WO1996020985A1 - Composition smectique de cristaux liquides et dispositif a cristaux liquides - Google Patents

Composition smectique de cristaux liquides et dispositif a cristaux liquides Download PDF

Info

Publication number
WO1996020985A1
WO1996020985A1 PCT/JP1995/002725 JP9502725W WO9620985A1 WO 1996020985 A1 WO1996020985 A1 WO 1996020985A1 JP 9502725 W JP9502725 W JP 9502725W WO 9620985 A1 WO9620985 A1 WO 9620985A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
component
composition
crystal composition
compound
Prior art date
Application number
PCT/JP1995/002725
Other languages
English (en)
French (fr)
Inventor
Eiji Okabe
Mayumi Tanabe
Shinichi Saito
Akira Sakaigawa
Hitoshi Takeda
Masami Kido
Takashi Kaneko
Mitshuhiro Koden
Teiyu Sako
Original Assignee
Chisso Corporation
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corporation, Sharp Kabushiki Kaisha filed Critical Chisso Corporation
Priority to EP95942285A priority Critical patent/EP0801125B1/en
Priority to DE69517338T priority patent/DE69517338T2/de
Priority to US08/860,525 priority patent/US5800736A/en
Publication of WO1996020985A1 publication Critical patent/WO1996020985A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring

Definitions

  • the present invention relates to a liquid crystal composition that can be suitably used for a liquid crystal display device, particularly a ferroelectric liquid crystal display device, and a ferroelectric liquid crystal display device using the same.
  • liquid crystal display devices have been widely used.
  • a TN (twisted nematic) display method is most widely used.
  • This TN display has many advantages such as low driving pressure and low power consumption.
  • the response speed is remarkably inferior to light-emitting display devices such as cathode-ray tubes, electroluminescence, and plasma displays.
  • the twist angle is 180.
  • STN display element With the development of a new type of TN display element with an angle of ⁇ 270 °, the so-called STN display element, the display capacity has increased dramatically, but there is still a limit to the response speed.
  • a display device in which a switch element is provided on each surface element of a TN display device has appeared on the market.
  • TFT Thin Film Transistors
  • B Thin Film Transistors
  • TFT type TFT type
  • screen size is limited to over a dozen inches.
  • time division capability is limited to about 1000 lines.
  • the ferroelectric liquid crystal display which is the main feature of the present invention, has the potential of realizing both a large screen of more than a dozen inch size and a reduction in production cost, which cannot be realized by the TFT element.
  • This display method uses a chiral smectic phase such as a chiral smectic C phase (hereinafter, abbreviated as Sc * phase) having strong conductivity.
  • Sc * phase a chiral smectic C phase having strong conductivity.
  • the above method is called a surface stabilized ferroelectric liquid crystal display.
  • ferroelectric liquid crystal element has the following features in principle. 1. High-speed response
  • a ferroelectric liquid crystal composition having a negative dielectric anisotropy (m £ ⁇ 0, ⁇ £ represents a dielectric anisotropy) is used.
  • a method has been proposed (Paris Liquid Crystal Conference, p. 217 (1989), Le Beayne et al.). This method is called the AC sunset effects.
  • Liquid crystal molecules with negative ⁇ in a cell subjected to homogenous alignment treatment tend to be oriented parallel to the glass substrate when applied with an electric field (the molecular long axis is perpendicular to the direction of the electric field).
  • the spontaneous polarization responds to the electric field ( ⁇ .
  • the spontaneous polarization cannot follow the reversal of the electric field, and only ⁇ £ works. This is the mechanism that expresses the memory properties using the AC stabilization effect, and does not move, but remains parallel to the substrate, which results in high contrast.
  • a ferroelectric liquid crystal material having a negative dielectric anisotropy can be applied to a display device utilizing an AC switching effect and a top Vmin.
  • the composition can be composed of liquid crystal compounds or non-liquid crystal compounds.
  • a ferroelectric liquid crystal composition is composed of only a ferroelectric liquid crystal compound, a non-chiral smectic smectic phase such as C, F, G, H, I (hereinafter referred to as a phase such as Sc and a B phase).
  • the compound and the compound exhibiting the formula (1) are used as a basic substance, and one or more ferroelectric liquid crystal compounds or a non-liquid crystal optically active compound are mixed to form a composition exhibiting a ferroelectric liquid crystal phase as a whole. There is a way.
  • DD 247 694 A 1 DD and 24 722 1 A 1 include the following compounds,
  • a composition comprising:
  • compositions of these examples exhibits only a nematic phase.
  • all of the compounds having a thiazyl boule ring disclosed above do not exhibit the Sc phase, and thus are found to be unsuitable as a basic substance of a ferroelectric liquid crystal.
  • Japanese Patent Application Laid-Open No. 2-500191 claims a composition containing a broad-delta thiadiabul compound containing the component (Group A) of the present invention. Furthermore, the following compound of the present invention (A I) is disclosed, which is similar to the compound of the present invention, and describes that both exhibit the SC phase.
  • the compound having a thiadiazole ring containing a cyclohexane ring appears to have an SC phase only in the-part of the alkoxyphenyl type such as (known compounds 1 c and 1 d). Can be inferred.
  • Japanese Patent Application Laid-Open No. 2-500001 also claims a combination with the compound of the component (B) of the present invention.
  • the compounds according to the invention correspond to those indicated under (IId) and (IIg). No examples are given in which the compound of formula (IIg) was actually used as a component. In addition, there is no example in which (AI) and (IId) of the present invention are used in combination.
  • composition containing a compound containing a thiadiazole ring preferably in an amount of 0.5 to 30%, is claimed, but an actual composition exceeding a concentration of 42% is claimed.
  • Japanese Patent Application Laid-Open No. 2-500191 only discloses a portion where the concentration of the thiazazole compound used is low.
  • a display element using a ferroelectric liquid crystal composition having a negative ⁇ £ has excellent characteristics not found in a normal ferroelectric liquid crystal display element.
  • compositions for n can be roughly classified into two.
  • ⁇ £ is sufficiently large and shows good orientation.
  • Emin is the voltage at the minimum pulse width of the electric field strength, d is the cell thickness, PS is the spontaneous polarization, £ 0 is the vacuum permittivity, ⁇ 5 £ is the biaxial dielectric anisotropy, and ⁇ £ is the dielectric difference.
  • Anisotropy, 0 indicates tilt angle (Liquid crystal 6, No. 3, p 3 4 1 (1 1989
  • the second problem, favorable orientation can be explained as follows.
  • Materials exhibiting good orientation include an isotropic liquid phase (hereinafter abbreviated as Is0 phase), a cholesteric phase (hereinafter abbreviated as Ch phase), an SA phase, and an SC * phase from the high temperature side. It is required to have a series of phase transitions. If there is no S A phase, the S C * phase in which the normal direction of the layer surface in the smectic phase does not match the long axis direction of the liquid crystal molecules appears during slow cooling. In other words, it is difficult to form a large liquid crystal uniform alignment region (so-called mono domain) by ordinary slow cooling from the high temperature side.
  • a good monodomain state can be obtained by slow cooling without applying external force.
  • the normal direction of the layer surface is the same as the molecular long axis direction.
  • the state of the layer once formed in the SA phase is maintained even after the transition to the SC * phase, so that a uniform monodomain can be obtained even in the SC * phase. Therefore, the material having the SA phase on the high-temperature side of the SC * phase has the orientation of the SC * phase. Excellent in properties.
  • An object of the invention of the present invention is to realize a liquid crystal composition which simultaneously develops an SA phase in a sufficient temperature range for realizing good orientation if the negative voltage is large enough to be suitable for 1 Vmin. That is.
  • a smectic liquid crystal composition containing a component (AI) and a component (B) and / or a component (C) represented by the following one-branch system;
  • R ' is an alkyl group having 1 to 9 carbon atoms
  • R 2 is an alkyl group having 1 to 9 carbon atoms
  • R 3 is an alkyl group having 1 to 18 carbon atoms
  • R 4 is 1 alkyl group having 1 to 9 carbon atoms.
  • X represents hydrogen or fluorine
  • R 5 represents an alkyl group having 6 to 15 carbon atoms
  • R 6 represents an alkyl group having 6 to 15 carbon atoms.
  • a smectic liquid crystal composition according to any one of (1) to (5).
  • a smectic liquid crystal composition comprising the composition of any one of (1) to (5) in an amount of 70% by weight or more based on the total amount.
  • a ferroelectric chiral smectic C liquid crystal composition obtained by adding one or more optically active compounds to the smectic C liquid crystal composition according to any one of (1) to (8).
  • a liquid crystal element having means for optically identifying switching of the optical axis, wherein the liquid crystal composition is a chiral smect according to (9).
  • a plurality of scanning electrodes and a plurality of signal electrodes are arranged in the direction in which the scanning electrodes and the signal electrodes intersect each other, and the chiral smectic liquid crystal composition in a region where the scanning electrodes intersect with the signal electrodes is used as the electrodes.
  • a ferroelectric liquid crystal device having two stable states, wherein the region is a pixel, and when the pixel is selected, the following formula is applied to the pixel.
  • a second pulse voltage V2 is applied following the first pulse voltage VI or a second pulse voltage -V2 is applied following the first pulse voltage -VI, and a ferroelectric component constituting a certain portion in the pixel is applied.
  • V4 the driving method of the liquid crystal element according to (1 2).
  • the chiral smectic liquid crystal composition is a ferroelectric liquid crystal device having two stable states, and the pulse width of the unipolar pulse required to rewrite from one stable state to the other is -pulse (13)
  • the chiral smectic liquid crystal composition is a ferroelectric liquid crystal device having two stable states, and the pulse width of the unipolar pulse required for rewriting from one stable state to the other stable state —In the pulse voltage characteristics, the pulse voltage that gives the minimum value of the pulse width is 40 V or less, and the driving method of the liquid crystal element described in (13) is mainly represented by (AI). And a compound represented by (B) and (C).
  • the (AI) component is an essential component and is a basic component of the present invention.
  • (A1I) which has a thiadiazole structure like (AI), is an additional component and may or may not be contained at all.
  • (AI): (AII) 1: Concentration lower than 1 The degree is more preferable.
  • the previously known (AI) compounds known compounds 1 and 2) have no Sc phase at all, so they can be used as a basic substance in ferroelectric liquid crystals. There was no. However, this time, the present inventors have found the superiority of the compound (AI), and have reached the present patent application.
  • the content ratio of the components (Group A) and (Group BC (B + C)) can be arbitrarily set, but is more preferably a composition having a ratio of 1: 3 to 3: 1, and more preferably a ratio of 1: 1.
  • Compositions that are from 1 to 3: 1 are preferred. This is because, in a composition falling within this range, both the liquid crystal temperature range and the value of ⁇ are within the preferred ⁇ 5 range.
  • a compound other than the composition component of the present invention can be added to the composition of the present invention at a concentration of 30 wt or less.
  • These compounds are preferably liquid crystal compounds, and more preferably smectic liquid crystal compounds.
  • the viscosity of the compound to be added is preferably lower.
  • these compounds are added to adjust various physical properties other than the bridging property, for example, ⁇ , ⁇ , and the like. These representative compounds are exemplified.
  • an optically active compound is added to the composition of the present invention to prepare a ferroelectric liquid crystal composition.
  • the ratio of addition of the optically active compound depends on its own spontaneous polarization. This is because, as described above, if the spontaneous polarization of the composition is excessive, a back electromotive force is generated internally.
  • Any optically active compound may be used as long as its properties are not significantly impaired when added to the smectic liquid crystal composition of the present invention. in Also, those that induce a high-speed response are more preferable.
  • Optically active compounds are generally more polar than basic substances that form liquid crystals. Addition of an excess amount of the optically active compound greatly increases the viscosity of the composition, and thus, increases the response time. From this viewpoint, the content of the optically active compound needs to be 30% or less, preferably 10%, more preferably 5% or less, particularly preferably.
  • the amount of the optically active compound added determines the spontaneous polarization of the composition.
  • Each of the added optically active compounds has a unique induced spontaneous polarization value. As mentioned, 7 "-
  • the spontaneous polarization of the composition for Vmin has an upper limit of use. Since the spontaneous polarization of the composition does not exceed this upper limit, the upper limit of the amount added is inevitably determined. Since it is necessary to avoid an increase in viscosity in order to obtain a desired spontaneous polarization value, it is desirable that the optically active compound induces a small viscosity.
  • FIG. 1 is a cross-sectional view for explaining the structure and manufacturing method of a ferroelectric liquid crystal device using the smectic liquid crystal composition of the present invention.
  • FIG. 2 is a diagram schematically illustrating a method of manufacturing a large-capacity ferroelectric liquid crystal element using the liquid crystal element of the present invention.
  • FIG. 3 is a diagram for explaining the C 1 alignment and the C 2 alignment of the ferroelectric liquid crystal element.
  • FIG. 4 is a diagram showing a model of molecular orientation in four orientation states of a ferroelectric liquid crystal device.
  • FIG. 5 is a diagram showing a driving waveform (A) for driving a ferroelectric liquid crystal element by using the -V characteristic of the ferroelectric liquid crystal material.
  • FIG. 6 is a diagram showing a driving waveform (B) for driving a ferroelectric liquid crystal element using the rV characteristics of the ferroelectric liquid crystal material.
  • FIG. 7 is a diagram showing driving waveforms for driving a ferroelectric liquid crystal element using the -V characteristic of a ferroelectric liquid crystal material.
  • FIG. 8 is a graph showing the dependence of ⁇ -Vmin upon irradiation of the compositions of Example 22 of the present invention and Reference Examples upon irradiation with ultraviolet light.
  • FIG. 9 is a diagram showing the vertical V characteristics of the ferroelectric liquid crystal device of Example 24 of the present invention using the ferroelectric liquid crystal composition (1).
  • FIG. 10 is a diagram showing the IV characteristics of the ferroelectric liquid crystal device of Example 24 of the present invention using the ferroelectric liquid crystal composition (m).
  • FIG. 11 is a diagram showing the IV characteristics of the ferroelectric liquid crystal device of Example 24 of the present invention using the ferroelectric liquid crystal composition (n).
  • the application is a smectic liquid crystal composition containing the following components (AII) and (B).
  • composition of the present application can be suitably used for a ferroelectric liquid crystal display device of -Vmin mode.
  • the composition has obvious disadvantages. That is, the temperature range of the SA phase is extremely narrow. The reason depends on the properties of the following components.
  • compositions of the application generally have only a narrow S A phase temperature range, and thus suffer from poor orientation.
  • compound (C) is a component compound of the previous application
  • compound (D) is a compound corresponding to the alkoxy group.
  • the dielectric anisotropy obtained from the outer pulp of compound (C) and compound (D) were -4.3, -2.7, respectively (Comparative Example 1).
  • the terminal alkoxy group was a terminal alkyl group Thus, it was found that the method of the present invention was not suitable.
  • the present inventors studied the use of a cyclohexane compound as a component ′ (Comparative Example 2).
  • the compound (E) is the component (A) of the present invention, and the compound (F) is the corresponding alkoxy compound.
  • Japanese Unexamined Patent Publication (Kokai) No. 2-5000191 describes the liquid crystal phase transition temperatures of (known compound 1c) and (known compound 1d) as preferably usable thiadiazole compounds.
  • Japanese Patent Application Laid-Open No. 2-500001 lists the following (IIa) as component compounds used in combination with thiadiabule compounds.
  • Japanese Patent Application Laid-Open No. 2-501001 mainly adds a compound of (Hd). Therefore, the present inventors also considered that the following compound (G), which is used in ([[d)] and also in Japanese Patent Application Laid-Open No. 2-500191, was added to compound (E) and (F) was compared.
  • the compound of the present invention (AI) is larger than these known compounds. And can be suitably used.
  • the present inventors have attempted to use cyclohexyl ruthiaziavle as a component of the composition, and as a result, have found that an alkyl compound can be used and an alkoxy compound is difficult to use.
  • Japanese Patent Application Laid-Open No. 2-500001 is a compound of an alkoxy group (known compound 1C.
  • the composition comprising the compound (E) and the compound (G) has a wider concentration range exhibiting the SA phase than the composition comprising the compound (F) and the compound (G). More specifically, the composition comprising the compound (F) and the compound (G) or the SA phase is present at a compound (F) power ow or lower. At higher ratios, there is no SA phase. In contrast, the composition consisting of compound (E) and compound (G) exhibits a wide SA phase over all the adjusted component ratios.
