WO1996023081A1 - Verfahren und vorrichtung zum abkühlen von heissem brikettiertem eisenschwamm - Google Patents

Verfahren und vorrichtung zum abkühlen von heissem brikettiertem eisenschwamm Download PDF

Info

Publication number
WO1996023081A1
WO1996023081A1 PCT/AT1996/000008 AT9600008W WO9623081A1 WO 1996023081 A1 WO1996023081 A1 WO 1996023081A1 AT 9600008 W AT9600008 W AT 9600008W WO 9623081 A1 WO9623081 A1 WO 9623081A1
Authority
WO
WIPO (PCT)
Prior art keywords
sponge iron
cooling
cooling medium
iron
briquetted
Prior art date
Application number
PCT/AT1996/000008
Other languages
English (en)
French (fr)
Inventor
Leopold Werner Kepplinger
Gerhard Cip
Anton Himmel
Karl-Heinz Zimmerbauer
Roland Sachsenhofer
Roy Hubert Whipp, Jr.
Original Assignee
Voest-Alpine Industrieanlagenbau Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voest-Alpine Industrieanlagenbau Gmbh filed Critical Voest-Alpine Industrieanlagenbau Gmbh
Priority to EP96900197A priority Critical patent/EP0807187B1/de
Priority to RU97114136A priority patent/RU2142517C1/ru
Priority to DE59600430T priority patent/DE59600430D1/de
Priority to CA002211021A priority patent/CA2211021C/en
Priority to BR9606929A priority patent/BR9606929A/pt
Priority to AU43795/96A priority patent/AU703991B2/en
Priority to JP52248996A priority patent/JP4006022B2/ja
Priority to US08/875,303 priority patent/US6048381A/en
Publication of WO1996023081A1 publication Critical patent/WO1996023081A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0086Conditioning, transformation of reduced iron ores

