WO1995028479A1 - Verfahren zur herstellung von dendritischen zellen, so erhaltene zellen und behälter zur durchführung dieses verfahrens - Google Patents

Verfahren zur herstellung von dendritischen zellen, so erhaltene zellen und behälter zur durchführung dieses verfahrens Download PDF

Info

Publication number
WO1995028479A1
WO1995028479A1 PCT/DE1995/000512 DE9500512W WO9528479A1 WO 1995028479 A1 WO1995028479 A1 WO 1995028479A1 DE 9500512 W DE9500512 W DE 9500512W WO 9528479 A1 WO9528479 A1 WO 9528479A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
interleukin
csf
cell growth
peripheral blood
Prior art date
Application number
PCT/DE1995/000512
Other languages
English (en)
French (fr)
Inventor
Lothar Kanz
Wolfram Brugger
Reinhard Henschler
Gabriele KÖHLER
Hans-Eckart Schaefer
Albrecht Lindemann
Roland Mertelsmann
Andreas Mackensen
Paul Fisch
Birgit Herbst
Original Assignee
KLINIKUM DER ALBERT-LUDWIGS-UNIVERSITäT FREIBURG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KLINIKUM DER ALBERT-LUDWIGS-UNIVERSITäT FREIBURG filed Critical KLINIKUM DER ALBERT-LUDWIGS-UNIVERSITäT FREIBURG
Priority to AU23024/95A priority Critical patent/AU688897B2/en
Priority to US08/727,495 priority patent/US5866115A/en
Priority to EP95916557A priority patent/EP0755439A1/de
Priority to JP7526628A priority patent/JPH09511903A/ja
Publication of WO1995028479A1 publication Critical patent/WO1995028479A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4615Dendritic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/462Cellular immunotherapy characterized by the effect or the function of the cells
    • A61K39/4622Antigen presenting cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4648Bacterial antigens
    • A61K39/46482Clostridium, e.g. Clostridium tetani
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0639Dendritic cells, e.g. Langherhans cells in the epidermis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/125Stem cell factor [SCF], c-kit ligand [KL]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/14Erythropoietin [EPO]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/22Colony stimulating factors (G-CSF, GM-CSF)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/25Tumour necrosing factors [TNF]

