WO1995026852A1 - Procede et dispositif permettant de revetir une surface non brasable avec une couche de metallisation brasable - Google Patents

Procede et dispositif permettant de revetir une surface non brasable avec une couche de metallisation brasable Download PDF

Info

Publication number
WO1995026852A1
WO1995026852A1 PCT/DE1995/000133 DE9500133W WO9526852A1 WO 1995026852 A1 WO1995026852 A1 WO 1995026852A1 DE 9500133 W DE9500133 W DE 9500133W WO 9526852 A1 WO9526852 A1 WO 9526852A1
Authority
WO
WIPO (PCT)
Prior art keywords
solderable
carrier
energy radiation
layer
germination
Prior art date
Application number
PCT/DE1995/000133
Other languages
German (de)
English (en)
Inventor
Detlef Krabe
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Publication of WO1995026852A1 publication Critical patent/WO1995026852A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/005Soldering by means of radiant energy
    • B23K1/0056Soldering by means of radiant energy soldering by means of beams, e.g. lasers, E.B.
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/048Coating on selected surface areas, e.g. using masks using irradiation by energy or particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/26Alloys of Nickel and Cobalt and Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0106Neodymium [Nd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/244Finish plating of conductors, especially of copper conductors, e.g. for pads or lands

Definitions

  • the invention describes a method for producing a solderable metallization layer on one or more predetermined areas of a non-solderable surface.
  • the technical field of application of the invention lies above all in the assembly and connection technology for microelectronic, micromechanical and micro-optical components.
  • the invention can be used for contacting and mounting semiconductor components in face-down position, the so-called flip-chip technology.
  • the invention is used wherever soldered connections are to be made on aluminum surfaces, including solid workpieces.
  • connection contacts of wiring supports and electronic components can be electrically and mechanically connected to one another by solder bumps (English: solder bumps or bumps for short).
  • the unhoused component is mounted in a face-down position on the wiring carrier.
  • the solder bumps which both serve as a solder depot and also establish the connection between the component and the wiring board, are applied to the connection contacts of the wiring board and / or those of the components. This procedure is also used to mount semiconductor chips on wiring carriers.
  • solderable metallization layers are additionally applied to the connection areas.
  • vacuum processes such as splintering or vapor deposition, or chemical processes have hitherto been used, it being necessary to remove or break through the oxide layer in a separate process step before using these processes.
  • JP 54119357 discloses a method for producing a flat solder coating on aluminum surfaces. Fine-grained solder powder is placed directly on a predetermined area of an oxidized aluminum surface. With laser radiation, the oxide layer on the aluminum surface is destroyed and at the same time the solder powder is melted, so that a flat solder coating forms on the aluminum. It is disadvantageous that grain sizes of less than 10 ⁇ m are not available for commercially available solder powder and therefore structures of less than 50 ⁇ m cannot be produced. In addition to this limitation of the applicability with regard to the smallest structure sizes that can be achieved, there is a further disadvantage that, due to the irregularity of the solder powder applied, there is no defined, reproducible interaction with the laser radiation.
  • solderable metallization layer structures can be produced in a short time with little expenditure on equipment, with high accuracy and homogeneity.
  • the method according to the invention includes the transfer of germination material to the non-solderable surface to be provided with a metallization layer, the transferred particles of the germination material being excited by high-energy radiation and, together with this radiation, modifying the non-solderable surface in such a way that the germination material is deposited with good adhesion to the surface.
  • the method according to the invention is associated with a high energy or heat input into the surface material.
  • the modification of the non-solderable surface consists in breaking open the oxide layer (z. B. aluminum oxide layer) and / or a chemical and / or mechanical change of the oxide-free metal surface favorable for good adhesion.
  • the thermal expansion of the aluminum which is three times as great as that of the aluminum oxide, is essentially responsible for the breaking up of the aluminum oxide layer when heated.
  • the germination or transfer material is preferably on a carrier which is designed as a plane-parallel plate. This is aligned parallel to the non-solderable surface, the germination material being applied in layers on the side surface of the carrier material plate facing the non-solderable surface.
  • the layer thicknesses are typically between 100 nm and 300 nm.
  • the carrier plate On the side surface of the carrier material plate facing away from the non-solderable surface, high-energy radiation is applied to the carrier plate. After penetration of the carrier plate, the high-energy radiation reaches the nucleation layer, which evaporates and condenses on the surface to be provided with a metallization layer.
  • the material of the carrier plate is advantageously selected so that it absorbs the high-energy radiation as little as possible and, in addition, does not at least not significantly impair its beam profile, that is to say does not increase the beam diameter.
