WO1996022986A1 - Procede de purification de trioxanne - Google Patents

Procede de purification de trioxanne Download PDF

Info

Publication number
WO1996022986A1
WO1996022986A1 PCT/JP1996/000066 JP9600066W WO9622986A1 WO 1996022986 A1 WO1996022986 A1 WO 1996022986A1 JP 9600066 W JP9600066 W JP 9600066W WO 9622986 A1 WO9622986 A1 WO 9622986A1
Authority
WO
WIPO (PCT)
Prior art keywords
trioxane
distillate
water
distillation column
aqueous
Prior art date
Application number
PCT/JP1996/000066
Other languages
English (en)
French (fr)
Inventor
Hirohisa Morishita
Original Assignee
Asahi Kasei Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo Kabushiki Kaisha filed Critical Asahi Kasei Kogyo Kabushiki Kaisha
Priority to JP8522771A priority Critical patent/JP2916953B2/ja
Publication of WO1996022986A1 publication Critical patent/WO1996022986A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D323/00Heterocyclic compounds containing more than two oxygen atoms as the only ring hetero atoms
    • C07D323/04Six-membered rings
    • C07D323/06Trioxane

Definitions

  • the present invention relates to a method for producing a high-purity trioxane, which comprises decomposing an oligoacetal by mixing with a non-aqueous organic solvent, washing the resultant with water, and recycling the obtained organic
  • trioxane is synthesized by reacting an aqueous formaldehyde solution in the presence of an acidic catalyst. Since the aqueous solution after the reaction contains a large amount of impurities such as formaldehyde, methanol, formic acid, methylal, methyl formate, and oligoacetal in addition to trioxane and water, various methods for purifying trioxane have been proposed.
  • a method of distilling a trioxane synthesis solution, extracting trioxane from the distillate into an organic solvent, and purifying the trioxane by further distillation JP-B-49-5351, JPA-5 6-87580
  • a method of performing efficient distillation after extracting water from a benzene solution containing trioxane using water JP_A- 3-l2 377 77.
  • a method of separating and removing oligoacetal, which is an impurity, by distillation at a reflux ratio JP-A-57-20038).
  • trioxane containing water, formaldehyde, methanol, formic acid, methylal, methyl formate, and oligoacetal.
  • the sun-containing organic solution is supplied to the top of the distillation column, and organic solvent, water, methanol, formic acid, methylal, and methyl formate are supplied from the top of the column, and trioxane containing oligoacetal and / or the organic solvent are supplied from the middle and bottom of the column.
  • the present inventors have conducted intensive studies on a method for purifying trioxane in order to solve these problems of the prior art, and completed the present invention.
  • the present invention relates to a method for purifying trioxane by distilling and separating purified trioxane from an organic solution containing low boiling impurities (eg, methyl formate, methylal, formaldehyde, methanol), oligoacetanol and trioxane by a distillation column.
  • the trioxane distillate containing oligosaccharides separated in the column is brought into contact with a solid acid catalyst in the presence of water, mixed with a non-aqueous organic solvent, and washed with water to obtain an organic extract containing trioxane. Return to the distillation column.
  • the present invention provides a process for synthesizing trioxane by heating an aqueous formaldehyde solution in the presence of an acidic catalyst to obtain a trioxane-containing aqueous solution, extracting the trioxane-containing aqueous solution with a nonaqueous organic solvent, and adding methyl formate, methylal, At least one low boiling impurity selected from the group consisting of formaldehyde and methanol,
  • trioxane purified to extremely high purity can be efficiently obtained.
  • Trioxane is synthesized by a conventionally known method by heating an aqueous formaldehyde solution in the presence of an acidic catalyst.
  • the formaldehyde concentration of the aqueous formaldehyde solution is usually 30 wt% to 80 wt%.
  • an acidic catalyst for synthesizing trioxane it is common to use sulfuric acid, phosphoric acid, p-toluenesulfonic acid, zeolite, or a cation exchanger having a sulfonate group or a fluoroalkylsulfonic acid group. is there.
  • Trioxane is extracted with a non-aqueous organic solvent directly from the formed aqueous solution containing trioxane or from the distillate after concentration by distillation.
  • the non-aqueous organic solvent used here is an organic solvent that is phase-separated when mixed with water, is a solvent that elutes little into the aqueous phase, and is a solvent that substantially dissolves trioxane.
  • Solvents having such properties include, for example, methylene chloride, chloroform, carbon tetrachloride, halogenated hydrocarbons such as chlorinated ethyl chloride and ethylene chloride, and aromatic hydrocarbons such as benzene, toluene and xylene. There is hydrogen and the like.
  • trioxane an organic solution containing trioxane is obtained.
  • the organic solution containing trioxane may be supplied to a distillation column after washing with water.
  • the above-mentioned organic solution containing trioxane is purified by distillation using one or more distillation columns. Can be performed.