Definitions

  • the present invention relates to the provision of dendritic cells which can not only be used in basic research but can also be used advantageously in a therapeutic respect.
  • a method for producing human dendritic cells is known from EPA 92.400879.0. This procedure treats CD 34 + cells with tumor necrosis factor- ⁇ (TNF- ⁇ ) and either interleukin-3 or GM-CSF. However, it has been found that the desired cells cannot be obtained in the required yield and purity in this process.
  • TNF- ⁇ tumor necrosis factor- ⁇
  • GM-CSF interleukin-3
  • Dendritic cells are the most potent antigen-presenting cells in the organism. They are derived from bone marrow progenitor cells and circulate less Number in the peripheral blood and show up as so-called Langerhans cells or terminally differentiated cells (dendritic cells) in the epidermis of the skin, the gastrointestinal mucosa, visceral pleura or epitelia of the urogenital tract.
  • these cells migrate from the skin into the paracortex of draining lymph nodes, where, as terminally differentiated cells, they trigger a specific T cell response.
  • the function as antigen-presenting cells can be demonstrated in vitro in the autologous and allogeneic "mixed lymphocyte reaction" and in test systems in which soluble antigens are added.
  • the dendritic cells can be differentiated from monocytes / macrophages, which are also antigen-presenting cells but express other surface markers.
  • a distinctive marker is in particular the CD 14 antigen, which is not found in dendritic cells, whereas monocytes or macrophages have this antigen.
  • the dendritic cells do not have this property.
  • the surface antigens of the circulating dendritic cells can be defined as follows: CDla + , CDlc + , CD 13 + , CD 33 + , CD 14 " , CD 16 ⁇ , CD 3 " , CD 19 " , MHC II + .
  • MHC-II molecules likewise there is expression of CD 25, B 7, CD 40 and ICAM 1.
  • the dendritic cells are antigen-presenting cells that can induce the activation of T cells with high efficiency. They are highly specialized and optimally equipped for their task, because dendritic cells express in large quantities Molecules that are necessary for the presentation of antigen (MHCI and MHCII). In addition, these cells express the constitutive costimulatory molecules CD80 and CD86 on their surface. These molecules are essential for the activation of the T cells. There are also important adhesion molecules on the surface of the dendritic cells, which guarantee intimate contact with the target cell.
  • the cells of the Langerhans * see type (short: LC) are distributed over the body in non-lymphatic organs. Your task is to absorb and process antigen. There are no specific markers for these cells, but they express the following markers: CD la, CD 11b, CD 33, HLA-DR and CD 80. A more specific detection is possible by electron microscopy. The so-called Birbeck granules, which only have Langerhans's cells, can be detected by electron microscopy.
  • Langerhans's cells migrate from the periphery of the body to the lymphatic organs via the lymphatic system. In this way, they differentiate into mature immunostimulatory dendritic cells that no longer take up antigen, but instead induce strong T cell responses.
  • DC dendritic cells
  • the dendritic cells can be used, for example, in the reinforcement of anti-infectious therapy.
  • the antigen-presenting dendritic cells are of particular importance in viral and bacterial infections and an addition of these cells to the corresponding ones Infections can have beneficial effects on the patient, particularly in severe cases.
  • Another area of application would be vaccination because it strengthens the body's immune response.
  • the cells that can be produced by the method according to the invention are of particular importance because of their strong antigen presentation.
  • the dendritic cells obtainable according to the invention can be loaded with specific antigens for various vaccination therapies in order to induce a specific T cell response in this way.
  • the use of the dendritic cells obtainable according to the invention is of great importance in the immunotherapy of malignant or also infectious diseases.
  • the dendritic cells that can be produced according to the invention can be obtained individually from each patient and, for example, can be loaded with specific tumor antigens in adoptive tumor immunotherapy, can be retransfused to the patient, and thus a specific immune response against the tumor can be induced.
  • the dendritic cells obtainable according to the invention can be used to intensify a vaccination reaction in immunosuppressed patients, for example in the case of hepatitis vaccination and, if appropriate, in the case of vaccination against HIV viruses.
  • the dendritic cells obtainable according to the invention can also be used advantageously in other vaccinations.
  • dendritic cells can be used in particular in the therapy of minimally residual diseases.
  • tumor-specific antigens are presented by the dendritic cells, which then cause a T-cell-specific (cytotoxic) reaction.
  • the method according to the invention for the ex vivo expansion of dendritic cells can be carried out as follows: heparinized blood samples are obtained from the patients. In the method according to the invention it is possible to start from cells which have been isolated from blood. This represents a considerable advantage over the method known from EPA 92.400879.0, in which the cells have to come from the bone marrow or the blood of the umbilical cord.
  • Mononuclear cells (MNZ) can preferably be isolated from the apheresis product by suitable separation techniques, in particular by density gradient centrifugation via Ficoll (Pharmacia, Germany).
  • the CD 34 + cells can be obtained from leukapheresate, in which the mononuclear cells are already enriched.
  • the mononuclear cells can be enriched by density centrifugation both when the CD 34 + cells are obtained directly from the blood and when the CD 34 + cells are obtained from leukapheresate. Density centrifugation is preferred, but not essential.
  • CD 34 + cells were obtained directly from the blood (heparinized blood samples), lysis of the erythrocytes could be sufficient and the next purification step could be followed by an affinity column or another enrichment step. If the CD 34 + cells are obtained directly from the leukapheresate, the cells can only be placed on an affinity column (for example CellPro) after a washing process, even without Ficoll separation. Enrichment by means of Ficoll gradients can be dispensed with in particular if relatively large quantities of CD 34 + cells are already present, as can be the case, for example, with high-dose chemotherapy.
  • an affinity column for example CellPro
  • the method for providing dendritic cells can comprise the following steps:
  • the erythrocytes can be lysed
  • a CD 34 isolation process can be carried out, which in a particularly preferred embodiment is an efficiency chromatography step;
  • the Langerhans cells / dendritic cells obtained in this way can be further treated depending on the intended use and then returned to the patient. Especially if If larger amounts of Langerhans cells / dendritic cells are required, leukapheresis would be helpful for stem cell enrichment.
  • the mononuclear cells are further treated to enrich those cells that have the CD 34 surface antigen.
  • Berenson et al. described the CD 34 antigen.
  • These cells can be enriched by incubating the cells with a monoclonal antibody which is specific for the CD 34 antigen, the antibody preferably being biotinylated.
  • monoclonal antibodies can be purchased commercially, for example from Dianova, Coulter, CellPro or Becton Dickinson.
  • the cells treated with the monoclonal antibody are loaded on immunoaffinity columns, preferably avidin immunoaffinity columns, the avidin binding the monoclonal antibodies and consequently also the CD 34 + cells bound to them.
  • the absorbed cells with the CD 34 surface antigen are removed from the immunoaffinity column and placed in a suitable medium.
  • the monoclonal antibodies specific for the CD 34 antigen could also be bound directly to a solid phase (for example small beads, etc.) in order to fix the CD 34 + cells and remove them from the mixture.
  • a solid phase for example small beads, etc.
  • CD 34 + cells it is also possible to enrich the CD 34 + cells using a fluorescence activated cell sorter, which is commercially available, for example from Becton Dickinson.
  • a fluorescence activated cell sorter which is commercially available, for example from Becton Dickinson.
  • mobilized peripheral blood precursor cells are reacted with an anti-CD 34 antibody that has a fluorochrome label.
  • the fluorescence-activated cell sorter it is possible to separate the cells in order to obtain the CD 34 + cells. On in this way, highly purified cells can be obtained.
  • Another possibility would be to separate the CD 34 + cells in that magnetic beads are used (beads) which are commercially available from Dynal, Baxter, Milteny and other companies.
  • the enriched CD 34 + cells were then cultivated in a suitable culture medium.
  • a suitable culture medium is, for example, supplemented RPMI 1640 medium which contains 10% fetal calf serum.
  • the culture medium can also contain heparinized autologous plasma, preferably in a concentration of about 1%.
  • the RPMI 1640 medium which is supplemented with 200 mM L-glutamine, 50 ⁇ M ⁇ -mercaptoethanol, 100 mM sodium pyruvate, 50 ⁇ g / ml streptomycin, 50 U / ml penicillin, MEM vitamins and 10 is preferably used as the culture medium % fetal calf serum.
  • the cells were grown in the presence of a combination of different growth factors.
  • the following growth factors were used:
  • Interleukin-1 (IL-1) described by Gery I. et al., Method Enzymol. 116, 456-467 (1985); Lachmann et al., Methods Enzymol. 116, 467-497 (1985); March et al., Nature 315: 641 (1985);
  • Interleukin-3 described in EPA 138 133, Ihle et al., Methods Enzymol. 116: 540-552 (1985); Otsuka et al., J. Immunol. 140: 2288-2295 (1988);
  • Interleukin-4 available from Genzyme Corp .
  • Interleukin-6 described in Brakenhoff et al., J. Immunol. 139: 4116-4121 (1987), Brakenhoff et al., J. Immunol. 143: 1175-1182 (1989); Granulocyte-macrophage colony stimulating factor (GM-CSF) available from Genzyme Corp .;
  • EPO Erythropoietin
  • SCF Stem cell factor
  • IFN-Y Interferon-Y
  • EP 77 670 Gray et al., Nature 295, 503-508 (1982); Devos et al., Nucl. Acids Res. 10: 2487-2501 (1982); Yip et al., PNAS 79, 1820-1824 (1982) and Braude, Methods Enzymol. 119, 193-199 (1986).
  • the cells are cultivated in the presence of the growth factors IL-1, IL-3, IL-6, EPO and SCF. It is essential that the cells are cultivated in the presence of a stem cell factor, and the medium must also contain further cytokines or growth factors.
  • the cells are expanded in the presence of a combination of SCF, GM-CSF and TNF- ⁇ .
  • additional IL-4 Interleukin-4
  • IL-4 Interleukin-4
  • differentiation into dendritic cells is carried out by using the cytokines IL-1ß, IL-3, IL-6, SCF and EPO, which are used together with the cytokines IL-4 and GM-CSF.
  • the cultivation using the above cytokines leads to a large number of cells maturing within two to three weeks, which cells are typical of the Langerhans type in terms of morphology and marker profile. After about five weeks of culture in medium containing the seven cytokines mentioned, the cells assume the phenotype of mature dendritic cells. Typical of this stage of maturation is a loss of Birbeck granules, a decrease in CD la expression and an increasing expression of the surface markers CD 4, CD 25 and CD 80.
  • the progenitor cells are first expanded using the cytokines IL-1ß, IL-3, IL-6, SCF and EPO for a period of one to two weeks. After this time, the proliferation is largely complete and the cells are transferred to a medium that contains only the cytokines IL-4 and GM-CSF. In this way, the cells can be stopped on their way of differentiation from the Langerhans 'cells to the dendritic cells at the level of the Langerhans' cells and thus all cells can be brought into an approximately equal state of differentiation. At this stage, the cells are particularly well suited to take up and process antigen.
  • the dendritic cells can be enriched or purified using appropriate separation processes.
  • a separation process could for example, consist of reacting the cells with monoclonal antibodies directed against the CD la surface antigen. These cell-antibody complexes can then also be separated using immunoaffinity columns or FACS (fluorescence-activated cell sorters).
  • the concentration of the growth factors or cytokines used is within the concentration usually used, which has the highest efficiency in ex vivo cultures.
  • IL-1 can be used in a concentration in the range of 10 ng / ml to 1,000 ng / ml
  • IL-3 is used in a concentration of 1 U / ml up to 1,000 U / ml
  • IL-4 is used in a concentration of 1 U / ml up to 1,000 U / ml used
  • IL-6 is used from 10 U / ml up to 1,000 U / ml.
  • EPO can be present in a concentration in the range of 0.1 U / ml to 10 U / ml.
  • SCF is used between 10ng / ml up to 1,000ng / ml and IFN-y can be used in the range of 1U / ml to 1,000U / ml.
  • concentrations used for GM-CSF are between 10 ng / ml and 1,000 ng / ml and for TNF- ⁇ between 10 U / ml and 1,000 U / ml.
  • the preferred ranges for IL-1 are between 10 ng / ml and 150 ng / ml, for IL-3 between 50 U / ml and 150 U / ml, for IL-4 between 50 ng / ml and 200 ng / ml, for IL-6 between 50 U / ml and 150 U / ml, for EPO from 0.5 U / ml to 1.5 U / ml, for SCF from 10 ng / ml to 150 ng / ml, for GM-CSF from 50 ng / ml to 200 ng / ml, for TNF- ⁇ from 20 U / ml to 150 U / ml and for IFN- ⁇ from 50 U / ml to 150 U / ml. It is within the abilities of the average specialist to determine the best effectiveness of the growth factors or cytokines. There are internationally recognized standards for the above units.
  • the peripheral blood precursor cells are obtained from cancer patients, which are mobilized by conventional chemotherapy and colony-stimulating factors to combine treatment therapy with broad antitumor activity with the simultaneous mobilization of peripheral blood progenitor cells.
  • Mobilization can be obtained by treating patients with a standard dose of VP 16 (500 mg / m 2 ) ifosfamide (4 g / m 2 ) cisplatin (50 mg / m 2 ) and optionally epirubicin (50 mg / m 2 ) (VIP ( E) Therapy) followed by administration of G-CSF (available from Amgen) at a dose of 5 ⁇ g / kg / d subcutaneously for 12 to 14 days.
  • VP 16 500 mg / m 2
  • ifosfamide (4 g / m 2 ) cisplatin 50 mg / m 2
  • optionally epirubicin 50 mg / m 2
  • G-CSF available from Amgen
  • GM-CSF which is commercially available, for example, under the trademark "Leukomax” from Sandoz AG, Basel.
  • the cancer patients can also be treated with chemotherapy consisting of etoposide (VP 16), ifosfamide and cisplatin followed by the combined sequential administration of recombinant human interleukin-3 (rhIL-3) and recombinant human granulocyte macrophage colony-stimulating factor (rhGM-CSF ).
  • rhIL-3 human interleukin-3
  • rhGM-CSF recombinant human granulocyte macrophage colony-stimulating factor
  • the present invention also encompasses a culture medium for dendritic cells comprising a combination of IL-1, IL-3, IL-6, EPO and SCF and optionally interferon-Y and TNF- ⁇ .
  • a culture medium for dendritic cells comprising a combination of IL-1, IL-3, IL-6, EPO and SCF and optionally interferon-Y and TNF- ⁇ .
  • Another culture medium according to the invention comprises a combination of SCF, GM-CSF and TNF- ⁇ .
  • a particularly preferred culture medium for dendritic cells in the context of the present invention comprises a combination of IL-1, IL-3, IL-4, IL-6, SCF, EPO and GM-CSF.
  • the culture media according to the invention are used for the in vitro generation of Langerhans cells or dendritic cells and include the above-mentioned combinations of growth factors and cytokines.
  • the biologically active compounds are used in the concentrations given above. It is possible to provide suitable receptacles which are equipped with a culture medium for the cultivation of peripheral blood precursor cells, comprising the combination of growth factors described above. Such receptacles can be blood bags, microtiter plates or tissue culture bottles. Such ready-to-use receptacles are also the subject of the present invention.
  • PBPC peripheral blood progenitor cells
  • VP 16 500 mg / m 2
  • ifosfamide 4 g / m 2
  • cisplatin 50 mg / m 2 )
  • VIP recombinant human G -CSF
  • 12 patients with solid tumors and 6 patients with refractory non-Hodgkin lymphoma were included.
  • PBPCs were collected 10 to 12 days after VIP chemotherapy.
  • peripheral blood progenitor cells were removed by leukapheresis using a so-called "small volume chamber" (available from Baxter) on day 10-12 after VIP chemotherapy according to the procedure described by Brugger et al. in J. Clin. Oncol. 20, pp. 1452-1459 (1992) and Brugger et al., British J. of Haematology 84, pp. 402-407 (1993).
  • small volume chamber available from Baxter
  • MNC Mononuclear cells
  • MNC Peripheral blood or bone marrow MNC cells were cultured as described in the prior art (eg Kanz et al., Blood, 68, 991 (1986)). MNC (1 x 10 5 ) were immobilized in methyl cellulose (0.9%) and supplemented in IMDM with 30% fetal calf serum (Paesel, Germany).
  • Mononuclear cells were incubated with a biotinylated IgM anti-CD 34 monoclonal antibody, washed and applied to an avidin immunoaffinity column.
  • Adsorbed CD 34 + cells were removed from the avidin column and resuspended in RPMI 1640 medium (Seromed, Germany) containing 3 mmol / L glutamine and 5 x 10 -5 mol / L ß-mercaptoethanol (Sigma, Germany) was added.
  • RPMI 1640 medium Seromed, Germany
  • Enriched CD 34 + cells were cultured in flat-bottomed 96-well microtiter plates at 0.5 to 15 x 10 3 cells / mL in RPMI 1640 medium supplemented with 10% fetal calf serum or various concentrations of autologous plasma.
  • the combination of growth factors described above was added to the microtiter plates (total volume 200 ⁇ L / container) immediately after sowing the CD 34 + cells.
  • Quadruple cultures of each of the 36 growth factor combinations tested were prepared.
  • the following hematopoietic growth factors and cytokines were used: IL-1, IL-3, IL-6, GM-CSF, EPO, TNF- ⁇ , IFN-Y, SCF.
  • Growth factors such as IL-1, GM-CSF, IFN-Y and SCF in a concentration of 100 ng / ml and in a concentration of 100 U / ml (IL-3 and IL-6).
  • Erythropoietin was used in a concentration of 1 U / ml and TNF- ⁇ in a concentration of 50 U / ml.
  • the cells were incubated for up to 28 days at 37 ° C in 5% CO2 without the addition of growth factors or medium. For analysis, each container was resuspended and washed in RPMI 1640 to remove residual growth factors. Cell viability was assessed by trypan blue dye exclusion and flow cytometric staining with propidium iodide.
  • CD34 + blood precursor cells are, as indicated in Example 4, in a cell density of 0.5 to 3 ⁇ 10 4 / ml in RPMI 1640 medium in 25 ml cell culture bottles over a period of Max. Cultivated for 21 days.
  • the following growth factors and cytokines are added to the culture medium: IL-1 ⁇ , IL-3, IL-6, SCF and erythropoietin in the concentrations mentioned under Example 4.
  • TNF- ⁇ , GM-CSF and SCF are added to the medium.
  • This antibody labeling is done using the indirect method.
  • the cells are additionally labeled with antibodies against CD15 (granulocytes) and CD14 (monocytes).
  • Isotype controls IgGl-FITC and IgG2a PE-conjugated
  • the cells are washed twice and resuspended in 250 ⁇ l PBS without FCS addition for flow cytometric analysis.
  • propidium iodide (PI) is added from each sample immediately before the measurement, and the PI-labeled dead cells are finally excluded accordingly before the analysis.
  • 20,000 cells are analyzed from each sample. PO7DE95 / 00512
  • CDla + cells in the culture with TNF, GM-CSF and SCF are about 20%, these cells additionally express HLA-DR molecules, which are also a marker for dendritic cells.
  • HLA-DR molecules which are also a marker for dendritic cells.
  • CDlc are expressed in approx. 17% and CD40 in approx. 45% of the cells. These molecules are also markers of dendritic cells.
  • the medium which was complemented with IL-1, IL-3, IL-6, SCF and erythropoietin, gave a larger number of clonogenic progenitor cells, but the proportion of dendritic cells was significantly lower.
  • CDla + cells were found in approx. 4% of all cells expanded ex vivo, CDlc-expressing cells were 3%, CD40-expressing cells approx. 2%.
  • Table 1 shows that the addition of the cytokines IL-4 / GM-CSF to the SE 136 cocktail produced the highest yield of cells with the CD la + marker.
  • the yield was up to 45% of the total nucleated cells. Depending on the purity of the affinity column, the yield can be increased up to 65%.
  • the use of TNF- ⁇ / GM-CSF together with the Cocktail SE 136 resulted in a lower yield of CD la + cells.
  • a large part of the cells had the markers CD 15 and CD 14, which indicates that these culture conditions favor differentiation into granulocytes and monocytes.
  • Peripheral blood progenitor cells with the marker CD 34 + which were grown with IL-4 / GM-CSF, had a high percentage of CD la + cells, but showed no expansion of this cell type.
  • the example therefore shows that the optimal yield of Langerhans cells / dendritic cells is obtained by a combination of the growth factors IL-4 / GM-CSF together with the factors SCF, EPO, IL-1ß, IL-3 and IL-6 .
  • SE1361 SE136 IL-4 / GM-CSF + TNF- ⁇ / GM-CSF + IL-4 / GM-CSF
  • 1 SE136 is a cytokine cocktail that includes SCF, EPO, IL-1ß, IL-3 and IL-6.
  • dendritic cells according to the invention as antigen-presenting cells for inducing an immune response is explained in more detail on the basis of the experiment described below for the detection of the antigen presentation of tetanus toxoid.
  • antigens such as tumor antigens, can also be used in this use.
  • PBMCs peripheral mononuclear cells
  • PBMCs 1 x 10 7 PBMCs were cultured with 1:80 diluted tetanus toxoid in medium containing 10% human serum. After seven days, 50 U / ml IL-2 was added to the cells and these were then cultivated for a further four days. The cells pre-stimulated in this way were first frozen and thawed again two days before the start of the antigen presentation experiment. This method takes advantage of the fact that the PBMCs already contain antigen-presenting cells which can take up tetanus toxoid and present them to the T cells which are also present.
  • CD 34 + cells were cultured in a medium containing only the five expansion cytokines IL-1, IL-3, IL-6, SCF and EPO.
  • the cells were sorted using a FACS sorter from Becton-Dickinson, two subtypes of dendritic cells being isolated, namely CD la + / CD 14 " and CD la + / CD 14 + .
  • the Langerhans cells / dendritic cells described according to b) were first irradiated in order to be able to safely rule out further growth of these cells. These cells were then mixed with the pre-stimulated peripheral mononuclear cells obtained according to a) and placed in microtiter plates. In the control batches, the cells were cultured without adding tetanus toxoid, otherwise tetanus toxoid was added at a dilution of 1:80.
  • the batches were cultured for two days, then - ⁇ H-thymidine was added and incubated for a further 18 hours. The cells were then harvested, washed and the counts per minute (CPM) determined. Since 3 H-thymidine is built into the cells during growth, the counts per minute are a measure of the T cell proliferation and thus a measure of the antigen presentation ability of the cells used.
  • CPM counts per minute
  • PBMCs alone show no proliferation
  • antigen-presenting cells all the populations used alone do not show any proliferation (radiation)
  • PBMCs + antigen-presenting cells show no proliferation
  • PBMCs + antigen-presenting cells + tetanus toxoid show a strong proliferation, depending on the cell type used.
  • the sorted LC / DC populations (CD la + / CD 14 ⁇ and CD la + / CD 14 + ) induce the greatest proliferation.
  • the unsorted LC / DC population induces slightly less. This is due to the fact that this cell population also contains other cells that are not antigen-presenting.
  • the KC population ie the cells containing only the expansion cytokines IL-1ß, IL-3, IL-6, SCF and EPO, only induced weaker proliferation.
  • the present experiment shows that the Langerhans cells / dendritic cells, which were generated in vitro using the particularly preferred cytokine cocktail, can ingest and present antigen in an excellent manner and can induce very strong T cell responses. This property is less pronounced when IL-4 and GM-CSF are not present.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Mycology (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Dendritische Zellen sind als Antigen-präsentierende Zellen in therapeutischer Hinsicht interessant. Offenbart wird ein Verfahren, bei dem zunächst periphere Blutzellen isoliert und daraus die Blutvorläuferzellen, die das CD 34-Antigen exprimieren, angereichert werden. Diese Zellen werden mit einer Kombination von hämatopoetischen Wachstumsfaktoren und Cytokinen ex vivo expandiert. Über einen Zeitraum von 10-20 Tagen entstehen daraus vor allem dendritische Zellen, die gegebenenfalls noch weiter gereinigt werden können. Diese Zellen sind funktionell aktiv hinsichtlich der Fähigkeit zur Antigenpräsentation.

