은 전력 변환기에 관한 것이며, 더욱 상세하게는, 기생 스위치 장치 동작을 감소시키는 전력 변환기의 증폭기 시스템에 관한 것이다.
전력 전자장치들 및 관련 회로를 사용하는 집적 회로는 전력 관리의 복잡한 문제에 대해 비용 효율적인 해결책을 가능하게 한다. 수천 개의 능동 부품 및 이들의 상호접속들을 하나의 모노리식 (monolithic) 반도체 소자에 구축하는 것은 최소한의 재료 및 신뢰할 수 없는 접속을 갖는 상당히 효율적인 시스템 패키지를 향한다.
이러한 장치의 원리의 한계는 많은 양의 에너지를 저장할 수 없는 형태로 나타나며 (캐패시터 및 인덕터 사이즈가 제한됨), 하나의 조립체 내에 복수의 장치들의 익숙한 배치는 고전류 부재로부터 회로의 다른 신호 부분으로 의도치 않은 신호 (전류)가 연결되는 것을 유발한다. 전력 MOSFET에 인접하여 형성된 의도치 않은 바이폴라 트랜지스트와 같은 기생 소자는 통상적으로, MOSFET이 파괴되지 않고 신뢰성 있게 동작할 수도 있는 전압 및 전류 레벨을 제한한다.
증폭기 시스템은, 증폭기 시스템에 포함된 반도체의 기판에서 나타나는 적어도 하나의 기생 스위치 장치에서 역 바이어스에 의해 기생 스위치 장치의 동작을 최소화한다. 증폭기 시스템은 MOSFET과 같은 전력 스위치로서, 반도체의 기판에 집적된 회로에 형성된 스위치 장치를 포함한다. 스위치 장치는 하프 브리지 전력 스테이지 (half bridge power stage) 구성에서 협동적으로 스위칭 가능한 제 1 스위치 장치 및 제 2 스위치 장치를 포함하여, 반도체의 출력 노드에 증폭된 출력 신호를 생성할 수도 있다. 또한, 반도체는 전력 인가 전압을 수신하는 전력 인가 입력 노드 및 기판과 연결된 기판 노드를 포함할 수도 있다.
레지스터 및 캐패시터는 전력 인가 입력 노드와 기판 노드 사이에 병렬로 연결될 수도 있다. 캐패시터는 제 1 및 제 2 스위치 장치의 스위치 주기 동안 디-바이어싱 (de-biasing) 전압으로 충전되어 나타나는 임의의 기생 스위치 장치를 역 바이어싱할 수도 있다. 캐패시터는, 제 1 및 제 2 스위치 장치가 실질적으로 동작하지 않는 경우, 제 1 및 제 2 스위치 (프리휠 (free-wheeling) 부분)의 스위칭 주기의 시간 동안 발생하는 프리휠 전류로 충전될 수도 있다.
일 예의 구성에서, 증폭기 시스템은 출력 노드와 기판 노드 사이에 연결된 다이오드를 추가로 포함할 수도 있다. 다이오드는 프리휠 전류에 의해 순바이어싱되어 캐패시터를 충전할 수도 있다. 다이오드는 제 1 스위치 장치 및 제 2 스위치 장치 중 하나에 포함된 프리휠 몸체 다이오드와 병렬인 분류기 (shunt)로서 레지스터 및 캐패시터와 함께 동작할 수도 있다. 다이오드의 순방향 전압은 제 1 스위치 장치 및 제 2 스위치 장치 중 하나에 포함된 프리휠 몸체 다이오드의 순방향 전압 미만이어서, 프리휠 몸체 다이오드가 턴온되기 이전에, 다이오드가 턴온되어 캐패시터를 충전하기 시작한다.
증폭기 시스템의 흥미로운 특징은 레지스터, 캐패시터, 및 다이오드 (존재한다면)는 몇몇 예시적인 구성에서 반도체 외부에 존재할 수도 있다는 것이다. 따라서, 출력 노드, 전력 인가 입력 노드, 및 기판 노드는 각각 반도체의 각각의 외부 핀으로 반도체로부터 나올 수도 있다.
증폭기 시스템의 또 다른 흥미로운 특징은 임의의 수의 스위치 장치가 포함될 수도 있다는 것이다. 따라서, 증폭기 시스템은 임의의 수의 하프 브리지 전력 스테이지 (half bridge power stage) 또는 풀 브리지 전력 스테이지 (full bridge power stage)를 포함할 수도 있다. 레지스터 및 캐패시터는 하프 브리지 전력 스테이지 또는 풀 브리지 전력 스테이지 각각에 대해 공통 충전/방전 회로일 수도 있다.
그러나 증폭기 시스템의 또 다른 흥미로운 특징은, 시스템이 기생 스위치 장치를 실질적으로 턴 오프로 유지함으로써, 스위치 장치의 안전한 동작 영역의 비싸지 않은 확대를 제공할 수 있다는 것이다. 스위치 장치의 안전한 동작 영역의 확대는 반도체의 전력 출력을 증가시킬 수 있다. 기생 스위치 장치가 오프로 유지되는 경우, 스위치 장치의 안전한 동작 영역이 더 높은 전압 및 전류의 관점에서 연장될 뿐만 아니라, 잡음 전류 및 전자기 방해 (EMI)도 감소될 수도 있다. 잡음 전류는 연장된 프리휠 몸체 다이오드 회복 시간으로부터 유발할 수도 있으며, 잡은 전류는 고 전압에서 다이나믹한 쇄도로부터 유발할 수도 있다.
본 발명의 다른 시스템, 방법, 특징, 이점은 다음의 도면 및 상세한 설명을 참조시 이 분야의 당업자에게 명백하거나 명백해질 것이다. 모든 이러한 추가적인 시스템, 방법, 특징, 및 이점은 본 명세서에 포함되고, 발명의 범위에 속하여, 다음의 특허청구범위에 의해 보호되도록 의도된다.
본 발명은 다음의 도면 및 상세한 설명을 참조하여 더욱 양호하게 이해될 수도 있다. 도면의 구성요소는 반드시 일정 비율은 아니며, 본 발명의 원리를 설명시 대신 강조되어 배치된다. 또한, 도면에서, 동일한 참조 부호는 상이한 보기에 걸처 대응하는 부분을 지정한다.
도 1은 CMOS 집적 회로 구조의 형태의 예시적인 반도체 구조.
도 2는 도시된 기생 스위치 장치의 예를 갖는 도 1의 예시적인 반도체 구조.
도 3은 하프 브리지 전력 스테이지를 포함하는 예시적인 증폭기 시스템의 회로도.
도 4는 분류기 회로를 포함하는 도 3의 증폭기 시스템의 회로도.
도 5는 풀 브리지 전력 스테이지 및 분류기 회로를 포함하는 예시적인 증폭기 시스템의 회로도.
도 6은 증폭기 시스템의 동작 흐름도.
도 1은 CMOS 집적 회로 구조의 형태의 예시적인 반도체 구조.
도 2는 도시된 기생 스위치 장치의 예를 갖는 도 1의 예시적인 반도체 구조.
도 3은 하프 브리지 전력 스테이지를 포함하는 예시적인 증폭기 시스템의 회로도.
도 4는 분류기 회로를 포함하는 도 3의 증폭기 시스템의 회로도.
도 5는 풀 브리지 전력 스테이지 및 분류기 회로를 포함하는 예시적인 증폭기 시스템의 회로도.
도 6은 증폭기 시스템의 동작 흐름도.
도 1은 CMOS (complementary metal-oxide semiconductor) 전력 IC와 같은 반도체 (102)에 포함된 집적 회로 (IC) (100)에 대한 예시적인 구조이다. 예시적인 전력 IC는 약하게 도핑된 P 타입 기판상에 구축된 P-채널 MOSFET과 같은 스위치 장치를 제한하는 더욱 높게 도핑된 N-우물을 사용하여, 동일한 기판상에 구축된다. 다른 예에서, 스위치 장치는, PNP 양극성 접합 트랜지스터(BJT; bipolar junction transistor), 절연 게이트 양극성 트랜지스터 (IGBT; insulated gate bipolar transistor), 시이리스터, 임의의 다른 형태의 전력 트랜지스터, 집적 회로에 포함되며 전도 상태와 비전도 상태 사이를 전이할 수 있는 기계 또는 장치와 같은 다른 장치일 수도 있다. 단어 "MOSFET들"이 아래의 논의에서 사용되지만, 스위치 장치가 MOSFET 스위치 장치에 제한되도록 이해해서는 안된다. N-우물은 전력 인가에 의하는 것과 같이, 바이어싱되어, IC (100) 내부에 포함된 임의의 회로보다 더욱 포지티브하게 바이어싱될 수 있다. 다른 예에서, 반도체는 약하게 도핑된 n-타입 기판에서 P-우물을 포함할 수도 있다. 도 1에서, NMOS 장치는 기판에 직접 구축되거나, 전원 장치에 의한 포지티브 전력 전압 (Vdd)이 인가된 깊은 N 매입층 (N buried layer)으로 형성된 n-타입 튜브 내부에 구축될 수도 있다. 전원 장치로부터 인가된 네거티브 인가 전압 (Vss)은 기판의 P-우물로 인가될 수도 있다.