  • compound (E) that is, compound (A) of the present invention
  • compound (F) that is, an alkoxy compound corresponding to compound (A) of the present invention. It turns out that it is superior to a compound.
  • the compound (AI) of the present invention is excellent.
  • the composition comprising the compound (F) and the compound (G) exhibits the SA phase at a compound (F) power of OwtX or less.
  • is +0.04. This plant is not the value at which the r-Vm i ⁇ mode appears.
  • the composition comprising the compound (F) and the compound (G) does not completely meet the purpose of the present invention.
  • compound ( ⁇ ) and compound (F) seem to differ only in the alkyl group and the alkoxy group, but their properties differ greatly in actual use.
  • the component (A I) of the present invention is excellent.
  • both are component compounds of the composition disclosed in Japanese Patent Application Laid-Open No. 2-135278.
  • the compositions of the present invention may also fall within this claim. However, these applications do not disclose the combination with the single-split type (A I). Therefore, it is completely different from the application and cannot be easily analogized.
  • —Crotch type (B) compound shows smectic C phase in low temperature range including room temperature and low melting point.
  • the compound (B) does not exhibit the SA phase, it seems to be seemingly inappropriate for solving the problem of the present invention.
  • it has excellent ability to form SA and SC phases.
  • the pyrimidine compound represented by (G) (general formula (C)) has a phase series of I-N-S-A-C at high temperatures.
  • the single-arm compound (B) is apparently suitable for solving the problems of the present invention.
  • the combination with (AI) of the present invention satisfies the SA phase region but does not have sufficient ability to keep the value of ⁇ negative. He has enough ability as a candidate to be able to solve
  • composition of the combination of (AI) + ( ⁇ ), (AI) + ( ⁇ ) + (C) Very suitable for use.
  • the compound of (A11) exhibits a Sc phase in a wide fB range, it can be used as a component of the composition of the present invention.
  • the composition will have an undesirably high melting point and a bad increase in viscosity. Furthermore, as will be described later in the examples, since the deterioration with respect to ultraviolet rays progresses rapidly, it is necessary to avoid using high concentrations.
  • Table 1 shows the compounds (A I) which can be suitably used in the present invention and their phase transition temperatures.
  • Table 2 shows the (AII) compounds that can be suitably used in the present invention and their phase transition temperatures.
  • Table 5 shows compounds (C) that can be suitably used in the present invention and their phase transition temperatures.
  • a practical ferroelectric liquid crystal composition can be formed by appropriately adding one or more of appropriate optically active compounds to the composition of the present invention.
  • the optically active site of a compound that can be added is exemplified.
  • FIG. 1 is a sectional view showing a basic structure of a liquid crystal device using the ferroelectric liquid crystal composition of the present invention.
  • This liquid crystal element basically includes a pair of insulating substrates 1 and 2 having conductive films 3 and 4 as electrodes, a smectic liquid crystal composition 8 interposed between the substrates 1 and 2, and It comprises a driving means (not shown) for switching the optical axis of the liquid crystal by selectively applying a voltage, and a polarizing plate 9 as means for optically identifying the switching of the optical axis.
  • 5 indicates an insulating film
  • 6 indicates an alignment control film
  • 7 indicates a sealant.
  • Transparent substrates are used as the insulated substrates 1 and 2, and usually a glass substrate is used.
  • lnO 3 .Sn ⁇ 2 .ITO Indium-Tin Oxide
  • CVD Chemical Vapor Deposition
  • sputtering method in a predetermined pattern of transparent electrodes 3 and 4. Is formed.
  • the thickness of the transparent electrode is preferably 50 to 20 Onm.
  • An insulating film 5 having a thickness of 50 to 20 Onm is formed on the transparent electrode.
  • the absolute ⁇ film for example, Si 0 2, SiNx, A1 2 0 3 inorganic thin film such as Ta 2 0 5, Borii Mi Bok, follower Torejisu preparative resin, the use of such organic thin film such as a polymer liquid crystal Can be.
  • the insulating film is inorganic, it can be formed by a vapor deposition method, a sputtering method, a CVD method, a solution coating method, or the like.
  • a solution in which an organic substance is dissolved or a precursor solution thereof is applied by a spinner coating method, a dip coating method, a screen printing method, a roll coating method, or the like, and a predetermined curing condition ( It can be formed by a method of curing and forming by heating, light irradiation, etc.), or can be formed by a vapor deposition method, a sputtering method, a CVD method, an LB (Lang muir-Blodgett) method, or the like.
  • This insulating film can be omitted.
  • an orientation control film 6 having a thickness of 10 to 10 Onm is formed.
  • the orientation control film is formed directly on the conductive films 3 and 4.
  • an inorganic or organic film can be used as the orientation control film 6, an inorganic or organic film can be used.
  • the inorganic orientation control film may be made of, for example, silicon oxide, and may be formed by a known method. For example, an oblique evaporation method, a rotary evaporation method, or the like may be used.
  • Nylon, polyvinyl alcohol, polyimide, and the like can be used for the organic alignment control film, and rubbing is usually performed thereon.
  • the orientation can be performed by a magnetic field, or the orientation by a space edge method.
  • Si_ ⁇ 2 Si N x such an evaporation method, sputtering evening method, deposited by a CVD method, it can also be used a method of rubbing thereon.
  • the two insulating substrates 1 and 2 are adhered to each other with a sealing material 7 interposed therebetween, and a smectic liquid crystal composition 8 is injected to form a liquid crystal element.
  • a smectic liquid crystal composition 8 the smectic liquid crystal composition of the present invention described in the above item (5) or (6) is used.
  • the switching element having one pixel is described in FIG. 1, but the liquid crystal element of the present invention can be applied to a large-capacity matrix display device.
  • the electrode wirings of the upper and lower substrates 1 and 2 are used in combination with a matrix 1 and a matrix.
  • the most preferable method for uniaxially aligning the alignment film in the liquid crystal element is a rubbing method.
  • rubbing methods such as parallel rubbing ', anti-parallel rubbing, and single rubbing.
  • Parallel rubbing is a rubbing method in which the upper and lower substrates are rubbed, and the rubbing directions are parallel.
  • Anti-parallel rubbing is a rubbing method in which the upper and lower substrates are rubbed, and the rubbing directions are antiparallel.
  • Single rubbing is a method in which only one of the upper and lower substrates is rubbed.
  • the most preferable uniaxial alignment treatment method for an alignment film for obtaining uniform alignment is a method of combining a cell processed by parallel rubbing with a ferroelectric liquid crystal having an INAC phase series.
  • a helix exists in the nematic phase, or the molecular orientation is regulated from both sides of the upper and lower substrates, so that it is easy to obtain a uniform orientation in the nematic phase, and from that state, a smectic ⁇ phase and a chiral smectic If the temperature is lowered to the C phase, uniform and uniform alignment in the direction of the layer normal can be easily obtained.
  • the other is a uniform (U) and a twist (T).
  • the uniform is an orientation exhibiting the extinction position
  • the twist is an orientation exhibiting no extinction position.
  • Mukaidon and colleagues obtained three orientations of C 1 U (C 1 unit), C 1 T (C 1 chip), and C 2 in a parallel rubbed ferroelectric liquid crystal cell using a high pretilt alignment film. (M. Koden et al. Jpn. J. Appl. Phys., 30. L1823C199D).
  • Figure 4 shows the molecular orientation in these orientation states.
  • the appearance of the Cl and C2 orientations is related to the pretilt.
  • the pretilt angle is 0 to 15 °, the C2 state can occur.
  • the pretilt angle is high, as reported by Mukaiden, the C 2 state has only one state indicating the extinction position, which is rather preferable.
  • the pretilt angle is preferably 10 ° or less since the C1 orientation tends to be more likely to occur than the C2 orientation as the pretilt angle increases.
  • the liquid crystal device using the smectic liquid crystal composition of the present invention has a large negative dielectric anisotropy. Due to the nature-very suitable for Vmin mode.
  • the driving method used for such r-Vmin mode is characterized by the following points.
  • the first pulse voltage VI is applied to the pixel on the selected scan electrode, followed by the second pulse voltage V2, or the first pulse voltage-VI and the second pulse voltage-V2.
  • the ferroelectric liquid crystal molecules may be in one stable state or the other in a stable state depending on the polarity of the applied voltage. If the second pulse voltage V4 or the first pulse voltage V3 is applied subsequently to the first pulse voltage V3, the ferroelectric liquid crystal molecules before the voltage is applied maintain the stable state.
  • Such voltages VI, V2, and V3 are determined by the drive waveform (A) in FIG. 5 and the drive waveform (B) in FIG.
  • Vl Vd
  • V2 Vs— Vd
  • V3 — Vd
  • V4 Vs + Vd
  • the voltage Vmi ⁇ in the r-V characteristic of the liquid crystal material is the maximum value of the voltage applied during driving. Directly related. From the breakdown voltage of the drive circuit used for driving, Vmin is 60 V or less, and a ferroelectric liquid crystal material with Vinin of 40 V or less is required to use a drive circuit using an IC driver for ⁇ . However, the smectic liquid crystal composition of the present invention satisfies this easily.
  • the waveform applied to rewriting a specific part in a pixel can be used as a waveform applied to retention in other parts of the same pixel, or can be used to retain a specific part in a pixel. Since a waveform to be applied can be used as a waveform to be applied to rewriting in another portion in the same pixel, a gradation display can also be performed.
  • the phase transition temperature was measured by placing the sample on a slide glass, placing the sample covered with a cover glass on a hot plate, and raising the temperature with a CZmin under a polarizing microscope.
  • the melting point was measured by differential scanning calorimetry (DSC) by elevating the temperature with CZmin.
  • the dielectric anisotropy ( ⁇ £) is calculated as follows: a cell with 2 m spacing between electrodes coated with vertical alignment with a predetermined capacitance, and a cell with 2 m spacing between electrodes with homogenous alignment treatment. Each composition was injected, and the volume of each cell was measured at 25 ° C. at IV and 10 kHz using an LCR meter, and the volume was calculated. Comparative Example 1
  • composition ratio is based on thiadiabule compound (H).
  • a composition comprising the compound (J) of the present invention and the compound (I) of the present invention was prepared.
  • the table and figure of the phase transition temperature and dielectric constant at each concentration are shown below.
  • is a necessary condition in a wide area-2 or less is realized.
  • a particularly preferred concentration $ ⁇ is 30-70%.
  • a smectic C liquid crystal mixture (a) having the following composition was prepared.
  • a smectic C liquid product mixture (b) having the following composition was prepared.
  • composition (b) showed the following phase transition temperature.
  • a smectic C liquid crystal mixture (c) having the following composition was prepared.
  • composition (c) showed the following phase transition temperature.
  • a smectic C liquid crystal mixture (d) having the following composition was prepared.
  • composition (d) showed the following phase transition temperature.
  • a smectic C liquid crystal mixture (e) having the following composition was prepared.
  • a smectic C liquid crystal mixture (0 was prepared having the following composition.
  • a smectic C liquid crystal mixture (g) having the following composition was prepared.
  • a smectic C liquid crystal mixture (1) having the following composition was prepared.
  • a smectic C liquid crystal mixture (i) having the following composition was prepared.
  • a smectic C liquid crystal mixture (j) having the following composition was prepared. 2-(4 -pentylphenyl) 1-5-(4 -propylphenyl)
  • composition (c) 97wt%
  • composition of the present invention exhibits excellent properties. Comparative example
  • compositions of Examples 1 and 2 of Japanese Patent Application No. 6-14G295 previously published by the present inventors have the following components and characteristics.
  • the properties of the ferroelectric liquid product were as follows.
  • Emin 2 1 V / ⁇ m
  • composition (h) of Example 14 An optically active compound was added to the composition (h) of Example 14 to prepare the following composition [] :).
  • composition (m) was prepared by adding the optically active compound to the composition (i) of Example 15.
  • Composition (98.5wt%) was prepared by adding the optically active compound to the composition (i) of Example 15.
  • the ferroelectric liquid crystal characteristics were as follows.
  • Example 16 The following composition (n) was prepared by adding the optically active compound to the composition (j). Composition (j) 98.5wt%
  • ferroelectric liquid crystal properties were as follows.
  • composition (0) consisting only of (A11) was prepared.
  • the phase transition temperature was as follows.
  • composition composed of only (A 1 I) was a composition having defects such as a high melting point and a lack of the SA phase for orientation.
  • composition of the present invention was prepared. weight%
  • Example 15 Composition (i) 78% by weight
  • the phase transition temperature was as follows.
  • a composition comprising 50% by weight of 5-heptyl-2-((4-pentyloxyphenyl) pyridine) was prepared, and 1.5% by weight of the following compound was added to this composition, and a ferroelectric liquid crystal composition was prepared. And ( s , s)
  • This was irradiated with ultraviolet light having an exposure intensity of 2.8 mWcm-2 ( ⁇ 360 nm).
  • phase transition temperatures of the cells before and after 180 seconds were compared.
  • a composition consisting of 50% by weight of 5-heptyl-2- (4-pentyloxyphenyl) pyridine was prepared, and the composition was mixed with a ferroelectric liquid crystal composition by adding 1.5w of the following compound. did. Before irradiation Sc * 69.0 SA 89.0 Ne * 101.1 Iso
  • FIG. 11 shows the dependence of the ⁇ -V characteristics of the two compositions of Example 22 and Reference Example upon irradiation with ultraviolet light.
  • Example 2 5 The two glass substrates were laminated at a cell thickness of 1.4 x zm so that the rubbing directions were parallel, and the strongly dielectric liquid crystal composition prepared in Examples 13, 14 and 15 (1) , (M) and (n) were respectively injected to obtain a ferroelectric liquid crystal device having a C 2 orientation over the pixel.
  • Example 2 5 The two glass substrates were laminated at a cell thickness of 1.4 x zm so that the rubbing directions were parallel, and the strongly dielectric liquid crystal composition prepared in Examples 13, 14 and 15 (1) , (M) and (n) were respectively injected to obtain a ferroelectric liquid crystal device having a C 2 orientation over the pixel.
  • Example 2 5 The two glass substrates were laminated at a cell thickness of 1.4 x zm so that the rubbing directions were parallel, and the strongly dielectric liquid crystal composition prepared in Examples 13, 14 and 15 (1) , (M) and (n) were respectively injected to obtain a ferroelectric liquid crystal device having a C 2 orientation over the pixel.
  • a ferroelectric liquid crystal composition (1) Using the ferroelectric liquid crystal device prepared in Example 24, a ferroelectric liquid crystal composition (1). A unipolar pulse required for switching between two stable states of (m) and (n). The width (r) and one pulse voltage (V) characteristics were measured using 25, and the minimum pulse width min and the pulse voltage Viiiin at that time were determined. The results are shown in the following table and Figure 9-11.
  • Composition (1) 35 V 16 sec
  • ferroelectric liquid crystal compositions (1), (m), and (n) were obtained using the driving waveform (B) shown in FIG.
  • the following table shows the driving conditions and the driving results. ⁇ table ⁇
  • Vs Vd Line end time drive memory angle composition (1) isec 26V 8V 26 sec 29.8 #
  • composition (m) 8.5 / zsec 29V 8V 17 isec 28.6 »
  • composition (n) 12.5 / sec 27V 8V 25sec 34.3 °
  • the liquid crystal element using the composition of the present invention can be driven at a high speed at a voltage of 40 V or less in the ⁇ V min mode.
  • composition of claim 1 an SA phase appears over a wide area, and a ferroelectric liquid crystal composition having good orientation can be provided.
  • composition of claim 5 has an AC stabilizing effect and an It is suitable for the element used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal Substances (AREA)

