WO1996007036A1 - Amortisseur dynamique, materiau de moulage et procede de fabrication de l'amortisseur - Google Patents

Amortisseur dynamique, materiau de moulage et procede de fabrication de l'amortisseur Download PDF

Info

Publication number
WO1996007036A1
WO1996007036A1 PCT/JP1995/001701 JP9501701W WO9607036A1 WO 1996007036 A1 WO1996007036 A1 WO 1996007036A1 JP 9501701 W JP9501701 W JP 9501701W WO 9607036 A1 WO9607036 A1 WO 9607036A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
specific gravity
dynamic damper
high specific
particles
Prior art date
Application number
PCT/JP1995/001701
Other languages
English (en)
French (fr)
Inventor
Masaaki Hamada
Takahiro Aoi
Original Assignee
Tokai Rubber Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Rubber Industries, Ltd. filed Critical Tokai Rubber Industries, Ltd.
Priority to AU32657/95A priority Critical patent/AU673975B2/en
Priority to KR1019960702143A priority patent/KR960706032A/ko
Priority to EP95929236A priority patent/EP0726409A4/en
Publication of WO1996007036A1 publication Critical patent/WO1996007036A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/104Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted
    • F16F7/108Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted on plastics springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/30Flywheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/20Type of damper
    • B60G2202/25Dynamic damper