Definitions

  • the invention relates to a method for cooling hot briquetted sponge iron, and an apparatus for performing the method.
  • Hot briquetted sponge iron must be subjected to a cooling which follows the production of the sponge iron as soon as possible so that it can be transported and stored safely and economically.
  • DE-C - 29 35 707 From DE-C - 29 35 707 it is known to cool hot briquetted sponge iron by placing it in a quenching tank in which it is cooled to the desired final temperature. In DE-C - 29 35 707 it is also mentioned that air cooling can also be provided instead of the quenching tank.
  • a disadvantage of these known submersible water cooling systems is that the mechanical parts used to transport the hot iron sponge briquettes alternately come into contact with hot water with a high solids, CO 2 and suspended matter content and ambient air, so that these parts are subject to very high wear.
  • the contact of the very hot sponge iron briquettes with cooling water creates the risk of water gas reactions. Due to the Leidenfrost phenomenon, which occurs very intensely in this high temperature range, water cooling is also not very efficient.
  • the insulating layer formed on the surface of the sponge iron briquettes has a severe deteriorating effect on the heat transfer in the high temperature range. Furthermore, the contact of the still hot iron sponge briquettes with the cooling water leads to a reduction in the product quality, etc.
  • the invention aims to avoid these disadvantages and difficulties and has as its object to provide a method of the type described above and an apparatus for carrying out the method, which enable a trouble-free cooling process with optimal use of the capacity of the cooling device.
  • the briquetted sponge iron should have a high product quality, while the formation of fine particles during cooling is avoided as far as possible.
  • the device for carrying out the method should be subject to low stress and thus have a long service life.
  • the hot briquetted sponge iron is flowed through exclusively by a gaseous cooling medium, preferably cooling air, and is gently cooled in the meantime,
  • a gaseous cooling medium is preferably additionally flowed through the briquetted sponge iron during the second cooling step, as a result of which a particularly intensive contact of the sponge iron with the cooling medium is achieved.
  • the hot briquetted iron sponge is expediently cooled to a temperature at least in the region of half the temperature of the hot iron sponge, preferably to a temperature below this temperature, during the first cooling step, as a result of which the use of the liquid cooling medium becomes particularly efficient, especially since the intensity , with which the Leidenfrost phenomenon occurs, and its insulating effect is much lower at lower temperatures than at high temperatures.
  • the first cooling step is preferably carried out over a longer period of time than the second cooling step, preferably over a period of more than 60% of the total cooling time.
  • the gaseous cooling medium is applied by pressing or by suction, the sponge iron being applied in the form of a bed on a gas-permeable pad.
  • a preferred way of applying liquid cooling medium to the briquetted sponge iron is by injecting the liquid cooling medium into an air stream. This also makes it possible to largely avoid an insulating effect due to water vapor forming on the surface of the sponge iron.
  • dust extraction is advantageously carried out before the first cooling step.
  • a gas guide device at least partially surrounding the support for supplying a gaseous cooling medium to the briquetted sponge iron
  • the spray nozzles are arranged in the device only in the second half, as seen in the direction of movement of the support that carries the sponge iron.
  • a preferred embodiment of the device is characterized in that the support is formed by an endless conveyor belt, such as a plate belt, the upper belt strand of which is used to hold the hot briquetted iron sponge.
  • Another preferred embodiment has a grating designed as a round cooler as a support for the sponge iron.
  • the gas guide device preferably also extends over the area of the spray nozzles.
  • the pad that holds the sponge iron expediently passes through a dust extraction device.
  • Either single-substance nozzles or two-substance nozzles are provided for applying the liquid cooling medium, liquid cooling medium and gaseous cooling medium being able to be supplied to the briquetted sponge iron via the latter.
  • FIG. 1 shows a cooling device according to the invention in a schematic illustration in a side view
  • FIG. 2 illustrates the basic temperature curve that occurs here over the length of the cooling section
  • Fig. 3 shows the design of a cooling device according to the invention, also in side view.
  • the cooling device is equipped with a continuously and uniformly driven endless conveyor belt 1, such as a plate belt, the upper belt strand 2 of which serves as a support for hot sponge iron briquettes 3.
  • This sponge iron 3 is expediently applied to the gas-permeable endless conveyor belt 1 in the form of a belt, e.g. in a layer height 4 of about 200 mm and in a width corresponding to the bandwidth, e.g. about 1000 mm.
  • the iron sponge 3 is applied in multiple layers to form an iron sponge belt 9 that is as uniform as possible, via the feed chutes 5.
  • the sponge iron 3 When the sponge iron 3 is moved in the direction of arrow 6 by being carried along with the endless conveyor belt 1, it is first passed through a dedusting zone 7 which has a hood 10 which is connected to a dust extractor 8 and covers the iron sponge belt 9. In the dedusting zone, the fine material adhering to the surfaces of the sponge iron particles, such as the briquette surfaces, is suctioned off.
  • the sponge iron belt 9 is then moved through an air cooling zone 11, in which the hot sponge iron 3 - it has a temperature T A in the range between 580 and 720 ° C. when applied to the endless conveyor belt 1 - exclusively with the aid of cooling air, in accordance with Fig. 1 is cooled to about 350 ° C by means of cooling air pressed through the iron sponge belt 9 from below.
  • the cooling air is compressed by means of a compressor 12 and fed to the upper belt run 2 via an air guiding device 13 such that the air is forced to flow through the sponge belt 9.
  • the cooling air system has a silencer, a volume flow control and collection and distribution channels, not shown, including the necessary shut-off devices and control devices.
  • a water cooling zone 14 is provided in the approximately third third of the upper belt run 2, in which the sponge iron 3 is intensively cooled to a surface temperature of approximately 85 ° C. by means of sprayed water.
  • the water is sprayed on via a distribution system 15 via a plurality of spray nozzles 16, which are designed either as single-substance nozzles or as two-substance nozzles. If two-substance nozzles are used, they are fed with treated water and compressed air.
  • the. Air supply also via the water cooling zone 14, so that an additional cooling effect by cooling air occurs in the water cooling zone 14.
  • the air pressed through the hot sponge iron 3 and the resulting steam are collected in a discharge hood 17 and discharged via a suction device (not shown) with a cleaning device.
  • the sponge iron 3 After the sponge iron 3 has left the endless conveyor belt 1 and is further conveyed via a discharge chute 18, the sponge iron 3 dries off due to the residual heat still remaining in it.
  • FIG. 2 The particularly high efficiency of the cooling method according to the invention can be clearly seen from FIG. 2.
  • the full course of the line I shows the temperature profile on the surface of the sponge iron 3 over the length of the cooling device. It can be seen that the sponge iron 3 is gently and gently cooled in the air cooling zone 11, in which only air is used for cooling. Only when the sponge iron 3 reaches a temperature approximately in the region of half the starting temperature T A or below has reached the exclusive air cooling, according to the invention the water cooling is used, which causes a relatively abrupt and intensive cooling of the sponge iron 3 in comparison to the air cooling. The final temperature of the sponge iron 3 thus achieved after a relatively short cooling time is designated T E.
  • the dashed line II in FIG. 2 illustrates the temperature profile of the sponge iron 3, which would occur over the entire length of the upper belt run 2 if only air cooling was used.
  • the final temperature T ⁇ of the iron sponge achieved here is significantly higher than the final temperature Tg achieved according to the invention.
  • the device In order to be able to reach the final temperature T E according to the invention exclusively with air cooling, the device would have to extend over a substantially greater length and / or the air throughput would have to be increased or increased in quantity the layer height 4 of the sponge iron strip 9 and thus the specific throughput are reduced.
  • a dashed line III in FIG. 2 illustrates a cooling curve that would result from cooling the sponge iron 3 if this sponge iron 3 was sprayed in an initial area exclusively with liquid cooling medium, ie cooling water. It can be seen that initially a more abrupt cooling takes place than with air, but that due to the occurrence of the Leidenfrosf phenomenon, the effectiveness of the cooling does not reach that of the cooling effect according to the invention to an increased extent, ie the final temperature T_ which can only be achieved with liquid cooling medium also lies above the final temperature T E achieved according to the invention; So here too the cooling device would have to be designed longer or the sponge iron would be exposed to cooling medium for a longer time.
  • the invention is not limited to the embodiment shown in the drawing, but can be modified in various ways.
  • the endless conveyor belt 1 it is possible to provide a circular cooler which is formed by a gas-permeable grate and which rotates slowly, the sponge iron applied to the grate during a rotation of the grate, for example by 260 °, by means of cooling air and then is cooled by cooling water.
  • the cooling air can be passed through the iron sponge belt 9 by suction or pressing from below or from above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacture Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

Um bei einem Verfahren zum Abkühlen von heissem brikettiertem Eisenschwamm (3) unter optimaler Ausnützung des Kühlmittels eine möglichst niedrige Endtemperatur nach möglichst kurzer Zeitdauer zu erzielen, wird der heisse brikettierte Eisenschwamm (3) in einem ersten Kühlschritt (11) ausschliesslich von einem gasförmigen Kühlmedium durchströmt und währenddessen schonend gekühlt und anschliessend in einem zweiten Kühlschritt (14) mit einem flüssigen Kühlmedium besprüht und so intensiv auf die gewünschte Endtemperatur gekühlt.

Description

Verfahren und Vorrichtung zum Abkühlen von heißem brikettiertem Eisenschwamm
Die Erfindung betrifft ein Verfahren zum Abkühlen von heißem brikettiertem Eisenschwamm, sowie eine Vorrichtung zur Durchführung des Verfahrens.
Heißer brikettierter Eisenschwamm muß, um gefahrlos mit wirtschaftlich vertretbarem Aufwand transportiert und gelagert werden zu können, einer der Herstellung des Eisenschwammes möglichst umgehend folgenden Abkühlung unterzogen werden.
Zur Abkühlung von heißem gebranntem Material, beispielsweise Sinter oder Pellets, ist es bekannt (AT-B - 358.617), das heiße Material durch einen Schachtkühler zu führen und im Gegenstrom Kühlluft durch den Schachtkühler zu leiten. Für eine effiziente Abkühlung des Materials bis zur gewünschten Endtemperatur, beispielsweise zwischen 70 und 80°C, ist es erforderlich, eine große Menge von Kühlluft durch den Schachtkühler zu drücken, wofür ein hoher Energieaufwand erforderlich ist. Weiters kommt es durch die dabei auftretenden hohen Luftgeschwindigkeiten zu einem verstärkten Abführen von Material mit der aus dem Schachtkühler austretenden Kühlluft, insbesondere wenn dieses nur eine geringe Korngröße aufweist.
Aus der DE-C - 29 35 707 ist es bekannt, heißen brikettierten Eisenschwamm dadurch abzukühlen, daß er in einen Abschrecktank eingebracht wird, in dem er auf die gewünschte Endtemperatur abgekühlt wird. In der DE-C - 29 35 707 ist weiters erwähnt, daß anstelle des Abschrecktanks auch eine Luftkühlung vorgesehen sein kann.
Aus der DE-C - 29 28 501 und der DE-C - 26 25 223 ist es weiters bekannt, heißen brikettierten Eisenschwamm durch einen Quenchtank mit Hilfe eines Förderbandes zu führen, wobei die Eisenschwammbriketts, die mit einer Temperatur von 550 bis 700°C anfallen, auf etwa 80 bis 90°C abgekühlt werden. Nach Herausführen der Eisenschwammbriketts aus dem Quenchtank trocknen dieselben durch die in ihrem Inneren vorhandene Restwärme auf.
Nachteilig bei diesen bekannten Tauch-Wasserkühlungen ist, daß die dem Transport der heißen Eisenschwammbriketts dienenden mechanischen Teile abwechselnd in Kontakt mit heißem Wasser mit hohem Fest-, CO2- und Schwebstoffgehalt und Umgebungsluft treten, so daß diese Teile einem sehr hohen Verschleiß unterliegen. Durch den Kontakt der sehr heißen Eisenschwammbriketts mit Kühlwasser ergibt sich die Gefahr von Wassergasreaktionen. Die Wasserkühlung ist infolge des Leidenfrost'schen Phänomens, das in diesem hohen Temperaturbereich sehr intensiv auftritt, zudem wenig effizient. Die hierbei aus Wasserdampf gebildete Isolierschicht an der Oberfläche der Eisenschwammbriketts wirkt sich im hohen Temperaturbereich stark verschlechternd auf den Wärmeübergang aus. Weiters kommt es durch den Kontakt der noch heißen Eisenschwammbriketts mit dem Kühlwasser zu einer Verminderung der Produktqualität, u.zw. durch Abplatzen von Material der Eisenschwammbriketts. Hierdurch fällt sehr viel Feinmaterial an, welches der Funktion mechanisch bewegter Teile von Förderanlagen etc. abträglich ist und bei der weiteren Verarbeitung der Eisenschwammbriketts oft ebenfalls unerwünscht ist, insbesondere bei der weiteren Verarbeitung der Eisenschwammbriketts.
Aus der DE-C - 29 28 501 ist es weiters bekannt, ein Brikettband auf einen Förderer aufzugeben und mit Flüssigkeit zu besprühen, wodurch das Brikettband auf eine Temperatur im Bereich von 250 bis 350°C abkühlt. Auch hierbei kommt es zu den oben beschriebenen Nachteilen, nämlich zu Wassergasreaktionen, zum Auftreten des Leidenfros sehen Phänomens und damit zu ungleichmäßiger und unzureichender Kühlung sowie zu thermischen Spannungen und dadurch bedingt zu Abplatzungen.
Die Erfindung bezweckt die Vermeidung dieser Nachteile und Schwierigkeiten und stellt sich die Aufgabe, ein Verfahren der eingangs beschriebenen Art sowie eine Vorrichtung zur Durchführung des Verfahrens zu schaffen, welche einen störungsfreien Ablauf der Kühlung bei optimaler Ausnutzung der Kapazität der Kühleinrichtung ermöglichen. Insbesondere soll hierbei eine Einsparung von Kühlmittel gegenüber herkömmlichen Verfahren durch eine besonders effiziente Verwendung desselben möglich sein. Der brikettierte Eisenschwamm soll eine hohe Produktqualität aufweisen, wobei eine Bildung von Feinteilen während des Kühlens möglichst unterbleibt. Die Vorrichtung zur Durchführung des Verfahrens soll einer geringen Beanspruchung unterliegen und damit eine hohe Lebensdauer aufweisen.
Diese Aufgabe wird erfindungsgemäß durch die Kombination folgender Merkmale gelöst:
• der heiße brikettierte Eisenschwamm wird in einem ersten Kühlschritt ausschließlich von einem gasförmigen Kühlmedium, vorzugsweise Kühlluft, durchströmt und währenddessen schonend gekühlt,
• worauf in einem zweiten Kühlschritt der brikettierte Eisenschwamm mit einem flüssigen Kühlmedium, vorzugsweise Kühlwasser, besprüht wird und so intensiv auf die gewünschte Endtemperatur gekühlt wird.