Description

スメクチック液晶組成物および液晶素子
技術分野
本発明は、 液晶表示素子、 特に強誘電性液晶表示素子に好適に使用できる、 液 晶組成物およびそれを用いた強誘電性液晶表示素子に関する。
背景技術
現在、 液晶表示素子は広汎に使用されるに至っている。 低品位の表示素子とし ては、 TN (捻れネマチック) 型表示方式が最も広く使用されている。 この TN 表示は低駆動霪圧、 低消費電力などの利点を多く備えている。 しかしながら応答 速度に関しては、 陰極管、 エレク トロルミ ツセンス、 プラズマディスプレイ等の 発光型の表示素子に著しく劣っている。 捻れ角を 1 8 0。 〜2 7 0 ° にした新し いタイプの TN表示素子、 いわゆる STN表示素子が開発されて、 表示容量は飛 躍的に增大したが、 応答速度に閱してはやはり限界がある。 また、 最近では TN 表示素子の各面素にスィツチ素子を備え付けた表示素子が、 市場に登場している。 その多くは、 薄膜トランジスター素子 (Thin Film Transistor) 、 B各称して TF T型と呼ばれており、 高密度、 大容量かつフルカラーの液晶素子として、 将来を 嘱望されてる。 しかし、 この方式も画面サイズと生産コス トに難点があげられて いる。 T FTは半導体技術を用いているため、 画面サイズが十数インチサイズが 限界である。 同様に、 時分割能も 1 0 0 0ライン程度が限界である、 といわれて いる。
本発明の主题である強誘電性液晶表示は、 上記 T FT素子が実現できない、 十 数ィンチサイズ以上の大画面と生産コストの低減の両者の実現の可能性を秘めて いる。 (クラークら ; アブライ ド フイ ジクス レター (Ap p l i e d P h y s. 1 e t t . , ) 3 6, 8 9 9 ( 1 9 8 0) ) 。 この表示方 は、 強誘 電性を示すカイラルスメクチック C相 (以下 S c *相と略記する) 等のカイラル スメクチック相を利用する。上記の方法は、 表面安定化強誘電性液晶表示と呼ば れている。
家電メーカーや材料メーカーによって製品化に取り組まれており、 特性の改良 や商品化が行われている。
その理由は、 強誘電性液晶素子が原理的に以下の特徴を有するからである。 1. 高速応答性
2. メモリー性
3. 広視野角
これらの特徴が S S F L Cの大容量表示への可能性を示唆しており、 S S F L Cを非常に魅力あるものにしている。
し力、し、 研究が進むにつれて、 解決しなければならない問題が明らかにされて きた。 これらの問題の中でも、 メモリーの安定した発現が第一の課題である。 メ モリーの安定的な発現の困難さは、 スメクチック層 ί 造が一様ではないこと (例 えば、 捻れ配列、 シェブロン構造) 、 自発分極の大きさに起因すると考えられ内 部逆電界の発生等が考えられている。
安定したメモリ—性を発現させるための手段の 1つとして、 負の誘電率異方性 (厶 £ < 0、 Δ £は誘電率異方性を表わす) を有する強誘電性液晶組成物を用い る方法が提案されている (L e ビ—サント等 パリ . リキッ ド . ク リスタル . コンファ レンス (P a r i s L i q u i d C r y s t a l C o n f e r e n c e) 、 p. 2 1 7 ( 1 9 8 4年) ) 。 この方法は ACス夕ビラィズ効果と呼 ばれている。
ホモジニァス配向処理したセル中での Δ εが負の液晶分子は、 電界を印加する とガラス基板に対して平行の状態 (電界の方向に対して分子長軸が垂直に向く) に向く性質がある。 低周波電界を印加した場合は、 自発分極が電界に (Τ.答するた め、 電界の方向が反転すると液晶分子もそれに伴い、 もう一方の安定伏態に移動 し、 そこで厶 εの効果で基板に対して平行の伏態になる。 高周波電界を印加した 場合には、 自発分極が電界の反転に追 ΚΪできなくなり、 △ £だけが効いて、 電界 の方向が反転しても液晶分子の移動はおきず、 そのまま基板に対して平行になる。 これが、 A Cス夕ビライズ効果を利用したメモリー性の発現メカニズムである。 これによつて高いコントラストが得られる。 この例はジユアリー等によって報告 されている (S I D ' 8 5 ダイジェス ト p. 1 2 8 ( 1 9 8 5年) ) 。 負の誘電率異方性を有する強誘電性液晶材料は、 さらに別の特異な性質を持つ ことが知られている。 それは、 メモリ ー反転可能なパルス幅 (て) が印加電圧に 対して極小値 (Vmin) を持つことである。 この性質を利用して、 クロストーク のないコン トラス トの高い表示素子を実現している (フヱ口エレク ト リ クス 第 1 22巻 p. 6 3 ( 1 9 9 1年) ) 。
以上の様に負の誘電率異方性を有する強誘電性液晶材料は、 ACス夕ビラィズ 効果およびて— Vminを利用した表示素子に応用できる。
負の△どを利用した強誘電性液晶材料が実際に使用されるためには、 多くの特 性が要求されるが、 その要求に対して現状では単一化合物では答えられないので、 材料は混合物の形で提供されている。
—股に、 組成物は液晶化合物あるいは非液晶化合物からでも構成できる。 強誘 電性液晶組成物は強誘電性液晶化合物のみから構成する方法、 非カイラルなスメ クチック C, F, G, H, I等の傾いたスメクチック相 (以下、 S c等の相と B各 記する) を呈する化合物及び組成物を基本物質として、 1種以上の強誘電性液晶 化合物あるいは非液晶の光学活性化合物を混合することにより、 全体を強誘電性 液晶相を呈する組成物となし得る方法がある。
ところで、 本発明の (A) 成分の基本構造であるチアジ了ブール環を含む液晶 化合物は、 既に多く知られている。
例えば、 J. P r a k t . Ch em i e. , 322巻、 9 3 3ページ ( 1 9 8 0) ) 、 DD 24 722 1 A 1、 および DD 24 7 6 94 A 1に開示されて いる。
J. P r a k t . C h em i e. には、 以下の化合物が閒示されている
c2as→Q- s gHoctH1J (公知化合物 1 a) さらに、 DD 24 7 6 9 4 A 1 DDおよび 24 722 1 A 1の実施例には、 下記の化合物、
Figure imgf000005_0001
(公知化合物 2)
m= 4 , 6
η = 2, 3, 4 , 5 , 6
および下記の組成例が開示されている。
母液晶 GM れに、
Figure imgf000006_0001
(公知化合物 2 a )
15 mo
を含む組成物。
これらの実施例の組成物は、 いずれもネマチック相のみを呈している。 また上 記に開示されたすベてのチアジ了ブール環を有する化合物は S c相を呈さないの で、 強誘電性液晶の基本物質としては不適に見受けられる。
また特表平 2 - 5 0 0 1 9 1は、 本発明の (A群) 成分を含む広 ίδ囲のチアジ ァブール化合物を含んだ組成物を特許請求している。 さらに、 下記の本発明の化 合物 (A I ) 類似の化合物を開示しており、 両者とも S C相を示すことが記載さ れている。
(公知化合物 1 C )
Figure imgf000006_0002
(公知化合物 1 d ) しかし、 これらを成分とする組成物は実際には開示されていない。
以上の情報から、 シクロへキサン環を含んだチアジアゾール環を有する化合物 は、 (公知化合物 1 cおよび 1 d ) のような、 アルコキシフヱニルのタイプの —部にのみ S C相が出現するらしいと推察できる。
特表平 2 - 5 0 0 1 9 1はまた、 本発明の (B ) 成分の化合物との組合わせに ついても特許請求しており、 チアジアブール骨格化合物と混合できるものとして, 以下のような広範な化合物群を記載している。 本発明の化合物は、 その ( I I d ) および ( I I g ) で示されたものに相当する。 し力、し、 実際に式 ( I I g ) の化合物が成分として使用された例は示されていない。 加えて、 本発明の (A I ) と ( I I d ) が組み合わされて使用された例は全くない。 X
0 ~^ ·' ( II b )
Figure imgf000007_0001
R3-<S> -R4
Figure imgf000007_0002
Figure imgf000007_0003
加えて、 チアジアゾール環を含む化合物を、 好ましくは、 0 . 5から 3 0 %の 量で含有する組成物を請求しているが、 実際の組成物としても、 4 2 %の濃度を 越えるものは開示されていない。 このように、 特表平 2— 5 0 0 1 9 1 はチアジ ァゾール化合物の使用濃度の低い部分が開示されているのみである。
さらに、 本発明者等もすでに下記のようなチアジアブール環を有する化合物を 用いた液晶組成物を出願した (特開平 7 - 7 0 5 6 4 ) 。
Figure imgf000007_0004
このように、 Δ £が負の強誘電性液晶組成物を用いた表示素子には、 通常の強 誘電性液晶表示素子にはない優れた特性を有しているが、 現行のて - V mi n用の 組成物には多くの課題がある。 それらは、 大きく 2つにまとめられる。 △ £が十 分負に大きいこと、 良好な配向性を示すことである。
第一の課題である十分に負に大きい Δ εについては以下のように説明できる。 スメクチック C相 (以下 S C相と略記する) の層 造を、 理想的なブックシェル フ構造であると仮定すると以下の式が成り立つ。
PsX d
Vmin=JbminX d =
3X eOX (厶 X s i η θ-S e)
(式中、 Eminは電界強度の極小値のパルス幅における電圧、 dはセル厚、 PSは 自発分極、 £0は真空誘電率、 <5 £は二軸誘電異方性、 Δ £は誘電異方性、 0は ティルト角を示す (リキッ ドクリスタル 6、 No. 3、 p 3 4 1 ( 1 9 8 9年
) ) o
この式に、 現在の実用的な環境の数値をあてはめて、 △ £の値を推算してみる。 現在の汎用の I C耐圧電圧は 4 0 V程度であるから、 Em i nは 4 0 Vが最大 となる。 自発分極が 7 n CZcm 2以上では、 逆電界の発生が顕著であるために、 使用できる最大の自発分極は 7 n CZcm 2となる。 これに傾き角を 2 0° 、 セ ル厚 2 mの条件を式に当てはめると、 Δ εは- 2以下の必要条件が導きだされ る。 厶 £がー 2以下の大きさでないと、 r一 Vminモード用には使用ができない ので、 この条件を満たすことが第一の課題である。
第二の課題である良好な配向性については以下のように説明できる。 良好な配 向性を呈する材料は、 高温側から等方性液体相 (以下 I s 0相と略記する) 、 コ レステリ ック相 (以下 C h相と略記する) 、 SA相、 S C *相の相転移系列を持 つことが要求される。 S A相がない場合は、 スメクチック相における層面の法線 方向と液晶分子の長軸方向とが一致しない S C *相が徐冷時に出現する。 つまり、 通常の高温側からの徐冷では、 大きな液晶均一配向領域 (いわゆるモノ ドメイ ン) は作成しにくい。 モノ ドメインを得るためには、 冷却して S C相に転移させ る過程で、 電場あるいは磁場などの外力を加えて強制的に配向させる方法が提案 されている。 しカヽし、 上述の外力による配向制御処理によって、 必ずしもモノ ド メイ ンが作成できる訳ではない。
—方、 SA相を有する材料では、 外力を加えなくても徐冷によって良好なモノ ドメイ ン状態を得ることができる。 何故なら、 S A相では層面の法線方向と分子 長軸方向とが同じであるからである。 一旦 S A相において形成された層の伏態は、 S C *相へ転移した後も保持されるので、 S C *相でも、 均一なモノ ドメイ ンか 得られる。 従って、 S C *相の高温側に S A相を有する材料は、 S C *相の配向 性において優れている。
さらに、 S C *相の良好な配向性を得るためには、 I s o相と SA相の中問の 秩序を持った C h相を経由する必要がある。 良好な配向を得るためには、 SA相 への転移の近傍では、 C h相のらせんピッチ長は十分長い必要がある (特開昭 6 1 — 2 5 5 3 2 3 ) 。
本発明の発明の課題は、 て一 Vminに適した十分負に大きい△ど と、 良好な配 向性を実現するための十分な温度領域の S A相を、 同時に発現する液晶組成物を 実現することである。
本発明における第一および第二の課题をそれぞれ単独に満足させることは、 そ れ程困難なことではない。 しかし、 それを同時に満たすことは容易ではない。 加 えて、 この両者を満たした上に、 組成物の低粘性、 広い駆動温度 Ifi面、 低温保管 性等の諸条件が要求される。
発明の開示
本発明の課題を解決す ¾ためには、 組成物への新しい成分の導入が必要である。 本発明の構成は、 以下にあらわされる。
( 1 ) 下記一股式で示される (A I ) 成分と (B) 成分および、 または (C) 成 分を含有するスメクチック液晶組成物、
Figure imgf000009_0001
R30 〇〉
(B)
Figure imgf000009_0002
上式中、 R' は炭素数 1から 9のアルキル基、 R2 は炭素数 1から 9の了ルキル 基、 R3 は炭素数 1カヽら 1 8のアルキル基、 R4 は炭素数 1カヽら 1 8のアルキル 基、 Xは水素またはフッ素、 R5 は炭素数 6から 1 5のアルキル基、 R6 は炭素 数 6から 1 5のアルキル基を示す。
(2) (A I ) 成分と (B) 成分からなる、 ( 1 ) に記載のスメ クチック液晶組 成物。 (3) (A I ) 成分と (C) 成分からなる、 ( 1 ) に記戟のスメクチック液晶組 成物。
(4) (A I) 成分、 (B) 成分および (C) 成分からなる、 ( 1 ) に記載のス メクチック液晶組成物。
(5) 付加成分として、 下記一般式で示される (A l l ) 成分を含む、 ( 1 ) な いし (3) のいずれかに記覼のスメクチック液晶組成物、
Figure imgf000010_0001
上式中、 R7 は炭素数 2から 9のアルキル基、 R8 は炭素数 2から 9のアルキル 基を示す。
( 6) 前記 (A I ) と (A I I ) からなる成分 (A群) と、 前記 (B) と (C) からなる成分 (BC群) の含有比率 (重量比) tゝ 1 : 3から 3 : 1である (
1 ) ないし (5) のいずれかに記戟のスメクチック液晶組成物。
(7) A群の成分が 50重量%以上である ( 1 ) ないし ( 5 ) のいずれかに記載 のスメクチック液晶組成物。
(8) (1 ) ないし (5) のいずれかに記戟の組成物を全体量の 70重量%以上 含むスメクチック液晶組成物。
(9) ( 1 ) ないし (8) のいずれかに記載のスメクチック C液晶組成物に一種 以上の光学活性化合物を添加することによって得られる強誘電性カイラルスメク チック C液晶組成物。
( 1 0) (9) に記載の液晶組成物を使用した液晶素子。
(1 1 ) 強誘電性液晶のスメクチック層描造の折れ曲がり方向と配向膜の一軸配 向処理の方向が同一である ( 1 0) 記載の液晶素子。
( 1 2) 液晶 Z配向膜の界而での液晶分子のブレチルト角が 1 01 (以下であるこ とを特徴とする ( 1 0) または ( 1 1 ) に記載の液晶素子。
( 1 3) 電極を有する一対の絶縁基板と、 該基板間に介在させたカイラルスメク チック液晶組成物と、 前記電極に選択的に電圧を印加することによつて液晶の光 軸を切り換える駆動手段と、 前記光軸の切り替えを光学的に識別する手段とを有 する液晶素子であって、 前記液晶組成物として、 (9) に記載のカイラルスメク チック液晶組成物を用い、 前記電極として複数の走査電極と複数の信号電極が互 いに交差する方向に配列し、 該走查電極と該信号電極が交差した領域のカイラル スメクチック液晶組成物が、 2つの安定状態を持った強誘電性液晶素子であって、 該領域を画素とし、 該画素を選択するとき、 その画素へ下式
0 < V2< V4
V2- Vl< V4- V3
の関係にある第一パルス電圧 VIに引き続いて第二パルス電圧 V2、 または第一パ ルス電圧- VIに引き続いて第二パルス電圧 - V2を印加し、 該画素内のある部分 を構成する強誘電性液晶分子を一方の安定状態、 または他方の安定状態とし、 そ の同じ画素へ第一パルス電圧 V3に引き続いて第二パルス電圧 V4、 または第一パ ルス電圧— V3に引き続いて第二パルス電圧一 V4を印加しても、 その画素内の同 じ部分を構成する強誘電性液晶分子の前記安定状態を保持するように、 画素を駆 動することを特徴とする ( 1 0) 、 ( 1 1 ) または ( 1 2) 記載の液晶素子の駆 動方法。
( 1 4) カイラルスメクチック液晶組成物が 2つの安定状態を持った強誘電性液 晶素子であって、 一方の安定状態から他方の安定状態へ書き換えるのに必要な単 極性パルスのパルス幅 -パルス電圧特性において、 パルス幅の極小値を与えるパ ルス電圧が 60V以下であることを特徴とする ( 1 3) 記載の液晶素子の駆動方 法。
( 1 5) カイラルスメタチック液晶組成物が 2つの安定状態を持った強誘電性液 晶素子であって、 一方の安定状態から他方の安定状態へ書き換えるのに必要な単 極性パルスのパルス幅—パルス電圧特性において、 パルス幅の極小値を与えるパ ルス電圧が 4 0 V以下であることを特徴とする ( 1 3) 記載の液晶素子の駆動方 本発明の主体は、 (A I) で表わされる化合物と (B) および (C) で表わさ れる化合物からなる組成物である。 (A I) 成分は必須の成分であり、 本発明の 基本の成分である。 他方、 (A I) と同様にチアジアゾール構造を有する (A 1 I) は、 付加的な成分であり、 全く含まれないことも可能であり、 また含まれる ことも可能である。 含まれる場合は、 (A I ) : (A I I ) = 1 : 1より低い濃 度がより好ましい。 既に述べたが、 これまで知られた (A I ) の化合物 (公知化 合物 1および 2群の化合物) は S c相を全く呈していないので、 強誘電性液晶の 基本物質として使用されることはなかった。 ところが、 今回、 本発明者等は (A I ) の化合物の優秀性を見出し、 今回の特許出願に至った物である。