NMOS 및 PMOS 장치는, 소스 (S) 게이트 (G), 및 드레인 (D)이 수평으로 배열된 측면 구조로 기판에 형성될 수도 있다. 대신에, 또는 추가하여, NMOS 및 PMOS 장치는 수직 구조로 기판에 형성될 수도 있다. P-에피택셜 영역 (P-epi) 내의 N-우물은 MOSFET들과 같은 스위치 장치에 부가하여, 레지스터, 소형 인덕터, 및 캐패시터를 포함하도록 사용될 수 있다. N-층 절연을 갖는 P-타입 기판 이외의 SOI (Silicon on Insulator)를 사용한 절연이 사용될 수도 있다.
구성의 모노리식 본질은 기생 장치를 생성한다. 기생 양극성 장치들 (202)의 몇몇 예들이 도 2에 도시된다. MOSFET들과 같은 스위치 장치들은 각각의 스위치 장치에 부분일 수 있는 기생 BJT와 같은 기생 스위치 장치를 본질적으로 포함할 수 있다. 용어 "BJT"가 다음의 논의에서 사용되지만, 기생 스위치 장치는 BJT에 한정되어서는 안 되며, 임의의 형태의 기생 스위치 장치일 수도 있음을 이해해야 한다. 실제 IC에서 나타날 수도 있는 모든 기생 NPN BJT들이 도 2에 도시된 것은 아니지만, 도 2에 도시된 것들은 IC의 견고한 기능에 대한 중요한 제한을 나타낼 수 있다. 기생 스위치 장치의 고 전류 항복 전압 (breakdown voltage)은, 기생 스위치 장치가 일부인 스위치 장치의 항복 전압보다 상당히 낮다. 예를 들어, 낮은 BJT 컬렉터 전류에서, 항복 전압은 MOSFET 드레인 투 소스 (drain to source) 항복 전압 (BV dss)과 동일하지만, 높은 BJT 컬렉터 전류에서는 동일하지 않다. 따라서, BJT 컬렉터 전류와 같은 기생 장치 전류는 커지는 것을 방지해야 한다.
이러한 기생 스위치 장치에 의한 전도는 설계에 의해 최소화될 수 있다. 일 예에서, 반도체의 기판이 MOSFET의 소스에 조인/쇼트되는 경우, 기판에 주입된 전류는 기생 BJT를 인에이블하도록 허용하는 것 보다는 소스로 복귀하는 경향이 있다. 기생 트랜지스터의 베이스로의 충전의 3개의 주요 소스가 있을 수 있다.
1. 급격히 증가하는 드레인-투-소스 전압 (Vs)으로부터의 변위/용량성 전류.
2. 기판 접합으로의 드레인의 이전 순방향 바이어싱에 의한 영역에서 남겨진 전하.
3. 드레인의 영역에서의 고 전기장으로부터 유발된 열 캐리어 전류 (소수 캐리어들).
드레인과 기판 사이의 용랴성은 MOSFET의 소스 리드로 전류를 효율적으로 라우팅하는 MOSFET 설계에 의해 적어도 부분적으로 포함될 수 있는 기생 BJT에 상당한 턴-온 전류를 제공한다. 그러나 이러한 턴-온 전류는 기생 BJT를 인에이블하도록 동작하는 유일한 전류는 아니다.
오디오 증폭기와 같은 전력 변환기는 전력 IC들을 사용하여 부하를 구동할 수도 있다. 몇몇 예에서, 전력 IC들을 사용하는 전력 변환기들은 고주파수 펄스 신호의 폭 (width) 변조를 사용하여 확성기와 같은 유도성 부하로 내장되어, 유도성 부하에 거의 손실 없는 제어된 에너지의 전달을 제공할 수 있다. 클라스-D 오디오 증폭기는 이러한 하나의 전력 변환기의 예이다.
도 3은 전력 변환기에 포함될 수도 있는 하프 브리지 전력 스테이지를 갖는 예시적인 증폭기 시스템 (300)이다. 하프 브리지 전력 스테이지는 제 1 게이트 구동기 (304)에 의해 구동되는 제 1 스위치 장치 (302) 및 제 2 게이트 구동기 (308)에 의해 구동되는 제 2 스위치 장치 (306)로 구현될 수도 있다. 제 1 및 제 2 게이트 구동기 (304 및 308)는 입력 노드 (310)로 제공되는 입력 신호에 기반하여 제 1 및 제 2 스위치 장치 (302 및 306) 각각을 구동할 수도 있다. 입력 신호를 수신하는 입력 노드 (310)는 반도체 상의 외부 핀일 수도 있으며, 집적 회로의 일부일 수도 있다.
입력 신호는 펄스 폭 변조된 신호와 같은 하나 이상의 제어 신호일 수도 있다. 오디오 증폭기 시스템의 예에서, 입력 신호는 오디오 신호의 순간 진폭에 의존하여 변동하는 폭의 일련의 펄스를 생성하는 고속 비교기를 사용하여 오디오 신호에 삼각파를 비교함으로써 생성된 펄스 폭 변조 신호일 수도 있다. 또한, 또 다른 오디오 증폭기 시스템 예에서, 디지털 신호 프로세서는 오디오 신호에 기반하여 펄스 폭 변조 신호를 생성할 수도 있다. 전력 변환기는 프로세서, 메모리, 필터, 사용자 인터페이스, 통신 인터페이스, 또는 오디오 증폭기와 같은 전력 변환기에 포함된 임의의 다른 기능과 같은 다른 장치 및 시스템을 포함할 수도 있다.
제 1 및 제 2 스위치 장치 (302 및 306)는 반도체의 기판 (312)에서 집적 회로의 일부로서 포함된 전력 MOSFET들일 수도 있다. 하프 브리지 구성에서, 제 1 및 제 2 스위치 장치 (302 및 306)는 각각 HSFET (high side seitch), 및 LSFET (low side switch)로 지칭될 수도 있다.
집적 회로는 하나 이상의 외부 전력 공급장치로부터 전력을 인가받을 수도 있다. 도 3에서, 제 1 전력 인가 입력 노드 (314)는 입력 전압으로서 포지티브 전력 인가 전압 (+Vcc)을 수신할 수도 있다. 제 1 전력 인가 입력 노드 (314)는 제 1 스위치 장치 (302)와 기판 (312)을 통해 IC 내부로 연결된 반도체 상의 외부 핀을 포함할 수도 있다. 제 2 전력 인가 입력 노드 (316)는 입력 전압으로서 네거티브 전력 인가 전압 (-Vcc)을 수신할 수도 있다. 제 2 스위치 장치 (306)와 제 2 게이트 구동기 (308)는 IC 내부로의 제 2 전력 인가 입력 노드 (316)를 갖는 기판 (312)을 통해 연결될 수도 있다. 또한, 제 2 전력 인가 입력 노드 (316)는 반도체 상의 외부 핀을 포함할 수도 있다.
제 2 전력 인가 입력 노드 (316)에서 수신된 전압은 증폭기 하프 브리지의 가장 네거티브한 전력 인가 (-Vcc)일 수도 있다. 따라서, 제 2 전력 인가 입력 노드 (316)에서 수신된 전압은 제 2 스위치 장치 (306)의 가장 네거티브한 인가 전압일 수도 있다. 몇몇 실시예에서, 가장 네거티브한 전력 인가 (-Vcc)는 접지일 수도 있다. 다른 전력 IC 예들에서, 가장 네거티브한 전력 인가 (-Vcc)는 0 볼트보다 크거나 작을 수도 있다. 다른 예에서, 전력 인가 입력들은 역전되어, 스위치 장치들이 NMOS 및 PMOS 장치들과 같은 N 타입 또는 P 타입 장치들인지 여부에 기반하여, 제 1 전력 인가 입력 노드 (314)는 네거티브 전력 인가 전압 (-Vcc)을 수신하며, 제 2 전력 인가 입력 노드 (316)는 포지티브 전력 인가 전압 (+Vcc)을 수신한다. 그 결과, 아래의 논의에서, 표시되지 않는 경우에도, 포지티브 및 네거티브 인가 전압들은 교환될 수도 있다.