Description

Verfahren zur Herstellung von dendritischen Zellen, so erhaltene Zellen und Behälter zur Durchführung dieses
Verfahrens
Gegenstand der vorliegenden Erfindung ist die Bereitstellung von dendritischen Zellen, die nicht nur in der Grundlagenforschung Anwendung finden können, sondern auch in therapeutischer Hinsicht vorteilhafterweise verwendet werden können.
Aus der EPA 92.400879.0 ist ein Verfahren zur Erzeugung von menschlichen dendritischen Zellen bekannt. Bei diesem Verfahren werden CD 34+-Zellen mit Tumornekrosefaktor-α (TNF-α) und entweder Interleukin-3 oder GM-CSF behandelt. Es hat sich allerdings herausgestellt, daß bei diesem Verfahren die gewünschten Zellen nicht in der erforderlichen Ausbeute und Reinheit erhalten werden können.
Dendritische Zellen stellen die potentesten Antigen- präsentierenden Zellen des Organismus dar. Sie leiten sich von Knochenmarksvorläuferzellen ab, zirkulieren in geringer Anzahl im peripheren Blut und zeigen sich als sogenannte Langerhans-Zellen bzw. terminal differenzierte Zellen (dendritische Zellen) in der Epidermis der Haut, der Gastrointestinal-Mukosa, viszeralen Pleura oder Epitelien des Urogenitaltraktes.
Nach Antigenexposition wandern diese Zellen aus der Haut in den Parakortex drainierender Lymphknoten, wo sie als terminal differenzierte Zellen eine spezifische T-Zellantwort auslösen. Die Funktion als Antigen-präsentierende Zellen läßt sich in vitro nachweisen in der autologen und allogenen "gemischten Lymphozytenreaktion" sowie in Testsystemen, in denen lösliche Antigene zugesetzt werden.
Die dendritischen Zellen lassen sich von Monozyten/ Makrophagen abgrenzen, die ebenfalls Antigen-präsentierende Zellen darstellen, jedoch andere Oberflächenmarker exprimieren. Ein Unterscheidungsmarker ist insbesondere das CD 14-Antigen, welches bei dendritischen Zellen nicht gefunden wird, wohingegen Monozyten bzw. Makrophagen dieses Antigen aufweisen. Im Unterschied zu den Monozyten/ Makrophagen, die stark phagozytierende Zellen sind, weisen diese Eigenschaft die dendritischen Zellen nicht auf. Bei den zirkulierenden dendritischen Zellen lassen sich die Oberflächenantigene wie folgt definieren: CDla+, CDlc+, CD 13+, CD 33+, CD 14", CD 16~, CD 3", CD 19", MHC II+.
Nach Kultivierung der Zellen in vitro bzw. nach physiologischer Stimulierung durch Antigen nimmt die
Expression der MHC-II-Moleküle zu, ebenso findet sich eine Expression von CD 25, B 7, CD 40 und ICAM 1.
Die dendritischen Zellen (kurz: DC) sind Antigen- präsentierende Zellen, die mit hoher Effizienz die Aktivierung von T-Zellen induzieren können. Sie sind hochspezialisiert und für ihre Aufgabe optimal ausgestattet, denn dendritische Zellen exprimieren in großer Menge Moleküle, die zur Präsentation von Antigen (MHCI und MHCII) notwendig sind. Darüber hinaus exprimieren diese Zellen die konstitutiv costimulatorischen Moleküle CD80 und CD86 an ihrer Oberfläche. Diese Moleküle wiederum sind für die Aktivierung der T-Zellen unerläßlich. Es befinden sich auch wichtige Adhäsionsmoleküle auf der Oberfläche der dendritischen Zellen, die einen innigen Kontakt zur Zielzelle garantieren.
Bei den dendritischen Zellen kann man zwei Reifungsstadien unterscheiden. Die Zellen vom Langerhans*sehen Typ (kurz: LC) sind in nicht-lymphatischen Organen über den Körper verteilt. Ihre Aufgabe ist es, Antigen aufzunehmen und zu prozessieren. Es gibt keine spezifischen Marker für diese Zellen, jedoch exprimieren sie die folgenden Marker: CD la, CD 11b, CD 33, HLA-DR und CD 80. Ein spezifischerer Nachweis ist elektronenmikroskopisch möglich. Elektronenmikroskopisch können die sogenannten Birbeck-Granula, die nur Langerhans'sehe Zellen haben, nachgewiesen werden.
Im Körper wandern die Langerhans'sehen Zellen nach Antigen- kontakt aus der Peripherie des Körpers über das lymphatische System in die lymphatischen Organe. Auf diesem Weg differenzieren sie sich zu reifen immunstimulatorischen dendritischen Zellen aus, die kein Antigen mehr aufnehmen, dafür aber starke T-Zellantworten induzieren.
Es kann also zwischen Langerhans'sehen Zellen und reifen dendritischen Zellen (kurz: DC) differenziert werden. Typisch für diese DC-Zellen ist eine Abnahme der CD la-Expression und eine zunehmende Expression von CD 4, CD 25 und CD 80.
Verwendung finden können die dendritischen Zellen beispiels¬ weise bei der Verstärkung einer antiinfektiösen Therapie. Die Antigen-präsentierenden dendritischen Zellen sind von besonderer Bedeutung bei viralen und bakteriellen Infektionen und eine Zugabe dieser Zellen bei den entsprechenden Infektionen kann insbesondere bei schweren Fällen vorteilhafte Auswirkungen auf den Patienten haben. Ein anderes Einsatzgebiet wäre die Impfung, weil hierdurch die Immunantwort des Körpers verstärkt wird.
Die durch das erfindungsgemäße Verfahren herstellbaren Zellen sind wegen ihrer starken Antigenpräsentation von besonderer Bedeutung. Man kann die erfindungsgemäß erhältlichen dendritischen Zellen für verschiedene Vakzinierungstherapien mit spezifischen Antigenen beladen, um auf diese Weise eine spezifische T-Zellantwort zu induzieren.
Weiterhin ist der Einsatz der erfindungsgemäß erhältlichen dendritischen Zellen in der Immuntherapie von malignen oder auch infektiösen Erkrankungen von großer Bedeutung. So können die erfindungsgemäß herstellbaren dendritischen Zellen individuell von jedem Patienten gewonnen werden und beispielsweise in der adoptiven Tumor-Immuntherapie mit spezifischen Tumorantigenen beladen werden, dem Patienten retransfundiert werden und so kann eine spezifische Immunantwort gegen den Tumor induziert werden.
Bei der Therapie von Infektionskrankheiten können die erfindungsgemäß erhältlichen dendritischen Zellen zur Verstärkung einer Impfreaktion bei immünsupprimierten Patienten eingesetzt werden, beispielsweise bei der Hepatitis-Impfung und gegebenenfalls bei einer Vakzinierung gegen HIV-Viren. Auch bei anderen Impfungen können die erfindungsgemäß erhältlichen dendritischen Zellen in vorteilhafter Weise eingesetzt werden.
Gerade bei Patienten, die sich einer Chemotherapie aufgrund einer Tumorerkrankung unterziehen müssen, ist die Bekämpfung von verschiedenen bakteriellen bzw. viralen Infektionen ein Problem, weil durch die Chemotherapie die Immunantwort des Patienten drastisch reduziert wird. Es ist daher erforderlich, daß gerade in diesen Fällen die Immunantwort verbessert wird. Darüberhinaus können dendritische Zellen insbesondere bei der Therapie der minimal residuellen Er¬ krankungen verwendet werden. Hierbei werden tumorspezifische Antigene von den dendritischen Zellen präsentiert, die dann eine T-Zell-spezifisehe (cytotoxische) Reaktion hervorrufen.
Bei dem erfindungsgemäßen Verfahren zur ex vivo Expansion von dendritischen Zellen kann folgendermaßen vorgegangen werden: Von den Patienten werden heparinisierte Blutproben erhalten. Bei dem erfindungsgemäßen Verfahren kann von Zellen ausgegangen werden, die aus Blut isoliert wurden. Dies stellt einen erheblichen Vorteil dar gegenüber dem aus der EPA 92.400879.0 bekannten Verfahren, bei dem die Zellen aus dem Knochenmark oder dem Blut der Nabelschnur stammen müssen. Vorzugsweise können mononukleäre Zellen (MNZ) von dem Aphereseprodukt durch geeignete Trenntechniken, insbesondere durch eine Dichtegradientenzentrifugation über Ficoll (Pharmacia, Deutschland) isoliert werden.
In einer alternativen Ausführungsform können die CD 34+- Zellen aus Leukapheresat gewonnen werden, bei dem die mononukleären Zellen bereits angereichert sind.
Eine Anreicherung der mononukleären Zellen mittels Dichtezentrifugation kann sowohl dann erfolgen, wenn die CD 34+-Zellen direkt aus dem Blut gewonnen werden, wie auch dann, wenn die CD 34+-Zellen aus Leukapheresat gewonnen wurden. Eine Dichtezentrifugation ist bevorzugt, jedoch nicht unbedingt erforderlich.
Wenn die CD 34+-Zellen direkt aus dem Blut gewonnen wurden (heparinisierte Blutproben), könnte bereits eine Lyse der Erythrozyten ausreichen und als nächster Reinigungsschritt könnte sich eine Affinitätssäule oder ein anderer Anreicherungsschritt anschließe . Wenn die CD 34+-Zellen direkt aus dem Leukapheresat gewonnen werden, können die Zellen nur nach einem Waschvorgang, auch ohne Ficollauftrennung, auf eine Affinitätssäule (beispielsweise CellPro) gegeben werden. Auf die Anreicherung mittels Ficoll-Gradienten kann insbesondere dann verzichtet werden, wenn bereits verhältnismäßig große Mengen an CD 34+- Zellen vorliegen, wie das beispielsweise bei der Hochdosis- Chemotherapie der Fall sein kann.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung kann das Verfahren zur Bereitstellung von dendritischen Zellen folgende Schritte umfassen:
a) Der Patient wird zur Mobilisierung der Stammzellen mit G- CSF behandelt, wobei übliche Konzentrationen an G-CSF verabreicht werden;
b) nach einem geeigneten Zeitraum werden etwa 50 bis 100 ml Blut entnommen;
c) bei niedrigem Gehalt an CD 34+-Zellen kann ein Ficoll- Trennungsschritt stattfinden;
d) die Erythrozyten können lysiert werden;
e) es kann ein CD 34-Isolierungsverfahren durchgeführt wer¬ den, das in besonders bevorzugter Ausführungsform ein Af¬ finitätschromatographieschritt ist;
f) durch Zugabe von nachfolgend beschriebenen Wachstumsfaktoren/Zytokinen kann eine Differenzierung von Langerhans'sehen Zellen bzw. dendritischen Zellen er¬ zielt werden.
Die so erhaltenen Langerhans'sehen Zellen/dendritischen Zellen können je nach Einsatzzweck weiterbehandelt werden und dann wieder dem Patienten zugeführt werden. Insbesondere wenn größere Mengen an Langerhans'sehen Zellen/dendritischen Zellen benötigt werden, wäre eine Leukapherese zur Stammzellanreicherung hilfreich.
Die mononukleären Zellen werden weiter behandelt, um diejenigen Zellen anzureichern, die das CD 34-Oberflächen- antigen besitzen. In der Veröffentlichung "Engraftment After Infusion of CD 34+ Marrow Cells in Patients With Breast Cancer or Neuroblastoma" (Blood, Vol. 77, Nr. 8 (1991) S. 1717-1722) haben Berenson et al. das CD 34-Antigen beschrieben. Die Anreicherung dieser Zellen kann dadurch erfolgen, daß die Zellen mit einem monoklonalen Antikörper inkubiert werden, der spezifisch ist für das CD 34-Antigen, wobei der Antikörper vorzugsweise biotinyliert ist. Derartige monoklonale Antikörper können käuflich erworben werden, beispielsweise von Dianova, Coulter, CellPro oder Becton Dickinson. Die mit dem monoklonalen Antikörper behandelten Zellen werden auf Immunoaffinitätssäulen, vorzugsweise Avidin-Immunoaffinitätssäulen, geladen, wobei das Avidin die monoklonalen Antikörper bindet und folglich auch die hieran gebundenen, CD 34+-Zellen. Die absorbierten Zellen mit dem CD 34-Oberflächenantigen werden von der Immunoaffinitätssäule entfernt und in ein geeignetes Medium gebracht.
Ebenso könnten die für das CD 34-Antigen spezifischen monoklonalen Antikörper auch direkt an eine Festphase (z.B. kleine Perlen etc.) gebunden werden, um die CD 34+-Zellen zu fixieren und aus der Mischung zu entfernen.
Weiterhin ist es möglich, die CD 34+-Zellen unter Verwendung eines fluoreszenzaktivierten Zellsortierers anzureichern, der käuflich erhältlich ist, beispielsweise von Becton Dickinson. Bei diesem Verfahren werden mobilisierte periphere Blutvorläuferzellen mit einem Anti-CD 34-Antikörper, der eine Fluorochrommarkierung hat, umgesetzt. Mit der Hilfe des fluoreszenzaktivierten Zellsortierers ist es möglich, die Zellen zu trennen, um die CD 34+-Zellen zu erhalten. Auf diese Weise können hoch gereinigte Zellen erhalten werden. Eine andere Möglichkeit wäre es, die CD 34+-Zellen dadurch abzutrennen, daß magnetische Perlen (beads) verwendet werden, die von Dynal, Baxter, Milteny und anderen Firmen käuflich erhältlich sind.