さらに成分(A群),(B C群 ( B + C ) )の含有比率は、 任意に設定が可能であ るが、 より好ましくは 1 : 3から 3 : 1である組成物、 さらに好ましくは 1 : 1 から 3 : 1である組成物が好ましい。 この範囲に該当する組成物は、 液晶温度領 域、 Δ εの値の両者が、 好ましい ¥5囲にあるからである。
先に述べた先行出願である特表平 2— 5 0 0 1 9 1 はチアジアゾール化合物の 使用濃度の低い部分を発明の構成としてあげている。 チアジアゾール環をを含む 化合物を、 特に好ましくは、 0 . 5から 3 0 %の量で含有する組成物を請求して いる。 実際の組成物としても、 4 2 %の濃度を越えるものは開示されていない。 それに対して本発明は、 チアジアブール環をを含む化合物の含有量が高い組成 物を発明の主体としている。 この IB囲の含有量でなければ、 実際の本発明の目的 の組成物を構成できないからである。 本発明の組成物は、 A群の成分を 4 0 w t %、 好ましくは 5 0 w t %以上の濃度で含むものが好ましい。
請求項 ( 5 ) に記載された組成物として、 本発明発明の組成物に 3 0 w t 下の濃度で、 本発明発明の組成物成分以外の化合物を添加することができる。 そ れらの化合物は、 好ましくは液晶化合物であり、 さらに好ましくはスメクチック 液晶化合物が好ましい。 さらには、 組成物全体の粘性が増大すると組成物の応答 が遅くなるので、 添加する化合物の粘性は低いほうが好ましい。 また、 これらの 化合物は、 拈性以外の諸物性、 例えば Δ ε、 Δ η等の大きさを調節するために加 えられる。 これらの代表的な化合物を例示する。
さらに、 本発明の組成物に光学活性化合物を添加して、 強誘電性液晶組成物を 調製する。 光学活性化合物の添加の割合は、 それ自体の自発分極の大きさに依存 する。 何故なら、 既に述べたように組成物の自発分極が過大であると、 内部に逆 起電力が発生するからである。
本発明のスメクチック液晶組成物に添加して、 著しくその特性が損なわれない ものであれば、 光学活性化合物はどのようなものであってもかまわない。 なかで も、 高速応答を誘起するものがより好ましい。
光学活性化合物は、 液晶を形成する基本物質に比べて、 一般に坫性が高い。 過 剰量の光学活性化合物の添加は、 組成物の粘性を大幅に増加させ、 ひいては応答 時間の増大を招く。 この観点より光学活性化合物は 30%以下である必要があり、 好ましくは 1 0 %さらに好ましくは 5 %以下の添加が、 特に好ましい。
光学活性化合物の添加量は、 組成物の自発分極を決定する。 添加される光学活 性化合物は、 各々固有の誘起する自発分極値を有する。 既に述べたように、 7" -
Vmi n用の組成物の自発分極には、 使用上の上限がある。 組成物の自発分極がこ の上限値を越えない値に設定するため、 必然的に添加量の上限が決まる。 所望の 自発分極値を得るために、 粘性が増大してしまうことは避ける必要があるので、 光学活性化合物は、 誘起する粘性が小さいことが望ましい。
図面の簡単な説明
図 1 は、 本発明のスメクチック液晶組成物を用いた強誘電性液晶素子の構造お よび作製法を説明するための断面図である。
図 2は、 本発明の液晶素子を用いて大容量の強誘電性液晶素子を作製する方法 を模式的に示した図である。
図 3は、 強誘電性液晶素子の C 1配向と C 2配向を説明するための図である。 図 4は、 強誘電性液晶素子の 4つの配向状態の分子配向のモデルを示す図であ o
図 5は、 強誘電性液晶材料のて - V特性を用いて強誘電性液晶素子を駆動する 駆動波形 (A ) を示す図である。
図 6は、 強誘電性液晶材料の r - V特性を用いて強誘電性液晶素子を駆動する 駆動波形 (B ) を示す図である。
図 7は、 強誘電性液晶材料のて - V特性を用いて強誘電性液晶素子を駆動する 駆動波形を示す図である。
図 8は、 本発明の実施例 2 2と参考例の各組成物の紫外線照射時の τ - Vmi nの 照射時問依存性を示す図である。
図 9は、 強誘電性液晶組成物 ( 1 ) を用いた本発明の実施例 2 4の強誘電性液 晶素子のて — V特性を示す図である。 図 1 0は、 強誘電性液晶組成物 (m) を用いた本発明の実施例 2 4の強誘電性 液晶素子のて一 V特性を示す図である。
図 1 1は、 強誘電性液晶組成物 (n ) を用いた本発明の実施例 2 4の強誘電性 液晶素子のて一 V特性を示す図である。
以下、 本発明を詳細に説明する。
既述の如く、 本発明の (A ) 成分であるチアジアゾール環を含む液晶化合物は、 既に多く知られている。 本発明者等が、 既に組成物特許出願を行ったこと述べた が、 該出願の欠点がわかった。 それを説明する。
該出願は、 下記 (A I I ) ( B ) を成分とするスメクチック液晶組成物である。
Figure imgf000014_0001
該出願の組成物は、 て - Vminモードの強誘電性液晶表示素子に好適に使用で きることを明らかにした。
しかし、 該組成物は明らかなる欠点を有する。 それは、 S A相の温度領域が極 端に狭いことである。 その理由は、 以下にあげる成分の特性に依存している。
( A I D 成分が全く S A相を呈さない。
( B ) 成分 X = Hの化合物は全く S A相を呈さない。
( B ) 成分 X = Fの化合物は若干 S A相を呈する。
既に述べたように、 強誘電性液晶組成物が良好な配向性を示すためには、 ある 程度以上の S A相の存在が必要条件である。 該出願の組成物は、 概して狭い S A 相温度領域のみを有するので、 配向性に難点がある。
まず、 末端アルキル基のチアジアブールのみでなく、 アルコキシ基の化合物も 使用できないかを検討した。
下記の化合物 (C ) は、 前出願の成分化合物であり、 化合物 (D ) は、 その了 ルコキシ基対応化合物である。
Figure imgf000014_0002
N-N
c ^ lis w H^_0CeHl7 (D)
" 化合物 (C) と化合物 (D) の外沛より得られた誘電率異方性は、 それぞれ - 4. 3, - 2. 7であった (比較例 1 ) 。 末端アルコキシ基は末端アルキル基よ り本発明の方式に適していないことが判明した。
次ぎに本発明者らは、 シクロへキサン化合物を成分として使用することを検討 した '(比較例 2) 。 化合物 (E) は本発明の (A) 成分であり、 化合物 (F) は そのアルコキシ対応化合物である。
Figure imgf000015_0001
特表平 2— 5 0 0 1 9 1は、 好適に使用できるチアジアゾール化合物として (公知化合物 1 c) および (公知化合物 1 d) の液晶相転移温度を記戟して あげてある。
特表平 2— 5 0 0 1 9 1は、 チアジアブール化合物と組み合わせて使用する成 分化合物として、 以下の ( I I a) をあげている。
Figure imgf000015_0002
特表平 2— 5 0 0 1 9 1は、 主として (Hd)の化合物を添加している。 そこ で、 本発明者等も、 (【【d)に厲して、 かつ特表平 2— 5 00 1 9 1でも使用し ている下記化合物 (G) を添加成分として、 化合物 (E) と (F) の比較をおこ なつた。
(G)
C6H130- ^-^-CeH17 化合物 (E) と化合物 (F) の外揷より得られた誘電率異方性は、 それぞれ - 5. 34、 一 4. 0であった。 当該出願は、 化合物 (F) が好ましいことが述べ てあるが、 実際には (E) の方がより好ましいことが判明した。
厶 εの大きさは、 これらの公知化合物より本発明化合物 (A I ) の方が大きの で、 好適に使用できる。
さらに本発明者等は、 組成物の成分としてシクロへキンルチアジァブールの使 用を試みた結果、 アルキル化合物は使用可能で、 アルコキシ化合物は使用が困難 であることがわかった。
本発明においては、 この結果を考慮して成分化合物を化合物 (A I ) に限定し ている。 特表平 2— 5 0 0 1 9 1は、 アルコキシ基の化合物 (公知化合物 1 C.
1 D) の化合物の転移点のみを開示しているが、 実際に好ましいのは、 S C相を 呈していないにもかかわらず、 アルキル基の化合物である。 このような違いは、 特表平 2 - 5 0 0 1 9 1から容易に類推できるものではない。
さらに、 実施例において、 本発明が解決しょうとする課題の第 2点、 つまり S
A相の存在に着目する。 化合物 (E) と化合物 (G) からなる組成物は、 化合物 (F) と化合物 (G) からなる組成物よりも、 S A相を呈する濃度領域が広い。 詳しくいうと、 化合物 (F) と化合物 (G) からなる組成物か S A相を呈するの は、 化合物 (F) 力 ow 以下である。 それ以上の比率になると、 SA相を呈し ていない。 それに対して、 化合物 (E) と化合物 (G) からなる組成物は調整し た成分比率すべてにわたって広く SA相を呈している。
化合物 (G) に代表される、 特表平 2— 5 0 0 1 9 1の式 ( I I a) の化合物 は、 S C - SA - N - I s 0の相転移系列を示すので、 実際に多くの強誘電性液 晶組成物の基本物質として使用されている。 しかし、 その好ましい基本物質と混 合したときにさえ、 本発明の課題である S A相出現の条件から、 化合物 (F) は
1 0wt 以下でしか使用できない。
本発明の化合物 (B) において X = Hの化合物は S A相を呈しないので、 化合 物 (G) に代えて基本物質として使用すると、 化合物 (F) との混合物はさらに
SA相を呈しにく くなることになる。
従って、 本発明が解決しょうとする課題の第 2においても、 化合物 (E) 、 つ まり本発明の化合物 (A) は、 化合物 (F) 、 つまり本発明の化合物 (A) に対 応するアルコキシ化合物よりも優れていることがわかる。
さらに、 本発明が解決しょうとする課題の第 1 と第 2を同時に満たすことを考 慮すると、 本発明の化合物 (A I ) の優れたことが判明する。 化合物 (F) と化合物 (G) からなる組成物が S A相を呈するのは、 化合物 (F) 力 OwtX以下であることは、 既に述べた。 ところが、 この 10wt¾時点での Δ εは、 +0.04である。 この植は、 r一 Vm i ηモードが出現する値ではない。 化 合物 (F) と化合物 (G) からなる組成物は、 本発明の目的にはまったく合致し ていない。
このように、 化合物 (Ε) と化合物 (F) は、 一見、 アルキル基とアルコキシ 基の違いしか無いようにみえるが、 実際の使用においてはその特性が大きく異な る
以上の様な理由で、 本発明の (A I ) 成分が優秀であることがわかる。
なお、 本発明の (Β) 成分は、 本出願人が既に出願した化合物を含んでいる。 すなわち、 Χ = Ηの化合物は特開昭 6 2— 2 2 3 1 7 2において出願した化合物 である。 X=Fの化合物は特開昭 6 2— 2 2 3 1 7 1 において出願した化合物 である。 さらに両者とも、 特開平 2— 1 3 5 2 7 8において出願公開した組成物 の成分化合物である。 本発明の組成物も、 このクレームの中に入りうる。 しかし、 これらの出願においては、 一股式 (A I ) との組み合わせを開示していない。 従 つて、 当該出願とは全く異なるものであり、 かつ容易に類推できるものではない。
—股式 (B) の化合物は、 室温を含む低温領域にスメクチック C相を示しかつ 融点は低い。 しかし、 (B) の化合物は S A相を呈さないので、 本発明の課題の 解決には、 一見不適当であるかのごとくにみうけられる。 しかし、 ながら、 SA 相および S C相を形成する能力に優れている。
これに対して (G) に代表されるピリ ミジン化合物 (一般式 (C) ) は、 一股 的に高温より I 一 N— S A— S Cの相系列を有する。 一股式 (B) の化合物より、 本発明の課題の解決には、 一見ふさわしくみうけられる。 しかし、 実施例にあげ るとおり、 本発明の (A I ) との組み合わせでは、 S A相領域は満足できるが、 Δ εの値を負に保つ能力がが十分ではないか、 本発明の課題の両者を同^に解決 できるする候補としては十分な能力を備えている。
さらに、 本発明の化合物 (Β) と (C) との組合わせは、 本発明の課題の両者 を同時に解決できるものである。
特に、 (A I ) + (Β) 、 (A I ) + (Β) + (C) の組合わせの組成物は、 非常に好適に使用できる。
(A l l) の化合物は、 広い fB囲で S c相を呈するので、 本発明の組成物の成 分として使用することができる。
しかし、 (A l l) を過剰に入れてしまうと、 組成物の好ましくない高融点化、 粘度悪しき増加等を招く。 さらに、 後に実施例でも述べるが、 紫外線に対する劣 化の進行が早いので、 高濃度での使用は避ける必要がある。
発明を実施するための最良の形態
表 1に本発明に好適に使用できる (A I ) の化合物とその相転移温度をあげる。 表 2に本発明に好適に使用できる (A I I) の化合物とその相転移温度をあけ る
表 3に本発明に好適に使用できる (B、 X = H) の化合物とその相転移温度を あげる。
表 4に本発明に好適に使用できる (B、 X = F) の化合物とその相転移温度を あげる。
表 5に本発明に好適に使用できる (C) の化合物とその相転移温度をあげる。
に好適に使用できる (A I ) の化合物とその相転移温度
(ΑΠ式 { :おける 相転移温度
R1 R2 Cr SA N Iso
C2H5 C2H5 60 112.7
C2H5 C4H9 33 119
C2H5 C6H13 50 77 115
C2H5 C8H17 52 103.8 117.5
C3H7 C3H7 83 154.3
C3H7 C4H9 76 96 150
C3H7 C6H13 61 126 146
C4H9 C4H9 71 120 146
C4H9 C6H13 47 133 139
C5H11 C3H7 80 122.5 152.4
C5H11 C4H9 52 115 136
C5H11 C6H13 50 146 150
C6H13 C3H7 66 132.3 147.5
C6H13 C4H9 58 117 151
C6H13 C5H11 46 143.7 146.7
C6H13 C6H13 50 145
C6H13 C8H17 42 145
C7H15 C3H7 73 137.3 148.8
C7H15 C5H11 46 148.2 148.6
C8H17 C3H7 58 147.4
C8H17 C5H11 67 139.5 145.7
C8H17 C6H13 45 145.1
本発明に好適に使用できる (A l l) の化合物とその相転移温度
Figure imgf000020_0001
Figure imgf000021_0001
Figure imgf000021_0002
ΧΊΙΙ 9) 2 . ) 11
S860Z96
SZ O/S6df/13d 発明に好適に使用できる (B、 但し X = F ) の化合物とその相転移温度
ェ Vjに 相転移温度
Cr SC SA Iso
C6H13 C7H15 JU.J
C7H15 C7H15 33 40.1 50.4
C8H15 C7H15 26 46 53.4
C9H19 C7H15 38 45.2 63.6
C8H15 C8H15 35 49.9 54.8
C9H19 C8H15 47 50.3 55.4
C10H21 C8H15 44 53.2 56.5
C7H15 C9H19 35 45.6 57.6
C12H25 C9H1 46 57.8 62.1
C9H1 C10H21 47 57.8 61.4
(B)式における 相転移温度
R3 R4 Cr SC SA Iso-methylpentyl C6HI3 25 33.1 34.4
-mcthylpentyl C7H15 19.6 34 44.8
-methylpentyl C8H17 33.5 36.4 42.6
-methylpentyl C9H19 27.3 35.7 45.7
-mcthyldecyl C6H13 34.5 37.9 41.2
-mcthyldecyl C7H15 28.3 42.8 51
-methyldccyl C8H1 35.2 48 50.7
-mel yldecyl C9H19 28.7 54 57.4
985 発明に好適に使用できる (C ) の化合物とその相転移温度
R5 R6 相転移温度
C6H13 C8H17 Cr 27.5 SC 44.5 SA 57.5 N 65 Iso
C6H13 C9H19 Cr 24 SC 43 SA 69.5 N 70.5 Iso
C6H13 C10H21 Cr 36 SC 57.5 SA 71.5 Iso
C7H15 C9H19 Cr 32.5 SC 48 SA 72.5 Iso
C7H15 C10H21 Cr 46 SC 62.5 SA 72 Iso
C8H17 C7H15 Cr 49 ( SC 44 ) SA 69.5 Iso
C8H17 C8H17 Cr 28.5 SC 55.5 SA 62 N 68 Iso
C8H17 C9H19 Cr 33 SC 60 SA 75.5 Iso
C8H17 C10H21 Cr 37 SC 68.5 SA 73.5 Iso
C9H19 C7HI 5 Cr 45.5 SC 51 SA 56.5 N 70 Iso
C9H1 C8H17 Cr 33 SC 56 SA 65 N 68.5Iso
C10H21 C7H15 Cr 53 SC 54.5 N 71.5 Iso