Definitions

  • the present invention relates to a dynamic damper that is attached to a vibration member to be subjected to vibration isolation to reduce the vibration of the vibration member, and a technique related thereto.
  • the mass portion is generally made of a metal material such as iron, and a support rubber portion is provided for the mass portion. It is a structure that is glued 6/07036 1
  • such a dynamic damper In general, such a dynamic damper generally sets a separately formed metal mass in a mold for molding a supporting rubber portion, and then fills the mold with a rubber material, It is manufactured by performing vulcanization and vulcanization bonding.However, the work of setting the mass in the mold is troublesome, and such a setting work sufficiently improves the manufacturing cycle. There was also a problem that it was difficult to achieve. Disclosure of the invention
  • the present invention has been made in view of the circumstances described above, and the problem to be solved is that a special bonding process of the supporting rubber portion to the mass portion is not required, and Another object of the present invention is to provide a dynamic damper having a novel structure which does not require a surface protection treatment for the mass portion and can be easily manufactured, and a molding material and a manufacturing method thereof.
  • the present invention is characterized by: (a) a composite in which particles made of a high specific gravity material having a higher specific gravity than the rubber elastic body are scattered inside the rubber elastic body; (B) is formed integrally with the rubber elastic body of the composite constituting the mass portion, and is attached to a predetermined vibration isolating object, so that the mass portion is And a supporting rubber portion for elastically supporting the Nno, there's poko.
  • the present invention in order to solve the above-mentioned problems, by mixing particles of a high specific gravity material having a specific gravity greater than a rubber elastic body formed of the rubber material into a predetermined rubber material, A molding material for a dynamic damper in which the high specific gravity material particles are scattered in such a rubber material is also characterized.
  • the present invention provides (C) mixing a rubber material with particles made of a high specific gravity material having a larger specific gravity than a rubber elastic body formed of the rubber material.
  • a method of manufacturing a dynamic damper which includes a step of integrally forming a supporting rubber portion for elastically supporting the vibration damping target with the mass portion, is also characterized.
  • the mass portion is constituted by the composite of the rubber elastic body whose overall density is increased by dispersing the particles made of the high specific gravity material inside.
  • the supporting rubber portion can be formed integrally with the mass portion, so that a troublesome process for bonding the mass portion and the supporting rubber portion is unnecessary, and the productivity is improved.
  • crack separation due to the concentrated action of stress on the boundary between the mass portion and the supporting rubber portion can be prevented, and the durability can be advantageously improved.
  • such a dynamic damper does not require a metal mass to prevent the metal mass from being required in a conventional dynamic damper using a metal mass, so that the productivity can be further improved.
  • a dynamic damper a plurality of components constituting a mass portion are formed.
  • tuning such as the natural frequency of the damper can be easily performed without changing the molding type. .
  • both the mass portion and the support rubber portion can be made of a composite rubber elastic body in which high-specific-gravity material particles are scattered, but only the mass portion is provided.
  • the support rubber portion may be formed of a rubber elastic material of a composite, and the support rubber portion may be formed of a rubber elastic material in which high specific gravity material particles are not scattered, thereby easily securing a tuning range of elastic characteristics and the like in the support rubber portion.
  • the specific gravity of the particles dispersed in the composite constituting the mass portion may be larger than the specific gravity of the rubber elastic body, and is not particularly limited. Particles having a particle size of not less than 0.0, especially not less than 4.0 are advantageously used, whereby an effective vibration-absorbing effect can be obtained while avoiding a remarkable enlargement of the mass portion. Furthermore, if particles composed of a metal or a compound such as lead oxide, tungsten carbide, zinc oxide, etc. are employed as such particles, particles having a large specific gravity can be obtained easily and inexpensively, which results in cost reduction. It is more advantageous in terms of manufacturing.
  • the size of the particles scattered in the composite constituting the mass portion is appropriately set within a range that does not greatly hinder production and the like, and is limited.
  • those with a maximum external dimension of less than 100 ⁇ m, especially those with a range of 100 to 30 zm, are used, thereby resulting from the mixing of particles of high specific gravity material.
  • the maximum external dimension refers to the dimension between two points at which the linear distance becomes maximum on the outer surface of the particle.
  • the external shape of the particles scattered in the composite constituting the mass portion is also appropriately set within a range that does not greatly hinder production and the like, and is limited.
  • the outer shape is substantially spherical (including an oval oval sphere), whereby the stress concentration at the time of deformation of the rubber elastic body is reduced, and the rubber elastic body is used.
  • the dispersion of the characteristics due to the orientation of the particles can be effectively prevented.
  • the structure for attaching the supporting rubber portion to the vibration damping target is not limited at all.
  • a metal bracket or the like for attaching the supporting rubber portion to the vibration damping target is used. Can be fixed to the supporting rubber portion in advance, thereby facilitating attachment of the dynamic damper to a vibration-proof object.
  • the dynamic damper molding material according to the present invention it is possible to advantageously manufacture the dynamic damper having the structure according to the present invention as described above. Since the mass portion can be formed by directly filling the molding die, there is no need to separately arrange a mass member in the molding die, and the operation of manufacturing the dynamic damper becomes extremely easy.
  • the mixing ratio of the high specific gravity material particles in the molding material for a dynamic damper is appropriately determined according to the required characteristics of the dynamic damper, and is not limited. If the mixing ratio of the rubber material and the high specific gravity material particles is set to 50% or less by volume based on the total material including the rubber material and the high specific gravity material particles, the rubber elastic body due to the mixing of the high specific gravity material particles is present. It is possible to more advantageously suppress the deterioration of physical properties such as spring characteristics and elongation and strength.
  • both the mass portion and the support rubber portion can be formed of a composite material in which high specific gravity particles are dispersed. It is also possible to form the supporting rubber portion from a rubber material in which high specific gravity particles are not scattered, so that it is easy to tune the spring characteristics of the supporting rubber portion while ensuring a sufficient mass of the mass portion. As a result, the design flexibility of the damper can be advantageously secured, and the durability of the supporting rubber portion can be more advantageously obtained.In such a case, the high specific gravity material particles are scattered in the supporting rubber portion.
  • the molding material for the mass part and the support rubber are used.
  • a molding material parts, different Takashihani charge allowed to 3 ⁇ 4 the mold through holes may achieved stabilization and facilitation of a method similar to the so-called two-color molding is employed suitably obtained, it'll connexion molding.
  • FIG. 1 is a longitudinal sectional view showing a dynamic damper as one embodiment of the present invention.
  • FIG. 2 is a sectional view taken along the line II-II in FIG.
  • FIG. 3 is a graph showing a specific example of the relationship between the mixing ratio of high specific gravity material particles and the molding material density in the molding material that can be used for the dynamic damper shown in FIG.
  • FIG. 4 is a graph showing measured results of characteristics of a dynamic damper having the structure shown in FIG.
  • FIG. 5 is a longitudinal sectional view showing a dynamic damper as another embodiment of the present invention.
  • FIG. 6 is a longitudinal sectional view showing a dynamic damper as still another embodiment of the present invention.
  • FIG. 7 is a perspective view showing a dynamic damper as still another embodiment of the present invention.
  • FIG. 8 is a longitudinal sectional view of the dynamic damper shown in FIG.
  • FIG. 9 is a longitudinal sectional view showing a dynamic damper as still another embodiment of the present invention.
  • FIGS. 1 and 2 show a dynamic damper 10 as one embodiment of the present invention.
  • the dynamic damper 10 has a substantially cylindrical shape as a whole, and is externally mounted on a drive shaft 12 of an automobile so as to reduce bending vibration in the drive shaft 12. I'm sorry.
  • the dynamic damper 10 of the present embodiment has a thick cylindrical shape that has a predetermined inner diameter larger than the outer diameter of the drive shaft 12 and extends a predetermined length in the axial direction at a central portion in the axial direction. It has a mass section 14. Further, a pair of tapers, which extend outward in the axial direction and gradually decrease in diameter toward the outside in the axial direction, are formed at both axial ends of the mass portion 14.
  • the cylindrical support rubber portions 16, 16 are formed integrally with each other.
  • a pair of thin-walled members having an inner diameter substantially the same as the outer diameter of the drive shaft 12 and extending at a predetermined length in the axial direction are provided at the axially reduced distal end portions of the support rubber portions 16, 16. Cylindrical mounting cylinder portions 18 and 18 are integrally formed.
  • the dynamic damper 10 is externally inserted into the drive shaft 12, and is attached to the mounting cylinder portions 18, 18 by the mounting bands 20, 20 wound around the outer peripheral surfaces of the mounting cylinder portions 18, 18. , 18 force
  • the drive shaft 12 is attached to the drive shaft 12.
  • the mass portion 14 is positioned on the substantially same axis at a predetermined distance radially outward of the drive shaft 12, and the mass portion 14,
  • the pair of support rubber portions 16, 16 elastically connect and support the drive shaft 12.
  • the entirety of the dynamic damper 10 including the mass portion 14 is integrally formed of a composite in which high-specific-gravity material particles are scattered inside a rubber elastic body.
  • a dynamic damper 10 can be advantageously manufactured, for example, by the following method.
  • the rubber material to be used is determined in consideration of the basic required characteristics of the dynamic damper 10 such as heat resistance and oil resistance.
  • various conventionally known rubber materials such as synthetic rubbers such as NR and SBR can be adopted.
  • particles made of a high specific gravity material having a large specific gravity are added to and mixed with the rubber material to obtain a Damba molded material (composite material).
  • the material of the high specific gravity material particles metals, ceramics, etc. are adopted.
  • Various materials that do not react with the rubber material used and have a higher specific gravity than the rubber elastic body formed by the rubber material used can be used.