Die angereicherten CD 34+-Zellen wurden anschließend in einem geeignetem Kulturmedium kultiviert. Ein, derartiges Medium ist beispielsweise ergänztes RPMI 1640-Medium, das 10% fötales Kälberserum enthält. Das Kulturmedium kann auch heparinisiertes autologes Plasma, vorzugsweise in einer Konzentration von etwa 1% enthalten. In bevorzugter Weise wird als Kulturmedium das RPMI 1640-Medium verwendet, das ergänzt wird mit 200 mM L-Glutamin, 50 μM ß-Mercaptoethanol, 100 mM Natriumpyruvat, 50 μg/ml Streptomycin, 50 U/ml Penicillin, MEM-Vitamine und 10% fötales Kälberserum.
Bei der Expansion der Zellen wurden die Zellen in Gegenwart einer Kombination von verschiedenen Wachstumsfaktoren angezogen. Hierbei wurden die folgenden Wachstumsfaktoren verwendet:
"Interleukin-1 (IL-1), beschrieben von Gery I. et al., Method Enzymol. 116, 456-467 (1985); Lachmann et al., Methods Enzymol. 116, 467-497 (1985); March et al., Nature 315, 641 (1985);
Interleukin-3 (IL-3), beschrieben in EPA 138 133, Ihle et al., Methods Enzymol. 116, 540-552 (1985); Otsuka et al., J. Immunol. 140, 2288-2295 (1988);
Interleukin-4 (IL-4) erhältlich von Genzyme Corp.;
Interleukin-6 (IL-6), beschrieben in Brakenhoff et al., J. Immunol. 139, 4116-4121 (1987), Brakenhoff et al., J. Immunol. 143, 1175-1182 (1989); Granulozyten-Makrophagen-Kolonie stimulierender Faktor (GM- CSF) erhältlich von Genzyme Corp.;
Erythropoietin (EPO), beschrieben von Jacobs et al., Nature 313, 806-810 (1985), Sasaki et al., Methods Enzymol. 147, 328-340 (1987);
Stammzellfaktor (SCF), beschrieben in WO 91/05 797, Nocka et al., EMBO J. 9, 3287-3294 (1990) und
Interferon-Y (IFN-Y), beschrieben in EP 77 670, Gray et al., Nature 295, 503-508 (1982); Devos et al., Nucl. Acids Res. 10, 2487-2501 (1982); Yip et al., PNAS 79, 1820-1824 (1982) und Braude, Methods Enzymol. 119, 193-199 (1986)."
Es wurde herausgefunden, daß durch eine Kombination der folgenden Wachstumsfaktoren: IL-1, IL-3, IL-6, EPO und SCF eine Expansion der CD 34+-Vorläuferzellen erfolgt. Wenn diese fünf Wachstumsfaktoren eingesetzt wurden, konnten etwa 1 bis 5% dendritische Zellen, die das Oberflächenantigen CD la exprimieren, erhalten werden. Derartige Zellen können auch elektronenmikroskopisch durch den Nachweis der sogenannten Birbeck-Granula identifiziert werden. Durch die Zugabe von TNF-α und GM-CSF konnte die Ausbeute an dendritischen Zellen deutlich erhöht werden.
Die Zellen werden in Gegenwart der Wachstumsfaktoren IL-1, IL-3, IL-6, EPO und SCF kultiviert. Wesentlich ist dabei, daß die Zellen in Gegenwart von Stammzellenfaktor kultiviert werden, wobei das Medium noch weitere Cytokine bzw. Wachstumsfaktoren enthalten muß.
In einer bevorzugten Ausführungsform erfolgt die Expansion der Zellen in Gegenwart einer Kombination von SCF, GM-CSF und TNF-α. Gegebenenfalls kann noch zusätzlich IL-4 (Interleukin- 4) zugesetzt werden (10-1000 ng/ml). In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung erfolgt die Differenzierung zu dendritischen Zellen durch eine Verwendung der Cytokine IL-lß, IL-3, IL-6, SCF und EPO, die zusammen mit den Cytokinen IL-4 und GM-CSF eingesetzt werden.
Die Kultivierung unter Verwendung der oben genannten Cytokine führt dazu, daß innerhalb von zwei bis drei Wochen eine große Zahl der Zellen ausreift, die nach Morphologie und Markerprofil typische Zellen vom Langerhans-Typ sind. Nach etwa fünf Wochen Kultur in Medium, das die sieben genannten Cytokine enthält, nehmen die Zellen den Phänotyp von reifen dendritischen Zellen an. Typisch für dieses Reifungsstadium ist ein Verlust der Birbeck-Granula, die Abnahme der CD la- Expression und eine zunehmende Expression der Oberflächen- marker CD 4, CD 25 und CD 80.
Im Rahmen der vorliegenden Erfindung ist eine sequentielle Zugabe der Cytokine besonders bevorzugt, um die Differenzierung der Zellen noch besser steuern zu können. Bei dieser Ausführungsform werden die Vorläuferzellen zunächst unter Verwendung der Cytokine IL-lß, IL-3, IL-6, SCF und EPO expandiert für die Dauer von ein bis zwei Wochen. Nach dieser Zeit ist die Proliferation bereits zum großen Teil abgeschlossen und die Zellen werden in ein Medium überführt, das nur die Cytokine IL-4 und GM-CSF enthält. Auf diese Weise kann man die Zellen auf ihrem Differenzierungsweg von den Langerhans'sehen Zellen zu den dendritischen Zellen auf der Stufe der Langerhans'sehen Zellen aufhalten und somit alle Zellen in einen annähernd gleichen Differenzierungszustand bringen. In diesem Stadium sind die Zellen besonders gut geeignet, Antigen aufzunehmen und zu prozessieren.
Sofern eine einheitliche Population von dendritischen Zellen für den gewünschten Einsatzzweck erforderlich ist, können die dendritischen Zellen durch entsprechende Trennverfahren angereichert bzw. gereinigt werden. Ein Trennverfahren könnte beispielsweise darin bestehen, daß die Zellen mit monoklonalen Antikörpern umgesetzt werden, die gegen das CD la-Oberflächenantigen gerichtet sind. Diese Zell-Antikörper- Komplexe können dann auch über Immunoaffinitätssäulen oder FACS (Fluoreszenz aktivierte Zellsorter) aufgetrennt werden.
Die verwendete Konzentration der Wachstumsfaktoren bzw. Cytokine liegt innerhalb der gewöhnlich verwendeten Konzentration, die die höchste Effizienz in ex vivo Kulturen aufweist. IL-1 kann in einer Konzentration im Bereich von 10 ng/ml bis 1.000 ng/ml verwendet werden, IL-3 wird in einer Konzentration von 1 E/ml bis zu 1.000 E/ml verwendet, IL-4 wird in einer Konzentration von 1 E/ml bis zu 1.000 E/ml verwendet, IL-6 wird von 10 E/ml bis zu 1.000 E/ml verwendet. EPO kann in einer Konzentration im Bereich von 0,1 E/ml bis 10 E/ml vorhanden sein. SCF wird zwischen 10 ng/ml bis zu 1.000 ng/ml verwendet und IFN-y kann im Bereich von 1 E/ml bis 1.000 E/ml verwendet werden. Für GM-CSF liegen die verwendeten Konzentrationen zwischen 10 ng/ml und 1.000 ng/ml und für TNF-α zwischen 10 E/ml und 1.000 E/ml.
Die bevorzugten Bereiche für IL-1 liegen zwischen 10 ng/ml und 150 ng/ml, für IL-3 zwischen 50 E/ml und 150 E/ml, für IL-4 zwischen 50 ng/ml und 200 ng/ml, für IL-6 zwischen 50 E/ml und 150 E/ml, für EPO von 0,5 E/ml bis 1,5 E/ml, für SCF von 10 ng/ml bis 150 ng/ml, für GM-CSF von 50 ng/ml bis 200 ng/ml, für TNF-α von 20 E/ml bis 150 E/ml und für IFN-γ von 50 E/ml bis 150 E/ml. Es liegt im Bereich der Fähigkeiten des Durchschnittsfachmannes, die beste Wirkungsfähigkeit der Wachstumsfaktoren bzw. Cytokine zu bestimmen. Für die oben angegebenen Einheiten gibt es international anerkannte Normen.
Gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung werden die peripheren Blutvorläuferzellen von krebskranken Patienten erhalten, die durch herkömmliche Chemotherapie und koloniestimulierende Faktoren mobilisiert wurden, um eine Behandlungstherapie mit breiter Antitumoraktivität mit der gleichzeitigen Mobilisierung von peripheren Blutvorläuferzellen zu kombinieren. Eine Mobilisierung kann erhalten werden durch Behandlung der Patienten mit einer Standarddosierung VP 16 (500 mg/m2) Ifosfamid (4 g/m2) Cisplatin (50 mg/m2) und gegebenenfalls Epirubicin (50 mg/m2) (VIP (E) Therapie), gefolgt von der Verabreichung von G-CSF (erhältlich von Amgen) in einer Dosierung von 5 μg/kg/d subkutan für 12 bis 14 Tage. Ebenso ist es möglich, GM-CSF zu verabreichen, was zum Beispiel unter dem Warenzeichen "Leukomax" von Sandoz AG, Basel kommerziell erhältlich ist. Die Krebspatienten können auch mit einer Chemotherapie behandelt werden bestehend aus Etoposid (VP 16), Ifosfamid und Cisplatin gefolgt von der kombinierten sequentiellen Verabreichung von rekombinantem Human-interleukin-3 (rhIL-3) und rekombinantem humanem Granulozyten-Makrophagen koloniestimulierendem Faktor (rhGM- CSF) .
Es ist besonders bevorzugt, die peripheren Blutvorläufer¬ zellen vom Patienten zwischen Tag 10 und Tag 18 nach der Chemotherapie zu erhalten.
Die vorliegende Erfindung umfaßt auch ein Kulturmedium für dendritische Zellen umfassend eine Kombination von IL-1, IL- 3, IL-6, EPO und SCF und gegebenenfalls Interferon-Y sowie TNF-α. Ein anderes erfindungsgemäßes Kulturmedium umfaßt eine Kombination von SCF, GM-CSF und TNF-α.
Ein im Rahmen der vorliegenden Erfindung besonders bevorzugtes Kulturmedium für dendritische Zellen umfaßt eine Kombination von IL-1, IL-3, IL-4, IL-6, SCF, EPO und GM-CSF.
Die erfindungsgemäßen Kulturmedien dienen der in vitro- Generierung von Langerhans'sehen Zellen bzw. dendritischen Zellen und umfassen die oben erwähnten Kombinationen von Wachstumsfaktoren bzw. Zytokinen. Die biologisch aktiven Verbindungen werden in den oben angegebenen Konzentrationen verwendet. Es ist möglich, geeignete Aufnahmegefäße bereitzustellen, die mit einem Kulturmedium zur Züchtung von peripheren Blutvorläuferzellen ausgestattet sind umfassend die oben beschriebene Kombination von Wachstumsfaktoren. Solche Aufnahmegefäße können Blutbeutel, Mikrotiterplatten oder Gewebekulturflaschen sein. Solche gebrauchsfertigen Aufnahmegefäße sind auch Gegenstand der vorliegenden Erfindung.
Beispiel 1
Mobilisierung von peripheren Blutvorläuferzellen (PBPC)
18 Patienten wurden als Teil ihrer Induktionschemotherapie mit einer herkömmlichen Dosis VP 16 (500 mg/m2), Ifosfamid (4 g/m2) und Cisplatin (50 mg/m2) (VIP) behandelt, mit anschließender Verabreichung von rekombinantem humanem G-CSF (Amgen, Deutschland) in einer Dosis von 5 μg/kg/d subkutan für 10 bis 14 Tage zur Mobilisierung von PBPCs. 12 Patienten mit soliden Tumoren und 6 Patienten mit refraktärem non- Hodgkin Lymphomen waren eingeschlossen. PBPCs wurden 10 bis 12 Tage nach VIP Chemotherapie gesammelt. Die peripheren Blutvorläuferzellen wurden durch Leukapheresen entnommen unter Verwendung einer sogenannten "Kleinvolumenkammer" (erhältlich von Baxter) an Tag 10-12 nach der VIP Chemotherapie gemäß dem Verfahren, das von Brugger et al. in J. Clin. Oncol. 20, S. 1452-1459 (1992) und Brugger et al., British J. of Haematology 84, S. 402-407 (1993) beschrieben wurde. Beispiel 2
Kultur von gezüchteten PBPCs
Aus dem Aphereseprodukt wurden mononukleäre Zellen (MNC) durch Dichtegradientenzentrifugation über Ficoll/Hypaque (1.077 g/ml) (erhältlich von Pharmacia) isoliert und zweimal in phosphatgepufferter Salzlösung (PBS) gewaschen.
Periphere Blut- oder Knochenmarks-MNC-Zellen wurden kultiviert wie im Stand der Technik beschrieben (z.B. Kanz et al., Blood, 68, 991 (1986)). MNC (1 x 105) wurden in Methylcellulose (0,9%) immobilisiert und in IMDM supplementiert mit 30% fötalem Kälberserum (Paesel, Deutschland) kultiviert.
Beispiel 3
Positive Auswahl von CD 34+-Zellen von gezüchteten PBPCs durch Immunoaffinitätsadsorptionssäulen
Mononukleäre Zellen (MNCs) wurden mit einem biotinylierten IgM Anti-CD 34 monoklonalem Antikörper inkubiert, gewaschen und auf eine Avidin-Immunoaffinitätssäule aufgetragen. Adsorbierte CD 34+-Zellen (Zielzellenpopulation) wurden von der Avidinsäule entfernt und in RPMI 1640 Medium (Seromed, Deutschland) resuspendiert, das mit 3 mmol/L Glutamin und 5 x 10-5 mol/L ß-Mercaptoethanol (Sigma, Deutschland) ergänzt wurde. Beispiel 4
Expansion von angereicherten CD 34+-Zellen in Suspensions¬ kultur
Angereicherte CD 34+-Zellen wurden in 96-Loch- Mikrotiterplatten mit flachem Boden kultiviert bei 0,5 bis 15 x 103 Zellen/mL in RPMI 1640 Medium Supplementiert mit 10% fötalem Kälberserum bzw. verschiedenen Konzentrationen von autologem Plasma. Die oben beschriebene Kombination von Wachstumsfaktoren wurde unmittelbar nach Aussaat der CD 34+- Zellen in die Mikrotiterplatten (Gesamtvolumen 200 μL/ Behälter) hinzugefügt. Vierfache Kulturen von jeder einzelnen der getesteten 36 Wachstumsfaktor-Kombinationen wurden hergestellt. Die folgenden hämatopoetischen Wachstumsfaktoren und Cytokine wurden verwendet: IL-1, IL-3, IL-6, GM-CSF, EPO, TNF-α, IFN-Y, SCF. Wachstumsfaktoren wie IL-1, GM-CSF, IFN-Y und SCF in einer Konzentration von 100 ng/ml bzw. in einer Konzentration von 100 E/ml (IL-3 und IL-6). Erythropoietin wurde in einer Konzentration von 1 E/ml und TNF-α in einer Konzentration von 50 E/ml verwendet. Die Zellen wurden bis zu 28 Tage bei 37°C in 5% CO2 inkubiert ohne zusätzliche Zugabe von Wachstumsfaktoren oder Medium. Zur Analyse wurde jeder Behälter resuspendiert und in RPMI 1640 gewaschen zur Entfernung von restlichen Wachstumsfaktoren. Die Lebensfähigkeit der Zellen wurde durch Trypanblaufarbstoff- Ausschluß sowie durch durchflußcytometrische Färbung mit Propidiumiodid bewertet.
Beispiel 5
Herstellung dendritischer Zellen durch eine ex vivo Expansion peripherer CD34+-Blutprogenitorzellen
CD34+-Blutvorläuferzellen werden wie in Beispiel 4 angegeben in einer Zelldichte von 0,5 bis 3xl04/ml in RPMI 1640 Medium in 25 ml Zellkulturflaschen über einen Zeitraum von max. 21 Tagen kultiviert. Dem Kulturmedium werden folgende Wachstums-faktoren und Cytokine zugeführt: IL-lß, IL-3, IL-6, SCF und Erythropoietin in den unter Beispiel 4 genannten Konzentrationen. In einem zweiten Kulturansatz werden, um die Ausbeute an dendritischen Zellen zu erhöhen, dem Medium TNF- α, GM-CSF sowie SCF zugesetzt.
Wöchentlich werden Proben aus den Kulturen entnommen und darin der Immunphänotyp durchflußcytometrisch mit einem FACScan-Analyzer (Becton Dickinson) analysiert. Die Daten werden mit dem FACScan Lysis 2 Software-Programm ausgewertet. Für die Zweifarben-Markierung werden die Zellen in PBS mit 2% FCS gewaschen und mit einem PE-konjugierten Antikörper gegen CD33 zusammen mit je einem der folgenden FITC-konjugierten Antikörper für 30 Minuten bei 4°C inkubiert: Anti-HLA-DR, anti-CD4, anti-CDla (alle von Becton Dickinson) und anti-CD25 (Dako) . Darüber hinaus werden Einfachmarkierungen mit Antikörpern gegen CDlb, CDlc und CD40 (Dyanova, Hamburg) durchgeführt. Diese Antikörpermarkierung erfolgt nach der indirekten Methode. Um den prozentualen Anteil der Zellen aus der granulozytären bzw. monozytären Reifungskaskade zu ermitteln, werden die Zellen zusätzlich mit Antikörpern gegen CD15 (Granulozyten) und CD14 (Monozyten) markiert. Als Negativkontrollen werden Isotypkontrollen (IgGl-FITC und IgG2a PE-konjugiert) von der Maus durchgeführt. Nach Abschluß der Inkubation werden die Zellen 2 x gewaschen und in 250 μl PBS ohne FCS-Zusatz zur durchflußcytometrischen Analyse resuspendiert. Zum Ausschluß toter Zellen wird aus jeder Probe unmittelbar vor der Messung Propidium-Jodid (PI) zugegeben, die Pl-markierten toten Zellen werden schließlich vor der Analyse entsprechend ausgegrenzt. Aus jeder Probe werden 20.000 Zellen analysiert. PO7DE95/00512
- 17 -
Ergebnisse:
Nach 12 Tagen beträgt der Anteil CDla+ Zellen in der Kultur mit TNF, GM-CSF und SCF etwa 20%, diese Zellen exprimieren zusätzlich HLA-DR-Moleküle, die ebenfalls ein Marker für dendritische Zellen darstellen. Da jedoch nur Langerhans'sehe Zellen den Oberflächenmarker CDla in hohem Maße exprimieren, kann die tatsächliche Anzahl an dendritischen Zellen noch deutlich höher liegen. Weiterhin werden CDlc bei ca. 17% und CD40 bei ca. 45% der Zellen exprimiert. Auch diese Moleküle sind Marker von dendritischen Zellen.
Das Medium, welches mit IL-1, IL-3, IL-6, SCF und Erythropoietin komplementiert war, ergab zwar eine größere Anzahl klonogener Vorläuferzellen, jedoch war der Anteil an dendritischen Zellen signifikant geringer. CDla+ Zellen wurden in ca. 4% aller ex vivo-expandierten Zellen gefunden, CDlc-exprimierende Zellen betrugen 3%, CD40-exprimierende Zellen ca. 2%.
Beispiel 6
Es wurden die verschiedenen Kulturbedingungen miteinander verglichen und bestimmt, welche Kombination von Wachstums¬ faktoren höchstmögliche Ausbeuten an Langerhans'sehen Zellen bzw. dendritischen Zellen ermöglichte. Nach einer Avidin- Immunoaffinitätssäule wurden Zellen erhalten, die zu etwa 60% den Marker CD 34+ aufwiesen. Diese Zellen wurden in einem RPMI-Medium mit 10% fötalem Kälberserum kultiviert. Als Wachstumsfaktoren wurde zunächst eine Mischung der< Cytokine SCF, EPO, IL-lß, IL-3 und IL-6 verwendet. Diese Mischung wurde mit der Kurzbezeichnung SE 136 versehen. Durch die Verwendung dieses Cocktails wurde eine hohe Expansion der Zellen mit Zellkern und der klonogenen Vorläuferzellen erhalten. - 18 -
Um spezifisch eine Differenzierung zu Langerhans'sehen Zellen bzw. dendritischen Zellen zu erhalten, wurde entweder eine Kombination von TNF-α/GM-CSF mit SE 136 oder von IL-4/GM-CSF mit SE 136 eingesetzt. Als Kontrolle diente IL-4/GM-CSF. Die Ergebnisse dieses Versuches werden in der Tabelle 1 dargestellt, wobei die Gesamtausbeute an kernhaltigen Zellen und Zellen mit CD la+-Marker ebenso dargestellt ist, wie die Oberflächenstruktur dieser Zellen.
Tabelle 1 zeigt, daß die Zugabe der Cytokine IL-4/GM-CSF zu dem SE 136-Cocktail die höchste Ausbeute an Zellen mit dem Marker CD la+ bewirkte. Die Ausbeute betrug bis zu 45% der gesamten kernhaltigen Zellen. Je nach Reinheit der Affinitätssäule kann die Ausbeute bis zu 65 % erhöht werden. Der Einsatz von TNF-α/GM-CSF zusammen mit dem Cocktail SE 136 ergab eine geringere Ausbeute an CD la+-Zellen. Ein großer Teil der Zellen wies die Marker CD 15 und CD 14 auf, was dafür spricht, daß diese Kulturbedingungen die Differenzierung zu Granulozyten und Monozyten begünstigt.
Periphere Blutvorläuferzellen mit dem Marker CD 34+, die mit IL-4/GM-CSF angezogen wurden, wiesen einen hohen Prozentsatz an CD la+-Zellen auf, aber zeigten keine Expansion dieses Zelltyps. Das Beispiel zeigt daher, daß die optimale Ausbeute an Langerhans'sehen Zellen/dendritischen Zellen durch eine Kombination der Wachstumsfaktoren IL-4/GM-CSF zusammen mit den Faktoren SCF, EPO, IL-lß, IL-3 und IL-6 erhalten wird.
Tabelle 1. Zellausbeute und Phänotyp der peripheren Blutvorläuferzellen mit den Marker CD 34+, die in Gegenwart von verschiedenen Cytokinkombinationen kultiviert wurden
SE1361 SE136 IL-4/GM-CSF +TNF-α/GM-CSF +IL-4/GM-CSF
Ausbeute an
Gesamtzellen mit Kern
Tag 0 1/0 X 106# i.o 10' i.o X 10°
Tag 7 6,4 X 106 9,0 10< 1.1 X 106
Tag 10 2,5 X 107 2,9 10 1.7 X 106
Tag 15 8,2 X lO7 4,9 10 3,4 X 106
Tag 20 1,1 X 108 5,2 10 4,7 X 106
Tag 24 1,0 X 108 5,2 10 6,8 X 106
Tag 27 1.0 X 108 3,7 10 5,0 X 106
Zellausbeute an Zellen mit CDla+-Marker
Tag 7 1,4 x 10= 3,7 x 10- ND Tag 10 7,0 x 105 1,7 x 10( ND Tag 15 2,2 x 106 5.2 x 10( 7,5 x 105 Tag 20 2,7 x 10« 9.3 x 10* 1.4 x 106 Tag 24 2,2 x 10( 1,2 x lθ' 1,9 x 106 Tag 27 2,0 x 10 1,7 x lθ' 2.5 x 106
Oberflächen- marker2
CD la ++ ++ HLA-DR ++ +++ +++ B7-1 + + CD 14 ++ + + CD 15 +++ ++ ++
1 SE136 ist ein Cytokin-Cocktail, der SCF, EPO, IL-lß, IL-3 und IL-6 umfaßt.
2 Antigenexpression der verschiedenen Zellpopulationen wurde durch Durchf lußzytometrie am Tag 20 bestimmt. Die Oberflächenmarkerexpression wurde dem folgenden Verteilungssystem zugeordnet, wobei folgende Einteilung bezogen auf die Zellzahl gewählt wurde: - = <5%; + = 5-25%; ++ = 25-50%; +++ = 50-100%; ND = nicht bestimmt. #Die Ergebnisse basieren auf sechs verschiedenen Experimenten. Beispiel 7
Anhand des im folgenden näher beschriebenen Versuchs zum Nachweis der Antigenprasentation von Tetanus-Toxoid wird die Verwendung der erfindungsgemäßen dendritischen Zellen als antigenprasentierende Zellen zur Induktion einer Immunantwort näher erläutert. Anstelle des Tetanus-Toxoids können auch andere Antigene, wie Tumorantigene bei dieser Verwendung eingesetzt werden.
a) Bereitstellung von vorstimulierten PBMCs
Einem Patienten wurden vor Beginn der Chemotherapie und der Gabe von G-CSF 30 ml Blut abgenommen. Aus diesem Blut wurden die peripheren mononukleären Zellen (PBMCs) mittels Ficoll- Gradienten isoliert. Die PBMCs wurden anschließend mit Tetanus-Toxoid (erhältlich von den Behringwerken, Marburg) vorstimuliert, wobei wie folgt vorgegangen wurde:
1 x 107 PBMCs wurden mit 1:80 verdünntem Tetanus-Toxoid in Medium kultiviert, das 10% humanes Serum enthielt. Nach sieben Tagen wurden den Zellen 50 U/ml IL-2 zugesetzt und diese dann für weitere vier Tage kultiviert. Die so vorstimulierten Zellen wurden zunächst eingefroren und zwei Tage vor Beginn des Antigenpräsentationsexperiments wieder aufgetaut. Bei diesem Verfahren nutzt man aus, daß in den PBMCs bereits antigenprasentierende Zellen enthalten sind, die Tetanus-Toxoid aufnehmen und den ebenfalls vorhandenen T- Zellen präsentieren können. Auf diese Weise erreicht man eine Vorstimulierung der Tetanus-Toxoid-spezifischen T-Zellen und vor allem durch die Zugabe von IL-2 auch eine Anreicherung dieser Zellen, da dieses Cytokin das Überleben bzw. Wachstum der T-Zellen unterstützt, während die meisten anderen Zelltypen absterben.
b) Bereitstellung der Langerhans ' sehen/dendritischen Zellen Von dem Patienten wurden nach Chemotherapie und Gabe von G-CSF Vorläufer-Zellen mit dem Marker CD 34+ durch Leukapherese und anschließende Affinitätschromatographie isoliert. Diese Zellen wurden unter Verwendung der bevorzugten Cytokinkombination (SCF, EPO, IL-lß, IL-3, IL-6, IL-4 und GM-CSF) kultiviert und gemäß dem erfindungsgemäßen Verfahren zu Langerhans'sehen Zellen/dendritischen Zellen differenziert.
In einem anderen Ansatz wurden einige CD 34+-Zellen in einem Medium kultiviert, das nur die fünf Expansionscytokine IL-lß, IL-3, IL-6, SCF und EPO enthielt.
Am 24. Tag wurden die Zellen mit einem FACS-Sorter der Firma Becton-Dickinson sortiert, wobei zwei Subtypen dendritischer Zellen, nämlich einmal CD la+/CD 14" und andererseits CD la+/CD 14+ isoliert wurden.
c) Antigenpräsentationsexperiment
Die gemäß b) beschriebenen Langerhans'sehen Zellen/ dendritischen Zellen wurden zunächst bestrahlt, um ein weiteres Wachstum dieser Zellen sicher ausschließen zu können. Dann wurden diese Zellen mit den gemäß a) erhaltenen vorstimulierten peripheren mononukleären Zellen gemischt und in Mikrotiterplatten verbracht. In den Kontrollansätzen wurden die Zellen ohne Zugabe von Tetanus-Toxoid kultiviert, sonst wurde Tetanus-Toxoid in einer Verdünnung von 1:80 zugesetzt.
Die Ergebnisse dieses Versuches sind in Figur 1 dargestellt. Bei dem Versuch wurden folgende Zellpopulationen auf ihre Antigenpräsentationsfähigkeit hin getestet: a) Sortierte CD la+/CD 14"-Zellen (LC/DC), dargestellt als Kreis; b) Sortierte CD la+/CD 14+-Zellen (LC/DC), dargestellt als Dreieck; c) Unsortierte Zellen der LC/DC-Kultur (LC), dargestellt als Rechteck; d) Unsortierte Zellen der Kultur, die nur die Expansions¬ cytokine enthielt (KC) , dargestellt als Raute; e) Nur PBMCs (Kontrolle) ; f) Nur antigenprasentierende Zellen (a bis d) .
Die Ansätze wurden für zwei Tage kultiviert, dann wurde -^H-Thymidin zugesetzt und für weitere 18 Stunden inkubiert. Anschließend wurden die Zellen geerntet, gewaschen und die counts per minute (CPM) bestimmt. Da 3H-Thymidin beim Wachstum in die Zellen eingebaut wird, sind die counts per minute ein Maß für die T-Zellproliferation und damit ein Maß für die Antigenpräsentationsfähigkeit der eingesetzten Zellen.
Aus dem Versuch können die folgenden Schlüsse gezogen werden: a) PBMCs allein zeigen keine Proliferation; b) antigenprasentierende Zellen (alle eingesetzten Popula¬ tionen) allein zeigen keine Proliferation (Bestrahlung); c) PBMCs + antigenprasentierende Zellen zeigen keine Proliferation; d) PBMCs + antigenprasentierende Zellen + Tetanus-Toxoid zeigen aber, abhängig von der eingesetzten Zellart eine starke Proliferation. Die sortierten LC/DC-Populationen (CD la+/CD 14~ und CD la+/CD 14+) induzieren die stärkste Proliferation. Die unsortierte LC/DC-Population induziert etwas weniger. Dies ist darauf zurückzuführen, daß diese Zellpopulation auch noch andere Zellen enthält, die nicht antigenpräsentierend sind. Die KC-Population, d.h. die Zellen, die nur die Expansionscytokine IL-lß, IL-3, IL-6, SCF und EPO enthielt, induzierte nur eine schwächere Proliferation.
Das vorliegende Experiment zeigt, daß die Langerhans'sehen Zellen/dendritischen Zellen, die unter Verwendung des besonders bevorzugten Cytokin-Cocktails in vitro generiert wurden, in hervorragender Art und Weise Antigen aufnehmen, präsentieren und sehr starke T-Zell-Antworten induzieren können. Diese Eigenschaft ist dann geringer ausgeprägt, wenn IL-4 und GM-CSF nicht zugegen sind.

Claims

Patentansprüche
1. Verfahren zur Bereitstellung von dendritischen Zellen, worin a) periphere Blutzellen vom Blut isoliert werden, b) periphere Blutvorläuferzellen, die das CD 34-Antigen exprimieren, angereichert werden, und c) diese Zellen mit einer Kombination von hämatopoetischen Wachstumsfaktoren und/oder Cytokinen kultiviert werden und gegebenenfalls anschließend d) die dendritischen Zellen angereichert werden.
2. Verfahren nach Anspruch 1, worin die peripheren Blutvorläuferzellen aus heparinisierten Blutproben durch Dichtegradientenzentrifugation isoliert werden.
3. Verfahren nach Anspruch 2, worin die peripheren Blutvorläuferzellen durch Dichtegradientenzentrifugation über Ficoll/Hypaque isoliert werden.
4. Verfahren nach Anspruch 1, worin die peripheren Blutvorläuferzellen mit einem gegen das Oberflächenantigen CD 34 gerichteten monoklonalen Antikörper umgesetzt werden.
5. Verfahren nach Anspruch 4, worin die peripheren Blutvorläuferzellen, die mit dem gegen das CD 34-0berflächen¬ antigen gerichteten monoklonalen Antikörper umgesetzt wurden von den nicht umgesetzten Zellen durch Behandlung mit einer Immunoaffinitätssäule, insbesondere einer Avidin-Immuno¬ affinitätssäule abgetrennt werden.
6. Verfahren nach Anspruch 1, worin die peripheren Blutvorläuferzellen durch Kultivieren in einem Zellwachstums- medium expandiert werden, das Interleukin-1 (IL-1), Interleukin-3 (IL-3), Interleukin-6 (IL-6), Erythropoietin (EPO) und Stammzellenwaehstumsfaktor enthält.
7. Verfahren nach Anspruch 1, worin die peripheren Blutvorläuferzellen in einem Zellwaehstumsmedium expandiert werden, das Stammzellenwaehstumsfaktor (SCF), Granulozyten- Makrophagen-Kolonie stimulierenden Faktor (GM-CSF) und Tumornekrosefaktor-α (TNF-α) sowie gegebenenfalls Interleukin-4 (IL-4) enthält.
8. Verfahren nach Anspruch 1, worin die peripheren Blutvorläuferzellen in einem Zellwaehstumsmedium expandiert werden, das Stammzellenwaehstumsfaktor (SCF), Erythropoietin (EPO), Interleukin-lß (IL-lß), Interleukin-3 (IL-3), Interleukin-4 (IL-4), Interleukin-6 (IL-6) und Granulozyten- Makrophagen-Kolonie stimulierenden Faktor (GM-CSF) enthält.
9. Verfahren nach Anspruch 1, worin die peripheren Blutvorläuferzellen in einer ersten Stufe in einem Zell¬ waehstumsmedium expandiert werden, das Stammzellenwaehstums¬ faktor (SCF), Erythropoietin (EPO), Interleukin-lß (IL-lß), Interleukin-3 (IL-3) und Interleukin-6 (IL-6) enthält und, worin die Zellen nach Expansion in einer zweiten Stufe in ein Medium überführt werden, das lediglich Interleukin-4 (IL-4) und Granulozyten-Makrophagen koloniestimulierenden Faktor (GM-CSF) aufweist, um die Differenzierung zu bewirken.
10. Verfahren nach Anspruch 1, worin das Blut von Krebspatienten erhalten wird, die mit einer Chemotherapie in üblicher Dosis behandelt wurden, wobei die Chemotherapie die Anwendung von Etoposid (VP 16), Ifosfamid und Cisplatin umfaßt.
11. Verfahren nach Anspruch 10, worin das Blut von Krebspatienten erhalten wurde, die mit einer Chemotherapie behandelt wurden, gefolgt von der kombinierten, aufeinander- folgenden Anwendung von rekombinantem Humaninterleukin-3 (rhIL-3), rekombinantem humanem Granulozyten-Makrophagen koloniestimulierendem Faktor (rhGM-CSF) oder rekombinantem humanem Granulozyten-koloniestimulierendem Faktor (rhG-CSF) .
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die CD 34+-Zellen aus Leukapheresat erhalten werden.
13. Dendritische Zellen, erhältlich durch ein Verfahren nach einem der Ansprüche 1 bis 12.
14. Zusammensetzung von hämatopoetischen Wachstumsfaktoren umfassend Interleukin-1 (IL-1), Interleukin-3 (IL-3), Interleukin-6 (IL-6), Erythropoietin (EPO) und Stammzellen¬ waehstumsfaktor (SCF).
15. Zusammensetzung von hämatopoetischen Wachstumsfaktoren, dadurch gekennzeichnet, daß sie Interleukin-1 (IL-lß), Interleukin-3 (IL-3), Interleukin-4 (IL-4), Interleukin-6 (IL-6), Erythropoietin (EPO), Stammzellwachstumsfaktor (SCF) und Granulozyten-Makrophagen koloniestimulierenden Faktor (GM-CSF) aufweist.
16. Zusammensetzung von hämatopoetischen Wachstumsfaktoren umfassend Stammzellenwaehstumsfaktor (SCF), Granulozyten- Makrophagen-Kolonie stimulierenden Faktor (GM-CSF) und Tumornekrosefaktor-α (TNF-α).
17. Zusammensetzung nach einem der Ansprüche 14 bis 16, worin Interleukin-1 in einer Konzentration zwischen 10 ng/ml und 1.000 ng/ml, Interleukin-3 in einer Konzentration von 1 E/ml bis 1.000 E/ml, Interleukin-4 in einer Konzentration von 50 ng/ml bis 200 ng/ml, Interleukin-6 in einer Konzentration von 10 E/ml bis 1.000 E/ml, Erythropoietin in einer Konzentration zwischen 0,1 E/ml und 10 E/ml, Stammzellenwaehstumsfaktor (SCF) in einer Konzentration von 10 ng/ml bis zu 1.000 ng/ml, GM-CSF in einer Konzentration von 10 ng/ml bis 1,000 ng/ml und Tumornekrosefaktor-α in einer Konzentration von 1 E/ml bis 1.000 E/ml vorhanden ist.
18. Zusammensetzung nach Anspruch 17, dadurch gekennzeichnet, daß sie auch Interferon-Y (IFN-Y) in einer Konzentration von 1 E/ml bis 1.000 E/ml umfaßt.
19. Behältnis für die Expansion von dendritischen Zellen, dadurch gekennzeichnet, daß es eine Zusammensetzung gemäß einem der Ansprüche 14 bis 18 enthält.
20. Gefäß nach Anspruch 19, dadurch gekennzeichnet, daß es eine Zellkulturflasche ist.
21. Verwendung der dendritischen Zellen gemäß Anspruch 13 als Antigen-präsentierende Zellen zur Induktion einer Immunantwort.
PCT/DE1995/000512 1994-04-14 1995-04-11 Verfahren zur herstellung von dendritischen zellen, so erhaltene zellen und behälter zur durchführung dieses verfahrens WO1995028479A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU23024/95A AU688897B2 (en) 1994-04-14 1995-04-11 Process for producing dendritic cells, cells thus produced and container for carrying out this process
US08/727,495 US5866115A (en) 1994-04-14 1995-04-11 Process for preparing dendritic cells, cells thus produced and containers for carrying out this process
EP95916557A EP0755439A1 (de) 1994-04-14 1995-04-11 Verfahren zur herstellung von dendritischen zellen, so erhaltene zellen und behälter zur durchführung dieses verfahrens
JP7526628A JPH09511903A (ja) 1994-04-14 1995-04-11 樹状突起細胞を調製する方法、かくして得られる細胞および本方法を実施するための容器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4412794A DE4412794A1 (de) 1994-04-14 1994-04-14 Verfahren zur Herstellung von dendritischen Zellen, so erhaltene Zellen und Behälter zur Durchführung dieses Verfahrens
DEP4412794.4 1994-04-14

Publications (1)

Publication Number Publication Date
WO1995028479A1 true WO1995028479A1 (de) 1995-10-26

Family

ID=6515338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1995/000512 WO1995028479A1 (de) 1994-04-14 1995-04-11 Verfahren zur herstellung von dendritischen zellen, so erhaltene zellen und behälter zur durchführung dieses verfahrens

Country Status (7)

Country Link
US (1) US5866115A (de)
EP (1) EP0755439A1 (de)
JP (1) JPH09511903A (de)
AU (1) AU688897B2 (de)
CA (1) CA2187770A1 (de)
DE (1) DE4412794A1 (de)
WO (1) WO1995028479A1 (de)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997029182A1 (en) * 1996-02-12 1997-08-14 The Rockefeller University Method and compositions for obtaining mature dendritic cells
EP0805207A1 (de) * 1996-05-02 1997-11-05 Gesellschaft für Biotechnologische Forschung mbH (GBF) Polycistronische Expressionsplasmid für Tumorabstossungen
WO1998014561A1 (en) * 1996-10-04 1998-04-09 Becton Dickinson And Company Identification of a cd34+ bone marrow precursor for dendritic cells in blood and lymphoid tissues
WO1998035039A1 (en) * 1997-02-06 1998-08-13 Human Genome Sciences, Inc. Dendritic cell-derived growth factor
US5994126A (en) * 1992-04-01 1999-11-30 The Rockefeller University Method for in vitro proliferation of dendritic cell precursors and their use to produce immunogens
WO1999063050A2 (en) * 1998-06-02 1999-12-09 Dendreon Corporation Method for preparation and in vivo administration of antigen presenting cell composition
US6274378B1 (en) 1997-10-27 2001-08-14 The Rockefeller University Methods and compositions for obtaining mature dendritic cells
US6300090B1 (en) 1994-07-29 2001-10-09 The Rockefeller University Methods of use of viral vectors to deliver antigen to dendritic cells
US6355238B1 (en) 1992-11-18 2002-03-12 Yale University Specific immune system modulation
WO2003016511A1 (en) * 2001-08-15 2003-02-27 Takara Bio Inc. Method of extended culture for antigen-specific cytotoxic t lumphocytes
US6602709B1 (en) 1998-02-20 2003-08-05 The Rockefeller University Methods for use of apoptotic cells to deliver antigen to dendritic cells for induction or tolerization of T cells
US6607722B2 (en) 1999-04-20 2003-08-19 Richard Leslie Edelson Methods for inducing the differentiation of monocytes into functional dendritic cells
US6852313B1 (en) 1989-10-16 2005-02-08 Amgen Inc. Method of stimulating growth of melanocyte cells by administering stem cell factor
US7144731B2 (en) 1989-10-16 2006-12-05 Amgen Inc. SCF antibody compositions and methods of using the same
EP2251418A1 (de) 2004-10-07 2010-11-17 Argos Therapeutics, Inc. Zusammensetzungen reifer dendritischer Zellen und Verfahren zu deren Kultivierung
EP2351599A1 (de) * 2008-11-14 2011-08-03 Dnavec Corporation Verfahren zur herstellung dendritischer zellen
US8728811B2 (en) 2002-03-25 2014-05-20 Takara Bio Inc. Process for producing cytotoxic lymphocyte
US8765469B2 (en) 2005-08-17 2014-07-01 Takara Bio Inc. Method of producing lymphocytes
US8927273B2 (en) 2003-08-22 2015-01-06 Takara Bio Inc. Process for producing cytotoxic lymphocytes
US9845456B2 (en) 2011-09-23 2017-12-19 Inje University Industry-Academic Cooperation Foundation Composition containing complex cytokines derived from EBV-infected B cells for inducing the maturation of dendritic cells
WO2021230704A1 (ko) 2020-05-15 2021-11-18 서울대학교 산학협력단 지방조직에서 분리된 기질혈관분획의 수지상세포의 활성화 기능을 이용한 면역 반응 증진용 조성물

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6277368B1 (en) 1996-07-25 2001-08-21 The Regents Of The University Of California Cancer immunotherapy using autologous tumor cells combined with cells expressing a membrane cytokine
US6458585B1 (en) 1996-08-14 2002-10-01 Nexell Therapeutics Inc. Cytokine-free culture of dendritic cells
DE19802540C1 (de) * 1998-01-23 1998-11-19 Univ Ludwigs Albert Verfahren zur Herstellung von dendritischen Zellen mit niedermolekularen Fragmenten der Hyaluronsäure
JP2002509716A (ja) 1998-03-31 2002-04-02 ユニバーシティ テクノロジー コーポレイション テロメラーゼ抗原に対する免疫応答を惹起するための方法および組成物
US7402307B2 (en) * 1998-03-31 2008-07-22 Geron Corporation Method for identifying and killing cancer cells
WO2000012122A2 (de) * 1998-08-27 2000-03-09 Universitätsklinikum Freiburg Niedermolekulare fragmente der hyaluronsäure zur herstellung von impfstoffen
EP1175497B1 (de) 1999-04-14 2010-04-07 Novartis Vaccines and Diagnostics, Inc. Zusammensetzungen und verfahren zur auslösung einer immunantwort auf basis alphavirus-vektoren-systeme
AU4691700A (en) * 1999-05-03 2000-11-17 Governors Of The University Of Alberta, The Shiga-like toxin as an enriching and purging agent
WO2000073432A2 (en) * 1999-06-01 2000-12-07 Cornell Research Foundation, Inc. Activation of dendritic cells to enhance immunity
EP1312670A4 (de) * 2000-08-16 2005-11-30 Takara Bio Inc Methode zur extensiven kultur von antigen-spezifischen cytotoxischen t-zellen
US20030202963A1 (en) * 2000-10-12 2003-10-30 Cornell Research Foundation, Inc. Method of treating cancer
CA2950109C (en) 2000-10-27 2019-02-19 John W. Hadden Vaccine immunotherapy for immune suppressed patients
US20070154399A1 (en) * 2000-10-27 2007-07-05 Hadden John W Immunotherapy for immune suppressed patients
US20070025958A1 (en) 2000-10-27 2007-02-01 Hadden John W Vaccine immunotherapy
WO2003012061A2 (en) * 2001-08-01 2003-02-13 Coley Pharmaceutical Gmbh Methods and compositions relating to plasmacytoid dendritic cells
CN1993460A (zh) * 2004-07-12 2007-07-04 索林集团意大利有限公司 用于培养人细胞的装置和方法
WO2007040105A1 (ja) * 2005-09-30 2007-04-12 Takara Bio Inc. T細胞集団の製造方法
DE102007006736B4 (de) 2007-02-07 2012-01-12 Dagmar Briechle In-vitro Testkit zur tierversuchsfreien Bestimmung des sensibilisierenden Potentials einer Substanz
AU2008329741B2 (en) 2007-11-28 2013-09-12 Irx Therapeutics, Inc. Method of increasing immunological effect
WO2010132867A1 (en) 2009-05-15 2010-11-18 Irx Therapeutics, Inc. Vaccine immunotherapy
US9333238B2 (en) 2009-12-08 2016-05-10 Irx Therapeutics, Inc. Method of immunotherapy for treament of human papillomavirus infection
WO2012048298A2 (en) 2010-10-08 2012-04-12 Caridianbct, Inc. Methods and systems of growing and harvesting cells in a hollow fiber bioreactor system with control conditions
EP3068867B1 (de) 2013-11-16 2018-04-18 Terumo BCT, Inc. Zellenexpansion in einem bioreaktor
FR3018819A1 (fr) * 2014-03-19 2015-09-25 Univ Bourgogne Traitement de la reponse inflammatoire et dysimmunitaire
WO2015148704A1 (en) 2014-03-25 2015-10-01 Terumo Bct, Inc. Passive replacement of media
CN106687583B (zh) 2014-06-23 2020-07-24 Jw可瑞基因株式会社 制备树突细胞的方法和包含所述树突细胞的组合物
CN106715676A (zh) 2014-09-26 2017-05-24 泰尔茂比司特公司 按计划供养
WO2017004592A1 (en) 2015-07-02 2017-01-05 Terumo Bct, Inc. Cell growth with mechanical stimuli
US11965175B2 (en) 2016-05-25 2024-04-23 Terumo Bct, Inc. Cell expansion
US11685883B2 (en) 2016-06-07 2023-06-27 Terumo Bct, Inc. Methods and systems for coating a cell growth surface
US11104874B2 (en) 2016-06-07 2021-08-31 Terumo Bct, Inc. Coating a bioreactor
JP6842081B2 (ja) * 2016-09-09 2021-03-17 米満 吉和 単核球の調製方法
US11624046B2 (en) 2017-03-31 2023-04-11 Terumo Bct, Inc. Cell expansion
WO2018184028A2 (en) 2017-03-31 2018-10-04 Terumo Bct, Inc. Cell expansion
JP2024511064A (ja) 2021-03-23 2024-03-12 テルモ ビーシーティー、インコーポレーテッド 細胞捕獲及び増殖