  • the beam profile is generally understood to mean the local variation of the radiation intensity in a plane perpendicular to the direction of propagation of the high-energy radiation. This local intensity distribution is almost circular with respect to the axis of symmetry of the propagating radiation.
  • An important beam parameter here is the beam diameter within which the radiation intensity exceeds a predetermined minimum value.
  • an approximately symmetrical intensity distribution is advantageous for a defined, uniform transmission and deposition of the germination material.
  • the carrier material and its geometric shape are put together in such a way that the beam profile is improved, in particular the beam diameter is reduced by focusing, when the radiation passes through the carrier material.
  • the carrier material plate coated with germination material is best brought into direct contact with the non-solderable surface, for example by placing the carrier material plate on the non-solderable surface and, if necessary, holding it in position with a suction device. Over vaporization of the predetermined metallization layer structure with cladding material and the result of fuzzy contours is avoided.
  • a particular advantage of the method according to the invention is that metallization layer structures of any shape can be produced with a high degree of accuracy.
  • the high-energy radiation is influenced by apertures and / or focusing devices in such a way that a very small beam diameter is achieved in the plane of the non-solderable surface.
  • this energy beam can be moved over the non-solderable surface by preferably programmable positioning devices and / or deflection devices.
  • a switch-off or dimming device for the energy beam enables only the areas to be provided with a metallization layer to be exposed to the high-energy radiation, in particular if these areas are not contiguous. Due to the adjustable, very small beam diameter of the energy beam and its positioning, a significantly higher structural accuracy can be achieved with the method according to the invention.
  • a readily solderable material layer is preferably deposited on the surface modified by the germination material.
  • galvanic processes can be used, but above all currentless processes. The currentless process is because they can be used to implement cost-effective mass production with little resources.
  • a gold layer preferably flash gold, is applied as a protective layer against corrosion.
  • the method according to the invention realizes the breaking up of a surface oxide layer and the deposition of a seeding material on the oxide-free surface in a single process step, at the same time achieving good adhesion on this surface.
  • This has the further advantage that the germination of the predetermined structures can be carried out very quickly, supported by the high writing speed with which the energy beam is moved over the non-solderable surface.
  • a cost-effective mass process in baths is suitable for subsequent metallization.
  • the method according to the invention is very well suited for small series and prototype production and for single-chip processing.
  • the aluminum layer is coated with an oxide layer (3).
  • a glass plate (4) is used as the carrier material, on one side of which a 200 nm thick layer of germination material (5) with the composition chromium / nickel (50% / 50%) and gold is applied.
  • the glass plate is almost plane-parallel, with deviations of at most 10 ⁇ m to 20 ⁇ m over a length of 1 cm being tolerable.
  • the coated glass plate is brought into direct contact with the aluminum oxide layer of the silicon substrate in order to avoid over-evaporation of the germination material and thus to obtain sharp contours of the metallization layer structure to be produced.
  • the light beam (axis of symmetry (6)) of an Nd: YAG laser serves as the energy beam. While the Nd: YAG laser is not shown in FIG. 1, its emitted light beam is illustrated by two lines (7) in which the light intensity falls to the 1 / e2th part of the intensity on the axis of symmetry (6) of the light beam is.
  • the Nd: YAG laser has a pulse rate of 50 kHz and an average output power of 50 mW.
  • the laser beam is focused through the glass plate onto the nucleation layer, the Gaussian radius (1 / e2 drop) of the laser beam being approximately 5 ⁇ m (8).
  • the germination material is vaporized within the Gaussian radius (8) by the interaction with the laser beam and transferred to the aluminum surface.
  • Fig. 1 the glass plate is drawn at a small distance from the aluminum (oxide) surface to better illustrate these processes.
  • the laser beam is moved in an xy coordinate system relative to the silicon substrate and to the glass plate at a (writing) speed of 128 mm / s through a gaivano-optical beam deflection device.
  • the write speed limit for the system used is approx. 1 m / s.
  • the germination area (9) with a perforated aluminum oxide layer is shown in margin 2, electroless metallization takes place in a nickel bath.
  • the nickel layer (10) formed on the germination area (9) serves as a readily solderable metallization layer for solder connections to be applied later.
  • a lead-tin alloy in particular 60% lead and 40% tin, is used as the germination material (5).
  • the lead-tin material adhering to a carrier (4) is preferably brought into direct contact with the aluminum oxide layer in this embodiment too.
  • a small distance between the coated carrier and the aluminum (oxide) surface is shown in margin 3.
  • a layer containing the lead-tin material forms in the broken-up aluminum oxide layer (3) on the aluminum (2) surface. This layer can be easily soldered for solder connections to be made even without further metallization steps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