  • the specific gravity of the rubber elastic body is generally 0.9 to 1.0, preferably 3
  • a material having a specific gravity of 0.0 or more, more preferably 4.0 or more can be employed.
  • metals are generally preferred because they have high specific gravity, are inexpensive, and are easy to process.
  • compounds such as lead oxide, tungsten carbide, and zinc oxide have a higher specific gravity than iron, which is generally used as a mass in conventional dynamic dampers, and are therefore suitable as materials for high specific gravity particles.
  • the outer shape of the high specific gravity material particles is not particularly limited, but if the outer size is too large, physical properties such as elasticity, elongation, and tensile strength of the rubber elastic body may be reduced, and Since the molding equipment may be damaged due to jamming or clogging during molding, it is desirable that the maximum external dimensions of all high specific gravity material particles be 100 or less, more preferably the maximum external dimensions are It is desirable to set it to 10 to 30 yum.
  • the damper molding material obtained by mixing such high specific gravity material particles with the rubber material has a higher density than the rubber material alone.
  • Fig. 3 shows the density of the molding material obtained by mixing high specific gravity particles composed of lead oxide and one byte of tungsten with the NR rubber material.
  • the mixing ratio of the high specific gravity material represents the weight ratio (%) of the high specific gravity material particles to all materials obtained by adding the high specific gravity material particles to a rubber material containing raw rubber and various compounding agents.
  • the mixing ratio of the high specific gravity particles to the rubber material is too large, the original physical properties of the rubber elastic body such as elasticity, elongation, and tensile strength may be reduced.
  • the mass portion 14 and the support rubber portions 16 and 16 are made of the same material, if the mixing amount of the high specific gravity material particles is excessively large, the support rubber portions 16 and 1 Since the setting of the spring constant and damping coefficient in 6 may be adversely affected, the mixing ratio of the high specific gravity particles is set to the volume ratio with respect to the total material including the rubber material and the high specific gravity particles. It is desirable to set it to 50% or less.
  • the damper molding material obtained by adding the high specific gravity material particles to the rubber material as described above is filled into a mold having a molding cavity corresponding to the outer shape of the intended dynamic damper 10.
  • a treatment such as heating to crosslink the rubber material into a rubber elastic body, the intended dynamic damper 10 can be obtained as described above.
  • the mass part 14, the supporting rubber parts 16 and 16 and the mounting cylinder parts 18 and 18 are completely formed integrally.
  • the mass portion 14, the supporting rubber portions 16, 16 and the mounting cylinder portions 18, 18 force ⁇ are composed of a composite in which particles having a higher specific gravity are scattered inside the rubber elastic body.
  • the mass part 14 having a large mass is integrated with the supporting rubber parts 16, 16, without using a separate mass part made of metal unlike a dynamic damper having a conventional structure. Therefore, a troublesome process for bonding the mass portion 14 and the supporting rubber portions 16 and 16 and a conventionally required prevention process of the metal mass portion are required. Alternatively, the work of setting the metal mass portion into the mold during molding is not required, and the manufacturability and the production cycle can be significantly improved.
  • the mass section 14 Is completely integrated with the supporting rubber portions 16 and 16, so that concentrated action of stress on the boundary between the mass portion 14 and the supporting rubber portions 16 and 16 is reduced or prevented. Thus, crack separation at such a boundary portion is prevented, and excellent durability can be exhibited.
  • the mass is changed by adjusting the size of the mass portion 14, and the shape and hardness of the support rubber portion 16 such as thickness and length are adjusted.
  • the spring constant By changing the spring constant, the natural frequency of the damper can be tuned, and the high specific gravity material in the damper molding material forming the mass portion 14 and the support rubber portion 16 can be obtained.
  • the type (specific gravity) and mixing amount of the particles By adjusting the type (specific gravity) and mixing amount of the particles, the mass of the mass section 14 and the spring constant of the supporting rubber section 16 can be changed. Therefore, the natural frequency of the damper can be changed without changing the molding die. There is also an advantage that tuning such as can be easily performed.
  • the rubber covering layer of the mass part which is required for preventing the mass part in the dynamic damper having the metal mass part of the conventional structure, becomes unnecessary. Therefore, the mass of the mass portion 14 can be advantageously obtained.
  • a composite material in which lead oxide as high specific gravity particles is mixed at a ratio of about 90% by weight with respect to the entire molding material is used.
  • the mass equivalent to the metal mass can be set by only slightly increasing the outer diameter of the mass portion 14 by about 2 mm compared to the metal mass of the conventional structure. .
  • the specific structure of the dynamic damper to which the present invention is applied is not limited to the above-described embodiment, and the type of the vibrating body to be mounted, the installation space, or the required vibration isolation characteristics, etc.
  • the present invention is applicable to various types of conventionally known dynamic dampers, and the first embodiment can be applied to any of them. It goes without saying that the same effect as described above can be effectively exerted.
  • 5 to 9 show an application example of the present invention to a dynamic damper having a structure different from that of the first embodiment.
  • the dynamic damper 22 shown in FIG. 5 has a first mass portion 2 and a second mass portion 26 each having a thick cylindrical shape provided at a predetermined distance in the axial direction.
  • the two mass portions 24, 26 force are connected by a cylindrical intermediate support rubber portion 28 positioned between them, and the axial direction of each mass portion 24, 26 Extending outwardly, a support rubber portion 30 having a tapered cylindrical shape and a mounting cylindrical portion 32 having a cylindrical shape are provided, respectively.
  • the first mass portion 24 is shorter in the axial direction than the second mass portion 26 and has a smaller mass.
  • the first mass portion 24, the second mass portion 26, the intermediate support rubber portion 28, the support rubber portions 30 and 30, and the mounting cylinder portions 32 and 32 force ⁇
  • the rubber material is integrally formed of a composite material obtained by mixing predetermined high specific gravity particles.
  • Such a dynamic damper 22 is externally inserted into a rod-shaped vibrating body 34 such as a drive shaft, and is provided with outer circumferential surfaces of the mounting cylinders 32 and 32 at both ends in the axial direction.
  • the rod-shaped vibrating body 34 is attached to the mounting band 36 by being wrapped around the surface. , 37, whereby the first mass portion 24 and the second mass portion 26 are respectively provided at both axial end portions thereof with the supporting rubber portion 30 and the intermediate supporting rubber portion 28.
  • the rod-shaped vibrating body 32 can be elastically connected to and supported by the rod-shaped vibrating body 32.
  • the first mass portion 24 and the second mass portion 26 constitute a vibration absorbing mechanism, respectively. Since the two mass portions 26 have different masses from each other, the natural vibration frequencies of the two vibration absorbing mechanisms are different from each other, so that the vibration absorbing effect on vibrations in different frequency ranges is obtained. Can be exhibited.
  • a mass portion 46 having a thick cylindrical shape is positioned radially outward at a predetermined distance, and is located between the radially opposed surfaces of the mounting portion 44 and the mass portion 46.
  • An annular support rubber portion 48 is interposed, and the mounting cylinder portion 44 and the mass portion 46 are integrally connected by the support rubber portion 48.
  • the mounting cylinder portion 44, the mass portion 46, and the supporting rubber portion 48 force are, as in the first embodiment, integrally formed of a composite material obtained by mixing predetermined high specific gravity material particles with a rubber material. It is formed in.
  • the mass 52 having a thick disk shape protrudes axially from one surface in the axial direction.
  • a supporting rubber portion 56 is provided integrally, and the mass portion 52 faces a metal plate mounting bracket 54 having an L-shaped cross section at a predetermined distance.
  • a support rubber portion 56 is interposed between the opposed surfaces of the mass portion 52 and the mounting bracket 54, so that the mass portion 52 is formed by the support rubber portion 56.
  • the structure is such that it is elastically connected and supported to the mounting bracket 54.
  • the mass portion 52 and the supporting rubber portion 56 are formed integrally with a composite material obtained by mixing predetermined high specific gravity material particles with a rubber material, as in the first embodiment.
  • the supporting rubber portion 56 is integrally vulcanized and bonded to the mounting bracket 54.
  • Such a dynamic damper 50 is provided with the mounting bracket 5 that is mounted on the vibrating body by a bolt or the like penetrated through the mounting hole 58, so that the dynamic damper 50 can be used for vibrating bodies of various shapes other than the rod shape. Therefore, any of them can be easily installed.
  • the mass section 14, the support rubber sections 16 and 16 and the mounting cylinder sections 18 and 18 are similar to the first embodiment. However, only the mass portion 14 is formed of a composite material obtained by mixing predetermined high specific gravity particles with a rubber material, and the supporting rubber portions 16 and 16 and the mounting cylinder portion are formed. 18 and 18 are made of a rubber material not mixed with high specific gravity particles. It should be noted that such a dynamic damper 60 is, for example, applicable to a molding die having a molding cavity corresponding to the entire shape of the dynamic damper 60. 6
  • a rubber material mixed with a predetermined high specific gravity material particle is injected and filled into the rubber material from the axial center portion of the molding cavity, and a rubber material not mixed with the high specific gravity material particle is injected from both axial end portions of the molding cavity. It is advantageously manufactured by charging and adjusting the injection speed of each material so that the confluence of the two materials is located near the boundary between the mass section 14 and the supporting rubber sections 16 and 16. Can be.
  • the rubber material forming the supporting rubber portions 16 and 16 and the mounting cylinder portions 18 and 18 should be the same as the rubber material of the composite material forming the mass portion 14. However, it is desirable to crosslink integrally, whereby the mass portion 14 and the support rubber portions 16 and 16 can be completely integrated, and excellent durability can be exhibited.
  • Such a dynamic damper 60 can advantageously obtain the elasticity, elongation, tensile strength, and other physical properties of the rubber elastic body in the support rubber portion 16.
  • the present invention can be applied to a dynamic damper used as an anti-vibration means or a vibration-damping means in various kinds of mechanical devices such as automobiles, and to the manufacture thereof.
  • a simple dynamic damper and an easy dynamic damper manufacturing method can be advantageously provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Exhaust Silencers (AREA)
  • Motor Power Transmission Devices (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

明 細 書
発明の名称
ダイナミックダンバとその成形材料および製造方法 技術分野
本発明は、 防振対象たる振動体に取り付けられることにより、 該振動 体の振動を低減するダイナミ ックダンバと、 それに関連する技術に関す るものである。 背景技術
自動車のエンジンュニッ トゃェキゾーストパイプなど、 各種機械装置 等における振動体の振動を低減する防振装置の一種として、 従来から、 特公平 2 - 9 2 1 4号公報や実公平 2 - 3 1 6 2 6号公報, 特公平 3 - 3 3 8 9 5号公報等に開示されているように、 所定質量のマス部を、 防 振対象たる振動体に対して、 支持ゴム部によって弾性的に連結支持せし めるようにした構造の動的吸振器 (ダイナミックダンバ) が知られてい ところで、 このようなダイナミックダンバにおいては、 有効な振動低 減効果を得るために、 マス部の質量と支持ゴム部のばね定数および減衰 係数を調節することにより、 その固有振動周波数を振動体における防振 を目的とする振動周波数に応じてチューニングする必要があり、 最適チ ユーニングのためには、 マス部に対して或る程度の大きさの質量が要求 される。
そこで、 従来のダイナミックダンバにおいては、 前記した公報にも記 載されているように、 一般に、 マス部が鉄等の金属材料にて構成されて おり、 そして該マス部に対して、 支持ゴム部が接着されてなる構造とさ 6/07036 1
れていた。
ところが、 かくの如き従来構造のダイナミ ックダンバにあっては、 金 厲製のマス部に対して支持ゴム部を接着するための接着処理が必要であ ることに加えて、 金属製のマス部の防锖のために、 マス部表面を塗装し たり、 支持ゴム部を構成するゴム弾性体でマス部を被覆したりすること が必要であり、 製造が極めて面倒で、 時間がかかるといった問題があつ たのである。
また、 このようなダイナミ ックダンバは、 一般に、 支持ゴム部を成形 するための金型内に、 別途形成した金属製のマス部をセッ トし、 その後 、 かかる金型内にゴム材料を充填し、 加硫および加硫接着を行うことに よって製造されることとなるが、 金型内へのマス部のセッ ト作業が面倒 であると共に、 かかるセッ ト作業のために、 製造サイクルの向上が充分 に達成され難いという問題もあった。 発明の開示
ここにおいて、 本発明は、 上述の如き事情を背景として為されたもの であって、 その解決すべき課題とするところは、 マス部に対する支持ゴ ム部の特別な接着処理等が不要であると共に、 マス部表面の防锖処理も 不要であり、 容易に製造することのできる新規な構造のダイナミックダ ンパとその成形材料および製造方法を提供することにある。
そして、 かかる課題を解決するために、 本発明の特徴とするところは 、 ( a ) ゴム弾性体の内部に該ゴム弾性体よりも比重が大きい高比重材 からなる粒子が散在せしめられた複合体によって構成されたマス部と、 ( b ) 該マス部を構成する複合体のゴム弾性体と一体的に形成されて、 所定の防振対象に取り付けられることにより、 前記マス部を該防振対象 に対して弾性的に支持せしめる支持ゴム部とを、 有するダイナミックダ ンノ、 Ίこある。
また、 本発明は、 前述の如き課題を解決するために、 所定のゴム材料 に、 該ゴム材料にて形成されるゴム弾性体よりも比重が大きい高比重材 からなる粒子を混合することにより、 かかるゴム材料中に該高比重材粒 子を散在せしめたダイナミックダンバ用成形材料も、 その特徴とするも のである。
更にまた、 本発明は、 前述の如き課題を解決するために、 (C ) ゴム 材料に、 該ゴム材料にて形成されるゴム弾性体よりも比重が大きい高比 重材からなる粒子を混合することにより、 該ゴム材料中に該高比重材粒 子を散在せしめた複合材料を準備する工程と、 (D ) 該複合材料を用い 、 少なくともマス部を成形する工程と、 (Ε ) 該マス部を所定の防振対 象に対して弾性的に支持せしめる支持ゴム部を、 該マス部と一体成形す る工程とを、 含むダイナミ ックダンバの製造方法をも、 その特徴として いる。
すなわち、 この本発明に従う構造とされたダイナミックダンバにおい ては、 高比重材からなる粒子を内部に散在せしめることによって全体密 度が高められたゴム弾性体の複合体によってマス部を構成しているとこ ろから、 支持ゴム部がマス部と一体的に形成せしめられ得るのであり、 それ故、 マス部と支持ゴム部を接着するための面倒な処理が不要とされ て、 製作性が向上されると共に、 マス部と支持ゴム部との境界部分への 応力の集中的な作用による亀裂ゃ剝離が防止され得て、 耐久性も有利に 向上され得るのである。
しかも、 かかるダイナミックダンバにおいては、 従来の金属マスを用 いたダイナミ ックダンバで必要とされていた金属マスの防锖処理等も不 要となって、 一層の製作性の向上が図られ得るのである。
さらに、 かかるダイナミックダンバにおいては、 マス部を構成する複 合体における粒子の種類 (比重) や混合量等を調節することにより、 成 形型を変更しなくても、 ダンバの固有振動数等のチュ一二ングを容易に 行うことができるといった利点もある。
また、 本発明に係るダイナミックダンバにおいては、 マス部と支持ゴ ム部の両方を、 高比重材粒子が散在する複合体のゴム弾性体によって構 成することも可能であるが、 マス部だけを複合体のゴム弾性体で構成し 、 支持ゴム部は高比重材粒子が散在しないゴム弾性体によって構成して も良く、 それによつて、 支持ゴム部における弾性特性等のチューニング 範囲が容易に確保されると共に、 支持ゴム部の耐久性の向上も図られる といった利点がある。
なお、 本発明に係るダイナミックダンバにおいてマス部を構成する複 合体に散在せしめられた粒子の比重は、 ゴム弾性体の比重より大きけれ ば良く、 特に限定されるものでないが、 好ましくは、 比重が 3 . 0以上 、 特に 4 . 0以上の粒子が有利に用いられ、 それによつて、 マス部の著 しい大型化を避けつつ、 有効な吸振効果を得ることが可能となる。 更に 、 かかる粒子として金属や、 或いは酸化鉛, タングステン力一バイト, 酸化亜鉛等の化合物からなる粒子を採用すれば、 大きな比重の粒子を容 易に且つ安価に得ることができることから、 コスト的および製造的に、 より一層有利となる。
また、 本発明に係るダイナミックダンバにおいてマス部を構成する複 合体に散在せしめられた粒子の大きさは、 製造等に大きな支障がない範 囲で適当に設定されるものであって、 限定されるものでないが、 好まし くは、 最大外形寸法が 1 0 0〃m以下のもの、 特に 1 0〜3 0 z mのも のが採用され、 それによつて、 高比重材からなる粒子の混合に起因する ゴム弾性体が有するばね特性や伸び, 強度, 耐久性等の物性の著しい低 下や特性のばらつきなどを抑えることが出来ると共に、 成形装置等の加 ェ機への悪影響も効果的に防止されることとなる。 なお、 最大外形寸法 とは、 粒子の外面上において直線距離が最大となる 2点間寸法をいう。 さらに、 本発明に係るダイナミックダンバにおいてマス部を構成する 複合体に散在せしめられた粒子の外形形状も、 製造等に大きな支障がな い範囲で適当に設定されるものであって、 限定されるものでないが、 好 ましくは、 外形が略球形 (卵形の楕円球形状を含む) のものが用いられ 、 それによつて、 ゴム弾性体の変形時における応力集中が緩和されて、 ゴム弾性体の耐久性の向上が図られると共に、 粒子の配向等による特性 のばらつき等も効果的に防止され得る。
また、 本発明に係るダイナミ ックダンバにおいて支持ゴム部を防振対 象に取り付けるための構造は、 何等限定されるものでないが、 例えば、 支持ゴム部を防振対象に取り付けるための金属製等のブラケッ トを、 該 支持ゴム部に対して予め固着しておくことも可能であり、 それによつて 、 ダイナミックダンバの防振対象への取り付けが容易となる。
一方、 本発明に係るダイナミックダンバ用成形材料を用いれば、 上述 の如き、 本発明に従う構造とされたダイナミックダンバを有利に製造す ることができるのであり、 特に、 かかるダイナミックダンバ用成形材料 を、 所定の成形型内に直接充塡してマス部を形成することができること から、 成形型内に別途マス部材を配設する必要がなくなり、 ダイナミツ クダンバの製造作業が極めて容易となるのである。
また、 かかるダイナミックダンバ用成形材料における高比重材粒子の 混合割合は、 ダイナミックダンバの要求特性等に応じて適宜に決定され るものであって、 限定されるものでないが、 例えば、 高比重材粒子の混 合割合を、 ゴム材料と高比重材粒子とを加えた全材料に対して体積割合 で 5 0 %以下とすれば、 高比重材粒子の混合に起因するゴム弾性体が有 するばね特性や伸び, 強度等の物性の低下を、 一層有利に抑えることが 可能となる。
さらに、 本発明に係るダイナミックダンバの製造方法に従えば、 前述 の如き、 本発明に従う構造とされたダイナミックダンバを有利に製造す ることができるのである。
また、 本発明に係るダイナミックダンバの製造方法においては、 マス 部と支持ゴム部の何れをも、 高比重材粒子を散在させた複合材料によつ て形成することも可能であるが、 例えば、 支持ゴム部を高比重材粒子が 散在されていないゴム材料によって形成することも可能であり、 それに よって、 マス部の質量を充分に確保しつつ、 支持ゴム部におけるばね特 性等のチューニングが容易となって、 ダンバの設計自由度が有利に確保 され得ると共に、 支持ゴム部の耐久性を一層有利に得ることが可能とな なお、 そのように支持ゴム部を高比重材粒子が散在されていないゴム 材料によって形成する場合や、 或いは支持ゴム部のゴム材料として、 マ ス部のゴム材料とは異なるものを用いる場合等においては、 マス部の成 形材料と支持ゴム部の成形材料とを、 異なる充埴孔を通じて成形型に充 ¾せしめる、 所謂 2色成形と類似の方法が好適に採用され得、 それによ つて成形の安定化と容易化が図られ得る。
また、 本発明に係るダイナミックダンバの製造方法においては、 支持 ゴム部を形成するゴム材料として、 マス部を形成するゴム材料と同質の ものを採用することが出来、 それによつて、 マス部と支持ゴム部の完全 な一体化が有利に実現され得て、 一層優れた耐久性が発揮され得ること と る。 図面の簡単な説明 第 1図は、 本発明の一実施例としてのダイナミックダンバを示す縦断 面図である。 第 2図は、 第 1図における I I一 I I断面図である。 第 3図は 、 第 1図に示されたダイナミックダンバに用いられ得る成形材料におけ る高比重材粒子の混合比と成形材料密度との関係の具体例を示すグラフ である。 第 4図は、 第 1図に示された構造のダイナミックダンバにおけ る特性を実測した結果を示すグラフである。 第 5図は、 本発明の別の実 施例としてのダイナミ ックダンバを示す縦断面図である。 第 6図は、 本 発明の更に別の実施例としてのダイナミックダンバを示す縱断面図であ る。 第 7図は、 本発明の更に別の実施例としてのダイナミ ックダンバを 示す斜視図である。 第 8図は、 第 7図に示されたダイナミックダンバの 縦断面図である。 第 9図は、 本発明の更に別の実施例としてのダイナミ ックダンバを示す縱断面図である。 発明を実施するための最良の形態
以下、 本発明を更に具体的に明らかにするために、 本発明の実施例に ついて、 図面を参照しつつ、 詳細に説明する。
先ず、 第 1図及び第 2図には、 本発明の一実施例としてのダイナミツ クダンバ 1 0が示されている。 このダイナミックダンバ 1 0は、 全体と して略円筒形状を有しており、 自動車のドライブシャフ ト 1 2に外挿装 着されることにより、 該ドライブシャフト 1 2における曲げ振動を低減 するようになつている。
より詳細には、 本実施例のダイナミックダンバ 1 0は、 軸方向中央部 分において、 ドライブシャフト 1 2の外径よりも所定寸法大きな内径を もって、 軸方向に所定長さで延びる厚肉円筒形状のマス部 1 4を有して いる。 また、 このマス部 1 4の軸方向両端部には、 軸方向外方に向かつ て延び出し、 軸方向外方に行くに従って次第に小径化する一対のテーパ 筒形状の支持ゴム部 1 6 , 1 6が、 それぞれ一体的に形成されている。 更にまた、 これら両支持ゴム部 1 6 , 1 6における小径化された軸方向 先端部には、 ドライブシャフト 1 2の外径と略同一の内径をもって、 軸 方向に所定長さで延びる一対の薄肉円筒形状の取付筒部 1 8, 1 8が、 それぞれ一体的に形成されている。
そして、 かかるダイナミックダンバ 1 0は、 ドライブシャフト 1 2に 外挿され、 取付筒部 1 8 , 1 8の外周面に巻き掛けられた取付バンド 2 0 , 2 0によって、 それら両取付筒部 1 8 , 1 8力 ドライブシャフ ト 1 2に対して固着されることにより、 ドライブシャフ ト 1 2に装着される ようになつている。 また、 かかる装着状態下では、 マス部 1 4力、·、 ドラ イブシャフ ト 1 2の径方向外方に所定距離を隔てて略同一軸心上に位置 せしめられると共に、 該マス部 1 4力、 一対の支持ゴム部 1 6 , 1 6に よって、 ドライブシャフト 1 2に対して、 弾性的に連結支持せしめられ るようになっているのである。
ここにおいて、 本実施例では、 マス部 1 4を含むダイナミックダンバ 1 0の全体が、 ゴム弾性体の内部に高比重材粒子が散在せしめられた複 合体によって、 一体的に形成されている。 そして、 このようなダイナミ ックダンバ 1 0は、 例えば、 以下の如き手法によって、 有利に製造され 得る。
先ず、 ダイナミックダンバ 1 0に要求される耐熱性ゃ耐油性等の基本 的な要求特性を考艨して、 採用するゴム材料を決定する。 なお、 かかる ゴム材料としては、 N R系や S B R等の合成ゴム等、 従来から公知の各 種のゴム材料が採用され得る。 そして、 かかるゴム材料に対して、 比重 が大きい高比重材からなる粒子を加えて混合することにより、 ダンバ成 形材料 (複合材料) を得る。
この高比重材粒子の材質としては、 金属やセラミックス等、 採用され るゴム材料と反応しないものであって、 且つ採用されるゴム材料によつ て形成されるゴム弾性体よりも比重が大きい各種の材質が採用され得る が、 特に、 少ない高比重材粒子の混合量とコンパク 卜なマス部 1 4をも つて、 マス部 1 4の質量を有利に確保するためには、 ゴム弾性体の比重 が一般に 0 . 9〜 1 . 0であることから、 好ましくは 3 . 0以上、 より 好ましくは 4 . 0以上の比重を有する材質が採用され得る。 なかでも、 金属は、 一般に比重が大きく、 しかも安価で加工が容易であることから 、 好適に採用され得る。 また、 酸化鉛やタングステンカーバイト, 酸化 亜鉛等の化合物も、 従来のダイナミ ックダンバにおいて一般にマス部と して採用されていた鉄よりも比重が大きいことから、 高比重材粒子の材 質として好適に採用され得る。 また、 かかる高比重材粒子の外形形状は 特に限定されるものではないが、 外形寸法が余り大きいと、 ゴム弾性体 が有する弾性や伸び、 引張強さ等の物性が低下するおそれがあると共に 、 成形時における嚙込みや詰まり等によって成形加工装置が破損するお それがあることから、 全ての高比重材粒子において最大外形寸法を 1 0 0 以下とすることが望ましく、 より好ましくは最大外形寸法を 1 0 〜3 0 yu mとすることが望ましい。
すなわち、 このような高比重材粒子をゴム材料に混合することによつ て得られたダンバ成形材料は、 ゴム材料のみに比べて高い密度を有する こととなる。 因みに、 N R系ゴム材料に対して、 酸化鉛および夕ングス テンカ一バイ トからなる高比重材粒子を混合することによって得られる 成形材料の密度を、 第 3図に示す。 なお、 第 3図中、 高比重材混合比は 、 生ゴムと各種配合剤等を含むゴム材料に高比重材粒子を加えた全材料 に対する高比重材粒子の重量割合 (%) を表す。
なお、 ゴム材料に対する高比重材粒子の混合量を余り多くすると、 弾 性や伸び、 引張強さ等のゴム弾性体本来の物性が低下するおそれがあり 、 特に、 本実施例では、 マス部 1 4と支持ゴム部 1 6 , 1 6が同一材質 とされていることから、 高比重材粒子の混合量を余り多くすると、 支持 ゴム部 1 6 , 1 6におけるばね定数および減衰係数の設定に悪影響が及 ぼされるおそれもあるために、 高比重材粒子の混合割合を、 ゴム材料と 高比重材粒子とを加えた全材料に対して、 体積割合で 5 0 %以下とする ことが望ましい。
そして、 かくの如き、 ゴム材料に高比重材粒子を加えて混合したダン パ成形材料を、 目的とするダイナミ ックダンバ 1 0の外形形状に対応し た成形キヤビティを有する金型内に充塡し、 加熱等の処理を加えてゴム 材料を架橋してゴム弾性体とすることによって、 前述の如き、 目的とす るダイナミックダンバ 1 0を得ることができるのである。
すなわち、 このようにして得られたダイナミックダンハ 0にあって は、 マス部 1 4 , 支持ゴム部 1 6 , 1 6および取付筒部 1 8, 1 8力く、 完全に一体形成されており、 しかも、 それらマス部 1 4 , 支持ゴム部 1 6 , 1 6および取付筒部 1 8, 1 8力 \ ゴム弾性体の内部にそれよりも 高比重な粒子が散在せしめられた複合体によって構成されているのであ o
従って、 かかるダイナミックダンバ 1 0においては、 従来構造のダイ ナミ ックダンバのように金属製の別体マス部を用いることなく、 質量の 大きいマス部 1 4を支持ゴム部 1 6 , 1 6と一体的に形成することがで きるのであり、 それ故、 マス部 1 4と支持ゴム部 1 6 , 1 6を接着する ための面倒な処理や、 従来必要とされていた金属製マス部の防鐯処理、 或いは成形時における金属製マス部の成形型内へのセッ ト作業等が不要 となって、 その製作性および製造サイクルが飛躍的に向上され得るので ある。
しかも、 本実施例のダイナミックダンバ 1 0においては、 マス部 1 4 が支持ゴム部 1 6 , 1 6と完全に一体化されることから、 マス部 1 4と 支持ゴム部 1 6 , 1 6との境界部分への応力の集中的な作用が軽減乃至 は防止され得るのであり、 かかる境界部分における亀裂ゃ剝離が防止さ れて、 優れた耐久性が発揮され得るのである。
また、 かかるダイナミ ックダンバ 1 0においては、 従来と同様、 マス 部 1 4の大きさを調節して質量を変更したり、 支持ゴム部 1 6の厚さや 長さ等の形状や硬さを調節してばね定数を変更することによって、 ダン パの固有振動数等のチューニングを行うことも可能であると共に、 それ らマス部 1 4や支持ゴム部 1 6を形成するダンバ成形材料における高比 重材粒子の種類 (比重) や混合量等を調節することにより、 マス部 1 4 の質量や支持ゴム部 1 6のばね定数等を変更できることから、 成形型を 変更しなくてもダンバの固有振動数等のチューニングを容易に行うこと ができるといった利点もある。
因みに、 N R系のゴム材料に対して、 外径寸法が略 2 0 mの球状を 有する高比重材粒子としての酸化鉛を、 全成形材料に対して 8 4重量% の割合で混合した複合材を用い、 上述の如き構造とされたダイナミ ック ダンバ 1 0を製造したところ、 第 4図に示されている如き、 良好なる吸 振特性が得られることが確認された。
また、 上述の如きダイナミックダンバ 1 0にあっては、 従来構造の金 属製マス部を有するダイナミックダンバにおいてマス部の防銪のために 必要とされていたマス部の被覆ゴム層が不要となることから、 マス部 1 4の質量を有利に得ることが可能であり、 例えば、 高比重粒子としての 酸化鉛を全成形材料に対して 9 0重量%程度の割合で混合した複合材を 用いた場合には、 従来構造の金属製マスに比して、 マス部 1 4の外径寸 法を僅かに 2 mm程度大きくするだけで、 金属製マスと同等の質量を設定 することができるのである。 以上、 本発明の実施例について詳述してきたが、 これは文字通りの例 示であって、 本発明は、 かかる具体例に限定して解釈されるものではな い
例えば、 本発明が適用されるダイナミックダンバの具体的構造は、 前 記実施例に限定されるものは決してなく、 装着されるべき振動体の種類 ゃ配設スペース、 或いは要求される防振特性等に応じて、 適宜に決定さ れるものであり、 従来から知られている各種のダイナミックダンバに対 して、 何れも、 本発明が適用可能であって、 それにより、 前記第一の実 施例と同様な効果が有効に発揮され得ることは、 言うまでもないところ である。
因みに、 第 5〜9図において、 前記第一の実施例とは異なる構造のダ ィナミックダンバへの本発明の適用例を示す。
先ず、 第 5図に示されたダイナミックダンバ 2 2は、 それぞれ厚肉円 筒形状を有する第一のマス部 2 と第二のマス部 2 6が、 軸方向に所定 距離を隔てて設けられている一方、 それら両マス部 2 4 , 2 6力 ^ それ らの間に位置せしめられた円筒形状の中間支持ゴム部 2 8によって連結 されていると共に、 各マス部 2 4 , 2 6の軸方向外方に延び出して、 そ れぞれ、 テーパ筒形状の支持ゴム部 3 0と円筒形伏の取付筒部 3 2が、 設けられている。 なお、 第一のマス部 2 4は、 第二のマス部 2 6よりも 軸方向に短く、 質量が小さく設定されている。 そして、 これら第一のマ ス部 2 4, 第二のマス部 2 6 , 中間支持ゴム部 2 8, 支持ゴム部 3 0 , 3 0および取付筒部 3 2 , 3 2力 \ 前記第一の実施例と同様、 ゴム材料 に所定の高比重材粒子を混合せしめてなる複合材料によって、 一体的に 形成されているのである。
このようなダイナミックダンバ 2 2は、 ドライブシャフト等のロッ ド 状振動体 3 4に外挿されて、 軸方向両端部の取付筒部 3 2 , 3 2の外周 面に取付バンド 3 6が巻き掛けられることにより、 装着されることとな るが、 かかるロッ ド状振動体 3 4には、 各マス部 2 4 , 2 6に対応する 部分に小径部 3 5, 3 7が設けられており、 それによつて、 第一のマス 部 2 4および第二のマス部 2 6が、 それぞれ、 軸方向両端部において、 支持ゴム部 3 0と中間支持ゴム部 2 8とによって、 ロッ ド状振動体 3 2 に対して弾性的に連結支持せしめられるようになつている。
すなわち、 かかるダイナミックダンバ 2 2においては、 第一のマス部 2 4および第二のマス部 2 6によって、 それぞれ、 吸振機構が構成され ているのであり、 しかも、 第一のマス部 2 4と第二のマス部 2 6は、 互 いに質量が異なっていることから、 それら二つの吸振機構における固有 振動周波数が相違せしめられており、 以て、 互いに異なる周波数域の振 動に対して吸振効果が発揮され得ることとなるのである。
また、 第 6図に示されたダイナミックダンバ 3 8にあっては、 ロッ ド 状振動体 4 0に外揷されて取付バンド 4 2により固着される円筒形状を 有する取付筒部 4 に対して、 その径方向外方に所定距離を隔てて厚肉 の円筒形伏を有するマス部 4 6が位置せしめられていると共に、 それら 取付茼部 4 4とマス部 4 6との径方向対向面間に円環形状の支持ゴム部 4 8が介在されており、 この支持ゴム部 4 8によって取付筒部 4 4とマ ス部 4 6が一体的に連結されている。 そして、 これら取付筒部 4 4 , マ ス部 4 6および支持ゴム部 4 8力 前記第一の実施例と同様、 ゴム材料 に所定の高比重材粒子を混合せしめてなる複合材料によって、 一体的に 形成されているのである。
このようなダイナミ ックダンバ 3 8は、 マス部 4 6の軸方向および周 方向の変位時に支持ゴム部 4 8に対して势断変形が生ぜしめられること となり、 支持ゴム部 4 8における軸方向および周方向のばね定数を小さ く設定できることから、 ロッ ド状振動体 4 0における軸方向振動や周方 向の捩り振動等に対する吸振効果を有効に発揮し得るようなチューニン グが容易となる。
更にまた、 第 7図及び第 8図に示されたダイナミックダンバ 5 0にあ つては、 厚肉円板形状を有するマス部 5 2に対して、 その軸方向一方の 面から軸方向に突出する支持ゴム部 5 6が、 一体的に設けられており、 そして、 かかるマス部 5 2が、 L字型断面を有する金属板製の取付ブラ ケッ ト 5 4に対して所定距雜を隔てて対向位置せしめられていると共に 、 それらマス部 5 2と取付ブラケッ ト 5 4の対向面間に支持ゴム部 5 6 が介在されており、 以て、 該支持ゴム部 5 6によって、 マス部 5 2が取 付ブラケッ 卜 5 4に対して弾性的に連結支持せしめられてなる構造とさ れている。 そして、 マス部 5 2と支持ゴム部 5 6力^ 前記第一の実施例 と同様、 ゴム材料に所定の高比重材粒子を混合せしめてなる複合材料に よって、 一体的に形成されているのであり、 また、 支持ゴム部 5 6は、 取付ブラケッ ト 5 4に対して一体的に加硫接着されているのである。
このようなダイナミックダンバ 5 0は、 取付孔 5 8に揷通されるボル ト等によって振動体に取り付けられる取付ブラケッ ト 5 を備えている ことから、 ロッ ド状以外の各種形状の振動体に対して、 何れも容易に取 り付けることができるのである。
さらに、 第 9図に示されたダイナミックダンバ 6 0にあっては、 前記 第一の実施例と同様、 マス部 1 4と支持ゴム部 1 6 , 1 6および取付筒 部 1 8 , 1 8を有しているが、 そのマス部 1 4だけが、 ゴム材料に所定 の高比重材粒子を混合せしめてなる複合材料によつて形成されており、 支持ゴム部 1 6, 1 6および取付筒部 1 8, 1 8は、 高比重材粒子が混 合されていないゴム材料によって形成されている。 なお、 このようなダ イナミックダンバ 6 0は、 例えば、 ダイナミックダンバ 6 0の全体形状 に対応した成形キヤビティを備えた成形型に対して、 該成形キヤビティ 6
の軸方向中央部分からゴム材料に所定の高比重材粒子を混合した複合材 料を注入充填すると共に、 該成形キャビティの軸方向両端部分から高比 重材粒子が混合されていないゴム材料を注入充墳し、 それら両材料の合 流面がマス部 1 4と支持ゴム部 1 6 , 1 6との境界付近に位置するよう に、 各材料の注入速度を調節すること等によって、 有利に製造され得る 。 なお、 その際、 支持ゴム部 1 6 , 1 6および取付筒部 1 8 , 1 8を形 成するゴム材料は、 マス部 1 4を形成する複合材料のゴム材料と同質の ものを採用して、 一体的に架橋することが望ましく、 それによつて、 マ ス部 1 4と支持ゴム部 1 6, 1 6が完全に一体化され得て、 優れた耐久 性が発揮され得ることとなる。
このようなダイナミ ックダンバ 6 0は、 支持ゴム部 1 6において、 ゴ ム弾性体が有する弾性や伸び、 引張強さ等の物性を有利に得ることがで きるのである。
その他、 一々列挙はしないが、 本発明は、 当業者の知識に基づいて、 種々なる変更, 修正, 改良等を加えた態様において実施され得るもので あり、 また、 そのような実施態様が、 本発明の趣旨を逸脱しない限り、 何れも、 本発明の範囲内に含まれるものであることは、 言うまでもない ところである。 産業上の利用可能性
上述の説明から明らかなように、 本発明は、 自動車等の各種機械装置 において防振手段乃至は制振手段として用いられるダイナミックダンバ とその製造に対して適用され得ることとなり、 それによつて、 構造簡略 なダイナミックダンパゃ容易なダイナミックダンバの製造方法等を、 有 利に提供し得るものである。