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993020186A1 (en) * 1992-03-30 1993-10-14 Schering Corporation In vitro generation of human dendritic cells and uses thereof
WO1993020185A1 (en) * 1992-04-01 1993-10-14 Steinman Ralph M Method for in vitro proliferation of dendritic cell precursors and their use to produce immunogens
WO1993021936A1 (en) * 1992-04-23 1993-11-11 Sloan-Kettering Institute For Cancer Research LIGAND FOR THE c-KIT RECEPTOR AND METHODS OF USE THEREOF
WO1994003587A1 (en) * 1992-07-31 1994-02-17 Eaves Connie J Primitive hematopoietic stem cell preparations

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993020186A1 (en) * 1992-03-30 1993-10-14 Schering Corporation In vitro generation of human dendritic cells and uses thereof
WO1993020185A1 (en) * 1992-04-01 1993-10-14 Steinman Ralph M Method for in vitro proliferation of dendritic cell precursors and their use to produce immunogens
WO1993021936A1 (en) * 1992-04-23 1993-11-11 Sloan-Kettering Institute For Cancer Research LIGAND FOR THE c-KIT RECEPTOR AND METHODS OF USE THEREOF
WO1994003587A1 (en) * 1992-07-31 1994-02-17 Eaves Connie J Primitive hematopoietic stem cell preparations

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BRUGGER ET AL: "EX VIVO EXPANSION OF ENRICHED PERIPHERAL BLOOD CD34+ PROGENITOR CELLS BY STEM CELL FACTOR,INTERLEUKIN-1BETA (IL-1 BETA),IL-6,IL-3,INTERFERON-GAMMA,AND ERYTHROPOIETIN", BLOOD, vol. 81, no. 10, 15 May 1993 (1993-05-15), pages 2579 - 2584, XP002000873 *
DATABASE MEDLINE US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US; FERRAJOLI ET AL: "GROWTH FACTORS CONTROLLING INTERLEUKIN-4 ACTION ON HEMATOPOIETIC PROGENITORS" *
FISCH ET AL: "EX VIVO GENERATION OF FUNCTIONALLY ACTIVE ANTIGEN PRESENTING CELLS FROM PERIPHERAL BLOOD CD34+ HEMATOPOIETIC PROGENITOR CELLS IN CANCER PATIENTS", BLOOD (SUPPLEMENT 1), vol. 84, no. 10, 15 November 1994 (1994-11-15), pages 228a, XP001343939 *
SARAYA ET AL: "HUMAN STEM CELL FACTOR (SCF) PROMOTES THE GROWTH OF DENDRITIC LANGERHANS CELLS FROM THEIR PRIMITIVE PROGENITORS (CFU-DL) IN HUMAN BONE MARROW", BLOOD (SUPPLEMENT 1), vol. 82, no. 10, 15 November 1993 (1993-11-15), pages 102a, XP001343931 *

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6967029B1 (en) 1989-10-16 2005-11-22 Amgen Inc. Method for increasing hematopoietic progenitor cells by stem cell factor
US6852313B1 (en) 1989-10-16 2005-02-08 Amgen Inc. Method of stimulating growth of melanocyte cells by administering stem cell factor
US7144731B2 (en) 1989-10-16 2006-12-05 Amgen Inc. SCF antibody compositions and methods of using the same
US5994126A (en) * 1992-04-01 1999-11-30 The Rockefeller University Method for in vitro proliferation of dendritic cell precursors and their use to produce immunogens
US6355238B1 (en) 1992-11-18 2002-03-12 Yale University Specific immune system modulation
US6300090B1 (en) 1994-07-29 2001-10-09 The Rockefeller University Methods of use of viral vectors to deliver antigen to dendritic cells
WO1997029182A1 (en) * 1996-02-12 1997-08-14 The Rockefeller University Method and compositions for obtaining mature dendritic cells
US7659119B2 (en) 1996-02-12 2010-02-09 Argos Therapeutics, Inc. Method and compositions for obtaining mature dendritic cells
US7198948B2 (en) 1996-02-12 2007-04-03 The Rockefeller University Methods and compositions for obtaining mature dendritic cells
EP0805207A1 (de) * 1996-05-02 1997-11-05 Gesellschaft für Biotechnologische Forschung mbH (GBF) Polycistronische Expressionsplasmid für Tumorabstossungen
US6008004A (en) * 1996-10-04 1999-12-28 Becton Dickinson & Company Identification of a CD34+ bone marrow precursor for dendritic cells in blood and lymphoid tissues
US6294381B1 (en) 1996-10-04 2001-09-25 Johanna Olweus CD123+ dendritic cells in blood and lymphoid tissues
WO1998014561A1 (en) * 1996-10-04 1998-04-09 Becton Dickinson And Company Identification of a cd34+ bone marrow precursor for dendritic cells in blood and lymphoid tissues
US5968780A (en) * 1997-02-06 1999-10-19 Human Genome Sciences, Inc. Dendritic cell-derived growth factor
WO1998035039A1 (en) * 1997-02-06 1998-08-13 Human Genome Sciences, Inc. Dendritic cell-derived growth factor
US6274378B1 (en) 1997-10-27 2001-08-14 The Rockefeller University Methods and compositions for obtaining mature dendritic cells
US7129037B2 (en) 1998-02-20 2006-10-31 The Rockefeller University Methods for use of apoptotic cells to deliver antigen to dendritic cells for induction or tolerization of T cells
US6602709B1 (en) 1998-02-20 2003-08-05 The Rockefeller University Methods for use of apoptotic cells to deliver antigen to dendritic cells for induction or tolerization of T cells
WO1999063050A3 (en) * 1998-06-02 2000-01-27 Dendreon Corp Method for preparation and in vivo administration of antigen presenting cell composition
WO1999063050A2 (en) * 1998-06-02 1999-12-09 Dendreon Corporation Method for preparation and in vivo administration of antigen presenting cell composition
US6607722B2 (en) 1999-04-20 2003-08-19 Richard Leslie Edelson Methods for inducing the differentiation of monocytes into functional dendritic cells
WO2003016511A1 (en) * 2001-08-15 2003-02-27 Takara Bio Inc. Method of extended culture for antigen-specific cytotoxic t lumphocytes
US7910368B2 (en) 2001-08-15 2011-03-22 Takara Bio Inc. Method of extended culture for antigen-specific cytotoxic lymphocytes
US8975070B2 (en) 2002-03-25 2015-03-10 Takara Bio Inc. Process for producing cytotoxic lymphocyte
US8728811B2 (en) 2002-03-25 2014-05-20 Takara Bio Inc. Process for producing cytotoxic lymphocyte
US8927273B2 (en) 2003-08-22 2015-01-06 Takara Bio Inc. Process for producing cytotoxic lymphocytes
EP2251418A1 (de) 2004-10-07 2010-11-17 Argos Therapeutics, Inc. Zusammensetzungen reifer dendritischer Zellen und Verfahren zu deren Kultivierung
US8765469B2 (en) 2005-08-17 2014-07-01 Takara Bio Inc. Method of producing lymphocytes
US8741639B2 (en) 2008-11-14 2014-06-03 Dnavec Corporation Method for producing dendritic cells
EP2351599A4 (de) * 2008-11-14 2013-05-08 Dnavec Corp Verfahren zur herstellung dendritischer zellen
EP2351599A1 (de) * 2008-11-14 2011-08-03 Dnavec Corporation Verfahren zur herstellung dendritischer zellen
US9845456B2 (en) 2011-09-23 2017-12-19 Inje University Industry-Academic Cooperation Foundation Composition containing complex cytokines derived from EBV-infected B cells for inducing the maturation of dendritic cells
WO2021230704A1 (ko) 2020-05-15 2021-11-18 서울대학교 산학협력단 지방조직에서 분리된 기질혈관분획의 수지상세포의 활성화 기능을 이용한 면역 반응 증진용 조성물

Also Published As

Publication number Publication date
AU2302495A (en) 1995-11-10
JPH09511903A (ja) 1997-12-02
CA2187770A1 (en) 1995-10-26
US5866115A (en) 1999-02-02
DE4412794A1 (de) 1995-12-14
AU688897B2 (en) 1998-03-19
EP0755439A1 (de) 1997-01-29

Similar Documents

Publication Publication Date Title
EP0755439A1 (de) Verfahren zur herstellung von dendritischen zellen, so erhaltene zellen und behälter zur durchführung dieses verfahrens
DE4240635C2 (de) Vermehrung hämatopoetischer Vorläuferzellen ex vivo sowieZusammensetzungen hämatopoetischer Wachstumsfaktoren
DE69837491T2 (de) Menschliche mesenchymale stammzellen aus peripherem blut
DE69328481T2 (de) In vitro bildung von dentritischen zellen
DE60026561T2 (de) Suppressorzellen zur prävention und behandlung von immunantworten bei transplantationen
EP1311658B1 (de) Verfahren zur herstellung gebrauchsfertiger, antigenbeladener oder -unbeladener, kryokonservierter, reifer dendritischer zellen
EP1100878B1 (de) Verfahren zur herstellung von genetisch modifizierten cd34-negativen, adhärent wachsenden hämatopoietischen stammzellen
DE69232682T2 (de) Verfahren zur selektiven vermehrung von cd34 positiven zellen
DE69133332T2 (de) Menschliche hematopoietische Stammzellen
DE10297513C5 (de) In vitro Herstellung von dendritischen Zellen aus CD14+ Monocyten
EP2324109B1 (de) Expansion hämopoietischer vorläufer
DE69733694T2 (de) Verwendung von proteinen aus der mk familie als hämatopoietischer faktor
DE69734989T2 (de) Antigenpräsentierende zellen, ein verfahren zur deren herstellung und deren verwendung als zelluläre impfstoffen
DE9390311U1 (de) Neue Makrophagen mit Eignung als Wirkstoffe von pharmazeutischen Zusammensetzungen
WO1994016715A1 (en) Selective cell proliferation
JPH06508528A (ja) インビトロ由来ヒト好中球前駆体細胞
DE60117167T2 (de) Verfahren zur herstellung von submikropartikel-suspensionen pharmazeutischer substanzen
DE60016567T2 (de) Makrophagenhaltige zusammensetzung mit antiinfektiösen und hematopoietischen eigenschaften sowie deren herstellungsmethode
DE60309927T2 (de) Gen 2.2 dendritische zelllinien
DE60130206T2 (de) Zusammensetzungen und verfahren zur herstellung von antigen-präsentierenden zellen
DE69530980T2 (de) Population von mit myeloid-und/oder lymphoid-vorläufern angereicherten zellen und verfahren zur ihrer gewinnung und verwendung
Law et al. Removal of peripheral blood monocytes by phenylalanine methyl ester has no effect on the colony growth of hematopoietic progenitor cells
DE69016432T2 (de) Verfahren zur herstellung menschlicher adhärenter lymphokin-aktivierter killerzellen (alak).
EP0910624B1 (de) Verfahren zur herstellung und vermehrung von lymphozyten
DE69916302T2 (de) Verwendung von dendritischen zellen-depletierten zusammensetzungen zur verbesserung der transplantation von allogenen hämatopoietischen zellen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995916557

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2187770

Country of ref document: CA

Ref document number: 08727495

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1995916557

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995916557

Country of ref document: EP