Hierbei wird vorzugsweise während des zweiten Kühlschrittes der brikettierte Eisenschwamm zusätzlich von einem gasförmigen Kühlmedium durchströmt, wodurch ein besonders intensiver Kontakt des Eisenschwammes mit dem Kühlmedium gelingt. Zweckmäßig wird daß der heiße brikettierte Eisenschwamm während des ersten Kühlschrittes auf eine Temperatur mindestens im Bereich der Hälfte der Temperatur des heißen Eisenschwammes, vorzugsweise auf eine Temperatur unterhalb dieser Temperatur, gekühlt, wodurch der Einsatz des flüssigen Kühlmediums besonders effizient wird, vor allem da die Intensität, mit der das Leidenfrost'sche Phänomen auftritt, und dessen Isolierwirkung bei tieferen Temperaturen wesentlich geringer ist als bei hohen Temperaturen.
Vorzugsweise wird der erste Kühlschritt über eine größere Zeitdauer als der zweite Kühlschritt, vorzugsweise über eine Zeitdauer von mehr als 60 % der Gesamtkühlzeit, durchgeführt.
Um einen besonders guten Kontakt des gasförmigen Kühlmediums mit dem Eisenschwamm zu erzielen, erfolgt gemäß einer bevorzugten Ausführungsform die Beaufschlagung mit gasförmigem Kühlmedium durch Drücken oder durch Saugen, wobei der Eisenschwamm in Form eines Bettes auf einer gasdurchlässigen Auflage aufgebracht wird.
Eine bevorzugte Art der Beaufschlagung des brikettierten Eisenschwammes mit flüssigem Kühlmedium erfolgt durch Eindüsen des flüssigen Kühlmediums in einen Luftstrom. Auch hierdurch gelingt es, einen Isoliereffekt aufgrund von sich an der Oberfläche des Eisenschwammes bildendem Wasserdampf weitgehend zu vermeiden.
Um die Staubbelastung der Kühlluft zu verringern und zur Schonung der Vorrichtung wird vorteilhaft vor dem ersten Kühlschritt eine Staubabsaugung durchgeführt.
Eine Vorrichtung zur Durchführung des Verfahrens ist durch die Kombination nachfolgender Merkmale gekennzeichnet:
• eine gasdurchlässige Auflage für den brikettierten Eisenschwamm, mit der der Eisenschwamm durch die Vorrichtung bewegbar ist,
• eine die Auflage zumindest teilweise umgebende Gasleiteinrichtung zum Zuführen eines gasförmigen Kühlmediums zum brikettierten Eisenschwamm,
• Sprühdüsen zum Aufsprühen eines flüssigen Kühlmediums auf den brikettierten Eisenschwamm, wobei
• die Sprühdüsen erst in der zweiten Hälfte - in Bewegungsrichtung der den Eisenschwamm mitnehmenden Auflage gesehen - der Vorrichtung angeordnet sind. Eine bevorzugte Ausführungsform der Vorrichtung ist dadurch gekennzeichnet, daß die Auflage von einem Endlos-Förderband, wie einem Plattenband, gebildet ist, dessen oberes Bandtrum zur Aufnahme des heißen brikettierten Eisenschwammes dient.
Eine weitere bevorzugte Ausführungsform weist als Auflage für den Eisenschwamm einen als Rundkühler ausgebildeten Gitterrost auf.
Vorzugsweise erstreckt sich die Gasleiteinrichtung auch über den Bereich der Sprühdüsen.
Zweckmäßig durchläuft die den Eisenschwamm aufnehmende Auflage nach Aufbringen des Eisenschwammes und vor Eintritt in die Gasleiteinrichtung eine Staubabsaugeinrichtung.
Zur Aufbringung des flüssigen Kühlmediums sind entweder Einstoffdüsen oder Zweistoff düsen vorgesehen, wobei über letztere flüssiges Kühlmedium als auch gasförmiges Kühlmedium dem brikettierten Eisenschwamm zuführbar ist.
Die Erfindung ist nachfolgend anhand der Zeichnung näher erläutert, wobei Fig. 1 eine erfindungsgemäße Kühlvorrichtung in schematischer Darstellung in Seitenansicht und Fig. 2 den sich hierbei einstellenden prinzipiellen Temperaturverlauf über die Länge der Kühlstrecke veranschaulichen. Fig. 3 zeigt die konstruktive Ausgestaltung einer erfindungsgemäßen Kühlvorrichtung, ebenfalls in Seitenansicht.
Gemäß der in der Zeichnung, Fig. 1, dargestellten Ausführungsform ist die Kühlvorrichtung mit einem kontinuierlich und gleichförmig angetriebenen Endlos-Förderband 1, wie einem Plattenband, ausgestattet, dessen oberes Bandtrum 2 als Auflage für heiße Eisenschwammbriketts 3 dient. Dieser Eisenschwamm 3 wird auf das gasdurchlässige Endlos- Förderband 1 zweckmäßig in Bandform aufgebracht, z.B. in einer Schichthöhe 4 von etwa 200 mm und in einer Breite entsprechend der Bandbreite, wie z.B. etwa 1000 mm. Die Aufgabe des Eisenschwammes 3 erfolgt zur Bildung eines möglichst gleichförmigen Eisenschwammbandes 9 mehrlagig über die Aufgabeschurren 5.
Bei Bewegen des Eisenschwammes 3 in Richtung des Pfeiles 6 durch Mitnahme mit dem Endlos-Förderband 1 wird dieses zunächst durch eine Entstaubungszone 7 geführt, die eine an eine Staubabsaugung 8 angeschlossene, das Eisenschwammband 9 überdeckende Haube 10 aufweist. In der Entstaubungszone wird das an den Oberflächen der Eisenschwammteilchen, wie z.B. an den Brikettoberflächen, haftende feine Material abgesaugt. Danach wird das Eisenschwammband 9 durch eine Luftkühlzone 1 1 bewegt, in der der heiße Eisenschwamm 3 - es weist eine Temperatur TA im Bereich zwischen 580 und 720°C beim Aufbringen auf das Endlos-Förderband 1 auf - ausschließlich mit Hilfe von Kühlluft, gemäß Fig. 1 mit Hilfe von durch das Eisenschwammband 9 von unten gedrückter Kühlluft, auf ca. 350°C abgekühlt wird. Die Kühlluft wird mittels eines Kompressors 12 verdichtet und über eine Luftleiteinrichtung 13 dem oberen Bandtrum 2 derart zugeführt, daß die Luft gezwungen ist, das Eisenschwammband 9 zu durchströmen.
Das Kühlluftsystem weist einen Schalldämpfer, eine Volumensstromregelung sowie nicht näher dargestellte Sammel- und Verteilkanäle inklusive der erforderlichen Absperreinrichtungen und Steuereinrichtungen auf.
Im etwa dritten Drittel des oberen Bandtrums 2 ist eine Wasserkühlzone 14 vorgesehen, in der der Eisenschwamm 3 mittels aufgesprühtem Wasser auf eine Oberflächentemperatur von etwa 85°C intensiv gekühlt wird. Die Wasseraufsprühung erfolgt über ein Verteilsystem 15 über mehrere Sprühdüsen 16, die entweder als Einstoffdüsen oder als Zweistoffdüsen ausgebildet sind. Im Falle der Verwendung von Zweistoffdüsen werden diese mit aufbereitetem Wasser und Druckluft gespeist.
Gemäß der in Fig. 1 dargestellten Ausführungsform erstreckt sich die. Luftzuführung auch über die Wasserkühlzone 14, so daß in der Wasserkühlzone 14 eine zusätzliche Kühlwirkung durch Kühlluft auftritt.
Die durch den heißen Eisenschwamm 3 gedrückte Luft und entstehender Dampf werden in einer Ableitungshaube 17 gesammelt und über eine nicht näher dargestellte Absaugung mit Reinigungseinrichtung abgeleitet.
Nachdem der Eisenschwamm 3 das Endlos-Förderband 1 verlassen hat und über eine Austragsschurre 18 weiter gefördert wird, erfolgt das Abtrocknen des Eisenschwammes 3 durch die in ihm noch verbliebene Restwärme.
Anhand der Fig. 2 ist die besonders hohe Effizienz des erfindungsgemäßen Kühlverfahrens deutlich zu ersehen. Mit voller ununterbrochener Linie I ist der Temperaturverlauf an der Oberfläche des Eisenschwammes 3 über die Länge der Kühlvorrichtung dargestellt. Es ist ersichtlich, daß der Eisenschwamm 3 in der Luftkühlzone 11 , in der ausschließlich mit Luft gekühlt wird, eine sanfte und schonende Abkühlung erfährt. Erst wenn der Eisenschwamm 3 eine Temperatur etwa im Bereich der Hälfte der Ausgangstemperatur TA oder darunter durch die ausschließliche Luftkühlung erreicht hat, setzt erfindungsgemäß die Wasserkühlung ein, die eine im Vergleich zur Luftkühlung verhältnismäßig schroffe und intensive Kühlung des Eisenschwammes 3 bewirkt Die hierdurch nach relativ kurzer Kühlzeit erreichte Endtemperatur des Eisenschwammes 3 ist mit TE bezeichnet.
Mit strichlierter Linie II ist in Fig. 2 der Temperaturverlauf des Eisenschwammes 3 veranschaulicht, der bei ausschließlicher Luftkühlung über die Gesamtlänge des oberen Bandtrums 2 eintreten würde. Die hierbei erzielte Endtemperatur TΕ des Eisenschwammes liegt deutlich über der erfindungsgemäß erzielten Endtemperatur Tg. Um ausschließlich mit Luftkühlung die erfindungsgemäße Endtemperatur TE erreichen zu können, müßte sich die Vorrichtung über eine wesentlich größere Länge erstrecken und/oder es müßte der Luftdurchsatz mengenmäßig wesentlich erhöht bzw. die Schichthöhe 4 des Eisenschwammbandes 9 und damit die spezifische Durchsatzmenge vermindert werden.
Mit strichpunktierter Linie III ist in Fig. 2 eine Abkühlkurve veranschaulicht, die sich bei einer Kühlung des Eisenschwammes 3 ergeben würde, wenn dieser Eisenschwamm 3 in einem Anfangsbereich ausschließlich mit flüssigem Kühlmedium, d.h. Kühlwasser, besprüht wird. Es ist zu erkennen, daß zunächst eine schroffere Abkühlung als mit Luft stattfindet, daß jedoch infolge des Auftretens des Leidenfrosf sehen Phänomens im verstärkten Ausmaß die Effektivität der Kühlung nicht die der erfindungsgemäßen Kühlwirkung erreicht, d.h. die ausschließlich mit flüssigem Kühlmedium erzielbare Endtemperatur T _ liegt ebenfalls über der erfindungsgemäß erzielten Endtemperatur TE; also müßte auch hier die Kühlvorrichtung länger gestaltet sein bzw. der Eisenschwamm längere Zeit mit Kühlmedium beaufschlagt werden.
Zusätzlich stellt sich hier noch die Gefahr der Bildung von Wassergasreaktionen sowie eine Verminderung der Produktqualität ein, da die schroffe Abkühlung im hohen Temperaturbereich TA für bestimmte Produkte, wie z.B. bei Eisenschwamm, zu Abplatzungen und damit zur Bildung von Feinanteilen in unzulässigem Ausmaß führen kann.
Die Erfindung beschränkt sich nicht auf das in der Zeichnung dargestellte Ausführungsbeispiel, sondern kann in verschiedener Hinsicht modifiziert werden. Beispielsweise ist es möglich, anstelle des Endlos-Förderbandes 1 einen Rundkühler vorzusehen, der von einem gasdurchlässigen Rost gebildet ist und der sich langsam dreht, wobei der auf dem Rost aufgebrachte Eisenschwamm während einer Drehung des Rostes, beispielsweise um 260°, mittels Kühlluft und anschließend mittels Kühlwasser gekühlt wird. Weiters ist es auch möglich, die Luftzuführung alleine in der Luftkühlzone 1 1 durchzuführen und in der anschließenden Wasserkühlzone 14 ausschließlich mit Ein - oder Zweistoffdüsen zu arbeiten. Die Kühlluft kann durch Saugen oder Drücken von unten oder von oben durch das Eisenschwammband 9 geleitet werden.

Claims

Patentansprüche:
1. Verfahren zum Abkühlen von heißem brikettiertem Eisenschwamm (3), gekennzeichnet durch die Kombination folgender Merkmale:
• der heiße brikettierte Eisenschwamm (3) wird in einem ersten Kühlschritt ausschließlich von einem gasförmigen Kühlmedium, vorzugsweise Kühlluft, durchströmt und währenddessen schonend gekühlt,
• worauf in einem zweiten Kühlschritt der brikettierte Eisenschwamm (3) mit einem flüssigen Kühlmedium, vorzugsweise Kühlwasser, besprüht wird und so intensiv auf die gewünschte Endtemperatur (TE) gekühlt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß während des zweiten Kühlschrittes der brikettierte Eisenschwamm (3) zusätzlich von einem gasförmigen Kühlmedium durchströmt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der heiße Eisenschwamm (3) während des ersten Kühlschrittes auf eine Temperatur mindestens im Bereich der Hälfte der Temperatur (TA) des heißen Eisenschwammes, vorzugsweise auf eine Temperatur unterhalb dieser Temperatur, gekühlt wird.
4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der erste Kühlschritt über eine größere Zeitdauer als der zweite Kühlschritt, vorzugsweise über eine Zeitdauer von mehr als 60 % der Gesamtkühlzeit, durchgeführt wird.
5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Beaufschlagung mit gasförmigem Kühlmedium durch Drücken oder durch Saugen erfolgt, wobei der brikettierte Eisenschwamm in Form eines Bettes (9) auf einer gasdurchlässigen Auflage (2) aufgebracht wird.
6. Verfahren nach einem oder mehreren der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß die Beaufschlagung mit flüssigem Kühlmedium durch Eindüsen des flüssigen Kühlmediums in einen Luftstrom erfolgt.
7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß vor dem ersten Kühlschritt eine Staubabsaugung durchgeführt wird.
8. Vorrichtung zur Durchführung des Verfahrens nach einem oder mehreren der Ansprüche 1 bis 7, gekennzeichnet durch die Kombination nachfolgender Merkmale:
• eine gasdurchlässige Auflage (2) für den brikettierten Eisenschwamm (3), mit der der Eisenschwamm (3) durch die Vorrichtung bewegbar ist,
• eine die Auflage (2) zumindest teilweise umgebende Gasleiteinrichtung (13, 17) zum Zuführen eines gasförmigen Kühlmediums zum Eisenschwamm (3),
• Sprühdüsen (16) zum Aufsprühen eines flüssigen Kühlmediums auf den Eisenschwamm (3), wobei
• die Sprühdüsen ( 16) erst in der zweiten Hälfte - in Bewegungsrichtung der den Eisenschwamm (3) mitnehmenden Auflage (2) gesehen - der Vorrichtung angeordnet sind.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die Auflage von einem Endlos-Förderband ( 1 ), wie einem Plattenband, gebildet ist, dessen oberes Bandtrum (2) zur Aufnahme des heißen brikettierten Eisenschwammes (3) dient.
10. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die Auflage (2) von einem als Rundkühler ausgebildeten Gitterrost gebildet ist.
11. Vorrichtung nach einem oder mehreren der Ansprüche 8 bis 10, dadurch gekennzeichnet, daß sich die Gasleiteinrichtung ( 13, 17) auch über den Bereich der Sprühdüsen (16) erstreckt.
12. Vorrichtung nach einem oder mehreren der Ansprüche 8 bis 1 1, dadurch gekennzeichnet, daß die den Eisenschwamm (3) aufnehmende Auflage (2) nach Aufbringen des Eisenschwammes (3) und vor Eintritt in die Gasleiteinrichtung ( 13, 17) eine Staubabsaugeinrichtung (8, 10) durchläuft.
13. Vorrichtung nach einem oder mehreren der Ansprüche 8 bis 12, dadurch gekennzeichnet, daß zur Aufbringung des flüssigen Kühlmediums Einstoffdüsen (16) vorgesehen sind.
14. Vorrichtung nach einem oder mehreren der Ansprüche 8 bis 13, dadurch gekennzeichnet, daß zur Aufbringung des flüssigen Kühlmediums Zweistoffdüsen (16) vorgesehen sind, durch die sowohl flüssiges Kühlmedium als auch gasförmiges Kühlmedium dem Eisenschwamm (3) zuführbar sind.
PCT/AT1996/000008 1995-01-23 1996-01-22 Verfahren und vorrichtung zum abkühlen von heissem brikettiertem eisenschwamm WO1996023081A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP96900197A EP0807187B1 (de) 1995-01-23 1996-01-22 Verfahren und vorrichtung zum abkühlen von heissem brikettiertem eisenschwamm
RU97114136A RU2142517C1 (ru) 1995-01-23 1996-01-22 Способ и устройство для охлаждения горячего материала в массе
DE59600430T DE59600430D1 (de) 1995-01-23 1996-01-22 Verfahren und vorrichtung zum abkühlen von heissem brikettiertem eisenschwamm
CA002211021A CA2211021C (en) 1995-01-23 1996-01-22 Method and device for cooling hot briquetted spongy iron
BR9606929A BR9606929A (pt) 1995-01-23 1996-01-22 Método e equipamento para resfriamento de material volumoso quente
AU43795/96A AU703991B2 (en) 1995-01-23 1996-01-22 Method and arrangement of cooling hot bulk material
JP52248996A JP4006022B2 (ja) 1995-01-23 1996-01-22 高温ブリケット状海綿鉄を冷却する方法および装置
US08/875,303 US6048381A (en) 1995-01-23 1996-01-22 Method and arrangement for cooling hot bulk material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0010695A AT404361B (de) 1995-01-23 1995-01-23 Verfahren und vorrichtung zum abkühlen von heissem eisenschwamm
ATA106/95 1995-01-23

Publications (1)

Publication Number Publication Date
WO1996023081A1 true WO1996023081A1 (de) 1996-08-01

Family

ID=3481680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT1996/000008 WO1996023081A1 (de) 1995-01-23 1996-01-22 Verfahren und vorrichtung zum abkühlen von heissem brikettiertem eisenschwamm

Country Status (16)

Country Link
US (1) US6048381A (de)
EP (1) EP0807187B1 (de)
JP (1) JP4006022B2 (de)
KR (1) KR100383351B1 (de)
AR (1) AR000749A1 (de)
AT (1) AT404361B (de)
AU (1) AU703991B2 (de)
BR (1) BR9606929A (de)
CA (1) CA2211021C (de)
CO (1) CO4560387A1 (de)
DE (1) DE59600430D1 (de)
EG (1) EG21043A (de)
PE (1) PE38296A1 (de)
RU (1) RU2142517C1 (de)
WO (1) WO1996023081A1 (de)
ZA (1) ZA96468B (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1022348A1 (de) * 1999-01-20 2000-07-26 Kabushiki Kaisha Kobe Seiko Sho Verfahren zur Herstellung reduzierter Eisenpellets unter Verwendung einer kontrollierten Wasserkühlung
US6241804B1 (en) 1998-08-12 2001-06-05 Voest-Alpine Industrieanlagenbau Gmbh Process for producing iron briquettes and/or cold iron sponge
EP1411135A1 (de) * 2001-07-24 2004-04-21 Kabushiki Kaisha Kobe Seiko Sho Verfahren zur beschleunigung der abtrennung von körnigem metallischem eisen von schlacke
EP1445335A1 (de) * 2001-09-19 2004-08-11 Nippon Steel Corporation Kühlverfahren und kühlvorrichtung für reduzierte eisenmasse
WO2004074521A2 (de) * 2003-02-19 2004-09-02 Aumund-Fördererbau GmbH & Co. KG Heissgutförderer

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027149A (ja) * 2001-07-10 2003-01-29 Kobe Steel Ltd 還元鉄ブリケットの製造方法
JP4766806B2 (ja) * 2001-09-27 2011-09-07 新日鉄エンジニアリング株式会社 還元鉄塊成化物の冷却方法
US7968044B2 (en) * 2007-04-30 2011-06-28 Spraying Systems Co. Sinter processing system
US8518146B2 (en) 2009-06-29 2013-08-27 Gb Group Holdings Limited Metal reduction processes, metallurgical processes and products and apparatus
CN104249932B (zh) * 2013-06-28 2016-04-27 宝山钢铁股份有限公司 防止高温落料烫伤运输胶带的方法
CN113913579B (zh) * 2021-10-12 2023-01-24 中冶赛迪工程技术股份有限公司 用于冷却热态海绵铁的循环方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1215666A (fr) * 1958-02-19 1960-04-20 R N Corp Procédé de production de fer, appareil pour sa réalisation et produit obtenu
FR1315257A (fr) * 1961-12-22 1963-01-18 R N Corp Procédé perfectionné pour la fabrication de briquettes de fer
SU755844A1 (ru) * 1978-05-10 1980-08-15 Vnii Metall Teplotekhniki Двухстадийный способ охлаждения окатышей 1
JPS56163209A (en) * 1980-05-20 1981-12-15 Mitsubishi Heavy Ind Ltd Method for recovering waste heat of hot briquette
JPS59170213A (ja) * 1983-03-16 1984-09-26 Nippon Steel Corp 還元鉄ブリケツトの製造方法
JPH06316718A (ja) * 1993-03-08 1994-11-15 Kobe Steel Ltd 還元鉄ブリケットの製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE25668C (de) * A. LINDENBERG in Berlin C, Neue Grünstr. 25 Werkzeug zum Ausschneiden kreisförmiger oder gerader Reifen aus Fourniren
DD25668A (de) *
FR2193881B1 (de) * 1972-07-26 1974-10-25 Delattre Levivier
ZA762594B (en) * 1975-06-05 1977-04-27 Midrex Corp Method and apparatus for continuous passivation of sponge iron material
DE2809172A1 (de) * 1978-03-03 1979-09-06 Kloeckner Humboldt Deutz Ag Verfahren und anlage zur kuehlung von reduziertem gut wie feinkoerniges erz
US4165978A (en) * 1978-07-14 1979-08-28 Midrex Corporation Briquet sheet breaking by cooling and bending
US4188022A (en) * 1978-09-08 1980-02-12 Midrex Corporation Hot discharge direct reduction furnace
DD146847A1 (de) * 1979-12-29 1981-03-04 Rainer Ruehl Kuehltunnel fuer die gesteuerte zwangskuehlung von erhitztem gut,insbesondere von gussstuecken
JPS637341A (ja) * 1986-06-27 1988-01-13 Nippon Kokan Kk <Nkk> 焼結鉱の冷却方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1215666A (fr) * 1958-02-19 1960-04-20 R N Corp Procédé de production de fer, appareil pour sa réalisation et produit obtenu
FR1315257A (fr) * 1961-12-22 1963-01-18 R N Corp Procédé perfectionné pour la fabrication de briquettes de fer
SU755844A1 (ru) * 1978-05-10 1980-08-15 Vnii Metall Teplotekhniki Двухстадийный способ охлаждения окатышей 1
JPS56163209A (en) * 1980-05-20 1981-12-15 Mitsubishi Heavy Ind Ltd Method for recovering waste heat of hot briquette
JPS59170213A (ja) * 1983-03-16 1984-09-26 Nippon Steel Corp 還元鉄ブリケツトの製造方法
JPH06316718A (ja) * 1993-03-08 1994-11-15 Kobe Steel Ltd 還元鉄ブリケットの製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Derwent World Patents Index; AN 81-30264d, XP002001182, "two-stage iron ore pellet cooling" *
PATENT ABSTRACTS OF JAPAN vol. 6, no. 49 (C - 096) 20 May 1980 (1980-05-20) *
PATENT ABSTRACTS OF JAPAN vol. 9, no. 21 (C - 263) 16 March 1983 (1983-03-16) *
PATENT ABSTRACTS OF JAPAN vol. 94, no. 011 28 June 1993 (1993-06-28) *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6241804B1 (en) 1998-08-12 2001-06-05 Voest-Alpine Industrieanlagenbau Gmbh Process for producing iron briquettes and/or cold iron sponge
EP1022348A1 (de) * 1999-01-20 2000-07-26 Kabushiki Kaisha Kobe Seiko Sho Verfahren zur Herstellung reduzierter Eisenpellets unter Verwendung einer kontrollierten Wasserkühlung
US6241803B1 (en) 1999-01-20 2001-06-05 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for manufacturing reduced iron pellets
EP1411135A1 (de) * 2001-07-24 2004-04-21 Kabushiki Kaisha Kobe Seiko Sho Verfahren zur beschleunigung der abtrennung von körnigem metallischem eisen von schlacke
EP1411135A4 (de) * 2001-07-24 2007-08-22 Kobe Steel Ltd Verfahren zur beschleunigung der abtrennung von körnigem metallischem eisen von schlacke
EP1445335A1 (de) * 2001-09-19 2004-08-11 Nippon Steel Corporation Kühlverfahren und kühlvorrichtung für reduzierte eisenmasse
EP1445335A4 (de) * 2001-09-19 2008-06-18 Nippon Steel Corp Kühlverfahren und kühlvorrichtung für reduzierte eisenmasse
US7618476B2 (en) 2001-09-19 2009-11-17 Nippon Steel Corporation Method and apparatus for cooling reduced-iron agglomerate
WO2004074521A2 (de) * 2003-02-19 2004-09-02 Aumund-Fördererbau GmbH & Co. KG Heissgutförderer
WO2004074521A3 (de) * 2003-02-19 2004-11-18 Aumund Foerdererbau Gmbh & Co Heissgutförderer
US7228960B2 (en) 2003-02-19 2007-06-12 Aumund-Fördererbau GmbH & Co. KG Hot material conveyor
CN100344773C (zh) * 2003-02-19 2007-10-24 奥蒙德输送带有限责任两合公司 热材料输送机

Also Published As

Publication number Publication date
KR19980701673A (ko) 1998-06-25
CA2211021C (en) 2002-01-01
JPH11500782A (ja) 1999-01-19
EP0807187A1 (de) 1997-11-19
MX9705465A (es) 1998-07-31
PE38296A1 (es) 1996-09-25
CO4560387A1 (es) 1998-02-10
DE59600430D1 (de) 1998-09-17
AT404361B (de) 1998-11-25
US6048381A (en) 2000-04-11
ATA10695A (de) 1998-03-15
AU703991B2 (en) 1999-04-01
AU4379596A (en) 1996-08-14
ZA96468B (en) 1996-08-28
RU2142517C1 (ru) 1999-12-10
EG21043A (en) 2000-09-30
EP0807187B1 (de) 1998-08-12
AR000749A1 (es) 1997-08-06
KR100383351B1 (ko) 2003-07-18
JP4006022B2 (ja) 2007-11-14
CA2211021A1 (en) 1996-08-01
BR9606929A (pt) 1997-11-11

Similar Documents

Publication Publication Date Title
DE60002108T2 (de) Verfahren zur Herstellung reduzierter Eisenagglomerate und Vorrichtung mit rotierendem Herd dazu
EP0313516B1 (de) Vorrichtung und Verfahren zum Kühlen von Walzen
DE69319502T2 (de) Verfahren und Ofen zur chemischen Herstellung von Aktivkohle
AT404361B (de) Verfahren und vorrichtung zum abkühlen von heissem eisenschwamm
DE2735390C2 (de) Verfahren und Vorrichtung zur Wärmerückgewinnung aus geschmolzener Schlacke
EP2694249B1 (de) Verfahren zur herstellung eines strahlmittels, verfahren zum strahlen, strahlmittel, vorrichtung zur herstellung eines strahlmittels, vorrichtung zum strahlen
DE3441361A1 (de) Verfahren und einrichtung zum abkuehlen von stueckigem material
EP0780651B2 (de) Verfahren und Vorrichtung zur Verhinderung der Entstehung von Schneemännern in Klinkerkühlern und zur Entfernung von in Klinkerkühlern befindlichen Verkleidungsstücken
DE69111611T2 (de) In einer zwischenphase arbeitender zyklontrenner.
EP0549656B1 (de) Verfahren und anlage zum reduktionsglühen von eisenpulver
EP1602401A1 (de) Verfahren und Vorrichtung zur aerosolarmen Partialkondensation
EP1721019A1 (de) Verfahren zur herstellung einer sinterrohmischung
DE69328121T2 (de) Verfahren und vorrichtung zum vorheizen von glasscheiben und die verminderung von schadstoffemission während dem glasherstellungsverfahren
DE2625223B2 (de) Verfahren zur Passivierung von heißen, reaktionsfähigen Metallteilchen, Anwendung des Verfahrens und Vorrichtung zur Durchführung des Verfahrens
DE3024541A1 (de) Verfahren und vorrichtung zur wiedergewinnung von waerme aus fein bis grob geteiltem material mit hoher temperatur
DE3215140C2 (de) Verfahren und Vorrichtung zur Herstellung ungebrannter eisenhaltiger Pellets
EP0845443A1 (de) Verfahren zur Entfernung von Schwefeldioxid aus Abgasen einer Ofenanlage
DE2812005C3 (de) Verfahren zur Herstellung von abtriebfesten Koksformlingen
DE2030026C2 (de) Vorrichtung zum Pelletisieren
EP0013871A1 (de) Verfahren und Vorrichtung zum Abkühlen von gebranntem Material, wie Sinter oder Pellets
EP2136937B1 (de) Verfahren und vorrichtung zur wärmebehandlung einschliesslich verfahren und vorrichtung zum trennen oder klassieren von aufgabegut
DE19507643C1 (de) Verfahren zum Unschädlichmachen von in einem Mineralwollevlies befindlichen heißen Einschlüssen und Vorrichtung zur Durchführung des Verfahrens
DE2432765B2 (de) Anlage zum kuehlen von gussteilen
DE2925665A1 (de) Verfahren und anordnung zur aufbereitung von gebranntem material
DE2700485C3 (de) Verfahren und Vorrichtung zum Brennen von stückigem Gut, insbesondere Eisenerzpellets

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR BY CA JP KR KZ MX RU TT UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996900197

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/1997/005465

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2211021

Country of ref document: CA

Kind code of ref document: A

Ref document number: 2211021

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 1996 522489

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019970705069

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 08875303

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996900197

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970705069

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996900197

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019970705069

Country of ref document: KR