C10H21 C8H17 Cr 32 SC 59.5 SA 65.5 N 69.5 Iso
C1 1H23 C7H15 Cr 55 ( SC 54.5 ) SA 62.5 N 70 Iso
C11H23 C8H17 Cr 44.5 SC 60 SA 67 N 69 Iso
C12H25 C7H15 Cr 59.5 ( SC 57.5 ) SA 63 N 71 Iso
C12H25 C8H17 Cr 42 SC 61.5 SA 68.5 N 70 Iso
以下に、 本発明の組成物に添加することができる化合物を示す
Figure imgf000024_0001
F
Ro 〇: O'
Figure imgf000024_0002
Figure imgf000025_0001
Figure imgf000025_0002
Figure imgf000025_0003
SZ"0/S6dT/IDd S860Z/96 ΟΛλ 本発明の組成物に、 適当な光学活性化合物の 1種または衩数を適宜に添加する ことによって、 実用的な強誘電性液晶組成物を 成することができる。 添加か可 能な化合物の光学活性部位を例示する。
0 C 3H"7 0、 .Ce 6H" 13 C4H9 0、
CH3 CH,
CN O CN
0、 ^C.H
丫し' 0、 6H13 x^O^CsHu
0、 ^ C H O CH 丫丫 15
O CH O CF, O CF,
Figure imgf000026_0001
ヽハ/ C4H9
、ヘ リ γ cr v0
CH3 O CF3 Ύ Ο 4
Figure imgf000026_0002
Figure imgf000026_0003
図 1は本発明の強誘電性液晶組成物を用いた液晶素子の基本揹成を示す断面図 である。 この液晶素子は、 基本的に電極として導電性膜 3、 4を有する一対の絶 縁性基板 1、 2と、 該基板 1、 2の問に介在させたスメクチック液晶組成物 8 と、 前記電極に選択的に電圧を印加することによって液晶の光軸を切り替える駆動手 段 (図示せず) と、 前記光軸の切り替えを光学的に識別する手段としての偏光板 9とからなる。 なお、 図中、 5は絶縁性膜、 6は配向制御膜、 7はシール剤を示 す。
1および 2の絶緣性基板としては透光性の基板が用いられ、 通常ガラス基板か 使用される。 この絶緣性基板上には、 ln03.Sn〇2. I TO (Indium-Tin Oxide) 等を CVD (Chemical Vapor Deposition) 法あるいはスパッタ法で、 所定のパ 夕一ンの透明^極 3および 4が形成される。 透叨電極の膜厚は 5 0〜2 0 Onmが 好ましい。
この透明電極上に、 膜厚 5 0〜2 0 Onmで絶縁性膜 5を形成する。 この絶緣性 膜には、 例えば Si 02 、 SiNx、 A1203 Ta205などの無機系薄膜、 ボリイ ミ 卜、 フォ トレジス ト樹脂、 高分子液晶などの有機系薄膜などを使用することができる。 絶縁性膜が無機系の場合には蒸着法、 スパッタ法、 CVD法、 溶液塗布法等によ つて形成できる。 また、 有機系の場合には、 有機物質を溶かした溶液またはその 前駆体溶液を用いて、 スピンナー塗布法、 浸漬塗布法、 スクリーン印刷法、 ロー ル塗布法などで塗布し、 所定の硬化条件(加熱、 光照射等)で硬化させ形成する方 法で形成することができ、 あるいは蒸着法、 スパッタ法、 CVD法、 L B (Lang muir-Blodgett) 法等で形成することもできる。 この絶緣性膜は省略することも できる。
絶縁性膜 5上には膜厚 1 0〜 1 0 Onmで配向制御膜 6が形成される。 上述のよ うに絶緣性膜を省略した場合には導電性膜 3および 4の上に直接配向制御膜を形 成する。 この配向制御膜 6には無機系あるいは有機系の膜を使用することかでき る。 無機系の配向制御膜には酸化ゲイ素等が使用でき、 その成膜方法には公知の 方法が使用できるが、 例えば、 斜め蒸着法、 回転蒸着法などを使用することがで きる。 有機系の配向制御膜には、 ナイロン、 ポリ ビニルアルコール、 ボリイ ミ ド 等が使用でき、 通常この上をラビングする。 また、 高分子液晶、 L B膜を用いる 場合には、 磁場により配向させたり、 スぺ一サエッジ法による配向なども可能で ある。 また、 Si〇2. Si N xなどを蒸着法、 スパッ夕法、 C V D法などによって成 膜し、 その上をラビングする方法も使用することができる。
次に 2枚の絶緣性基板 1および 2をシール材 7を介して張り合わせ、 スメクチ ック液晶組成物 8を注入して液晶素子とする。 スメクチック液晶組成物 8として、 前述の第 ( 5 ) 項または第 ( 6 ) 項に記戟した本発明のスメクチック液晶組成物 を用いる。
以上、 図 1においては画素数 1のスイッチング素子として説明したが、 本発明 の液晶素子は大容量マトリタスの表示装置に適用可能であり、 この場合には図 2 の平而模式図に示すように上下基板 1および 2の電極配線をマ 1、リ クス型に組み 合わせて用いる。
次に、 本発明の強誘電性液晶素子における配向膜の一軸配向処 ί 方法について 述べる。
上記液晶素子における配向膜の一軸配向処理方法として、 最も好ましい方法は ラビング法である。 ラビング法には、 主にパラレルラビンク'、 アンチパラレルラ ビング、 片ラビングなどの方法がある。 パラレルラビングは上下基板をラビング' し、 そのラビング方向が平行なラビング法である。 アンチパラレルラビングは上 下基板をラビングし、 そのラビング方向が反平行なラビング法である。 片ラビン グは上下基板のうち片側の基板のみラビングする方法である。本発明において均 —配向を得るための、 最も好ましい配向膜の一軸配向処理方法は、 パラレルラビ ングで処理されたセルと I N A C相系列を有する強誘電性液晶を組み合わせる方 法である。 この場合、 ネマチック相において螺旋 造が存在するか、 上下の基板 の両側から分子の配向方向を規制するため、 ネマチック相において均一な配向か 得られやすく、 その状態からスメクチック Α相、 カイラルスメタチック C相へと 降温してゆけば層法線の方向のそろつた均一な配向が容易に得られる。
しかしながらパラレルラビングの強誘電性液晶素子においても、 カイラルスメ クチック C相において生じる配向状態は決して一つではない。 全面的に均一にな らない原因は二つある。
—つはスメクチック層の折れ曲がりに関するものである。 強電性液晶セルが折 れ曲がった層構造 (シエブロン層も造) を示すことはよく知られているが、 図 3 に示すように二つの領域が存在しうる。 神辺らはこれらはブレチルトとの関係か ら C 1、 C 2と名付けている。
もう一つは、 ユニフォーム (U) とツイス ト (T) である。 ユニフォームは消 光位を示す配向、 ツイストは消光位を示さない配向である。 向殿らは、 ハイプレ チル卜配向膜を用いたパラレルラビングの強誘電性液晶セルにおいて、 C 1 U (C 1ュニフオーム) 、 C 1 T (C 1 ッイス 卜) 、 C 2の 3つの配向が得られた ことを報告している (M. Koden et al.. Jpn. J. Appl. Phys. , 30. L1823C199D) 。
また田川らは、 詳細な検討をした結果、 プレチル卜角 5° 以下のパラレルラビ ングの強誘電性液晶セルにおいて、 C 1 U、 C 1 丁、 C 2 U (C 2ュニフォ一 ム) 、 C 2T (C 2ツイスト) の 4つの配向状態が得られたことを報告している
(A. Tagawa et al.. Japan Display '92.519(1992))。 図 4にこれらの配向状態の 分子配向を示す。
負の誘電異方性を有する強誘電性液晶セルにおいて得られる 4つの配向状態に ついて比蛟すると C 1 Uおよび C 1 T配向はスィツチングしにくいため駆動が困 難であり、 また、 C 1 T配向では消光位がないため、 たとえスイッチングしても 良好なコントラス卜が得られない。 これに対して C 2 U配向は良好なスィッチン グ特性およびコン トラス トを与えること、 また、 C 2 T配向は電界無印加時には 消光性を示さないが、 液晶材料が負の誘^異方性を有する場合、 適度なバイアス 電界の印加時にはユニフォーム配向のように消光性を示すため、 C 2 T配向でも 良好なスィツチング特性及びコントラス卜が得られることを本発明者らは見出し た。
C l、 C 2配向の出現性はプレチル卜と関係がある力 \ プレチル卜角が 0から 1 5° の ίΒΙΙでは C 2状態が発生し得る。 プレチル卜角が高いときには向殿らか 報告しているように、 C 2状態は消光位を示す一つの状態しかなく これはむしろ 好ましい。 しかし、 プレチルト角の増加とともに C 2配向より C 1配向になりや すくなる傾向があるためプレチルト角が 1 0° 以下が好ましい。
次に駆動法について述べる。
本発明のスメクチック液晶組成物を用いた液晶素子は、 負の大きな誘電率異方 性のため、 - Vminモードに非常に適している。
Surguyらは r-Vminモード用の駆勋法として図 5に示す駆動波形 (A) を用い た JOERS/A 1 V e y駆動法を報告している(P. W. H. Surguy et aL.Ferroel ectrics.122.63(1991)) 。 また、 図 6に示す駆動波形 (B) を一例とする Ma 1 V e r n駆動法 (W〇 9 2 / 0 2 9 2 5 (PCT) ) は、 図 7に示すように、 1 タイムスロッ 卜の 0 V部分と 1 タイムスロッ 卜の 0 Vでないメインパルス部分を 用いた駆動波形 (A) による J OERSZA 1 V e y駆動法に対して、 メインパ ルス幅を任意の長さに変えられるようにしたものであり、 電圧を印加するタイ ミ ングを電極間で重ねられ、 ラインァ ドレスタイムを小さくできるので好ましい駆 動法の ^である。
このような r -Vmi nモードに用いられる駆動法は以下のような点で特徴付けら れる。
これらの駆動法では、 選択された走査電極上の画素へ、 第一パルス電圧 VIに 引き続いて第二パルス電圧 V2、 または、 第一パルス電圧— VIに引き続いて第二 パルス電圧一 V2を印加すれば、 強誘電性液晶分子を、 電圧印加前の安定状態に よらず、 印加電圧の極性により一方の安定状態、 または、 他方の安定伏態とし、 その同じ画素へ第一パルス電圧 V3に引き続いて第二パルス電圧 V4、 または、 第 一パルス鬣圧— V3に引き続いて第二パルス電圧一 V4を印加すれば、 電圧印加前 の強誘電性液晶分子の安定状態を保持する、
0 < V2< V4
V2- Vl< V4- V3
なる電圧 VI、 V2、 V3、 V4を用いる。 すなわち、 選択期間最初の 2タイムス口 ッ トにおいて、 書き換えに適用する波形よりも保持に適用する波形の方か、 第 2 パルス電圧が高く、 かつ、 第 1パルスと第 2パルスの電圧差が大きい。
例えばこのような電圧 VI、 V2、 V3、 は、 図 5の駆動波形 (A) 、 図 6の 駆動波形 (B) ともに、
Vl = Vd、 V2=Vs— Vd、 V3=— Vd、 V4= Vs + Vd
となる。
液晶材料の r - V特性における電圧 V m i ηは、 駆動時印加される電圧の最大値に 直接関係する。 駆動に用いる駆動回路の耐圧から Vmi nが 6 0 V以下、 また、 Λ 用の I C ドライバを使った駆動回路を用いるためには Vini nが 4 0 V以下である 強誘電性液晶材料が必要となるが、 本発明のスメクチック液晶組成物はこれを容 易に満たす。
また、 本発明のスメクチック液晶組成物を用いた液晶素子の r -Vmi iiモー ド駆 動においては、 例えばセルギヤップゃ電極形状など素子 ¾造を修飾するなどの方 法で、 画素内に駆動特性の異なる領域を任意に作ることによって、 画素内の特定 の部分の書き換えに適用する波形を同じ画素内の他の部分では保持に適用する波 形として用いたり、 函素内の特定の部分の保持に適用する波形を同じ画素内の他 の部分では書き換えに適用する波形として用いることが可能であるため、 階調表 示を行うこともできる。
なお、 本特許の説明においては、 本発明のスメクチック液晶組成物を用いた液 晶素子の非常に好ましい利用法の一例としてパラレルラビング処理、 特定の駆動 法などについて述べた訳であるが、 もちろん、 本発明はこれに限定されるもので はなく、 別のタイプの液晶素子、 驱勋法にも適 ffl可能なのは言うまでもない。 以下に、 実施例によって本発明をさらに詳細に説叨する。 本発明はこれらの実 施例に限定されるものではない。
本発明中の各種の则定は次の方法で行った。
相転移温度は、 試料をスライ ドガラスに置き、 カバ一ガラスで覆ったものをホ ッ 卜プレー卜に乘せ、 偏光顕微鏡下で、 CZmi nで昇温して则定した。 融点は、 示差走査熱量分折 (D S C ) を用い、 CZmi nで昇温して则定した。 誘電率異 方性 (△ £ ) は、 事前に容量を则定した垂直配向剂を塗市した電極間隔 2 mの セルとホモジニ了ス配向処理を施した電極問隔 2 〃mのセルに、 各組成物をそれ ぞれ注入し、 L C Rメーターを用いて、 2 5 °Cにおいて、 I V、 1 0 k H zで各 々のセルの容量を则定して算出した。 比較例 1
化合物 (C ) と (D ) の Δどの则定を試みた。 いずれの成分も単迚での则定か 困難である理由で、 化合物 (B— 1 ) との組成物を榈成し、 各々の濃度での S c 相上限温度から 1 0度低い温度で、 それぞれの誘電率を则定した <
Figure imgf000032_0001
Figure imgf000032_0003
£丄は分子短軸方向の、 £〃は分子長軸方向のそれぞれ誘電率を、 Δ ε = £〃- ε丄で表わされる異方性量である。 化合物の濃度は化合物 (C) または (D) を 基準にした濃度である。 比較例 2
化合物 (Ε) および化合物 (F) の△ £の则定を行った。
いずれの成分も^独での则定が困難である理由で、 化合物 (G) との組成物を 描成し、 各々の濃度での S c相上限温度から 1 0度低い温度で、 それぞれの誘電 率を则定した。
Figure imgf000032_0002
C6Hi30-(^-(^>-C8H 17 (G) (wtX)
ε丄 til Δε ε丄 ε〃 Δε
10 3.52 3.78 -0.25 3.76 3.72 0.04
20 3.44 4.19 -0.75 3.53 4.02 -0.48
30 3.75 5.01 -1.26 3.56 4.43 -0.87
40 3.65 5.64 -1.98 3.61 4.92 -1.32
* -5.34 -4.01
* 100%へ外挿した値
£丄は分子短軸方向の、 £〃は分子長軸方向のそれぞれ誘電率を、 △ £ = £〃- £丄で表わされる異方性量である。 化合物の濃度は化合物 (Ε) または (F) を 基準にした濃度である。 化合物 (Ε) を用いた組成物の各濃度の相転移温度
Figure imgf000033_0002
化合物 (F) を用いた組成物の各濃度の相転移温度
Figure imgf000033_0001
比較例 3
フエニル環のみを有するチアジアゾール化合物 (H) の特性を则定するために 本発明の (B) の化合物と組み合わせた組成物を調整した。 各々のチアジアゾ- ル濃度の組成物の相転移温度を表に記載する。
Figure imgf000034_0001
組成比 相転移温度
Cr Sc SA N I
0 28 44.5 57.5 65
20 60.2 64 77.9
40 70.9 92.6
60 84.1 110.9
80 102.9 133.1
100 79 129.3 157.6 組成比は、 チアジアブール化合物 (H) を基準にしている。
この相図より、 化合物 (H) を用いた場合のチアジアゾール使用可能濃度は、 多くても 2 0 %以下である。 有効な組成物は揹築できなかった。 実施例 1
本発明化合物 (J) と本発明化合物 ( I ) からなる組成物を調製した。 その各 濃度における相転移温度と誘電率の表と図を以下に示す。
Figure imgf000034_0002
C^HnO
( I ) 組成 相転移温度
Cr Sx SC SA N I ε丄 ε〃 Δε
0 26.5 48 67.5 68.7 1
20 -7 12 70.4 73.3 78.6 4.8 3.3 -1.5
40 -32 -3 70.】 84 91.2 7.5 5.3 .9つ
60 -11 66.7 99.1 105.6 8.3 3.2 -5.1
80 26 59.1 118.4 125.2 10.5 3.3 -7.2
100 46 143.7 146.7 -9 広い濃度 城で、 十分な温度領域の S Afflを呈している。 ネマチック相 呈し て、 配向に必要な相系列を] ¾備している。 さらに、 予; !、外の効^として、 融点の 低下が見られる。 この融点の効¾、 換言すれは S Cfflの下方への拡大は、 駆動お よび保存温度 SIfflの拡大となって、 突用的に好ましい。
△ εは、 広い 面で必要条件である— 2以下を実現している。
特に好ましい濃度 $βϋは 3 0— 7 0 %である。 実施例 2
2 - ( 4 一ペンチルシクロへキシル) — 5— ( 4 一ペンチルフエニル) チアジ了 ゾール 2 5重量%
2 - ( 4 —プロビルシクロへキシル) 一 5 — ( 4 —ペンチルフエ ル) チアジ丁 ゾ―ル 3 5重量%
2 - ( 4 一ペンチルォキシフエニル) 一 5 —へプチルピリ ミ ン 4 0重量 90 相転移温度
室温から S c 7 0 S A 8 9 N e 1 0 9 I s o 実施例 3
2— ( 4ーェチルシクロへキシル) 一 5 — ( 4 —ブチルフエニル) チアジアゾ一 ノレ 2 0重量%
2 — ( 4ーェチルシクロへキンル) 一 5 — ( 4 一才クチルフエ二ル) チアジアゾ ール 1 0重量% 2— ( 4 一プロビルシクロへキシル) — 5 — ( 4 一ペンチルフエ二ル) チアジ丁 ゾール 3 0 量%
2 - ( 一ペンチルォキシフェニル) 一 5 —ヘプチルピリ ミ ン 4 ΰ重量 9ο 相転移温度