Claims

請 求 の 範 囲
1 . ゴム弾性体の内部に該ゴム弾性体よりも比重が大きい高比重材から なる粒子が散在せしめられた複合体によって構成されたマス部と、 該マス部を構成する複合体のゴム弾性体と一体的に形成されて、 所定 の防振対象に取り付けられることにより、 前記マス部を該防振対象に対 して弾性的に支持せしめる支持ゴム部とを、
有することを特徴とするダイナミ ックダンバ。
2 . 前記支持ゴム部において、 前記高比重材からなる粒子が散在してい ない請求の範囲第 1項記載のダイナミックダンバ。
3 . 前記高比重材からなる粒子が、 3 . 0以上の比重を有している請求 の範囲第 1項記載のダイナミ ックダンバ。
4 . 前記高比重材からなる粒子が、 酸化鉛、 タングステン力一バイ ト、 酸化亜鉛よりなる群から選ばれた 1又は 2以上の化合物粒子である請求 の範囲第 1項記載のダイナミックダンバ。
5 . 前記高比重材からなる粒子が、 金属粒子である請求の範囲第 1項記 載のダイナミックダンバ。
6 . 前記高比重材からなる粒子の最大外形寸法が 1 0 0 m以下である 請求の範囲第 1項記載のダイナミックダンバ。
7 . 前記高比重材からなる粒子の最大外形寸法が 1 0〜3 0 z mである 請求の範囲第 1項記載のダイナミ ックダンバ。
8 . 前記高比重材からなる粒子の外形形状が略球形である請求の範囲第 1項記載のダイナミックダンバ。
9 . 前記支持ゴム部に対して、 該支持ゴム部を防振対象に取り付けるた めのブラケッ トが固着されている請求の範囲第 1項記載のダイナミック ダンバ。
10. 所定のゴム材料に、 該ゴ厶材料にて形成されるゴム弾性体よりも比 重が大きレ、高比重材からなる粒子を混合することにより、 かかるゴム材 料中に該高比重材粒子を散在せしめたことを特徴とするダイナミックダ ンパ用成形材料。
1 1. 前記高比重材からなる粒子が、 前記ゴム材料と該高比重材粒子とを 加えた全材料に対して、 5 0 %以下の体積割合で混合されている請求の 範囲第 10項記載のダイナミ ックダンバ用成形材料。
12. ゴム材料に、 該ゴ厶材料にて形成されるゴム弾性体よりも比重が大 きい高比重材からなる粒子を混合することにより、 該ゴ厶材料中に該高 比重材粒子を散在せしめた複合材料を準備する工程と、
該複合材料を用い、 少なくともマス部を成形する工程と、
該マス部を所定の防振対象に対して弾性的に支持せしめる支持ゴム部 を、 該マス部と一体成形する工程とを、
含むことを特徴とするダイナミックダンバの製造方法。
13. 前記支持ゴム部を、 前記高比重材料が散在されていないゴム材料に よって成形する請求の範囲第 12項記載のダイナミックダンバの製造方法
14. 前記マス部および前記支持ゴム部を形成するための所定の成形型に 対して、 該マス部を形成する前記複合材料の充填操作と前後して、 或い は同時に、 該マス部を形成する複合材料とは異なる充填孔を通じて、 該 支持ゴム部を形成する前記ゴム材料を充塡する請求の範囲第 13項に記載 のダイナミックダンバの製造方法。
15. 前記支持ゴム部を形成するゴム材料として、 前記マス部を形成する 複合材料を構成するゴム材料と同質のものを用いる請求の範囲第 12項に 記載のダイナミックダンバの製造方法。
PCT/JP1995/001701 1994-08-29 1995-08-25 Amortisseur dynamique, materiau de moulage et procede de fabrication de l'amortisseur WO1996007036A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU32657/95A AU673975B2 (en) 1994-08-29 1995-08-25 Dynamic damper and molding material therefor and method of manufacturing the same
KR1019960702143A KR960706032A (ko) 1994-08-29 1995-08-25 다이나믹 댐퍼와 그 성형재료 및 제조방법(dynamic damper, molding material thereof, and method of producing the same)
EP95929236A EP0726409A4 (en) 1994-08-29 1995-08-25 DYNAMIC SHOCK ABSORBER, MOLDING MATERIAL AND METHOD FOR MANUFACTURING THE SHOCK ABSORBER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6203627A JPH0868441A (ja) 1994-08-29 1994-08-29 ダイナミックダンパとその成形材料および製造方法
JP6/203627 1994-08-29