  • an organic solution containing trioxane is supplied to the upper portion of the distillation column, and an organic solvent, low boiling point impurities (eg, methyl formate, methylal, formaldehyde, methanol, formic acid) ) From the top of the tower,
  • an organic solvent, low boiling point impurities eg, methyl formate, methylal, formaldehyde, methanol, formic acid
  • the trioxane distillate containing 3) can be withdrawn from the bottom of the column, and the purified trioxane distillate can be withdrawn from the bottom of the column.
  • trioxane In the case of performing distillation purification using two distillation columns, for example, first, an organic solution containing the raw material trioxane is supplied to the middle stage of the first column, and low boiling impurities (eg, methyl formate, methyla , Formaldehyde, methanol) and the organic solvent, and the trioxane distillate containing oligoacetal from the bottom of the column. Next, this trioxane distillate is supplied to the middle stage of the second column, and from the top of the column
  • impurities eg, methyl formate, methyla , Formaldehyde, methanol
  • the trioxane distillate can be withdrawn and the purified trioxane distillate can be withdrawn from the bottom of the column, in which case the distillation conditions for the first column can be specifically set by referring to JP-A-3-123777.
  • the preferred distillation conditions for the second column are such that the reflux ratio is 5 to 500, preferably 10 to 200, and the amount of the trioxane distillate containing the oligoacetal extracted from the column and the bottom is lower.
  • the ratio is 1Z100 to 1/1, preferably 1Z50 to 1Z3, respectively, with respect to the amount of the purified trioxane distillate extracted from the distillate.
  • the reflux ratio and the extraction amount from the distillation column are controlled within these ranges. By doing so, oligoacetals as impurities can be efficiently removed.
  • a column tower equipped with a bubble cap tray, a sieve tray, etc., or a Raschig ring, a Paul ring, a Dickson ring, a McMahon packing, etc. were filled inside for efficient gas-liquid contact. Packing towers can be used.
  • They can be broadly divided into and.
  • the solid acid catalyst or a portion thereof, for example, CH 3 0 (CH 2 O) a a 2 CH 3 only Toriokisan distillate mainly containing solid acid catalyst It is possible to make contact.
  • dioxane-containing trioxane distillates have the power to be able to come into contact with solid acids as they are when they contain water, but they do not decompose more when they contain no water or contain less water. It is effective to add water to promote it.
  • the amount of water is not particularly limited, but if the amount is too large, the load for separating water is increased, which is disadvantageous.
  • the amount of water required for the decomposition reaction is theoretically equimolar to CH 3 0 (CH 2 O) n CH 3 , and the preferred amount of water is the concentration in the trioxane distillate containing the oligoacetal, 0.005 to 50 wt%, more preferably 0.1 to 30 wt%.
  • the solid acid catalyst used for the decomposition reaction includes, for example, an inorganic oxide complex such as acid clay, zeolite, and silica magnesia; a sulfate of a metal such as nickel, iron, and cadmium; and a sulfate such as silica gel, diatomaceous earth, Inorganic solid acids impregnated with silicon carbide; cation exchangers having sulfonic acid groups, fluoroalkylsulfonic acid groups, and the like. Of these, zeolites and cation exchangers are preferred.
  • the catalyst can be used in a suspended state in a trioxane distillate, it is more effective to use the catalyst as a fixed bed packed in a cylindrical container with a jacket.
  • the amount of the catalyst and the decomposition temperature are preferably selected so that the oligoacetal is selectively decomposed and the decomposition rate of trioxane is small. That is, preferably, the LHSV (Liquid Hourly Space Velocity) is in the range of 0.2 to 20 Ohr- 1 , and the decomposition temperature is 30 to 150. C, more preferably LHSV is in the range of 0.5 to 6 Ohr 1 , and decomposition temperature is in the range of 50 to 100 ° C.
  • LHSV Liquid Hourly Space Velocity
  • Another gist of the present invention is thus obtained by contacting with a solid acid catalyst.
  • the trioxane-containing solution containing the decomposed product of the oligoacetal is mixed with a non-aqueous organic solvent, washed with water, and the obtained trioxane-containing organic extract is returned to the distillation column for recycling.
  • non-aqueous organic solvent used herein examples include, as described above, the same solvents as those for the organic solution containing trioxane that is initially supplied to the distillation column.
  • Preferred organic solvents are the same as those for the organic solution containing the trioxane, which may include trioxane, methyl formate, methylal, formaldehyde, methanol, and nitro or oligoacetals.
  • the organic solution itself containing trioxane supplied to the distillation column as a non-aqueous organic solvent and mix it with a trioxane-containing solution containing a decomposed product of oligoacetal using a solid acid catalyst.
  • a trioxane-containing solution containing a decomposed product of oligoacetal using a solid acid catalyst.