室温から S c 5 8 S A 6 6 N e 9 7 I s o 実施例 4
2— ( 4 —ェチルシクロへキシル) 一 5 — ( 4 一ブチルフエニル) チアジアブ一 ル 5重量%
2 - ( 4 —ェチルシクロへキシル) — 5 — ( 4 —ォクチルフエニル) チアジアゾ ール 1 5重量%
2 - ( 4 一プロピルシクロへキシル) 一 5 — ( 4 —ペンチルフエニル) チアジア ブール 4 0重量%
2 - ( 4 —ペンチルォキシフェニル) 一 5 —へプチルピリ ミ ン 4 0重量 90 相転移温度
室温から S c 6 2 S A 7 8 N e 1 0 1 I s o 実施例 5
2 - ( 4 ーェチルシクロへキシル) — 5 — ( 4 一ブチルフエニル) チアジアゾー ル 5置量%
2 - ( 4 —ェチルシクロへキシル) 一 5 — ( 4 一才クチルフエニル) チアジ Tゾ ール 1 O S量%
2 - ( 4 一プロビルシクロへキシル) ー 5 — ( 4 一ペンチルフエニ儿) チアジア ブール 4 5 fli量%
2— ( 4 —ペンチルォキンフエニル) 一 5 —へプチルピリ ミ ン 4 0重量 96 相転移温度
室温から S c 6 4 S A 7 8 N e 1 0 4 1 s o 実施例 6 2 - ( 4一プロビルシクロへキシル) 一 5— ( 4—ペンチルフエニル) チアジア ゾール 6 5重量%
2 - ( 4一へキシルシクロへキシル) 一 5— (4—ペンチルフエニル) チアジア ブール 1 5重量%
2 - ( 4一ペンチルォキシフエニル) 5一へプチルピリ ミ ン 6重量% 2 - ( 4—ヘプチルォキシフエニル) 5一へプチルピリ ミ ン 7重量 9ό 2— ( 4一へキシルォキシフヱニル) 5—才クチルピリ ミ ン 7重量 90 相転移温度
室温から S c 6 9 S A 1 0 4 5 S 0
Ν
実施例 7
以下の組成のスメクチック C液晶混合物(a)を調製した。
2
2 - (4一才クチルフエ二ル) 一 5— (4—ペンチルフエ 8二ル) チアジアブール 2 0重量% 7
2— ( 4一へキシルトランスシクロへキシル) 一 5— (4—ペンチルフエニル) チアジアブール 3 0 量%
2 - ( 一才クチルォキシフエニル) 一 5—ォクチルビリ ジン 5 0重量 9ό 上記組成物(a)は以下の相転移温度を示した。
C r - 2 6 °C S C 9 0. 4 °C S A 1 0 2. 7 °C N 1 0 3. 0 °C
1 S 0 実施例 8
以下の組成のスメクチック C液品混合物(b)を調製した。
2 - (4一才クチルフユ二ル) 一 5— (4—ェチルフエニル) チアジアブール
1 5重量%
2 - ( 4—へキシル卜ランスシクロへキシル) 一 5— (4一ペンチルフエニル) チアジァブール 3 5重量%
2 - ( 4—ブチルォキシフェニル) 一 5—へプチルビリ ジン 5 0重量% 上記組成物(b)は以下の相転移温度を示した。 C r — 3 C S C 7 2. 9。C S A 8 6. 0 °C N 9 8. 0 eC
1 SO 実施例 9
以下の組成のスメクチック C液晶混合物(c)を調製した。
2 - ( 4一才クチルフエ二ル) 一 5— ( 4—ェチルフエニル) チアジアゾ一ル
5重量%
2 - ( 4一へキシル卜ランスシクロへキシル) 一 5— ( 4 —ペンチルフエニル) チアジアゾール 4 5重量%
2— (4一ブチルォキシフエ二ル) — 5—へプチルピリ ジン 5 0重量% 上記組成物(c)は以下の相転移温度を示した。
C r — 2 2 °C S C 7 0. 3 °C S A 8 9. 5 °C N 9 8. 3。C
1 S O 実施例 1 0
以下の組成のスメクチック C液晶混合物(d)を調製した。
2 - ( 4一才クチルフエ二ル) ー 5— ( 4ーェチルフヱニル) チアジアブール
2 5重量%
2 - ( 4一へキシル 卜ランスシクロへキシル) 一 ;ー し1 一ペ チルフエ二ル.) チアジアゾール 2 5IS量%
2— ( 3—フルオロー 4 —ォクチルォキシフヱニル) 一 5—ォクチル ビリ ジン 5 0 IS量%
上記組成物(d)は以下の相転移温度を示した。
C r - 2 5 °C S C 6 7. 2 °C S A 8 7. 8で N 9 2. 2 °C I S〇 実施例 1 1
以下の組成のスメクチック C液晶混合物(e)を調製した。
2 - ( 4一へキシルフェニル) 一 5— ( 4一プロピルフエニル) チアジアゾール 2 0重量%
2 - ( 4 —へキシルトランスシクロへキシル) 一 5 — ( 4 ーォクチ フエ二ル) チアジアゾ一ル 4 0重量%
2— ( 4 —ブチルォキシフエニル) 一 5 —へプチルビリ ジン 4 0重量 90 上記組成物(e)の相転移温度を示す。
相転移温度
C r 9で S C 7 1. 7 "C S A 8 9. 5 °C N 1 0 6. 1 。C I S O 実施例 1 2
以下の組成のスメクチック C液晶混合物(0を調製した。
2— (4 一へキシルフェニル) 一 5 — ( 4 —プロピルフエニル) チアジアゾール 1 5重量%
2— ( 4 —へキシル 卜ランスシクロへキシル) 一 5— ( 4 ーォクチルフエ二ル) チアジアゾール 4 0重量%
2— ( 4 一へキシルォキシフエニル) 一 5 —ペンチルピリ ジン 4 5重量% 上記組成物( 0の相転移温度を示す。
相転移温度
C r 一 3 4 °C S C 8 0. 8 V S A 9 9. 8で 1 0 4. 7で I S O 実施例 1 3
以下の組成のスメクチック C液晶混合物(g)を調製した。
2 - ( 4 一ノニルフエニル) 一 5 — ( 4 一プロビルフエニル) チアジアゾール 2 0重量%
2— ( 4 一へキシル卜ランスシクロへキシル) 一 5 — ( 4 一才クチルフエ二ル) チアジアゾール 3 5重量%
2 - ( 4 一へプチルォキシフェニル) 一 5—へプチルピリ ジン 4 5重量 96 上記組成物(g)の相転移温度を示す。
相転移温度 C r - 1 7°C S C 8 4. 8 °C S A 1 0 1. 8 °C N 1 0 5. 8で
1 SO 実施例 1 4
以下の組成のスメクチック C液晶混合物(1 を調製した。
2 - ( 4ーォクチルフエ二ル) 一 5— ( 4一ェチルフエニル) チアジアゾー儿
5重量%
2 - ( 4一へキシル 卜ランスシクロへキシル) 一 5— ( 4—ベンチルフエ二几) チアジァゾール 4 5重量%
2— ( 4一へプチルォキシフエニル) 一 5—へプチルビリ ジン 5 0重量 9。 上記組成物(h)の相転移温度を示す。
相転移温度
C r - 2 2 °C S X - 8 °C S C 7 0. 3 °C S A 8 9. 9 °C N 9 8. 9 °C I SO 実施例 1 5
以下の組成のスメクチック C液晶混合物(i)を調製した。
2— ( 4一才クチルフエニル) 一 5— (4—ェチルフエニル) チアジアブール 1 5重量%
2— ( 4—へキシル 卜ランスシクロへキシル) 一 5— ( 4 —ペンチルフエニル) チアジ了ゾール 3 5 IE量%
2 - ( 4一ペンチルォキシフエニル) 一 5—ヘプチルピリ ジン 5 0重量 90 上記組成物( i )の相転移温度を示す。
相転移温度
C r - 3 2°C S X - 1 0. 0 °C S C 7 3. 4 °C S A 8 6. 1 °C N 9 8. 2 °C I S 0 実施例 1 6
以下の組成のスメクチック C液晶混合物(j)を調製した。 2 - ( 4一ペンチルフエニル) 一 5— ( 4—プロピルフエニル) チ了ジ了ゾーノ L 1 5重量%
2 - ( 4一へキシルトランスシクロへキシル) 一 5— ( 4一ペンチ儿フエ二ル) チアジ了ゾール 3 5重量%
2— ( 4一ペンチルォキシフエ二ル) — 5—ヘプチルピリ ジン 5 0 ffi量 90 上記組成物(j)の相転移温度を示す。
相転移温度
C r < - 6 0 'C S X - 1 1. 0 "C S C 7 6. 5。C S A 8 4. 7で
N l o i . o iso 実施例 1 7
実施例 9の組成物 ( c) に光学活性化合物を添加して、 以下の組成物を調製し た。 組成物 (c) 97wt%
Figure imgf000041_0001
その強誘 ¾性液品特性は以下であつた。
相転移温度
C r — 1 2 S C * 6 8. 5 S A 8 7. 2 N* 9 6. 7 I SO チル卜角 2 1. 6 deg (25°C)
P s 4. 5 nC/cm2 (25°C)
Δ £ - 4. 1
τ 4 1 sec
Emin 1 9 V/ zm
r min 2 1 p. sec
(CR 6 3 : 1 )
以上の如く、 本発明の組成物は優れた特性を示す。 比較例
本発明者等が先に出 ΚΠした特願平 6 - 14 G 295号の実施例 1および: 記敉の組成物 は以下のような成分と特性を有している。
Figure imgf000042_0002
組成物 (参考例 a) 97wt%
Figure imgf000042_0001
その強誘電性液品特性は以下であつた。
相転移温度
C r - 28 S C * 73. 0 S A 6. 2 N * 85. 9 SO チルト角 32. 6 deg
P s 4. 2 nC/cm2
Δ ε - 4. 6
て 85 usee
Emin 2 1 V/^m
て min 50 usee
実施例 1 2に比較して、 配向性に劣る組成物であった ( 実施例 1 8
実施例 1 4の組成物 (h) に光学活性化合物を添加して、 以下の組成物 〔 】 :) を調製した。 組成物 (h) 98.5wt%
CfH130-<g>-0>-COO-»( -OC,Hl
0wt%
C,H"OH ~0"coo OC,H" O 5WT% その強誘 性液品特性は以下であつた。
相転移温度 : C r - 2 2 °C S X 一 8. 0 S C * G 8. 0で S A 8 7. 8 C N * 9 7. 8 °C I SO 実施例 1 9
実施例 1 5の組成物 ( i ) に光学活性化合物を添加して、 以下の組成物 (m) を調製した。 組成物 ( 98.5wt%
Figure imgf000043_0001
その強誘電性液晶特性は以下であつた。
相転移温度
C r 一 3 2。C SX - 1 0. 0 S C * 7 0. 8 °C S A 8 4. 2 °C N * 9 7. 2 °C I S O 実施例 2 0
実施例 1 6組成物 ( j ) に光学活性化合物を添加して、 以下の組成物 (n) を 調製した。 組成物 (j) 98.5wt%
O >CCeeHH13
1.0wt%
CF3 0.5wt¾。
Figure imgf000044_0001
その強誘電性液晶特性は以下であった。
相転移温度
C r < - 6 0 °C S X 一 1 1 . 0 S C * 7 3. 5 °C S A 8 2. 5 V N * 9 9. 5 °C I SO 参考例
(A l l ) のみからなる以下の組成物 (0 ) を調製した。
2 - (4一プロビルフエニル) 一 5— (4一へキシルフェニル) チアジアゾール
2 5重量%
2— (4—プロビルフエニル) 一 5— (4ーォクチルフヱニル) チアジアゾ一ル
1 2. 5重量%
2— (4一ペンチルフエニル) 一 5— (4一へプチルフエ二ル) チアジ了ブール
1 2. 5重量%
2 - (4一ペンチルフエニル) 一 5— (4一才クチルフエニル) チアジアゾール
2 5 Em%
2 - ( 4一へキシルフェニル) 一 5— ( 4一才クチルフエ二ル) チアジアゾ一ノ
25重量%
その相転移温度は以下の如くであった。
C r 4 2. 5 S C 1 2 6. 0 N e 1 5 4. 4 I SO
このように (A 1 I ) のみからなる組成物は、 融点が高い、 配向のための S A 相が欠落している等の欠陥のある組成物であった。 実施例 2 1
参考例の組成物と本発明の組成物、 および光学活性化合物を用いて、 以下の組 成物を調製した。 重量%
実施例 1 5 組成物 ( i ) 7 8重量%
参考例 組成物 (0) 2 0重量%
(S,S) 2重量%
Figure imgf000045_0001
その相転移温度は以下の如くであつた。
室温から S C * 78 S A 8 8 N e * 1 0 5 】 S〇 実施例 22
2— ( 4ーェチルシクロへキンル) 一 5— (4—才クチルフヱニル) チアジア '/ —ル 4 0重量%
2— ( 4一へキシルシクロへキシル) 一 5— (4一ペンチルフエニル) チアジア ゾール 1 0重量%
5—へプチルー 2— ( 4一ペンチルォキシフエニル) ピリ ジン 5 0重量% からなる組成物を調整し、 この組成物をに以下の化合物を 1.5wt%添加して強誘電 性液晶組成物とした。 (ss)
Figure imgf000045_0002
これに、 露光強度 2.8 mWcm-2 ( λ =360 nm)の紫外光を照射した。
照射前と 1 8 0 0秒後のセルの示す相転移温度を比較した。
照射前 Sc* ― 53.1 SA 74.5 Ne* 83.1 [so
照射後 Sc* - 53.0 SA 74.9 Ne* 83.4 iso 参考例
2 - ( 4一ェチルフエニル) 一 5— ( 4一才クチルフエ二ル) チアジ了ブール
1 5重量%
2— ( 4一へキシルシクロへキシル) 一 5— ( 4—ペンチルフエニル) チアジア ゾール 3 5重量%
5—へプチルー 2— ( 4—ペンチルォキシフエニル) ピリ ジン 5 0重量% からなる組成物を調整し、 この組成物をに以下の化合物 1.5w を添加して強誘電 性液晶組成物とした。
Figure imgf000046_0001
照射前 Sc* 69.0 SA 89.0 Ne* 101.1 Iso
照射後 Sc* 68.3 SA 87.2 Ne* 98.5 Iso
上記実施例 2 2と参考例の二つの組成物の紫外線照射時の τ - V特性の照射時 問依存性を図 1 1 に示す。
本発明の (A I ) を主体とする組成物の ffl'呍移温度、 τ - V特性等の強誘電性 液晶物性が、 紫外線照射により変化しな 、事が判る。 実施例 2 3
2枚のガラス基板上に 1 0 0 nmの I TOからなる透明電極を形成し、 この透明 電極上に 1 0 Onmの S i 02からなる絶縁性膜を形成し、 この絶緣性膜上に、 2, 2—ビス [ 4一 ( 4一アミ ノ フエノキシ) フエニル] プロノ、'ンと し 2, 4 , 5 一ベンゼンテ卜ラカルボン酸二無水物を主原料とし、 少量の 4— 卜リ メ トキン ン リル了ニリ ンを添加して縮合形成されたボリイ ミ ド配向膜を膜厚 5 Onmで塗布し、 ラビング処理を施した。 この 2枚のガラス基扳をラビング方向が反平行になるよ うにセル厚 5 0 mで貼り合わせ、 メルク社製ネマティ ック液晶組成物 E— 8を 注入した。 磁場容量法(K.Suzuki. K.Toriyama and A. Fukuhara. Appl. Phys. Lett.3 3, 561 (1987))によって、 上記ボリイ ミ ド配向膜のプレティル卜 ftを则定したとこ ろ、 30 であつた。 実施例 2 4
2枚のガラス基板上に 1 0 Onmの I T 0からなる透明電極を形成し、 この透明 電極上に 1 0 Onmの S i 02からなる絶緣性膜を形成し、 この絶縁性膜上に、 2, 2—ビス [ 4— ( 4一了ミ ノ フエノキン) フエニル] プロパンと 1 , 2. 4 , 5 —ベンゼンテトラカルボン酸二無水物を主原料とし、 少量の 4— 卜リ メ トキシシ リルァニリ ンを添加して縮合形成されたポリイ ミ ド配向股-を膜厚 5 Onmで塗市し. ラビング処理を施した。 この 2枚のガラス基板をラビング方向が平行になるよう にセル厚 1. 4 xzmで張り合わせて、 実施例 1 3、 1 4および 1 5で ί乍製した強誘 電性液晶組成物 (1) 、 (m) および (n) をそれぞれ注入して、 画素內全面 C 2 配向を有する強誘電性液晶素子を得た。 実施例 2 5
実施例 2 4で作製した強誘電性液晶素子を用いて強誘電性液晶組成物 (1) . (m) および (n) の 2つの安定状態問をスィッチさせるのに必要な単極性パルス のパルス幅 ( r ) 一パルス電圧 (V) 特性を 2 5てで则定し、 極小となるパルス 幅て minとそのときのパルス電圧 Viiiinを求めた。 結果を以下の表と図 9一 1 1 に 示す。
〔表〕
Vmin r min
組成物 (1) 35 V 16 sec
組成物 (m) 38V 12 sec
組成物 (n) 37V 16" sec 実施例 2 6
実 例 2 4で作製した強誘電性液晶素子を用いて強誘電性液晶組成物 ( 1 ) , (m) および (n) を、 図 6に示す駆動波形 (B) を用いて 2 5でで駆動した < 駆動条件および駆動結果を以下の表に示す。 〔表〕
て Vs Vd ライン了ト'レスタイム 駆動メ モ リ角 組成物 ( 1 ) 13 isec 26V 8V 26 sec 29.8#
14 isec 25 V 9V 28 sec 31.8#
Figure imgf000048_0001
組成物 (m) 8.5/zsec 29V 8V 17 i sec 28.6»
10 isec 28 V 9V 20 sec
11.5Aisec 27V 10V 23 sec 33.81
組成物 (n) 12.5/ sec 27V 8V 25 sec 34.3°
13.5x/sec 26V 9V 27 sec 36.8#
15.5 sec 25V 10V 31 u sec 39.28 以上のように、 本発明の組成物を用いた液晶素子は、 て- Vminモー ドにおいて 4 0 V以下の電圧で高速駆動が可能である。
産業上の利用可能性
請求項 1の組成物は、 広い^囲にわたって S A相が出現し、 配向性の良好な強 誘電性液晶組成物を提供でき、 特に請求項 5の組成物は、 ACスタビラィズ効果 および r- Vminを利用した素子に好適である。