Publications (1)

Publication Number Publication Date
WO1996007036A1 true WO1996007036A1 (fr) 1996-03-07

Family

ID=16477179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001701 WO1996007036A1 (fr) 1994-08-29 1995-08-25 Amortisseur dynamique, materiau de moulage et procede de fabrication de l'amortisseur

Country Status (6)

Country Link
EP (1) EP0726409A4 (ja)
JP (1) JPH0868441A (ja)
KR (1) KR960706032A (ja)
CN (1) CN1134742A (ja)
AU (1) AU673975B2 (ja)
WO (1) WO1996007036A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6958567B2 (en) * 1998-04-22 2005-10-25 Virginia Tech Intellectual Properties, Inc. Active/passive distributed absorber for vibration and sound radiation control
DE10011124C2 (de) * 2000-03-09 2002-10-31 Zf Lemfoerder Metallwaren Ag Gummilager
WO2002001311A1 (en) * 2000-06-27 2002-01-03 Board Of Trustees Of The Leland Stanford Junior University Composite rotors for flywheels and methods of fabrication thereof
US7178423B2 (en) * 2002-11-27 2007-02-20 Torque-Traction Technologies Llc Noise and vibration damper for a vehicular driveshaft assembly
US7635118B2 (en) * 2005-01-20 2009-12-22 Tokai Rubber Industries, Ltd. Cylindrical dynamic damper
EP1913283B1 (en) * 2005-08-08 2014-10-29 Carrier Corporation Absorptive muffler suspension
DE102010037726B4 (de) * 2010-09-23 2013-08-14 Wegu Gmbh & Co. Kg Schwingungstilger mit mehreren, an einer gemeinsamen Basis elastisch abgestützten ringförmigen Tilgermassen
CN102954574A (zh) * 2011-08-19 2013-03-06 珠海格力节能环保制冷技术研究中心有限公司 一种缓冲器及具有其的空调器
DE102016115782B4 (de) 2016-08-25 2019-06-19 Vibracoustic Gmbh Schwingungstilger
DE102020128983A1 (de) 2020-11-03 2022-05-05 Boge Elastmetall Gmbh Verbindungsvorrichtung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0469422A (ja) * 1990-07-09 1992-03-04 Kobe Steel Ltd 制振体
JPH04316741A (ja) * 1991-04-16 1992-11-09 Toyoda Gosei Co Ltd ダイナミックダンパ
JPH05310993A (ja) * 1992-05-01 1993-11-22 Kyowa:Kk 制振性と熱伝導性を有するゴムおよび/またはプラスチック成型物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4706788A (en) * 1985-04-15 1987-11-17 Melles Griot, Irvine Company Vibration damped apparatus
DE3641384A1 (de) * 1986-12-04 1988-06-09 Hornschuch Ag K Schwingungsabsorber
EP0356917B1 (en) * 1988-08-27 1993-07-21 Tokai Rubber Industries, Ltd. Dynamic damper
US5156371A (en) * 1991-06-20 1992-10-20 Digital Equipment Corporation Triaxially-equalized action shock mount

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0469422A (ja) * 1990-07-09 1992-03-04 Kobe Steel Ltd 制振体
JPH04316741A (ja) * 1991-04-16 1992-11-09 Toyoda Gosei Co Ltd ダイナミックダンパ
JPH05310993A (ja) * 1992-05-01 1993-11-22 Kyowa:Kk 制振性と熱伝導性を有するゴムおよび/またはプラスチック成型物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0726409A4 *

Also Published As

Publication number Publication date
EP0726409A1 (en) 1996-08-14
MX9601576A (es) 1998-06-28
AU673975B2 (en) 1996-11-28
CN1134742A (zh) 1996-10-30
KR960706032A (ko) 1996-11-08
AU3265795A (en) 1996-03-22
EP0726409A4 (en) 1997-03-19
JPH0868441A (ja) 1996-03-12

Similar Documents

Publication Publication Date Title
US6663090B2 (en) Hydraulic engine mount
US20090314129A1 (en) Active vibrational damper
US6641119B2 (en) Vibration-damping device having independent mass member
WO2004109147A1 (fr) Ressort combine
JP2003014035A (ja) 制振装置
WO1996007036A1 (fr) Amortisseur dynamique, materiau de moulage et procede de fabrication de l'amortisseur
JPH11501110A (ja) 粘性ねじり振動ダンパー
US20060283678A1 (en) Dynamic damper
US20030137088A1 (en) Hydraulic bushing with springs in parallel
EP0410941A1 (en) A resilient mounting with a built-in phase shifter, particularly for motor vehicle engines
JPH08233030A (ja) 連結ロッド
CZ286095A3 (en) Bearing for damping device of vibrating materials
JP2008057792A (ja) 筒状ダイナミックダンパ及びその製造方法
KR20040086341A (ko) 바디 마운트용 복합 헬멧
KR100405777B1 (ko) 댐퍼
JP2003028155A (ja) 軸 受
JP4669329B2 (ja) ダイナミックダンパ
US7410035B2 (en) Damper and method for tuning a damper utilizing a surface contact reducing resilient member
JPH10267069A (ja) 防振装置
US20240167529A1 (en) Elastomeric Mount With Single Ferrule For Snubbing In One Axial Direction
MXPA96001576A (en) Dynamic shock absorber, molding material thereof, and method to produce my
US11982399B1 (en) Elastomeric mount with bi-directional axial motion control and radial travel limiter
JP7373440B2 (ja) 電気作動デバイス用の防振装置
JPH08277883A (ja) ダイナミックダンパ
KR100346477B1 (ko) 차량용 댐퍼풀리의 플라스틱 허브 구조

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95190828.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN KR MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1995929236

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/1996/001576

Country of ref document: MX

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 1996 635882

Country of ref document: US

Date of ref document: 19960613

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1995929236

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995929236

Country of ref document: EP