도 3에서, 기판 (312)은 점퍼 회로 (312)에 의해 네거티브 전력 인가 (-Vcc)로 연결된다. 점퍼 회로 (318)는 제 2 전력 인가 입력 노드 (316)와 기판 입력 노드 (320) 사이에서 단락 회로를 형성한다. 기판 입력 노드 (320)는 반도체 외부인 외부 핀의 형태로 존재한다. 분류기 회로 (318)는 반도체 외부이다. 다른 예에서, 기판 (312)은 반도체 내부이며 IC 내부에 포함된 분류기 회로 (318)에 의해 네거티브 전력 인가 (-Vcc)에 연결될 수도 있다.
동작 동안, 하프 브리지 전력 스테이지 (300)는 반도체 상의 외부 핀으로서 제공될 수도 있는 출력 노드 상에 출력 신호를 생성한다. 출력 신호는 입력 노드 (310)에 제공된 증폭된 입력 신호를 나타낼 수도 있다. 출력 노드 (322)는 하나 이상의 인덕터 (L1) (326) 및 하나 이상의 캐패시터 (C1) (328)를 포함하는 수동 필터와 같은 하나 이상의 필터 (324)에 연결될 수도 있다. 다른 예에서, 수동 필터 또는 임의의 다른 타입의 필터는 필터 (324)를 증가시킬 수도 있다. 또한, 필터 (324)는 다른 예에서, 반도체에 포함된 집적 회로의 일부로서 포함될 수도 있다. 따라서, 몇몇 예에서, 하프 브리지 전력 스테이지 (300)에 의해 생성된 출력 신호는 반도체 상의 외부 핀에 직접 인가되지 않을 수도 있다. 출력 노드 (322)는 부하 (330)에 연결될 수도 있다. 부하 (300)는 출력 신호를 수신할 수 있는 임의의 장치일 수도 있다. 도 3에서, 부하 (330)는 오디오 사운드를 생성하도록 출력 신호에 의해 구동되는 하나 이상의 확성기를 포함한다.
증폭기 시스템 (300)의 동작 동안, 기생 BJT와 같은 하나 이상의 기생 스위치 장치는 반도체에 포함된 집적 회로 (IC)에서 나타날 수도 있다. 일 예에서, 기생 스위치 장치(들) (334)는 기생 NPN BJT들일 수도 있다. 동작 동안, 제 1 스위치 장치 (302) (높은 측 FET-HSFET)가 턴 오프되고, 인덕터 (326) (L1)의 전류의 일부가 출력 노드 (322)로 들어가 순방향 바이어싱된 스위치 (306) (낮은 측 FET-LSFET)의 몸체 다이오드 또는 기판 다이오드를 통해 흐르도록 강제되는 경우에 흐르는 전류에 의해 전하가 기생 스위치 장치 (334)로 인입될 수도 있다. 몸체 다이오드 또는 프리휠 몸체 다이오드는 제 1 및 제 2 스위치 장치 (302 및 306) 각각에서, 각 스위치 장치의 드레인과 소스 사이에 포함될 수도 있다.
제 1 또는 제 2 스위치 장치 (302 또는 306)을 스위치 오프하는 경우, 및 대체 스위치 장치 (제 1 또는 제 2 스위치 장치 (302 또는 306) 중 하나)에서 스위칭하기 이전에, 전환 주기 중 일부는 주기의 프리휠 부분으로서 설명될 수도 있다. 제 1 스위치 장치 (HSFET) (302)가 스위치 오프되는 경우, 후속하는 스위칭 없는, 주기 중 프리휠 부분은, 동작하여 출력 노드 (322)에 전압 및 전류를 인가하는 제 2 스위치 장치 (306) (LSFET)로 인해 인덕터 (326) (L1)의 전류가 방향을 역전하기까지 지속한다. 예를 들어, 제 2 스위치 장치 (306)는 FET 채널이 주요 캐리어들만을 사용하여 동작하는 방향으로 동작을 시작할 수도 있다. 비교적 높은 순간 출력 전류에서, 전류가 인덕터 (326) (L1)에서 방향을 역전하기 이전에 또 다른 스위치 장치 (FET)가 턴온할 수도 있다.
제 1 스위치 장치 (302) (HSFET)가 갑자기 턴온되며, 프리휠 전류가 여전히 제 2 스위치 장치 (306) (LSFET)의 프리휠 몸체 다이오드로 흐르는 경우, 기생 스위치 장치 (334)의 풀 턴온이 발생할 수 있다. 이는 기생 스위치 장치 충전 이벤트로서 지칭될 수도 있다. 몇몇의 경우에, 제 1 스위치 장치 (302) (HSFET)가 턴온되며, 전압을 기생 BJT의 컬렉터 회로를 통하는 것과 같이 기생 스위치 장치 (334)를 통하게 강제하여 전도된 전류를 불리하게 증가하기까지, 기생 스위치 장치 (334)는 프리휠 주기 동안 바이어싱 온 될 수도 있지만, 문제를 제기하는 충분한 전류를 전도하는 충분한 컬렉터 전위를 결여할 수도 있다.
몇몇 예에서, 기생 BJT의 컬렉터와 같은 기생 스위치 장치 (334)의 일부는 가드 링 (guard ring)을 제거할 수도 있다. 가드 링은 집적 회로의 구성물일 수도 있으며, IC에서 허위의 크로스 토크를 최소화하기 위해 허위 전류를 수집하는데 사용될 수도 있다. 가드 링은 포지티브 전력 인가 (+Vcc) 중 적어도 일부로 바이어싱되는 바와 같이, 기판 (312)에 대하여 포지티브 (또는 네거티브) 전위로 바이어싱될 수도 있다. 예를 들어, 기생 스위치 장치 (334)에 걸친 전압은, 프리휠 전류가 여전히 제 2 스위치 장치 (306) (LSFET)의 몸체 다이오드로 흐르고 있고, 제 1 스위치 장치 (302) (HSFET)가 갑자기 턴온되는 경우, 훨씬 클 수도 있다.
동작 동안, 제 1 스위치 장치 (302) (HSFET)가 턴온하기 시작하는 경우, 열 캐리어들은 제 1 스위치 장치 (302) (HSFET)의 드레인 근처에서 생성될 수도 있다. 제 1 스위치 장치 (302) (HSFET)의 드레인-소스 전압이 충분히 큰 경우, 주요 캐리어 (전자들)에서 충분한 에너지가 존재하여 제 1 스위치 장치 (302) (HSFET)의 실리콘 격자로부터 전자들을 몰아낸다. 자유화된 전자는 제 1 스위치 장치 (302) (HSFET)의 드레인을 향하는 흐름에 참여한다. 결과적인 정공 중 일부는 기판 (312)으로 흘러 기생 스위치 장치 (334)를 에너자이징할 수도 있다. 정공 전류는 드레인 전류에 비례할 수도 있으며, 드레인-소스 전압에 지수적으로 관련될 수도 있다. 제 1 스위치 장치 (302) (HSFET)에서 열 캐리어 전류에 대한 표현은:
의 형태로 제공될 수도 있다.
Es는 소스에서의 필드이고, Em은 최대 필드이며, E(x)는 적분 경로 x를 따른 로컬 필드이다. Id는 드레인 전류이며, A 및 B는 반도체 재료 관련 계수이다.
제 1 스위치 장치 (302) (HSFET)가 제 2 스위치 장치 (306) (LSFET)의 몸체 다이오드를 회복하고 출력 노드 (322)를 슬루 (slew)하고 있는 시간 동안만, 전압은 드레인 전류 (Id)로 높기 때문에, 열 캐리어 이벤트의 시간 디멘젼 또는 기생 스위치 장치 충전 이벤트가 제한될 수도 있다. 불행하게도, 제 2 스위치 장치 (306) (LSFET)의 몸체 다이오드의 고조된 회복 테일 (tail) (제 1 스위치 장치 (302) (HSFET)의 턴온으로 인함)은 드레인 전류 (Id)를 인덕터 (L1) (326)의 전류를 지원하는데 필요한 전류를 초과하여 증가시킨다. 만일 제 1 스위치 장치 (302) (HSFET)를 더 빠르게 턴온시킴으로써, 기생 스위치 장치 (334)의 BJT 베이스 전하와 같은 전하에 대응하는 충격 전류 (Iimpact)의 시간 적분을 최소화하는 시도를 하는 경우, 드레인 전류 (Id)의 크기는 증가될 수도 있다. 제 1 스위치 장치 (302) (HSFET)의 드레인 전류 (Id)에서의 증가는 열 캐리어 펄스의 폭을 감소시킴으로써 이루어진 다수의 이득들을 오프셋시킬 수도 있다. 즉, 증가된 드레인 전류 (Id)는 더 짧은 시간의 열 캐리어 이벤트 (기생 스위치 장치 충전 이벤트) 동안 전하의 통합을 감소시키지만, 피크 전류를 증가시켜, 열 캐리어의 진폭이 증가하며 기생 스위치 장치 (334)의 추가적인 충전 및 동작을 유발한다.