Claims

請求の範 B0
1. 下記一般式で示される (A I ) 成分と (B) 成分および、 または (C) 成分 を含有するスメクチック液晶組成物、
Figure imgf000049_0001
上式中、 R1 は炭素数 1から 9のアルキル基、 R2 は炭素数 1から 9のアルキル 基、 R3 は炭素数 1から 1 8のアルキル基、 R4 は炭素数 1から 1 8のアルキル 基、 Xは水素またはフッ素、 R5 は炭素数 6から 1 5のアルキル基、 R6 は炭素 数 6から 1 5のアルキル基を示す。
2. (A I ) 成分と (B) 成分からなる、 請求項 1に記載のスメクチック液晶組 成物。
3. (A I ) 成分と (C) 成分からなる、 請求項 1に記載のスメクチック液晶組 成物。
4. (A I ) 成分、 (B) 成分および (C) 成分からなる、 請求項 1に記載のス メクチック液晶組成物。
5. 付加成分として、 下記一般式で示される (A l l ) 成分を含む、 請求項 1な いし 3のいずれかに記載のスメクチック液晶組成物、
Figure imgf000049_0002
上式中、 R7 は炭素数 2から 9のアルキル基、 Rs は炭素数 2から 9のアルキル Sを示す。
6. 前記 (A I ) と (A I I ) からなる成分 (A群) と、 前記 (B) と (C) か らなる成分 (BC群) の含有比率 (重量比) が、 1 : 3から 3 : 1である請求項 1ないし 5のいずれかに記載のスメクチック液晶組成物。
7. A群の成分が 5 0 E量%以上である請求項 1ないし 5のいずれかに記載のス メクチック液晶組成物。
8. 請求項 1ないし 5のいずれかに記戯の組成物を全体量の 7 0重量%以上含む スメ クチック液晶組成物。
9. 請求項 1ないし 8のいずれかに記载のスメクチック C液晶組成物に一種以上 の光学活性化合物を添加することによって得られる強誘電性カイラルスメクチッ ク C液晶組成物。
1 0. 請求項 9に記戟の液晶組成物を使用した液晶素子。
1 1. 強誘電性液晶のスメクチック層桷造の折れ曲がり方向と配向膜の一軸配向 処理の方向が同一である請求項 1 0に記載の液晶素子。
1 2. 液晶 Z配向膜の界面での液晶分子のプレチルト角が 1 0 #以下であること を特徴とする請求項 1 0または 1 1に記戟の液晶素子。
1 3. 電極を有する一対の絶緣基板と、 該基板問に介在させたカイラルスメクチ ック液晶組成物と、 前記電極に選択的に電圧を印加することによって液晶の光軸 を切り換える駆動手段と、 前記光軸の切り替えを光学的に識別する手段とを有す る液晶素子であって、 前記液晶組成物として、 請求項 9に記載のカイラルスメク チック液晶組成物を用い、 前記電極として複数の走査電極と複数の信号電極が互 し、に交差する方向に配列し、 該走查電極と該信号電極が交差した領域のカイラル スメ クチック液晶組成物が、 2つの安定状態を待った強誘電性液晶素子であつて、 該領域を画素とし、 該画素を選択するとき、 その画素へ下式
0 < V2< V4
V2- Vl< V4- V3
の関係にある第一パルス電圧 VIに引き続いて第二パルス電圧 V2、 または第一パ ルス電圧一 VIに引き続いて第二パルス電圧一 V2を印加し、 該画素内のある部分 を構成する強誘電性液晶分子を一方の安定状態、 または他方の安定状態とし、 そ の同じ画素へ第一パルス電圧 V3に引き続いて第二パルス電圧 V4、 または第一パ ルス電圧— V3に引き続いて第二パルス電圧一 V4を印加しても、 その画素内の同 じ部分を構成する強誘電性液晶分子の前記安定状態を保持するように、 画素を駆 動することを特徴とする請求項 1 0、 1 1 または 1 2記載の液晶素子の駆動方法。 1 . カイラルスメクチック液晶組成物が 2つの安定状態を持った強誘電性液晶 素子であって、 一方の安定状想から他方の安定状態へ書き換えるのに必要な単極 性パルスのパルス幅ーノ、'ルス電圧特性において、 パルス幅の極小値を与えるパル ス電圧が 6 0 V以下であることを特徴とする請求項 1 3記載の液晶素子の駆動方 法。
1 5 . カイラルスメクチック液晶組成物が 2つの安定状態を持った強誘電性液晶 素子であって、 一方の安定状態から他方の安定伏態へ書き換えるのに必要な単極 性パルスのパルス幅一パルス電圧特性において、 パルス幅の極小値を与えるパル ス電圧が 4 0 V以下であることを特徴とする請求項 1 3記戟の液晶素子の駆動方 法。
PCT/JP1995/002725 1994-12-29 1995-12-27 Composition smectique de cristaux liquides et dispositif a cristaux liquides WO1996020985A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP95942285A EP0801125B1 (en) 1994-12-29 1995-12-27 Smectic liquid crystal composition and liquid crystal device
DE69517338T DE69517338T2 (de) 1994-12-29 1995-12-27 Flüssigkristalline smektische zusammensetzung und flüssigkristallvorrichtung
US08/860,525 US5800736A (en) 1994-12-29 1995-12-27 Smectic liquid crystal composition and liquid crystal device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP33911394 1994-12-29
JP6/339113 1994-12-29
JP6/339112 1994-12-29
JP33911294 1994-12-29

Publications (1)

Publication Number Publication Date
WO1996020985A1 true WO1996020985A1 (fr) 1996-07-11

Family

ID=26576328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/002725 WO1996020985A1 (fr) 1994-12-29 1995-12-27 Composition smectique de cristaux liquides et dispositif a cristaux liquides

Country Status (4)

Country Link
US (1) US5800736A (ja)
EP (1) EP0801125B1 (ja)
DE (1) DE69517338T2 (ja)
WO (1) WO1996020985A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012185401A (ja) * 2011-03-07 2012-09-27 Seiko Epson Corp プロジェクター
JP2015179292A (ja) * 2015-06-18 2015-10-08 セイコーエプソン株式会社 プロジェクター

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6020947A (en) * 1996-11-06 2000-02-01 Sharp Kabushiki Kaisha Liquid crystal devices
KR101176654B1 (ko) * 2003-03-06 2012-08-23 메르크 파텐트 게엠베하 유기 발광 물질 및 이러한 물질을 함유하는 발광 장치
CN103666482B (zh) * 2012-09-10 2016-05-25 苏州汉朗光电有限公司 一种近晶a相液晶材料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD247694A1 (de) * 1986-03-05 1987-07-15 Martin Uther Uni Halle Wittenb Kristallin-fluessige gemische
JPH02500191A (ja) * 1987-04-16 1990-01-25 グレートブリテン及び北部アイルランド連合王国 チアゾール誘導体およびチアジアゾール誘導体を含有しそしてスメクテイツク液晶相を有するメジウム
JPH0335220A (ja) * 1989-06-30 1991-02-15 Canon Inc 液晶装置
JPH03178971A (ja) * 1989-09-22 1991-08-02 Canon Inc 液晶性化合物、これを含む液晶組成物およびこれを使用した液晶素子
JPH05224241A (ja) * 1991-11-22 1993-09-03 Canon Inc 液晶素子、及びこれを用いた表示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3703651A1 (de) * 1986-03-05 1987-09-10 Werk Fernsehelektronik Veb Kristallin-fluessige gemische mit negativer dielektrischer anisotropie
US5478496A (en) * 1987-04-16 1995-12-26 Merck Patent Gesellschaft Mit Beschrankter Haftung Media containing thiazole derivatives and thiadiazole derivatives and having a smectic liquid-crystalline phase
US5200109A (en) * 1989-09-22 1993-04-06 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
JP3069004B2 (ja) * 1993-06-30 2000-07-24 チッソ株式会社 スメクチックc液晶組成物および液晶表示素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD247694A1 (de) * 1986-03-05 1987-07-15 Martin Uther Uni Halle Wittenb Kristallin-fluessige gemische
JPH02500191A (ja) * 1987-04-16 1990-01-25 グレートブリテン及び北部アイルランド連合王国 チアゾール誘導体およびチアジアゾール誘導体を含有しそしてスメクテイツク液晶相を有するメジウム
JPH0335220A (ja) * 1989-06-30 1991-02-15 Canon Inc 液晶装置
JPH03178971A (ja) * 1989-09-22 1991-08-02 Canon Inc 液晶性化合物、これを含む液晶組成物およびこれを使用した液晶素子
JPH05224241A (ja) * 1991-11-22 1993-09-03 Canon Inc 液晶素子、及びこれを用いた表示装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JOURNAL F. PRAKT. CHEMIE., Vol. 322, No. 6, 1980, K. DIMITROWA et al., pages 933-944. *
JOURNAL F. PRAKT. CHEMIE., Vol. 331, No. 4, 1989, W. SCHAFER et al., pages 631-636. *
See also references of EP0801125A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012185401A (ja) * 2011-03-07 2012-09-27 Seiko Epson Corp プロジェクター
JP2015179292A (ja) * 2015-06-18 2015-10-08 セイコーエプソン株式会社 プロジェクター

Also Published As

Publication number Publication date
DE69517338T2 (de) 2000-11-30
US5800736A (en) 1998-09-01
EP0801125A1 (en) 1997-10-15
EP0801125A4 (en) 1998-05-06
DE69517338D1 (de) 2000-07-06
EP0801125B1 (en) 2000-05-31

Similar Documents

Publication Publication Date Title
EP2010626B1 (en) Bistable ferroelectric liquid crystal devices
JPH03223390A (ja) 液晶素子
EP2215188B1 (en) Oligosiloxane-modified liquid crystal formulations and devices using same
JP3069004B2 (ja) スメクチックc液晶組成物および液晶表示素子
JP2014025044A (ja) 液晶表示素子
EP2217680B1 (en) Oligosiloxane modified liquid crystal formulations and devices using same
JPH023436B2 (ja)
EP1119595B1 (en) Tristable liquid crystal display device
WO1996020985A1 (fr) Composition smectique de cristaux liquides et dispositif a cristaux liquides
JP2825371B2 (ja) 強誘電性液晶組成物および液晶素子
JP4713736B2 (ja) 単安定強誘電性アクティブマトリックスディスプレイ
JP5236153B2 (ja) 液晶媒体
US6067130A (en) Ferroelectric liquid crystal composition and liquid crystal display device
JP4951818B2 (ja) 強誘電性液晶組成物およびそれを用いた液晶表示素子
JPH06157371A (ja) 強誘電性液晶表示素子
JPH11246860A (ja) スメクチック液晶組成物及び液晶表示素子
JPH10279943A (ja) スメクチック液晶組成物および液晶表示素子
JPH08234243A (ja) 液晶電気光学装置
JP4067291B2 (ja) 液晶組成物および液晶素子
JPH10237447A (ja) 強誘電性液晶組成物、強誘電性液晶素子及びその駆動方法
JPS63101481A (ja) 液晶組成物及びこれを用いる液晶素子
JPH08231959A (ja) 強誘電性液晶組成物および液晶素子
JP2001011452A (ja) 電気光学素子
JPH01101390A (ja) 強誘電性液晶組成物
JPH11236566A (ja) フッ化側鎖を有する化合物を含有するキラルスメクチック液晶混合物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995942285

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1995942285

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08860525

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 1995942285

Country of ref document: EP