  • the amount of the non-aqueous organic solvent used here is preferably such that the trioxane concentration in the organic solution after mixing the trioxane-containing solution containing the decomposed product of oligoacetal is in the range of 5 to 70 wt%. More preferably, the trioxane concentration is in the range of 20 to 60 wt%. If the trioxane concentration is less than 5 wt%, a large amount of energy is required to separate the trioxane and the non-aqueous organic solvent, which is uneconomic.If the trioxane concentration exceeds 70 wt%, the loss of trioxane in the subsequent water washing process increases. I don't like it.
  • the trioxane-containing solution after contact with the solid acid catalyst is mixed with the above non-aqueous organic solvent, and further washed with water.
  • a batch extraction method using a tank, a continuous extraction method using a tower, or the like is used.
  • water is flowed from the upper part of the tower, a mixed solution of a trioxane-containing solution containing a decomposition product of oligoacetal and a non-aqueous organic solvent is flowed from the lower part of the tower, and a step or a filler is placed in the tower.
  • so-called countercurrent liquid-liquid contact methods are used, in which an auxiliary is used to improve the interfacial contact between water and the mixed liquid.
  • the ratio of water used to the mixture is 1: 1 0 0 ⁇ 1: 1, preferably 1:30 to ⁇ : 3. If the amount of water used is small, the effect of extracting impurities is insufficient, and if it is too large, loss of trioxane and the like is large and uneconomical.
  • the temperature of the water washing ranges from 0 ° C to the boiling point of water or an organic solvent. A preferred temperature range is 50 to 100 ° C.
  • the trioxane-containing organic extract after washing with water is returned to the distillation column.
  • the position of the distillation column for returning the organic extract is not particularly limited, but is preferably in the range from the middle stage to the upper stage. When distillation is performed in one column, it is preferable to return to the upper stage of the column.
  • trioxane-containing solution containing a decomposed product of an oligoacetal by a solid acid catalyst is mixed with a non-aqueous organic solvent and then recycled to a distillation column without performing a water-washing treatment, the purity of the obtained trioxane is low. It is difficult to reduce to the limit.
  • trioxane distillate containing the oligoacetal separated from the distillation column is discharged as it is, the loss power of trioxane becomes extremely large, which is economically disadvantageous.
  • the amount of trioxane distillate containing oligoacetal extracted from the distillation column is reduced to minimize the loss of trioxane, the concentration of oligoacetal in the purified trioxane distillate will increase, and highly purified trioxane will be obtained. No, or the number of distillation columns and the reflux ratio must be very large, requiring large equipment and energy.
  • trioxane of extremely high purity can be continuously produced efficiently and efficiently.
  • the 60% formalin solution was heated and distilled in the presence of sulfuric acid to obtain an aqueous distillate containing trioxane from the top of the tower. After mixing this aqueous distillate and benzene, they are separated into two layers, and trioxane 38 wt%, formaldehyde 0.5%, methanol 1.5 wt%, methyl formate 0.5 wt, methylal 0.25 wt%, water 1. 5wt%, CH, 0 (CH 2 0) 2 CH 3 0. 3wt%, CH, 0 (CH 2 0) a CHn 0. A benzene solution containing 0.5 wt% was continuously obtained.
  • This benzene solution was supplied to the 20th stage of the first distillation column (a sieve tray, 40th stage), and was distilled at a reflux ratio of 3. Benzene, formaldehyde, methanol, methyl formate, methylal, water and formic acid were extracted from the top of the column, and a trioxane distillate containing CH 3 O (CH 20 ) CH 3 was continuously extracted from the bottom of the column. Further, the CH 3 0 (CH 2 0) -trioxane distillate containing CH 3 is supplied to the 25th stage of the second distillation column (a sieve tray, 40th stage), and the reflux ratio is 50. From the top of the second distillation column,
  • a benzene solution containing CH 3 O (CH 2 O) 3 CH 3 0.05 wt% was continuously obtained.
  • This benzene solution was supplied to the lower part of the packed tower packed with Raschig rings, and water was supplied from the upper part.
  • the weight ratio of the benzene solution to water was controlled at 15: 1, and the extraction temperature was controlled at 70V.
  • the benzene solution containing the extracted trioxane was supplied to the 20th stage of the first distillation column (a sieve tray, 40th stage), and was distilled at a reflux ratio of 3.
  • trioxane distillate containing CH 3 O (CH 2 O)) CH 3 was continuously extracted from the bottom of the column. Furthermore, trioxane distillate containing the CH 3 0 (CH 2 O) "CH 3, the second distillation column (sieve trays, 4 0 stage) is supplied to the 2 5-stage was distilled at a reflux ratio of 5 0 .
  • Trioloxane distillate containing CH 3 is combined, 1/10 water is added to trioxane, and cation exchange is performed while maintaining the temperature at 70 ° C.
  • the impurity concentration in the obtained purified trioxane distillate is shown in Table 1. Compared to the examples according to the present invention And the concentration of water and formic acid is large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)

Description

明 柳 害 高純度トリオキサンの精製方法 技術分野
本発明は、 ホルムアルデヒドを環化 (環状 3量体化) してトリオキサンを製造 する方法、 およびトリオキサンを効率よく精製し、 高純度のトリオキサンを製造 する方法に関するものである。 更に詳しくは、 本発明はホルムアルデヒド水溶液 を酸性触媒と接触させてトリオキサンを製造し、 該卜リオキサンを非水有機溶媒 で抽出し、 得られたトリオキサンを含む有機溶液を蒸留塔で蒸留し、 蒸留塔から 抜き出された CH3 0 (CH2 O) „ CH3 (但し、 n = 2〜5) (以下オリゴ ァセタールともいう) を含むトリオキサン蒸留液を、 水の存在下で固体酸触媒と 接触させてオリゴァセタールを分解し、 更に非水系の有機溶媒と混合した後水洗 し、 得られたトリオキサン含有有機抽出液をリサイクルすることからなる高純度 トリオキサンの製造法、 に関するものである。 背景技術
通常トリオキサンは、 ホルムアルデヒド水溶液を酸性触媒の存在下で反応させ ることにより合成する。 反応後の水溶液は、 トリオキサン、 水の他に、 ホルムァ ルデヒド、 メタノール、 ギ酸、 メチラール、 ギ酸メチル、 オリゴァセタール等の 不純物を多く含んでいるので、 種々のトリオキサンの精製法が提案されている。 例えば、 トリオキサン合成液を蒸留し、 留出液からトリオキサンを有機溶剤に抽 出した後、 更に蒸留を行ってトリオキサンを精製する方法 (J P— B— 4 9 - 5 3 5 1、 J P-A- 5 6— 87 5 8 0) 、 またトリオキサンを含むベンゼン溶液 に水を用いて抽出操作を施した後、 効率的に蒸留を行う方法 (J P_A— 3— l 2 3 7 7 7 ) 、 大きな段数及び還流比で蒸留して不純物であるオリゴァセタール を分離除去する方法 (J P— A— 5 7 - 2 0 03 8 2 ) などである。 さらに、 本 発明者らは、 効率的なトリオキサンの精製方法として、 水、 ホルムアルデヒド、 メタノール、 ギ酸、 メチラ一ル、 ギ酸メチル、 オリゴァセタールを含むトリオキ サン含有有機溶液を、 蒸留塔上部に供給し、 有機溶剤、 水、 メタノール、 ギ酸、 メチラール、 ギ酸メチルを塔頂部より、 オリゴァセタールを含むトリオキサン及 び/又は有機溶媒を塔中段及び塔底から抜き出し、 精製トリオキサンを塔下部よ り得、 塔中段及び塔底から抜き出したオリゴァセタールを含むトリオキサン及び Z又は有機溶媒を固体酸触媒と接触させた後、 蒸留塔上部に供給する方法 (J P
— A— 6 3 - 2 6 4 5 7 9 ) を開示している。
し力、し、 いずれの方法も、 トリオキサンから、 水、 ホルムアルデヒド、 メタソ ール、 ギ酸、 メチラール、 ギ酸メチル等の不純物を極限まで除去し、 且つ、 オリ ゴァセタールを効率よく除去するには不十分である。
また、 J P— A— 6 3 - 2 6 4 5 7 9が開示した方法では、 オリゴァセタール を含むトリォキサンの溶液を固体酸触媒に接触させた後、 その溶液を直接蒸留塔 上部に戻していたが、 この方法ではギ酸を極限まで除去することが困難であった 発明の開示
本発明者らは、 従来技術のこれらの問題点を解決するために、 トリオキサンの 精製方法について鋭意研究を行い、 本発明を完成した。
本発明は、 低沸点不純物 (例えば、 ギ酸メチル、 メチラール、 ホルムアルデヒ ド、 メタノール) 、 オリゴァセターノレ及びトリオキサンを含む有機溶液から、 精 製トリオキサンを蒸留塔で蒸留分離するトリオキサンの精製方法において、 蒸留 塔で分離されたォリゴァセタールを含むトリォキサン蒸留液を水の存在下で固体 酸触媒と接触させた後、 非水有機溶媒と混合した後水洗してトリオキサン含有有 機抽出液を得、 この抽出液を蒸留塔に戻す、 方法である。
また、 本発明は、 ホルムアルデヒド水溶液を酸性触媒の存在下で加熱してトリ ォキサンを合成し、 トリオキサン含有水溶液を得る工程、 該トリオキサン含有水 溶液を非水有機溶媒で抽出し、 ギ酸メチル、 メチラール、 ホルムアルデヒド及び メタノールからなる群より選ばれる少なくとも 1種の低沸点不純物、
C H 3 0 ( C H 2 O) „ C H 3 (但し、 n = 2 ~ 5 ) 及びトリオキサンを含む有 機溶液を得る工程、 該卜リオキサンを含む有機溶液を蒸留塔に供給し蒸留分離し て精製卜リオキサン蒸留液及び C H :, 0 ( C H , 0) „ C H 3 (但し、 n = 2〜 96/2
5 ) を含むトリオキサン蒸留液を得る工程、 該 C H 3 0 ( C H 2 O) „ C H 3 (但し、 n = 2〜5 ) を含むトリオキサン蒸留液の一部又は全部を水の存在下で 固体酸触媒と接触させる工程、 次 L、で該蒸留液を非水有機溶媒と混合した後水洗 し、 トリォキサン含有有機抽出液を得る工程、
(vi)次いでトリオキサン含有有機抽出液を上記蒸留塔に戻す工程、 からなるトリ ォキサンの製造方法である。
本発明によれば、 極めて高純度に精製されたトリオキサンを効率良く得ること ができる。 発明を実施するための最良の形態
トリオキサンは、 従来公知の方法により、 ホルムアルデヒド水溶液を酸性触媒 の存在下で加熱することにより合成される。 ホルムアルデヒド水溶液のホル厶ァ ルデヒ ド濃度は、 通常 3 0 w t %〜8 0 w t %である。 トリオキサン合成用の酸 性触媒としては、 硫酸、 リン酸、 p—トルエンスルホン酸、 ゼォライト、 又はス ルホン酸基もしくはフルォロアルキルスルホン酸基を有する陽イオン交換体等を 用いるのが一般的である。
生成した卜リオキサン含有水溶液から直接、 又は蒸留により濃縮した後の溜出 液から、 トリオキサンを非水有機溶媒で抽出する。 ここで用いる非水有機溶媒と しては、 水と混和すると、 相分離する有機溶媒であると同時に、 水相への溶出量 の少ない溶媒であり、 且つトリオキサンを実質的に溶解せしめる溶媒である。 こ の様な性質を備えた溶媒としては、 例えば、 塩化メチレン、 クロ口ホルム、 四塩 化炭素、 塩化工チル、 塩化エチレン等のハロゲン化炭化水素、 ベンゼン、 トルェ ン、 キシレン等の芳香族炭化水素等がある。
こうしてトリオキサンを含む有機溶液が得られるが、 この溶液中には、 不純物 としてギ酸メチル、 メチラール、 ホルムアルデヒド、 メタノール、 及びオリゴァ セタール (C H 3 0 (C H 2 0) „ C H 3 (但し、 n = 2〜5 ) ) 等が含まれて おり、 これらは蒸留により以下のように分離除去される。 なお、 該トリオキサン を含む有機溶液は、 水洗後蒸留塔に供給してもよい。
上記トリオキサンを含む有機溶液の蒸留精製は、 1本あるいは複数本の蒸留塔 を用いて行うことができる。
1本の蒸留塔で蒸留精製を行う場合には、 例えば、 トリオキサンを含む有機溶 液を蒸留塔上部に供給し、 有機溶媒、 低沸点不純物 (例えば、 ギ酸メチル、 メチ ラール、 ホルムアルデヒド、 メタノール、 ギ酸) を塔頂から抜き出し、
CH3 0 (CH2 O) n CH3 (主に n = 2) を含むトリオキサン蒸留液及び Z 又は有機溶媒を塔中段から抜き出し、 CH3 0 (CH2 0) „ CH3 (主に n = 3) を含むトリオキサン蒸留液を塔底から抜き出し、 精製トリオキサン蒸留液を 塔下部から抜き出すことができる。
2本の蒸留塔で蒸留精製を行う場合は、 例えば、 まず、 第一塔の中段に原料の トリオキサンを含む有機溶液を供給し、 塔頂及び塔上部から低沸点不純物 (例え ばギ酸メチル、 メチラ一ル、 ホルムアルデヒド、 メタノール) 及び有機溶媒を抜 き出し、 塔底からオリゴァセタールを含むトリオキサン蒸留液を抜き出す。 次い でこのトリオキサン蒸留液を第二塔中段に供給し、 塔頂から
CH3 0 (CH2 O) „ CH3 (主に n = 2) を含むトリオキサン蒸留液を、 塔 底から CH3 O (CH2 O) , CH3 (主に n= 3〜5) を含むトリオキサン蒸 留液を抜き出し、 塔下部から精製トリオキサン蒸留液を抜き出すことができる。 この場合、 第 1塔の蒸留条件は、 J P— A— 3— 1 23777の記載を参考にし て具体的に設定できる。 第 2塔の好ましい蒸留条件は、 還流比が 5〜500、 好 ましくは 1 0〜200であり、 塔項及び塔底から抜き出すオリゴァセタールを含 むトリオキサン蒸留液の量が、 塔下部から抜き出す精製トリオキサン蒸留液の量 に対して、 それぞれ 1Z1 00〜1/1、 好ましくは 1Z50〜1Z3の比とな ることである。 還流比及び蒸留塔からの抜き出し量を、 これらの範囲に制御する ことによって、 不純物たるオリゴァセタールを効率的に除去することができる。 本発明の蒸留塔としては、 バブルキャップトレイ、 シーブトレイなどが備わつ た段塔、 又は内部にラシヒリング、 ポールリング、 ディクソンリング、 マクマホ ンパッキング等を気液接触を効率的に行うために充塡した充塡塔などが使用でき 。
本発明の一つの要点は、 蒸留により分離されたオリゴァセタールを含むトリオ キサン蒸留液の全部、 あるいは一部を水の存在下で、 固体酸触媒と接触させ、 CH3 O (CH2 0) „ CH3 (n = 2〜5) を分解することである。 蒸留塔か ら抜き出されるオリゴァセタールを含むトリオキサン蒸留液は、
CH3 0 (CH2 0) „ CH3 (n = 2) を主に含むトリオキサン蒸留液と、 CH3 0 (CH2 0) „ CH3 (n = 3〜5) を主に含むトリオキサン蒸留液と に大別することができる。 本発明では、 これらを全て混合してから、 固体酸触媒 と接触させるか、 あるいはその一部、 例えば CH3 0 (CH2 O) 2 CH3 を主 に含むトリォキサン蒸留液のみを固体酸触媒と接触させることが可能である。
これらオリゴァセタ一ルを含むトリォキサン蒸留液は、 水が含まれている場合 はそのまま固体酸と接触させることもできる力、'、 水を含まないか、 あるいは含ま れる水が少ない場合は、 分解をより促進させるために、 水を添加することが効果 的である。 この場合、 水の量に特に制限はないが、 量が多すぎると水を分離する ための負荷が大きくなり不利である。 分解反応に必要な水の量は、 理論的には CH3 0 (CH2 O) n CH3 と等モル量であり、 好ましい水の量は、 オリゴァ セタールを含むトリオキサン蒸留液中の濃度として、 0. 005〜50wt%、 より好ましくは 0. l〜30wt%である。
分解反応のために用いる固体酸触媒としては、 例えば酸性白土、 ゼォライト、 シリカマグネシアなどの無機酸化物複合体;ニッケル、 鉄、 カドミウム等の金属 の硫酸塩;これらの硫酸塩をシリカゲル、 ケイソゥ土、 炭化ゲイ素等に含浸した 無機固体酸;スルホン酸基、 フルォロアルキルスルホン酸基等を有する陽イオン 交換体等が挙げられる。 これらの中では、 ゼォライト及び陽イオン交換体が好ま しい。
触媒はトリオキサン蒸留液中に懸濁させた状態でも使用できるが、 ジャケッ ト 付きの円筒容器に充填した固定床として使用する方が効果的である。 触媒量及び 分解温度は、 オリゴァセタールが選択的に分解し、 トリオキサンの分解率が少な いように選択することが好ましい。 すなわち、 好ましくは、 LHSV (Liquid Hourly Space Velocity ) が 0. 2〜20 Ohr— 1の範囲、 及び分解温度が 30〜 1 50。Cの範囲であり、 より好ましくは LHS Vが 0. 5〜6 Ohr 1の範囲、 及 び分解温度が 50〜1 00°Cの範囲である。
もう 1つの本発明の要点は、 こうして固体酸触媒と接触させることにより得ら れた、 オリゴァセタールの分解物を含むトリオキサン含有溶液を、 非水有機溶媒 と混合した後水洗し、 得られたトリオキサン含有有機抽出液を蒸留塔に戻しリサ ィクルすることである。
ここで用いる非水有機溶媒の例としては、 先に述べたように、 最初に蒸留塔に 供給するトリオキサンを含む有機溶液の溶媒と同様のものが挙げられる。 好まし い有機溶媒は、 トリオキサンを含む有機溶液の溶媒と同じものであり、 この有機 溶媒は、 トリオキサン、 ギ酸メチル、 メチラール、 ホルムアルデヒド、 メタノー ル及びノ又はオリゴァセタールを含んでいても差し支えない。
例えば、 蒸留塔に供給するトリオキサンを含む有機溶液そのものを非水有機溶 媒として用いて、 固体酸触媒によるオリゴァセタールの分解物を含むトリオキサ ン含有溶液と混合することも好ましい。 トリォキサンを含む有機溶液を水洗して から蒸留塔に供給する場合は、 非水有機溶媒として、 水洗前のトリオキサンを含 む有機溶液又は水洗後のトリオキサンを含む有機溶液のいずれを用いてもよい。 ここで用いる非水有機溶媒の量は、 ォリゴァセタールの分解物を含むトリォキ サン含有溶液を混合した後の有機溶液中のトリオキサン濃度が、 5 ~ 7 0 w t % の範囲であること力く好ましい。 より好ましくは、 卜リオキサン濃度が、 2 0〜6 0 w t %の範囲である。 トリオキサン濃度が 5 w t %未満では、 トリオキサンと 非水有機溶媒の分離に多くのエネルギーが必要となり不経済であり、 7 0 w t % を越えると、 後工程の水洗処理において、 トリオキサンの損失が大きくなり好ま しくない。
固体酸触媒との接触後のトリォキサン含有溶液は、 上記非水有機溶媒と混合さ れ、 更に水洗される。
水洗には、 槽を使用するバッチ式抽出方法、 あるいは塔を利用する連続式抽出 方法等が用いられる。 好ましい水洗方法としては、 塔の上部から水を流し、 塔の 下部からォリゴァセタールの分解物を含むトリォキサン含有溶液と非水有機溶媒 との混合液を流し、 塔の中には段または充塡剤等で水と混合液との界面接触を良 くする補助物が人れられている、 いわゆる向流液液接触の方法が用いられる。 水 洗によって、 オリゴァセタールの分解物、 不純物等が水相に抽出され、 トリオキ サン含有有機抽出液が得られる。 使用される水と混合液との比率は、 1 : 1 0 0 〜1 : 1、 好ましくは 1 : 30〜ί : 3の間である。 使用される水の量が少ない と不純物の抽出効果が不十分であり、 また多すぎるとトリオキサン等の損失が多 く不経済である。 水洗の温度は、 0°C〜水または有機溶剤の沸点の範囲である。 好ましい温度範囲は、 5 0〜1 0 0°Cである。
水洗後のトリォキサン含有有機抽出液は、 蒸留塔に戻される。 有機抽出液を戻 す蒸留塔の位置に特に制限はないが、 塔中段から上段までの範囲が好ましい。 蒸 留を 1塔で行う場合は塔上段に、 2塔で行う場合は第 1塔の中段に戻すことが好 ましい。
固体酸触媒によるオリゴァセタールの分解物を含むトリオキサン含有溶液を、 非水有機溶媒と混合後、 水洗処理を行うことなく蒸留塔にリサイクルすると、 得 られるトリオキサンの純度が低く、 特にギ酸の濃度を極限まで低減することが困 難となる。
蒸留塔から分離されるオリゴァセタールを含むトリオキサン蒸留液を、 そのま ま排出してしまうと、 トリォキサンの損失力、'非常に大きくなり経済的に不利であ る。一方、 トリオキサンの損失を小さく抑えるために、 蒸留塔からのオリゴァセ タールを含むトリオキサン蒸留液の抜き出し量を小さくすると、 精製トリオキサ ン蒸留液中のオリゴァセタール濃度が高くなり、 高度精製トリオキサンが得られ ないか、 あるいは、 蒸留塔段数や、 還流比を非常に大きくする必要があり、 大き な設備やエネルギーが必要となる。
本発明によって初めて効率的に極めて高純度のトリオキサンを連続的に製造す ることができる。
以下、 実施例及び比較例により本発明を更に詳細に説明する力 本発明はこれ らによって何ら限定されるものではない。
例 1 (本発明)
60 %ホルマリン溶液を硫酸の存在下で加熱蒸留し、 塔頂より 卜リオキサンを 含む水溶液留出物を得た。 この水溶液留出物とベンゼンとを混合した後 2層分離 させ、 トリオキサン 38 w t %、 ホルムアルデヒド 0. 5%、 メタノール 1. 5 wt%、 ギ酸メチル 0. 5wt、 メチラール 0. 25wt%、 水 1. 5wt%、 CH, 0 (CH2 0) 2 CH3 0. 3wt%、 CH, 0 (CH2 0) a CHn 0. 0 5 wt%を含むベンゼン溶液を連続的に得た。 このベンゼン溶液を、 第 1蒸留 塔 (シ一ブトレイ、 4 0段) の 2 0段目に供給し、 還流比 3で蒸留した。 塔頂か らベンゼン、 ホルムアルデヒド、 メタノール、 ギ酸メチル、 メチラール、 水、 ギ 酸を抜き出し、 塔底から、 CH3 O (CH2 0) CH3 を含むトリオキサン蒸 留液を、 連続的に抜き出した。 さらに、 この CH3 0 (CH2 0) „ CH3 を含 むトリオキサン蒸留液を、 第 2の蒸留塔 (シ一ブトレイ、 4 0段) の 2 5段目に 供給し、 還流比 5 0で蒸留した。 第 2の蒸留塔の塔頂から、
CH3 0 (CH2 0) CH3 を含むトリオキサン蒸留液、 塔底から
CH3 0 (CH2 O) CH3 を含むトリオキサン蒸留液、 塔の 3 5段目から精 製トリオキサン蒸留液を、 連続的に抜き出した。 この時塔頂、 塔底から抜き出す トリオキサンの蒸留液の量は、 精製トリオキサン蒸留液に対して、 重量比でそれ ぞれ 1Z2 0に制御した。 第 2蒸留塔の塔頂及び塔底から抜き出した
CH3 0 (CH2 O) n CH3 を含むトリオキサン蒸留液を合流させ、 トリオキ サンに対して、 1ノ1 0量の水を添加した後、 7 0°Cに温度を維持した陽イオン 交換樹脂 (アンバーライト 2 00 C :オルガノ社製) を充塡した固定床を、 LH SV= 3. O h r— 1で通過させた。 CH3 0 (CH2 O) „ CH3 の分解物を含 むトリオキサン含有溶液 1重量部に対し、 ベンゼン 2重量部の割合でベンゼンを 混合した。 得られたトリオキサンを含むベンゼン溶液を、 ラシヒリングを詰めた 充填塔の下部に供給し、 上部から水を供給した。 ここでのベンゼン溶液と水の重 量比は 1 5 : 1、 抽出温度は 7 0°Cに制御した。 水洗処理された、 トリオキサン を含むベンゼン溶液を、 第 1蒸留塔に供給する先述のベンゼン溶液と合流させ、 リサイクルした。 こうして、 高度精製卜リオキサンを連続的に製造した。 第 2の 蒸留塔から得られた精製トリオキサン蒸留液中の不純物濃度を表 1に示す。 例 2〜5 (本発明)
例 1と同様の装置を用い、 第 2蒸留塔の塔頂及び塔底から抜き出した
CH3 0 (CH2 0) n CH. を含むトリオキサン蒸留液中の
CH, 0 (CH2 0) „ CH, の分解条件 (水の添加量、 L. H. S. V) 、 ト リオキサン溶液とベンゼンとの混合割合及び水洗処理条件を表 1に示す条件に変 えた以外は、 例 1と同様の操作を行った。 第 2の蒸留塔から得られた精製卜リオ キサン蒸留液中の不純物濃度を表 1に示す。
例 6 (本発明)
6 5 %ホルマリン溶液を硫酸の存在下で加熱蒸留し、 塔頂よりトリォキサンを 含む水溶液留出物を得た。 この水溶液留出物とベンゼンとを混合した後 2層分離 させ、 トリオキサン 38wt%、 ホルムアルデヒド 2. 5wt%、 メタノール 1. 5wt%、 ギ酸メチル 0. 5wt%、 メチラール 0. 2 5wt %、 水 1. 5wt %、 CH3 O (CH2 0) 2 CH3 0. 3wt%、
CH3 O (CH2 O) 3 CH3 0. 0 5 wt%を含むベンゼン溶液を連続的に得 た。 このベンゼン溶液を、 ラシヒリングを詰めた充填塔下部に供給し、 上部から 水を供給した。 ここでベンゼン溶液と水の重量比は 1 5 : 1、 抽出温度は 70V に制御した。 抽出されたトリオキサンを含むベンゼン溶液を、 第 1蒸留塔 (シー ブトレイ、 4 0段) の 2 0段目に供給し、 還流比 3で蒸留した。 塔頂からベンゼ ン、 ホルムアルデヒド、 メタノール、 ギ酸メチル、 メチラール、 水、 ギ酸を抜き 出し、 塔底から、 CH3 O (CH2 O) „ CH3 を含むトリオキサン蒸留液を、 連続的に抜き出した。 さらに、 この CH3 0 (CH2 O) „ CH3 を含むトリオ キサン蒸留液を、 第 2の蒸留塔 (シーブトレイ、 4 0段) の 2 5段目に供給し、 還流比 5 0で蒸留した。 塔頂から、 CH3 0 (CH2 O) CH3 を含むトリオ キサン蒸留液、 塔底から CH3 0 (CH2 O) CH3 を含むトリオキサン蒸留 液、 塔 3 5段目から精製トリオキサン蒸留液を、 連続的に抜き出した。 この時塔 頂、 塔底から抜き出すトリオキサン蒸留液の量は、 精製トリオキサン蒸留液に対 して、 重量比でそれぞれ 1Z1 0に制御した。 第 2蒸留塔の塔頂及び塔底から抜 き出した CH3 0 (CH2 O) „ CH3 を含むトリオキサン蒸留液を合流させ、 トリオキサンに対して、 1ノ1 0量の水を添加した後、 7 0°Cに温度を維持した 陽イオン交換樹脂 (アンバーライト 20 0 C :オルガノ社製) を充填した固定床 を、 LHSV= 3. O h r 'で通過させた。 CH3 0 (CH2 O) „ CH3 の分 解物を含むトリォキサン含有溶液は、 第 1蒸留塔に供給するベンゼン溶液に合流 させ、 両溶液を同時に水洗処理を行った後、 蒸留塔に戻してリサイクルした。 こ うして、 高度精製トリオキサンを連続的に製造した。 第 2の蒸留塔から得られた 精製トリオキサン蒸留液中の不純物濃度を表 1に示す。 例 7及び 8 (比較)
例 1と同様の装置により、 第 2蒸留塔の塔頂及び塔底から抜き出した
CH3 0 (CH2 O) „ CH3 を含む卜リオキサン蒸留液を合流させ、 トリオキ サンに対して、 1/1 0の水を添加した後、 70°Cに温度を維持した陽イオン交 換樹脂 (アンバーライト 200 C :オルガノ社製) を充塡した固定床を、 LHS V=3. O h r 'で通過させた。 この溶液を、 第 1蒸留塔に供給するベンゼン溶 液のラインに合流させ、 リサイクルした。 この操作以外は、 例 1と同様に、 表 1 に示す条件で操作を行った。 得られた精製トリオキサン蒸留液中の不純物濃度を 表 1に示す。 本発明による例に比較して、 水およびギ酸の濃度が大きい。
Hォキサン含有溶 水洗処理での 精製ト1けキサン蒸留液中の不純物濃度 例 No. 液/1ベンゼン混合 ベンゼン溶液に LP pmj
水添加量 〔wt比〕 し H. S. V 後のトリ サン濃 対する水量
(対トリオキサン) 〔hr- 1〕 度 〔wt%〕 〔重量比 3 水 ギ酸 CH3(CH,0)2CH, CH3(CH20)3CH3 例 1 1/1 0 〇 3. 0 33 1/1 0 < 1 1 43 32 例 2 1/1 0 3. 0 50 1/1 5 < 1 < 1 6 1 55 例 3 1/1 0 3. 0 33 1/30 < 1 < 1 52 38 例 4 1/30 3. 0 33 1/20 < 1 < 1 63 62 例 5 1/30 10. 0 33 1/20 < 1 1 66 65 例 6 1/1 0 3. 0 38 1/20 < 1 < 1 45 38 例 7 1/1 0 3. 0 5 8 45 38 例 8 1/1 0 3. 0 3 5 66 68

Claims

請 求 の 範 囲
1. (i) ギ酸メチル、 メチラール、 ホルムアルデヒド及びメタノールからなる 群より選ばれる少なくとも 1種の低沸点不純物、 CH3 0 (CH2 0) „ CH3 (但し、 n == 2〜 5 ) 及びトリォキサンを含む有機溶液 (以下、 単にトリオキサ ンを含む有機溶液ともいう) を蒸留塔に供給し、 蒸留分離して精製トリオキサン 蒸留液及び CH3 0 (CH2 O) „ CH3 (但し、 n = 2〜5) を含むトリオキ サン蒸留液を得る工程、 (ii)該 CH3 0 (CH2 0) n CH3 (但し、 n = 2〜 5 ) を含むトリォキサン蒸留液の一部又は全部を水の存在下で固体酸触媒と接触 させる工程、 (iii) 次いで該蒸留液を非水有機溶媒と混合した後水洗し、 トリオ キサン含有有機抽出液を得る工程、 (iv)該トリォキサン含有有機抽出液を上記蒸 留塔に戻す工程からなる卜リオキサンの精製方法。
2. 前記非水有機溶媒として、 工程 ( i ) における前記卜リォキサンを含む有 機溶液を用いる請求項 1記載の方法。
3. (i) ホルムアルデヒド水溶液を酸性触媒の存在下で加熱してトリオキサン を合成し、 トリオキサン含有水溶液を得る工程、 (ii)該トリオキサン含有水溶液 を非水有機溶媒で抽出し、 ギ酸メチル、 メチラ一ル、 ホルムアルデヒド及びメタ ノールからなる群より選ばれる少なくとも 1種の低沸点不純物、
CH3 0 (CH2 0) n CH3 (但し、 n = 2〜5)及びトリオキサンを含む有 機溶液を得る工程、 (iii)該トリオキサンを含む有機溶液を蒸留塔に供給し蒸留 分離して精製トリオキサン蒸留液及び CH3 0 (CH2 0) „ CH3 (但し、 n = 2-5) を含むトリオキサン蒸留液を得る工程、 (iv)該
CH3 0 (CH2 0) „ CH3 (但し、 n = 2〜5) を含むトリオキサン蒸留液 の一部又は全部を水の存在下で固体酸触媒と接触させる工程、 (V) 次いで該蒸留 液を非水有機溶媒と混合した後水洗し、 卜リオキサン含有有機抽出液を得る工程、 (vi)次いでトリオキサン含有有機抽出液を上記蒸留塔に戻す工程、 からなるトリ ォキサンの製造方法。
4. 工程 (V) における前記非水有機溶媒として、 工程(iii) における前記トリ ォキサンを含む有機溶液を用 、る請求項 3記載の方法。
PCT/JP1996/000066 1995-01-26 1996-01-18 Procede de purification de trioxanne WO1996022986A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8522771A JP2916953B2 (ja) 1995-01-26 1996-01-18 高純度トリオキサンの精製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/28865 1995-01-26
JP2886595 1995-01-26

Publications (1)

Publication Number Publication Date
WO1996022986A1 true WO1996022986A1 (fr) 1996-08-01

Family

ID=12260279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/000066 WO1996022986A1 (fr) 1995-01-26 1996-01-18 Procede de purification de trioxanne

Country Status (1)

Country Link
WO (1) WO1996022986A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1000942A1 (de) * 1998-11-09 2000-05-17 Ticona GmbH Trennung von flüssigen Gemischen enthaltend Formaldehyd, Trioxan, Alkohol und Hemiformal
JP2012224584A (ja) * 2011-04-20 2012-11-15 Asahi Kasei Chemicals Corp 環状ホルマールの精製方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264579A (ja) * 1987-04-21 1988-11-01 Asahi Chem Ind Co Ltd トリオキサンの精製方法
JPH03123777A (ja) * 1989-10-05 1991-05-27 Asahi Chem Ind Co Ltd トリオキサンの精製方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264579A (ja) * 1987-04-21 1988-11-01 Asahi Chem Ind Co Ltd トリオキサンの精製方法
JPH03123777A (ja) * 1989-10-05 1991-05-27 Asahi Chem Ind Co Ltd トリオキサンの精製方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1000942A1 (de) * 1998-11-09 2000-05-17 Ticona GmbH Trennung von flüssigen Gemischen enthaltend Formaldehyd, Trioxan, Alkohol und Hemiformal
US6201136B1 (en) 1998-11-09 2001-03-13 Ticona Gmbh Separation of liquid mixtures comprising formaldehyde, trioxane, alcohol and hemiformal
JP2012224584A (ja) * 2011-04-20 2012-11-15 Asahi Kasei Chemicals Corp 環状ホルマールの精製方法

Similar Documents

Publication Publication Date Title
CN100400526C (zh) 环氧丙烷的提纯
EP0569248B1 (en) Improved process for the co-production of propylene oxide and styrene monomer
JPH11228555A (ja) エピクロロヒドリン主体生成物及びその生成物の製造方法
US6433166B2 (en) Process for producing ε-caprolactam
US4302298A (en) Process for isolating methyl tert-butyl ether from the reaction products of methanol with a C4 hydrocarbon cut containing isobutene
EP2462130B1 (en) Process for producing propylene oxide
US4971661A (en) Purification of propylene oxide using an aqueous acetone extractive distillatin agent
FI84259C (fi) Foerfarande foer framstaellning av vattenfri eller naestan vattenfri myrsyra genom hydrolys av metylformiat.
JP3038351B2 (ja) 低級アルキレンオキシドの精製法
DE60201916T2 (de) Rückgewinnung und aufreinigung von 3,4 epoxy 1 buten
KR970001489B1 (ko) 트리옥산의 제조방법
CN104961630A (zh) 一种2,5-二氯苯酚的制备方法
US6559346B1 (en) Method for the continuous production of glutaraldehyde
WO1996022986A1 (fr) Procede de purification de trioxanne
EP1270548B1 (en) Purification method of cyclohexanone-oxime
JP2916953B2 (ja) 高純度トリオキサンの精製方法
JPS61130247A (ja) 1,2‐ペンタンジオールの連続的製法
CN106588597A (zh) 提纯聚甲醛二甲基醚的方法
KR100485226B1 (ko) 1,3-디옥솔란의제조방법
KR100459817B1 (ko) 수성혼합물로부터ε-카프로락탐의분리방법
JPH07188085A (ja) メチル−tert−ブチルエーテルの連続精製法
US3282966A (en) Recovery of purified propylene oxide by plural stage distillation
WO2004000773A1 (en) Process of separating 1-methoxy-2-propanol and 2-methoxy-1-propanol from aqueous compositions
JPH05255155A (ja) tert−ブチルアルコールの精製法
EP0826665A1 (en) Recovery of epsilon-caprolactam from aqueous mixtures

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96191611.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN DE JP SG US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642