L'invention concerne un procédé permettant de revêtir une surface non-brasable avec une couche de métallisation brasable. Selon des procédés connus, il est nécessaire de procéder à une étape préliminaire pour détruire la couche d'oxyde superficielle avant de procédér à l'étape de métallisation proprement dite, en particulier pour des matières dont la surface s'oxyde rapidement, telles que l'aluminium, étape qui est difficile à réaliser par attaque au plasma ou décapage chimique agressif. Selon le procédé présenté, la couche d'oxyde est rompue et un matériau d'ensemencement est déposé de façon simple, en une seule étape. A cet effet, un matériau d'ensemencement se trouvant sur un substrat est tranféré à la surface d'aluminium par un rayonnement de haute énergie, la couche d'oxyde étant au préalable rompue par le rayonnement et les particules de matériau d'ensemencement excitées par celui-ci. Toute structure de métallisation désirée peut être pourvue rapidement et avec précision d'un matériau d'ensemencement au moyen d'un dispositif permettant de dévier le rayonnement par rapport à la surface non brasable. Des procédés de traitement de masse dans des bains, sans courant et économiques, conviennent excellemment à la métallisation sélective subséquente des régions superficielles ensemencées.
PCT/DE1995/000133 1994-03-31 1995-02-01 Procede et dispositif permettant de revetir une surface non brasable avec une couche de metallisation brasable WO1995026852A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4411397 1994-03-31
DEP4411397.8 1994-03-31

Publications (1)

Publication Number Publication Date
WO1995026852A1 true WO1995026852A1 (fr) 1995-10-12

Family

ID=6514451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1995/000133 WO1995026852A1 (fr) 1994-03-31 1995-02-01 Procede et dispositif permettant de revetir une surface non brasable avec une couche de metallisation brasable

Country Status (2)

Country Link
DE (1) DE19503178B4 (fr)
WO (1) WO1995026852A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997020654A1 (fr) * 1995-12-01 1997-06-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Procede et dispositif pour appliquer sans fondant un agent a braser sur un substrat ou sur une puce
RU2477902C1 (ru) * 2011-10-04 2013-03-20 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Способ формирования проводников в наноструктурах

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10035351C2 (de) * 2000-07-20 2002-06-06 Nelson Bolzenschweis Technik G Aluminiumschweißteil, insbesondere Aluminiumbolzen für das Bolzenschweißen, und Verfahren zum Verschweißen desselben
RU2205469C1 (ru) * 2002-04-18 2003-05-27 Гурович Борис Аронович Способ получения объемной проводящей структуры
DE102012110343A1 (de) * 2012-10-29 2014-04-30 Von Ardenne Anlagentechnik Gmbh Verfahren und Vorrichtung zur lokal differenzierbaren Bedampfung von Substraten
DE102018129358A1 (de) * 2018-11-21 2020-05-28 Siteco Gmbh Leiterplatte für ein led-modul, led-modul sowie verfahren zur herstellung derselben
FR3102377B1 (fr) * 2019-10-29 2022-03-18 Univ Bordeaux Equipement et procédé de dépôt par projection de particules par ondes de choc laser