제 1 스위치 장치 (302) (HSFET)의 드레인 전류 Id의 감소를 허용하는 어느 것도 Iimpact를 감소시킬 수도 있다. Iimpact를 제거하는 것이 가능하지 못하는 경우에도, 기생 스위치 장치 (334)를 동작시키는 것으로부터 드레인 전류 (Id)를 유지하거나, 기생 스위치 장치 충전 이벤트 동안 동작을 최소화하는 것이 가능할 수도 있다. 기생 BJT의 베이스 영역을 충전하는 것과 같이, 사용하지 않을 경우 기생 스위치 장치 (334)를 충전하였을 큰 프리휠 전류 중 일부를 사용하여, 기생 스위치 장치 (334)를 디-바이어싱하도록 동작할 수 있는 임시 저장소 (reservori)로 전하를 전달하는 것이 가능하다. 즉, 제 1 스위치 장치 (302) (HSFET)의 드레인 전류 (Id)의 일부가 기생 스위치 장치 충전 이벤트 동안 또 다른 전류 흐름 경로로 분류되거나 우회할 수도 있어, 기생 스위치 장치 (334)를 턴온 또는 풀 턴온하는 정도로 충전하는 것을 방지한다.
도 4는 전력 변환기에 포함될 수도 있는 하프 브리지 전력 스테이지를 갖는 또 다른 예시적인 증폭기 시스템 (400)이다. 하프 브리지 전력 스테이지는 기판 (312)에 형성된, 제 1 스위치 장치 (302) 및 제 1 게이트 구동기 (304), 및 제 2 스위치 장치 (306) 및 제 2 게이트 구동기 (308)를 포함한다. 입력 노드 (310)는 펄스-폭 변조 신호와 같은 입력 신호를 수신할 수도 있으며, 출력 노드 (322)는 제 1 및 제 2 스위치 장치 (302 및 306)를 사용하여 입력 신호의 증폭에 의해 형성된 증폭된 출력 신호를 제공할 수도 있다. 출력 신호는 하나 이상의 필터 (324)에 제공되어 하나 이상의 부하 (330)에 인가할 수도 있다. 따라서, 증폭기 시스템 (400)은 도 3을 참조하여 설명한 이전에 논의된 증폭기 시스템 (300)에 많은 관점에서 유사하다. 간단함의 목적을 위해, 이전의 논의는 반복되지 않지만, 전체적으로 또는 부분적으로 적용가능하다.
도 4에서, 증폭기 시스템 (400)은 하프 브리지 전력 스테이지의 프리휠 주기를 유리하게 사용함으로써, 기생 BJT와 같은 기생 스위치 장치 (334)를 디-바이어싱하도록 동작하는 분류기 회로 (402)를 포함한다. 분류기 회로 (402)는 다이오드 (Dsub) (404), 캐패시터 (Csub) (406), 및 레지스터 (Rsub) (408)를 포함할 수도 있다. 분류기 회로 (402)는 제 2 스위치 장치 (306)의 프리휠 몸체 다이오드에 병렬일 수도 있다.
다이오드 (Dsub) (404)는 출력 노드 (322)와 기판 노드 (320) 사이에 연결될 수도 있다. 다이오드 (Dsub) (404)는 적어도 제 1 전력 인가 입력 (314)에서 수신된 포지티브 전력 인가 전압 (+Vcc)과 네거티브 전력 인가 전압 (-Vcc) 사이의 전압 크기에서의 차이의 역 차단 전압 정격, 및 제 2 스위치 장치 (306) (LSFET)의 기판 다이오드 또는 몸체 다이오드의 순방향 전압 (Vf) 보다 작은 순방향 전압 (Vf)을 가질 수 있는 임의의 다이오드일 수도 있다. 일 예에서, 다이오드 (Dsub)는 쇼트키 다이오드일 수도 있다.
다이오드 (Dsub) (404)는 반도체 외부에 존재하여 기판 (312)에 형성되지 않을 수도 있다. 또한, 다이오드 (Dsub) (404)는 반도체에 포함된 집적 회로의 일부로서 형성될 수도 있다. 다이오드 (Dsub) (404)는 출력 노드 (322)에서 가능한 총 전류의 비교적 작은 소정 부분만을 수신할 수도 있다. 따라서, 다이오드 (Dsub) (404)의 전류 정격은 출력 노드 (322)상의 출력 신호의 총 예상된 출력 전류보다 실질적으로 적을 수도 있다. 일 예에서, 다이오드 (Dsub) (404)는 출력 노드 (322)상의 출력 신호의 가장 높게 예상된 출력 전류의 약 20퍼센트로 평가될 수도 있다. 따라서, 다이오드 (Dsub) (404)는 사이즈 및 비용 관점 모두에서 사용할 실질적인 부분일 수도 있다.
제 2 스위치 장치 (306) (LSFET)의 몸체 다이오드 또는 기판 다이오드와 다이오드 (Dsub) (404)의 순방향 전압들 사이의 차이 전압은 캐패시터 (Csub) (406)가 충전될 수 있는 척도가 되어, BJT 베이스-이미터 접합을 역 바이어싱하는 것과 같이 기생 스위치 장치 (334)를 역 바이어싱할 수도 있다. 따라서, 캐패시터 (Csub) (406)는, 기생 스위치 장치 충전 이벤트 동안, 기생 BJT의 베이스 영역을 충전하는 것과 같이, 동작하지 않는 경우엔 기생 스위치 장치 (334)를 충전하는 큰 프리휠 전류 중 일부에 대해 임시 저장소로서 동작할 수도 있다. 임시 저장소에 전하를 전달하는 것은 이전에 논의한 바와 같이 기생 스위치 장치 (334)를 디-바이어싱하도록 동작할 수 있다.
캐패시터 (Csub) (406)는 제 2 전력 인가 입력 (316)상의 입력 전압으로서 수신된 네거티브 전력 인가 전압 (-Vcc) 바로 아래인 전압으로 충전될 수도 있다. 캐패시터 (Csub) (406)에 저장된 전압은 기판 (312)의 전압 전위를 네거티브 전력 인가 전압 (-Vcc) 아래의 소정량으로 내리는데 충분할 수도 있다. 네거티브 전력 인가 전압 (-Vcc) 아래의 소정량의 디-바이어싱 전압은, 기판 (312)에서 형성된 집적 회로의 다른 장치들의 동작 특성을 변경하지 않고, 기생 스위치 장치 충전 이벤트 동안, 기생 스위치 장치 (334)를 바이어싱하는 것을 방지하는데 충분할 수도 있다. 예를 들어, 기판 (312)에 구축된 제 1 및 제 2 스위치 장치 (302 및 304 (FET들))에서의 실질적이 몸체 유도된 임계값 이동은 디-바이어싱 전압이 비교적 작은 경우 방지될 수도 있다. 그 결과, 기판 (312)의 전압 전위에서의 이동은 기판 (312)상에 직접 구축된 임의의 장치의 게이트 임계 전압보다 적어서, 기판 (312)을 통한 의도치 않은 크로스 토크의 위험을 감소시킨다. 일 예에서, 캐패시터 (Csub) (406)상에 전하로서 저장된 디-바이어싱 전압은 네거티브 전력 인가 전압 (-Vcc) 아래 수백 밀리볼트의 범위 내에 있을 수도 있다. 그 결과, 기판 (312)의 전압 전위는 수백 밀리볼트의 범위 내에서 이동될 수도 있다.
레지스터 (Rsub) (408)는 캐패시터 (Csub) (406)와 병렬로 연결되어 충전/방전 회로로서 캐패시터 (Csub) (406)와 협동적으로 동작할 수도 있다. 이 충전/방전 회로는 제 2 전력 인가 입력 (316)과 기판 노드 (320) 사이에 연결될 수도 있다. 레지스터 (Rsub) (408)는 다이오드 Dsub (404)에서 어떠한 순방향 유도 없이, 전력 스테이지 내에 흐르는 누설 전류 또는 다이오드 (Dsub) (404)의 역 바이어스 누설의 전환을 제공하는 저항값을 가질 수도 있다. 따라서, 레지스터 (Rsub)는 약 1옴 내지 100옴 범위에서 같이, 비교적 작은 저항성일 수도 있다.
캐패시터 (Csub) (406)는 낮은 ESL (equivalent series inductance) 및 기생 스위치 장치 (334)의 제로 바이어스 용량성에 비해 큰 용량성을 갖는 ESR (equivalent series resistance)를 가질 수도 있다. 일 예에서, 캐패시터 (Csub) (406)는 약 몇십 나노 패럿 범위에 있을 수도 있다. 캐패시터 (Csub) (406)의 용량성 값은 전력 스테이지(들)에 포함된 제 2 스위치 장치 (306) (LSFET들)의 사이즈 및 개수와 함께 증가될 수도 있다. 캐패시터 (Csub) (406)는 IC의 외부이지만 상당히 근접하게 물리적으로 위치하거나 배치될 수도 있다. 제 2 전력 인가 입력 (316) 및 기판 노드 (320)를 통한 캐패시터 (Csub) (406)를 내부접속하는 IC에서의 와이어 본딩 및 금속화의 내부 임피던스는 최소화되어야 한다. IC 및 캐패시터 (Csub) (406)에 관하여 레지스터 (Rsub) (408) 및 다이오드 (Dsub) (404)의 물리적인 배치는 덜 민감하다. 또한, 증폭기 시스템의 또 다른 예시적인 구성에서, 캐패시터 (Csub) (406) 및 레지스터 (Rsub) (408) 중 하나 또는 모두는 IC의 일부로서 기판에 형성될 수도 있다.
또 다른 예에서, 다이오드 (Dsub) (404)는 분류기 회로 (402)로부터 생략될 수도 있어, 충전/방전 회로의 레지스터 (Rsub) (408) 및 캐패시터 (Csub) (406) 만이 제 2 스위치 장치 (306)의 프리휠 몸체 다이오드와 병렬이다. 다이오드 (Dsub) (404)가 없는 경우, 분류기 회로 (402)는 레지스터 (Rsub) (408)에 의해 제공된 부가된 기판 임피던스에 의존할 수도 있어, 제 2 스위치 장치 (LSFET) (306)의 기판 전도성에 몸체 다이오드를 사용하여 캐패시터 (Csub) (406)의 펌핑 (충전 및 방전)을 허용한다. 따라서, 캐패시터 (Csub) (406)는, 기판 (312)의 전압 전위를 이전에 논의한 바와 같이 기생 스위치 장치 (334)를 역바이어싱하는 양으로 조정하기 위해, 디-바이어싱 전압으로 충전될 수도 있다.
도 5는 전력 변환기에 포함된 또 다른 예시적인 증폭기 시스템 (500)이다. 이 예에서, 증폭기 시스템 (500)은 공통 기판 (502)에 구축된 풀 브리지 전력 스테이지를 포함한다. 도 5에서, 제 1 스위치 장치 (504)는 제 1 게이트 구동기 (506)로 동작가능하며, 제 2 스위치 장치 (508)는 제 2 게이트 구동기 (510)로 동작가능하여, 제 1 하프 브리지 전력 스테이지를 형성한다. 제 1 및 제 2 게이트 구동기 (506 및 510)는 제 1 입력 노드 (514)상의 펄스 폭 변조 신호와 같은 입력 신호로 구동된다. 또한, 제 3 스위치 장치 (518)는 제 3 게이트 구동기 (520)로 구동가능하며, 제 4 스위치 장치 (522)는 제 4 게이트 구동기 (524)로 구동가능하여, 제 2 하프 브리지 전력 스테이지를 형성한다. 제 3 및 제 4 게이트 구동기 (520 및 524)는 제 2 입력 노드 (528)상의 펄스 폭 변소 신호와 같은 제 2 입력 신호로 구동된다. 제 1 및 제 2 입력 신호들은 별개의 신호들일 수도 있거나, 제 1 입력 신호는 전환되어, 제 2 입력 신호를 형성할 수도 있다.
제 1 및 제 2 스위치 장치들 (504 및 508)은 협동적으로 동작하여 제 1 출력 노드 (532) 상에 제 1 출력을 생성할 수도 있으며, 제 3 및 제 4 스위치 장치들 (518 및 522)은 협동적으로 동작하여 제 2 출력 노드 (534) 상에 제 2 출력을 생성할 수도 있다. 제 1 및 제 2 출력들은 각각의 필터들 (536)에 의해 필터링되어 부하 (538)를 구동하도록 사용되는 포지티브 및 네거티브 증폭된 출력 신호들일 수도 있다. 제 1 전력 인가 입력 노드 (540) 상의 포지티브 전력 인가 전원 전압 (+Vcc) 및 제 2 전력 인가 입력 노드 (542) 상의 네거티브 전력 인가 전압 (-Vcc)에 의해 인가된 전력이 사용되어 제 1 및 제 2 입력 신호들을 생성할 수도 있다. 도 5에서, 동작 동안, 기생 BJT와 같은 하나 이상의 기생 스위치 장치 (544)는 반도체에 포함된 집적 회로 (IC)에서 나타날 수도 있다. 일 예에서, 이전에 논의한 바와 같이, 기생 스위치 장치(들) (544)은 기생 NPN BJT들일 수도 있으며, 스위치 장치들은 N 채널 전력 MOSFET들일 수도 있다.
이전에 논의된 예시적인 증폭기 시스템들의 특징 및 대체물은 오디오 증폭기 시스템 (500)에 전부 또는 일부 적용가능하며, 간단함의 목적을 위해 반복되지 않는다. 다른 예에서, 임의의 개수의 풀 브리지 전력 스테이지, 또는 하프 브리지 전력 스테이지가 전력 변환기의 증폭기 시스템에 포함될 수도 있다.
또한, 분류기 회로 (548)는 증폭기 회로 (500)에 포함될 수도 있다. 도 5에서, 분류기 회로 (548)는 병렬로 연결되어 기판 노드 (562)와 제 2 전력 인가 입력 노드 (542) 사이에 연결된 충전/방전 회로를 형성하는 레지스터 (Rsub) (550), 캐패시터 (Csub) (560)를 포함할 수도 있다. 또한, 회로 (548)는 제 1 출력 노드상의 포지티브 증폭된 출력 신호와 기판 노드 (562) 사이에 연결된 제 1 다이오드 (Dsub+) (564), 및 제 2 출력 노드 (534)상의 네거티브 증폭된 출력 신호와 기판 노드 (562) 사이에 연결된 제 2 다이오드 (Dsub-) (566)를 포함할 수도 있다. 제 1 및 제 2 출력 노드들 (532 및 534), 제 1 및 제 2 전력 인가 입력 노드들 (540 및 542), 및 기판 노드 (562)는 반도체상의 외부 핀으로서 형성될 수도 있다. 따라서, 이전에 논의한 바와 같이, 레지스터 (Rsub) (550), 캐패시터 (Csub) (560), 및 제 1 및 2 다이오드들 (564 및 566) (존재한다면)은 반도체 외부에서 반도체와 연결될 수도 있다. 따라서, 레지스터 (Rsub) (550), 캐패시터 (Csub) (560), 및/또는 제 1 및 제 2 다이오드 (564 및 566) (존재한다면) 중 임의의 것이 IC의 일부로서 형성될 수도 있다.
레지스터 (Rsub) (550) 및 캐패시터 (Csub) (560)는 제 1 및 제 2 다이오들 (564 및 566) 각각과 함께 사용되는 공유된 공통 충전/방전 회로일 수도 있다. 따라서, 부가적인 채널들을 포함하는 다른 예시적인 증폭기 시스템들은 부가적인 출력 노드들로부터 다이오드들을 부가하며 레지스터 (Rsub) (550) 및 캐패시터 (Csub) (560)에 의해 형성된 공통 충전/방전 회로를 공유함으로써 동일한 방법을 실행할 수 있다. 이러한 멀티 채널 설계들은, 각각의 하프 브리지 전력 스테이지는 필요한 펌프-다운(업) 용량성 충전을 제공하여 각각의 HSFET 턴온 주기 동안 기판의 전압 전위를 조정하기 때문에 어떠한 문제도 제기하지 않는 출력 스위칭의 위상 스태거링을 실행할 수도 있으며, 작은 부가된 기판 바이어스는 특정 순간 시간에서 펌프-다운을 필요하지 않는 나머지 채널에 대해 문제가 되지 않는다. 또한, 다른 예에서, 복수의 충전/방전 회로들은 증폭기 시스템에 포함되어 복수의 채널을 지원할 수도 있다.
이전에 논의된 예들과 유사하게, 캐패시터 (Csub) (560)는 제 2 전력 인가 입력 노드 (542)상의 입력 전압으로서 수신된 네거티브 전력 전원 전압 (-Vcc) (또는 n-타입 기판을 갖는 포지티브 전압 +Vcc) 바로 아래인 전압으로 충전될 수도 있다. 캐패시터 (Csub) (406)에 저장된 전압은 기판 (502)의 전압 전위를 조정하여 기생 스위치 장치(들) (544)를 역바이어싱하는 디-바이어싱 전압일 수도 있다. 예를 들어, 디-바이어싱 전압은 하프 브리지 전력 스테이지들 중 임의의 하나에서 발생하는 기생 스위치 장치 충전 이벤트 동안 기생 스위치 장치(들) (544)의 바이어싱을 방지하는데 충분한 네거티브 전력 인가 전압 (-Vcc) 아래로 기판 (502)의 전압 전위를 내릴 수도 있다.
또 다른 예에서, 제 1 및 제 2 다이오들 (Dsub) (564 및 566)은 분류기 회로 (548)로부터 생략될 수도 있다. 제 1 및 제 2 다이오드 (Dsub) (564 및 566)가 없는 경우, 분류기 회로 (548)는 레지스터 (Rsub) (550)에 의해 제공된 부가된 기판 임피던스에 의존할 수도 있어, 제 2 스위치 장치들 (LSFETs) (508 및 522)의 기판 전도성에 몸체 다이오드를 사용하여 캐패시터 (Csub) (560)의 펌핑을 허용한다. 캐패시터 (Csub) (560)는, 기생 스위치 장치 (544)를 역바이어싱하기 위해 네거티브 전력 인가 전원 전압 (-Vcc)에 관한 양으로 기판 (502)의 전압 전위를 조정하기 위해 디-바이어싱 전압으로 충전될 수도 있다. 멀티-채널 전력 변환기들은 각각의 채널로부터 다이오드들 (Dsub)를 생략하도록 유사하게 설계될 수도 있다.
도 6은 도 1 내지 도 5를 참조하여 이전에 논의된 바와 같이 설명된 예시적인 증폭기 시스템의 동작 흐름도이다. 제 1 스위치 장치 (HSFET)가 턴온되는 경우, 동작은 블록 602에서 시작하며, 전압 및 전류는 부하로의 인가를 위한 출력 노드상의 증폭된 출력 신호로서 인가된다. 출력 신호의 전압은 필터에서 인덕터 (L)에 인가되며, 블록 604에서 인덕터 (L)를 에너자이징한다. 제 1 스위치 장치 (HSFET)는 블록 606에서 턴오프되며, 제 2 스위치 장치 (LSFET)는 전력 변환기의 하프 브리지 전력 스테이지 내에서 아직 턴온되지 않는다. 블록 608에서, 하프 브리지 전력 스테이지는 인덕터 (L)가 디에너자이징되며 전류가 생성되는 전력 변환 주기 중 프리휠 부분으로 들어간다.
다이오드 (Dsub)의 순방향 전압은 인덕터 (L)에서 생성된 전류 및 출력 노드에 존재하는 전압에 기반하여 블록 610에서 출력 노드에 도달하거나 도달하지 않는다. 다이오드 (Dsub)의 순방향 전압이 도달하지 않는 경우, 다이오드 (Dsub)는 오프로 유지되며 동작은 블록 610으로 복귀한다. 다이오드 (Dsub)의 순방향 전압이 도달하는 경우, 다이오드 (Dsub)는 턴온되며 블록 612에서 기판 노드에 전류를 전도하기 시작한다. 기판의 전압 전위는 캐패시터 (Csub)를 충전함으로써 네거티브 전원 전압 (-Vcc) 아래가 되도록 블록 614에서 조정된다. 블록 616에서, 제 2 스위치 장치 (LSFET)의 몸체 다이오드는 턴온되어 동작하기 시작하며, 프리휠 전류는 제 2 스위치 장치 (LSFET)의 몸체 다이오드로 흐른다. 블록 618에서, 기생 스위치 장치는 조정된 기판 전압에 의해 역바이어싱되며 턴오프로 유지된다. n-타입 기판에서의 동작은 앞선 설명에서 HSFET 을 LSFET, 상부를 하부로, +Vcc 를 -Vcc로 변경함으로써 이해될 수도 있다. 이러환 환경에서, 기생 장치는, 예를 들어, PNP BJT일 수 있다.
증폭기 시스템의 이전에 논의된 예들은 입력 신호의 증폭을 제공하는 기판에서 형성된 복수의 협동적으로 동작하는 전력 스위치 장치들을 갖는 기판을 가지는 집적 회로를 포함한다. 또한, 증폭기 시스템은 기판 충전/방전 회로 및 IC 외부에 비채될 수도 있는 기판 다이오드들을 갖는 분류기 회로를 포함할 수도 있다. 기판 다이오드(들)은 전력 스위치 장치들의 스위칭 주기 중 프리휠 부분 동안 턴온되어 기판 캐패시터를 충전할 수도 있어, 이에 의해 기판의 전압 전위를 조정한다. 기판의 전압 전위는 스위칭 주기 중 프리휠 부분 동안 IC에서 나타나는 하나 이상의 기생 스위치 장치들을 역바이어싱하도록 조정될 수도 있다. 따라서, 하나 이상의 기생 스위치 장치들의 풀 턴온 및 집적 회로에서의 후속하는 실패의 가능성이 최소화되거나 방지될 수도 있다.
본 발명의 다양한 실시예가 설명되었지만, 이 분야의 당업자가 다수의 더 많은 실시예 및 구현들이 본 발명의 범위 내에서 가능하다는 것이 명백할 것이다. 따라서, 본 발명은 첨부된 특허청구범위 및 그 균등물을 고려하는 것 이외에는 제한되지 않는다.
100: 집적 회로 (IC) 302, 504: 제 1 스위치 장치
304: 제 1 게이트 구동기 308: 제 2 게이트 구동기
306, 508: 제 2 스위치 장치 314: 제 1 전력 인가 입력 노드
316: 제 2 전력 인가 입력 노드 312, 502: 기판
312: 점퍼 회로 318: 분류기 회로
300: 하프 브리지 전력 스테이지 324: 필터
322: 출력 노드 330: 부하
334, 544: 기생 스위치 장치 404: 다이오드 (Dsub)
406, 560: 캐패시터 (Csub) 408: 레지스터 (Rsub)
500: 증폭기 시스템 (500) 518: 제 3 스위치 장치
522: 제 4 스위치 장치 532: 제 1 출력 노드
540: 제 1 전력 인가 입력 노드 542: 제 2 전력 인가 입력 노드
304: 제 1 게이트 구동기 308: 제 2 게이트 구동기
306, 508: 제 2 스위치 장치 314: 제 1 전력 인가 입력 노드
316: 제 2 전력 인가 입력 노드 312, 502: 기판
312: 점퍼 회로 318: 분류기 회로
300: 하프 브리지 전력 스테이지 324: 필터
322: 출력 노드 330: 부하
334, 544: 기생 스위치 장치 404: 다이오드 (Dsub)
406, 560: 캐패시터 (Csub) 408: 레지스터 (Rsub)
500: 증폭기 시스템 (500) 518: 제 3 스위치 장치
522: 제 4 스위치 장치 532: 제 1 출력 노드
540: 제 1 전력 인가 입력 노드 542: 제 2 전력 인가 입력 노드
Claims (27)
- 기판에 형성된 집적 회로를 갖는 반도체;
상기 집적 회로에 포함된 제 1 스위치 장치 및 제 2 스위치 장치를 포함하는 복수의 스위치 장치로서, 상기 제 1 스위치 장치 및 제 2 스위치 장치는 펄스-폭 변조 신호로 협동적으로 스위치가능하여, 제 1 전력 인가 입력 및 제 2 전력 인가 입력을 사용하여, 증폭된 신호를 생성하는, 상기 복수의 스위치 장치; 및
병렬로 연결되며, 상기 제 1 전력 인가 입력 또는 상기 제 2 전력 인가 입력 중 하나와 상기 기판 사이에 연결된 캐패시터 및 레지스터를 포함하는, 전력 변환기용 증폭기 시스템.
- 제 1항에 있어서,
상기 증폭된 신호가 출력되는 출력 노드와 상기 기판 사이에 연결된 다이오드를 더 포함하는, 전력 변환기용 증폭기 시스템.
- 제 2항에 있어서,
상기 다이오드는 상기 반도체 외부에 존재하는 쇼트키 다이오드인, 전력 변환기용 증폭기 시스템.
- 제 1항에 있어서,
상기 제 1 스위치 장치 및 상기 제 2 스위치 장치 각각은, 상기 제 1 스위치 장치 및 상기 제 2 스위치 장치 각각의 드레인과 소스 사이에 연결된 몸체 다이오드를 포함하고, 상기 몸체 다이오드는 상기 제 1 스위치 장치 및 상기 제 2 스위치 장치 각각의 스위칭 동안 프리휠 (free-wheeling) 전류에 의해 순방향 바이어싱되도록 동작가능하며, 상기 레지스터 및 캐패시터는 상기 제 2 스위치 장치의 상기 몸체 다이오드와 병렬인 분류기 회로로서 동작가능한, 전력 변환기용 증폭기 시스템.
- 제 1항에 있어서,
상기 레지스터 및 상기 캐패시터는 상기 반도체 외부의 장치인, 전력 변환기용 증폭기 시스템.
- 제 1항에 있어서,
상기 레지스터 및 상기 캐패시터는 상기 반도체에 형성된 장치인, 전력 변환기용 증폭기 시스템.
- 기판 입력을 갖는 기판에 형성된 집적 회로;
상기 집적 회로에 포함된 복수의 스위치 장치들로서,
상기 스위치 장치들은 펄스-폭 변조 신호로 협동적으로 스위치가능하여 증폭된 신호를 생성하는 제 1 스위치 장치 및 제 2 스위치 장치를 포함하는, 상기 스위치 장치들;
상기 제 1 스위치 장치에 연결된 제 1 전력 인가 입력 및 상기 제 2 스위치 장치에 연결된 제 2 전력 인가 입력;
상기 제 2 전력 인가 입력과 상기 기판 입력 사이에 연결된 레지스터; 및
상기 제 2 전력 인가 입력과 상기 기판 입력 사이에 연결되며, 상기 레지스터와 병렬로 연결된 캐패시터를 포함하는, 전력 변환기용 증폭기 시스템.
- 제 7항에 있어서,
상기 제 1 스위치 장치 및 상기 제 2 스위치 장치 각각은 상기 기판에 형성된 전력 MOSFET인, 전력 변환기용 증폭기 시스템.
- 제 7항에 있어서,
상기 제 2 전력 인가 입력은 상기 제 2 스위치 장치의 가장 네거티브한 인가 전압 전위에서 전력 인가 전압을 수신하도록 구성되며, 상기 제 2 스위치 장치는 NMOS FET을 포함하는, 전력 변환기용 증폭기 시스템.
- 제 7항에 있어서,
상기 제 2 전력 인가 입력은 상기 제 2 스위치 장치의 가장 포지티브인 인가 전압 전위에서 전력 인가 전압을 수신하도록 구성되며, 상기 제 2 스위치 장치는 PMOS FET을 포함하는, 전력 변환기용 증폭기 시스템.
- 제 7항에 있어서,
상기 증폭된 신호가 출력되는 출력 노드와 상기 기판 사이에 연결된 다이오드를 더 포함하며, 상기 다이오드는 상기 캐패시터 및 상기 레지스터와 동작가능하여 상기 기판에 상기 증폭된 신호의 전류 중 적어도 일부를 선택적으로 분류하는, 전력 변환기용 증폭기 시스템.
- 제 11항에 있어서,
상기 다이오드는 적어도 상기 제 1 전력 인가 입력과 상기 제 2 전력 인가 입력 사이에서 예상되는 전압의 차이의 전압 정격, 및 상기 제 2 스위치 장치에 포함된 몸체 다이오드의 순방향 전압 미만인 순방향 전압을 차단하도록 구성되는, 전력 변환기용 증폭기 시스템.
- 제 11항에 있어서,
상기 다이오드는 제 1 다이오드이고, 상기 증폭된 신호는 부하에 인가가능한 제 1 증폭된 신호이며, 상기 복수의 스위치 장치들은, 펄스-폭 변조 신호로 협동적으로 스위칭 가능하여 상기 부하에 인가가능한 제 2 증폭된 신호를 생성하는 제 3 스위치 장치 및 제 4 스위치 장치를 포함하고, 상기 증폭기 시스템은 상기 제 2 증폭된 신호가 출력되는 출력 노드와 상기 기판 사이에 연결된 제 2 다이오드를 더 포함하는, 전력 변환기용 증폭기 시스템.
- 제 13항에 있어서,
상기 레지스터 및 상기 캐패시터는 충전 방전 회로를 형성하며, 상기 충전 방전 회로는 상기 제 1 다이오드 및 상기 제 2 다이오드 각각과 독립적으로 동작가능하여 상기 기판의 전압 전위를 조정하는, 전력 변환기용 증폭기 시스템.
- 제 11항에 있어서,
상기 다이오드, 상기 레지스터, 및 상기 캐패시터는 상기 기판의 외부에 존재하며, 상기 제 2 스위치 장치에 포함된 몸체 다이오드와 병렬인 분류기 회로로서 동작가능한, 전력 변환기용 증폭기 시스템.
- 제 7항에 있어서,
상기 캐패시터는 전압 저장 저장소로서 동작가능하여 기생 스위치 장치 충전 이벤트에 응답하여 상기 기판의 전압 전위를 조정하는, 전력 변환기용 증폭기 시스템.
- 레지스터; 및
상기 레지스터와 병렬로 연결되어 충전/방전 회로를 형성하는 캐패시터를 포함하되,
상기 레지스터 및 상기 캐패시터는 반도체의 기판과 상기 반도체의 상기 기판에 형성된 제 1 스위치 장치 사이에 연결되고,
상기 제 1 스위치 장치는 상기 충전/방전 회로, 상기 제 1 스위치 장치, 제 2 스위치 장치, 및 상기 기판이 직렬로 연결되도록 상기 반도체의 상기 기판에 형성된 제 2 스위치 장치와 연결되며,
상기 제 1 스위치 장치 및 상기 제 2 스위치 장치는 펄스 폭 변조 제어 신호에 응답하여 증폭된 출력 신호를 생성하도록 동작가능한, 전력 변환기용 증폭기 시스템.
- 제 17항에 있어서,
상기 반도체는 기판 노드인 제 1 외부 핀 및 전력 인가 노드인 제 2 외부 핀을 포함하며, 상기 충전/방전 회로는 상기 반도체의 외부의 상기 전력 인가 노드와 상기 기판 노드 사이에 연결되는, 전력 변환기용 증폭기 시스템.
- 제 18항에 있어서,
상기 전력 인가 노드는 전원 공급장치로부터 전압을 수신하도록 구성되고, 상기 전압은 상기 반도체에 의해 수신된 가장 네거티브한 전압이며, 상기 제 1 스위치 장치 및 상기 제 2 스위치 장치는 N 채널 전력 MOSFET들인, 전력 변환기용 증폭기 시스템.
- 제 18항에 있어서,
상기 기판 노드와 출력 노드인 상기 반도체의 제 3 외부 핀 사이에 연결된 다이오드를 포함하며, 상기 제 1 스위치 장치 및 상기 제 2 스위치 장치는 상기 출력 노드에 증폭된 출력 신호를 생성하도록 동작가능한, 전력 변환기용 증폭기 시스템.
- 제 17항에 있어서,
상기 캐패시터는 상기 기판의 전압 전위를 조정하는 디-바이어싱 (de-biasing) 전압으로 선택적으로 충전되도록 구성되어 상기 기판에 나타나는 임의의 기생 스위치 장치를 역바이어싱 (reverse biasing)하는, 전력 변환기용 증폭기 시스템.
- 제 17항에 있어서,
상기 캐패시터는, 상기 제 1 스위치 장치 및 상기 제 2 스위치 장치가 스위치 오프되는(switched off), 스위칭 주기 중의 프리휠 부분으로 상기 제 1 스위치 장치 및 상기 제 2 스위치 장치가 들어가면 선택적으로 충전되도록 구성되는, 전력 변환기용 증폭기 시스템.
- 반도체의 기판에 형성된 제 1 스위치 장치 및 제 2 스위치 장치를 선택적으로 동작시켜 출력 노드에 증폭된 출력 신호를 생성하는 단계;
상기 제 1 스위치 장치 및 상기 제 2 스위치 장치 중 하나를 턴 오프하는 단계;
상기 1 스위치 장치 및 상기 제 2 스위치 장치 중 적어도 하나가 동작하지 않는 스위칭 주기 중 프리휠 부분으로 들어가는 단계;
상기 스위칭 주기 동안 생성된 프리휠 전류로 상기 반도체의 기판 노드와 전력 인가 노드 사이에 연결된 캐패시터를 충전하는 단계; 및
상기 캐패시터에 저장된 디-바이어싱 (de-biasing) 전압에 따라 상기 기판의 전압 전위를 조정하는 단계를 포함하는, 전력 변환기의 증폭기 시스템 동작 방법.
- 제 23항에 있어서,
상기 캐패시터를 충전하는 상기 프리휠 전류에 따라 상기 반도체의 출력 노드와 기판 노드 사이에 연결된 다이오드를 순방향 바이어싱하는 단계를 더 포함하는, 전력 변환기의 증폭기 시스템 동작 방법.
- 제 23항에 있어서,
상기 기판의 전압 전위를 조정하는 단계는, 상기 제 2 스위치 장치의 가장 네거티브한 인가 전위 아래로 상기 기판의 전압 전위를 내리는 단계를 포함하는, 전력 변환기의 증폭기 시스템 동작 방법.
- 제 23항에 있어서,
상기 기판의 전압 전위를 조정하는 단계는, 상기 기판에 나타나는 임의의 기생 스위치 장치들을 역 바이어싱하는 단계를 포함하는, 전력 변환기의 증폭기 시스템 동작 방법.
- 제 23항에 있어서,
상기 캐패시터를 충전하는 단계는, 상기 캐패시터를 동작시켜 상기 기판으로 상기 출력 노드에 존재하는 전류의 적어도 일부를 선택적으로 분류하는 단계를 포함하는, 전력 변환기의 증폭기 시스템 동작 방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/009,335 US8283979B2 (en) | 2011-01-19 | 2011-01-19 | Amplifier system for a power converter |
US13/009,335 | 2011-01-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20120084269A KR20120084269A (ko) | 2012-07-27 |
KR101354232B1 true KR101354232B1 (ko) | 2014-02-04 |
Family
ID=45540784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120005799A KR101354232B1 (ko) | 2011-01-19 | 2012-01-18 | 전력 변환기용 증폭기 시스템 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8283979B2 (ko) |
EP (1) | EP2479890B1 (ko) |
JP (1) | JP5444321B2 (ko) |
KR (1) | KR101354232B1 (ko) |
CN (1) | CN102611401B (ko) |
CA (1) | CA2762135C (ko) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8772975B2 (en) * | 2009-12-07 | 2014-07-08 | Qualcomm Incorporated | Apparatus and method for implementing a differential drive amplifier and a coil arrangement |
KR101784799B1 (ko) * | 2011-08-01 | 2017-10-12 | 삼성전자주식회사 | 스위칭 앰프, 음향 기기 및 음향 출력 방법 |
US9425758B2 (en) | 2012-09-17 | 2016-08-23 | Samsung Electronics Co., Ltd. | Wireless communication system with power amplifier mechanism and method of operation thereof |
US8925807B2 (en) * | 2013-03-14 | 2015-01-06 | Daniel Utley | Audio port power generation circuit and auxiliary device |
KR101889108B1 (ko) * | 2013-06-28 | 2018-08-17 | 매그나칩 반도체 유한회사 | 대기전력소모를 감소시키는 전력변환장치 |
EP3097584B1 (en) * | 2014-01-21 | 2023-03-01 | Infineon Technologies Austria AG | Integrated high side gate driver structure and circuit for driving high side power transistors |
JP2015198371A (ja) * | 2014-04-01 | 2015-11-09 | ローム株式会社 | オーディオ出力回路およびそれを用いた電子機器 |
WO2016091593A1 (en) * | 2014-12-09 | 2016-06-16 | Merus Audio Aps | A regulated high side gate driver circuit for power transistors |
CN109411454B (zh) * | 2017-10-05 | 2021-05-18 | 成都芯源系统有限公司 | 用于多相功率变换器的电路封装 |
WO2019155056A1 (en) * | 2018-02-11 | 2019-08-15 | Danmarks Tekniske Universitet | A power converter embodied in a semiconductor substrate member |
CN113454563B (zh) * | 2018-12-26 | 2022-11-08 | 予力半导体公司 | 深度集成的电压调节器架构 |
US11418120B2 (en) | 2018-12-26 | 2022-08-16 | Empower Semiconductor, Inc. | Deeply integrated voltage regulator architectures |
US12003222B2 (en) * | 2021-08-13 | 2024-06-04 | Texas Instruments Incorporated | Methods and apparatus to generate a modulation protocol to output audio |
US12034420B2 (en) | 2021-09-30 | 2024-07-09 | Texas Instruments Incorporated | Switching amplifier having linear transition totem pole modulation |
US11876437B2 (en) * | 2022-03-01 | 2024-01-16 | Infineon Technologies Austria Ag | Monolithic integrated half-bridge circuit |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996027905A1 (fr) | 1995-03-06 | 1996-09-12 | Hitachi, Ltd. | Circuit amplificateur haute frequence |
US7268621B2 (en) | 2004-12-21 | 2007-09-11 | Yamaha Corporation | Digital amplifier |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0334710A (ja) * | 1989-06-30 | 1991-02-14 | Toshiba Corp | 静電誘導トランジスタ回路 |
JP2909515B2 (ja) * | 1990-03-30 | 1999-06-23 | 富士写真フイルム株式会社 | Ccdの出力アンプ |
JPH06177335A (ja) | 1992-12-07 | 1994-06-24 | Nippon Steel Corp | 集積回路の入出力回路 |
JPH08181598A (ja) | 1994-12-27 | 1996-07-12 | Oki Electric Ind Co Ltd | 半導体装置 |
US5982118A (en) * | 1997-08-06 | 1999-11-09 | Matsushita Electric Industrial Co., Ltd. | Motor with electronic distributing configuration |
US6351018B1 (en) | 1999-02-26 | 2002-02-26 | Fairchild Semiconductor Corporation | Monolithically integrated trench MOSFET and Schottky diode |
US6606257B2 (en) * | 2001-11-05 | 2003-08-12 | Koninklijke Philips Electronics N.V. | Independent regulation of multiple outputs in a soft-switching multiple-output flyback converter |
CN1979843A (zh) * | 2005-12-06 | 2007-06-13 | 上海华虹Nec电子有限公司 | 利用二极管串的静电放电保护电路 |
JP4792334B2 (ja) * | 2006-06-12 | 2011-10-12 | 富士フイルム株式会社 | Ccd型固体撮像素子及びその出力回路 |
-
2011
- 2011-01-19 US US13/009,335 patent/US8283979B2/en active Active
- 2011-12-14 CA CA2762135A patent/CA2762135C/en active Active
- 2011-12-27 JP JP2011286383A patent/JP5444321B2/ja not_active Expired - Fee Related
-
2012
- 2012-01-18 KR KR1020120005799A patent/KR101354232B1/ko active IP Right Grant
- 2012-01-19 CN CN201210017988.3A patent/CN102611401B/zh active Active
- 2012-01-19 EP EP12151655.3A patent/EP2479890B1/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996027905A1 (fr) | 1995-03-06 | 1996-09-12 | Hitachi, Ltd. | Circuit amplificateur haute frequence |
US7268621B2 (en) | 2004-12-21 | 2007-09-11 | Yamaha Corporation | Digital amplifier |
Also Published As
Publication number | Publication date |
---|---|
EP2479890B1 (en) | 2014-04-09 |
CA2762135A1 (en) | 2012-07-19 |
US8283979B2 (en) | 2012-10-09 |
CN102611401A (zh) | 2012-07-25 |
CA2762135C (en) | 2015-08-25 |
US20120182069A1 (en) | 2012-07-19 |
CN102611401B (zh) | 2015-04-22 |
KR20120084269A (ko) | 2012-07-27 |
EP2479890A1 (en) | 2012-07-25 |
JP5444321B2 (ja) | 2014-03-19 |
JP2012151838A (ja) | 2012-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101354232B1 (ko) | 전력 변환기용 증폭기 시스템 | |
US10854500B2 (en) | Gate driver circuitry for power transistors | |
US10454472B2 (en) | Bootstrap capacitor over-voltage management circuit for GaN transistor based power converters | |
CN103825461B (zh) | 具有对栅极电压的紧密控制的驱动电路 | |
US7394631B2 (en) | Electrostatic protection circuit | |
CN111193395A (zh) | 基于零电流检测的谐振转换器控制 | |
US11522453B2 (en) | Dead-time conduction loss reduction for buck power converters | |
US6924963B2 (en) | ESD protection network utilizing precharge bus lines | |
CN113098469A (zh) | 用于GaN开关的时间可编程失效安全下拉电路 | |
US11476845B2 (en) | Driver circuit, corresponding device and method of operation | |
CN106155174A (zh) | 电压控制的电流路径,电压钳和包括电压钳位的电子组件 | |
CN110545032B (zh) | 一种集成启动功能的功率晶体管模块和电压变换电路 | |
CN110635687B (zh) | 降压转换器电路以及降压转换方法 | |
Hwang et al. | Noise immunity enhanced 625V high-side driver | |
TWI692927B (zh) | 電力電路以及驅動電路 | |
TWI711257B (zh) | 電力電路以及積體電路 | |
Wendt et al. | A configurable high-side/low-side driver with fast and equalized switching delay | |
JP5547496B2 (ja) | 整流回路、該整流回路の制御回路 | |
EP4274074A1 (en) | Isolation connections for high-voltage power stage | |
JP5524717B2 (ja) | 整流回路及び該整流回路の制御回路 | |
Berkhout | Design of Class-D Audio Power Amplifiers in Soi Technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20170102 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20180110 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20190102 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20200102 Year of fee payment: 7 |