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119357A (en) * 1978-03-10 1979-09-17 Hitachi Ltd Solder coating and soldering method for aluminum
JPS57200944A (en) * 1981-06-02 1982-12-09 Hitachi Ltd Manufacture of magnetic disk
DE4129964A1 (de) * 1991-09-10 1993-03-18 Standard Elektrik Lorenz Ag Verfahren zur herstellung einer elektrisch leitenden befestigung einer integrierten schaltung auf einer gedruckten schaltung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119357A (en) * 1978-03-10 1979-09-17 Hitachi Ltd Solder coating and soldering method for aluminum
JPS57200944A (en) * 1981-06-02 1982-12-09 Hitachi Ltd Manufacture of magnetic disk
DE4129964A1 (de) * 1991-09-10 1993-03-18 Standard Elektrik Lorenz Ag Verfahren zur herstellung einer elektrisch leitenden befestigung einer integrierten schaltung auf einer gedruckten schaltung

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 003, no. 142 (C - 065) 24 November 1979 (1979-11-24) *
PATENT ABSTRACTS OF JAPAN vol. 7, no. 54 (P - 180) 4 March 1983 (1983-03-04) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997020654A1 (fr) * 1995-12-01 1997-06-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Procede et dispositif pour appliquer sans fondant un agent a braser sur un substrat ou sur une puce
RU2477902C1 (ru) * 2011-10-04 2013-03-20 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Способ формирования проводников в наноструктурах

Also Published As

Publication number Publication date
DE19503178B4 (de) 2005-06-30
DE19503178A1 (de) 1995-10-05

Similar Documents

Publication Publication Date Title
EP1891670B1 (fr) Procédé de production de trous de liaison électrique verticaux dans des tranches de semi-conducteurs
EP1920461B1 (fr) Procédé de fabrication d'interconnexions verticales dans des plaquettes semi-conductrices
DE69506000T2 (de) Verfahren zum beschichten von durchgangslöchern mit hilfe eines lasers
DE69517369T2 (de) Eine Vorrichtung zur Röntgenstrahlerzeugung
EP0358867A1 (fr) Montage flip-chip présentant une couche d'arrêt de soudure en métal oxidable
DE10149559A1 (de) Verfahren und Vorrichtung zum Bohren gedruckter Verdrahtungsplatten
DE102019210185A1 (de) Halbleiter-waferbearbeitungsverfahren
DE4330961C1 (de) Verfahren zur Herstellung von strukturierten Metallisierungen auf Oberflächen
DE102015100491B4 (de) Vereinzelung von Halbleiter-Dies mit Kontaktmetallisierung durch elektroerosive Bearbeitung
DE102006037532A1 (de) Verfahren zur Erzeugung einer elektrischen Funktionsschicht auf einer Oberfläche eines Substrats
EP2883247A1 (fr) Procédé à base de laser et table de travail pour la métallisation locale d'un composant à semi-conducteur
DE69213877T2 (de) Verfahren zur herstellung einer heimschicht für selektive metallbeschichtung
DE19503178B4 (de) Verfahren und Vorrichtung zur Herstellung einer lötbaren Metallisierungsschicht auf einer nichtlötbaren Oberfläche
WO1991009984A1 (fr) Procede d'enduction
WO1995027307A1 (fr) Procede et dispositif pour realiser des bossages de brasage
DE2522346C3 (de) Verfahren zum Herstellen von Halbleiterbauelementen
EP0794847A1 (fr) Procede de soudage de fils sur des substrats metalliques brasables sensibles a l'oxydation
DE10239081B4 (de) Verfahren zur Herstellung einer Halbleitereinrichtung
DE19756348C1 (de) Verfahren zum Bekeimen und/oder Implantieren und/oder Beschichten und/oder Strukturieren einer Oberfläche und Lasersputteranlage zur Durchführung des Verfahrens
DE19738118C2 (de) Montageverfahren für ein Halbleiterbauelement
DE102006003607A1 (de) Verfahren und Vorrichtung zur lokalen Dotierung von Festkörpern sowie dessen Verwendung
DE19715501C1 (de) Verfahren zur Strukturierung von dünnen Metallschichten
DE102009017692B4 (de) Verfahren zur Herstellung einer Niedertemperaturkontaktierung für mikroelektronische Aufbauten
DE4430390C2 (de) Verfahren zur Herstellung von strukturierten Metallisierungen auf Oberflächen
DE2001535A1 (de) Verfahren und Vorrichtung zur Herstellung metallischer Muster

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase