WO1995022720A1 - Anlage zur reinigung schadstoffbelasteter abluft - Google Patents

Anlage zur reinigung schadstoffbelasteter abluft Download PDF

Info

Publication number
WO1995022720A1
WO1995022720A1 PCT/EP1995/000504 EP9500504W WO9522720A1 WO 1995022720 A1 WO1995022720 A1 WO 1995022720A1 EP 9500504 W EP9500504 W EP 9500504W WO 9522720 A1 WO9522720 A1 WO 9522720A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
exhaust air
heat
heat transfer
transfer medium
Prior art date
Application number
PCT/EP1995/000504
Other languages
English (en)
French (fr)
Inventor
Arthur Natter
Original Assignee
Koenig Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koenig Ag filed Critical Koenig Ag
Priority to AU17566/95A priority Critical patent/AU1756695A/en
Priority to DE19580013T priority patent/DE19580013D2/de
Publication of WO1995022720A1 publication Critical patent/WO1995022720A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B31/00Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus
    • F22B31/04Heat supply by installation of two or more combustion apparatus, e.g. of separate combustion apparatus for the boiler and the superheater respectively
    • F22B31/045Steam generators specially adapted for burning refuse
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/36Water and air preheating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/065Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel
    • F23G7/066Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel preheating the waste gas by the heat of the combustion, e.g. recuperation type incinerator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/10Arrangement of sensing devices
    • F23G2207/101Arrangement of sensing devices for temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/40Supplementary heat supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Definitions

  • Thermal post-combustion devices with integrated air preheating are known for exhaust air purification.
  • the exhaust air to be cleaned is preheated in a counterflow to the clean gas in a gas-gas heat exchanger in order to keep the fuel requirement low.
  • the gas-gas heat exchanger is arranged around an uninsulated steel jacket of the combustion chamber and consists of a tube bundle, the tubes of which flow through the clean gas on the inside and are meandered around the outside by the exhaust air. If the exhaust air contains lint and / or oil-containing pollutants, which is the case, for example, with exhaust air from textile finishing machines, such residues settle on the outside of the pipes, which cannot be cleaned, which hinders heat transfer.
  • TNV systems are also relatively expensive to purchase and have a high power requirement because the exhaust air channels in the heat exchanger have to be narrow in order to achieve high flow velocities.
  • Deflection baffles on the exhaust air side of the heat exchanger improve the heat transfer, but lead to a high pressure loss and thus to a high power requirement for the exhaust air fan.
  • the deep heat transfer numbers on both sides of the heat transfer surfaces are characteristic of air-air heat exchangers. Such heat exchangers must therefore be designed over a large area because of the small k values.
  • the conventional design of these mostly integrated TNV heat exchangers is difficult or impossible to clean and is therefore not suitable for exhaust air from stenter frames.
  • the present invention is based on the object of specifying a system for purifying polluted exhaust air which does not have the disadvantages of conventional TNV systems and can also be used in cases for which the solutions according to US Pat. No. 4,890,581 and 5 161 488 are not very suitable.
  • This object is achieved by the combination of features of the claims. Because the two heat exchangers are only flowed through on one side by the exhaust air or the clean gas, they can easily be cleaned of residues of the exhaust air as well as residues in the clean gas, for example silicon oxide. Because the heat transfer medium around the heat transfer surfaces of the second heat exchanger is liquid, the wall temperatures of this heat exchanger are significantly lower than in conventional TNV systems, so that ordinary steels can be used and the service life is considerably longer than in TNV systems. Investments.
  • the embodiment according to claims 7 to 10 is also particularly advantageous because it removes the variable load of an existing steam boiler in a lower load range from an existing boiler house with relatively little effort, and the heat content of the exhaust air can be partially recovered.
  • the plant according to these claims is equivalent to the plants according to the US patents mentioned at the beginning in terms of energy recovery.
  • the system according to FIG. 1 is shown in use for cleaning the exhaust air of a stenter 1.
  • This has e.g. six fields 2-7, from which the exhaust air is extracted via a line 8 by fans 9, 10.
  • the exhaust air from the first field 2 contains very little pollutants and can be passed directly into the open via a chimney 11.
  • the exhaust air from the other fields 3-7 is fed to the cleaning system 20 by the fan 10 via a thermally insulated line 12.
  • the system 20 comprises a simple combustion chamber 21, which is thermally insulated on the inside by refractory material, for example light refractory bricks, with a cone or surface burner 22 for operation with a high excess of air.
  • the burner 22 has an exhaust air inlet 23 which is connected to the line 12 via a further fan 24.
  • the output of the fan 24 is regulated by a temperature sensor 25 in a compensating chimney 26 and a controller 31 so that a small amount of fresh air flows in continuously through the chimney 26.
  • the clean gas outlet 35 of the chamber 21 is connected to a gas-liquid heat exchanger 36, which is shown in more detail in FIG. 4 in section.
  • a cylindrical jacket 38 provided with end plates 37 on both sides is fastened between the outlet 35 and a chimney 39.
  • Axially parallel tubes 40 are welded into the end plates 37, through whose interior the clean gas flows. As a result, the heat exchanger 36 can be cleaned very easily on the clean gas side.
  • the outside of the tubes 40 is surrounded by a heat-transfer oil 41, which is guided in the middle of the tube 38 by means of baffles 42 around the tubes 40.
  • the baffles 42 are set closer at the gas inlet end so that the heat transfer oil flows more rapidly there. In this way, lower wall temperatures are achieved and the local heating of the oil above the stiffening temperature of approximately 380 ° C. is avoided.
  • the oil-side boundary layer temperatures are therefore below 380 °.
  • the oil 41 serves on the one hand to supply the stenter 1 with heat and on the other hand to preheat the exhaust air to be cleaned. It is circulated via a circulation pump 48.
  • each field 2-7 has a heating register 49 which is connected via a control valve 50 to a supply line 51 for oil 41 supplied by the pump 48 and a return line 52.
  • the valve 50 is controlled by a temperature sensor 53 of the field in question and a controller 54.
  • the exhaust air is preheated via a further heat exchanger 60, which is designed as a finned tube heat exchanger that is easy to clean.
  • the exhaust air to be heated flows around the finned tubes and the heat transfer oil flows through the tubes in counterflow to the exhaust air.
  • the distribution of the amount of oil delivered by the pump 48 to the supply circuit of the tenter frame and to the heat exchanger 60 takes place via a three-way proportional valve 61, which via a steep motor 62 by a controller 63 as a function of the return temperature of the oil measured by a temperature sensor 64 the line 52 is regulated.
  • the system 20 operates as follows:
  • the blower 24 is regulated via the controller 31 so that all of the exhaust air arising in the line 12 is fed to the burner 22 as combustion air.
  • the fuel control valve is controlled by the controller 29 so that a temperature of, for example, 750 ° C. is maintained in the chamber 21.
  • the regulator 63 regulates the valve 61 in such a way that the temperature in the return line 52 is approximately constant. If the heat requirement in fields 2-7 is high, the return temperature drops and the controller 63 adjusts the valve 61 so that more or all of the oil is conducted into the line 51 and little or no oil through the heat exchanger 60 flows, so the exhaust air is preheated little or not.
  • the regulator 63 adjusts the valve so that a larger percentage of oil is passed through the heat exchanger 60 and the exhaust air is preheated accordingly more. This reduces the fuel consumption of the burner 22.
  • the power of the fan can be increased either by means of the signal from the sensor 64 additionally connected to the controller 31 24 is increased and fresh air is additionally sucked in through the chimney 26, which increases the mass flow of the clean gas through the heat exchanger 36 and thus the heat output, or the temperature can be increased by means of the controller 29, to which the signal from the sensor 64 is additionally connected be raised above 750 ° C in the combustion chamber.
  • the heat requirement of the tenter 1 is low.
  • the exhaust air then contains very little pollutants and can be released into the open in part via the chimney 26, in that if the return temperature is too high, the power of the fan 24 is reduced by means of the sensor 64 signal applied to the controller 31.
  • the system described ideally connects the heat generation to cover the heat requirement of the pollutant source with the exhaust air purification.
  • the chamber 21 with the burner 22 are very simple and therefore inexpensive to manufacture and easy to carry.
  • the two heat exchangers 36, 60 are very easy to maintain.
  • the power requirement for the blower 24 is significantly lower than in TNV systems because the tubes 40 can be dimensioned with a large flow cross section.
  • the system can be modular and can therefore be easily adapted to requirements.
  • a further, identically constructed heat exchanger 70 is connected downstream of the heat exchanger 36 on the gas side. This is supplied with water from a conventional steam boiler 72 by means of a pump 71. The pressure in the heat exchanger 70 is higher than in the steam boiler 72 so that the water in the heat exchanger 70 does not evaporate. The water is led from the heat exchanger 70 back to the steam boiler 72 and is expanded there to the boiler pressure in a separating device 73, a part of the water evaporating. The amount of evaporation corresponds to the thermal output of the heat exchanger 70.
  • the heat exchanger 36 is replaced by a heat recovery steam boiler 78 with which steam is generated at a higher pressure than in the steam boiler 72 by the clean gas of the chamber 21, for example at 20 bar corresponding to 215 ° C.
  • the steam generated is either for preheating the exhaust air in the heat exchanger 60 or for feeding the boiler 72 via a Line 79 and a control valve 80 are used. Alternatively, it can also be fed directly into the local steam network.
  • the valve 80 is regulated by the signal of a steam pressure sensor 81.
  • valve 80 which is fully open up to 7 bar, is closed proportionally when the pressure exceeds 7 bar until it is fully closed, for example at a pressure of 8 bar.
  • the steam pressure in the boiler 78 measured with a sensor 84 drops.
  • the signal from the sensor 84 closes a valve 87 in the steam feed line 88 to the heat exchanger 60 via a proportional controller 85 and a servomotor 86, until this valve 87, for example is closed at a steam pressure of the boiler 78 of 19 bar.
  • the sensor 84 signal applied to the controller 29 causes the fuel valve 27 to open above the value specified by the sensor 30 and thus increases the temperature in the chamber 21 and accordingly in the boiler 78 more steam is produced.
  • a temperature range of the chamber 21 of 750 ° C to 1300 ° C, on .
  • a steam quantity between 2.15 t / h and 6.1 t / h produce. If the boiler 72 is rarely loaded more, it is accordingly switched on rarely.
  • a variable steam load of a distant boiler 72 can thus be decentrally covered by cleaning the exhaust air from a pollutant source, which only has to be switched on to cover the peak demand.
  • the system according to FIG. 3 comes close to the systems according to the US patents mentioned at the outset in terms of energy saving, because the boiler 72 operated with fresh air is rarely in operation.
  • the combustion chamber 21 and a part of the flame tube 92 are insulated on the inside with light refractory bricks or another refractory material 93, so that even at high temperatures Air excess the temperature of about 750 ° C can be maintained over the entire flow cross-section.
  • the insulation 93 is shortened accordingly.
  • the flue gases flow through convection heating surfaces 94, which form the second and third trains.
  • the third train opens into a flue gas duct 96 which is connected to the chimney 39.
  • heat exchangers 97 are arranged for preheating the feed water and / or for heating the process water.
  • the heat transfer oil heat exchanger 36 is installed here in a bypass line 98 to the convection heating surfaces 94.
  • the bypass line 98 connects a clean gas outlet 35 at the downstream end of the flame tube 92 to an opening 99 in the flue gas channel 96.
  • the flow through the bypass 98 is regulated by a flap 106 which is arranged, for example, in the opening 99.
  • the flap 106 is controlled by means of a controller 107 and a servomotor 108 in function of the return temperature of the thermal oil measured with the sensor 64. When the return temperature rises, the flap 106 is closed proportionally.
  • a flow monitor 109 in the oil circuit serves for safety. If the flow is too low, the flap 106 is closed.
  • the fuel control valve 27 is regulated here by the controller 112 primarily as a function of the vapor pressure measured with the sensor 81. However, the sensor 30 ensures, via the controller 112, that the minimum temperature in the flame tube 92, for example, does not drop below 750 ° C.
  • the valve 61 which controls the flow of the heat transfer oil through the heat exchanger 60, is also controlled by the controller 112. If the normal operating pressure of the boiler 72 is, for example, 6-7 bar, the valve 27 is at 7 bar on the minimum opening regulated by the sensor 30.
  • the valve 61 is opened proportionally, so that the return temperature of the heat transfer oil drops and the flap 106 is opened more, whereby a larger proportion of flue gas flows through the bypass 98 and correspondingly less steam is produced by the convection heating surfaces 94.
  • the boiler 72 can be operated in a very wide load range (steam extraction) and all of the resulting exhaust air can be cleaned in the process.
  • the advantage of this solution is that the amount of exhaust air can be thermally cleaned even with a minimal need for useful steam.
  • the flue gas outlet 35 can be connected to the bypass instead of downstream of the flame tube 92 downstream of the second train, that is to say to the second turning chamber. In this case, the insulation 93 is shortened accordingly, so that higher flame tube temperatures can be reached.
  • the boiler 72 can also be coal-fired, with a traveling grate with a variable-speed drive motor being provided instead of the burner 22 with the fuel control valve 27.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Air Supply (AREA)

Abstract

Die Abluft einer Schadstoffquelle (1) wird über einen ersten Wärmetauscher (60) einem Brenner (22) einer Verbrennungseinrichtung (20) zugeführt. An den Reingasaustritt (35) der Einrichtung (20) ist ein zweiter Wärmtauscher (36) angeschlossen. Die Wärmetauscher (60, 36) werden einerseits von der Abluft bzw. dem Reingas, andererseits von einem Wärmeträgermedium, z.B. Öl, durchflossen. Das Wärmeträgermedium kann zudem einen Verbraucher, z.B. die Schadstoffquelle (1), mit einer variablen Last versorgen. Die Anlage hat eine hohe Lebensdauer, ist leicht zu warten und eignet sich auch für Fälle, wo kein Dampfkessel zur Reinigung der Abluft zur Verfügung steht.

Description

Anlage zur Reinigung schadstoffbelasteter Abluft
Zur Abluftreinigung sind thermische Nachverbrennungseinrichtun¬ gen (TNV) mit integrierter Luftvorwärmung bekannt. Dabei wird in einem Gas-Gas-Wärmetauscher die zu reinigende Abluft im Ge¬ genstrom zum Reingas vorgewärmt, um den Brennstoffbedarf gering zu halten. Diese bekannten TNV-Anlagen haben allerdings erheb¬ liche Nachteile. Der Gas-Gas-Wärmetauscher ist um einen uniso¬ lierten Stahlmantel der Brennkammer angeordnet und besteht aus einem Rohrbündel, dessen Rohre innen durch das Reingas durch¬ strömt und aussen von der Abluft meanderförmig umspült werden. Wenn die Abluft Flusen- und/oder ölhaltige Schadstoffe enthält, was z.B. bei Abluft von Textilveredelungsmaschinen der Fall ist, so setzen sich solche Rückstände auf der nicht zu reini¬ genden Aussenseite der Rohre fest, was den Wärmeübergang behin¬ dert. Dadurch neigen die Rohre zum Durchbrennen, was bei sol- chen TNV-Anlagen hohe Unterhaltskosten verursacht. TNV-Anlagen sind auch in der Anschaffung relativ teuer und haben einen ho¬ hen Strombedarf, weil die Abluftkanäle im Wärmetauscher zur Er¬ zielung hoher Strömungsgeschwindigkeiten eng sein müssen. Um¬ lenkschikanen auf der Abluftseite des Wärmetauschers verbessern den Wärmeübergang, führen aber zu hohem Druckverlust und somit zu hohem Strombedarf für den Abluftventilator. Charakteristisch für Luft-Luft-Wärmetauscher sind die tiefen Wärmeübergangszah- len beidseitig der Wärmeübertragungsflächen. Solche Wärmetau¬ scher müssen also wegen der kleinen k-Werte grossflächig ausge¬ legt sein. Die herkömmliche Bauart dieser meist integrierten TNV-Wärmetauscher ist schlecht oder überhaupt nicht reinigbar und somit für Abluft aus Spannrahmen nicht geeignet.
Aus der US-PS 4 890 581 und der US-PS 5 161 488 sind anderer¬ seits Anlagen zum Reinigen Schadstoffbelasteter Abluft bekannt, bei welchen die Abluft als Verbrennungsluft eines Dampfkessels verwendet wird, wobei der Luftüberschuss in Funktion der Last des Kessels variiert wird. Diese Anlagen weisen die obigen Nachteile nicht auf und haben sich daher sehr gut bewährt. Al¬ lerdings sind sie nur verwendbar, wo entsprechend viel Dampf nicht zu weit entfernt von der Abluftquelle benötigt wird.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine An¬ lage zur Reinigung schadstoffbelasteter Abluft anzugeben, wel¬ che die Nachteile herkömmlicher TNV-Anlagen nicht aufweist und auch in Fällen anwendbar ist, für welche sich die Lösungen nach den US-PS 4 890 581 und 5 161 488 wenig eignen. Diese Aufgabe wird durch die Merkmalskombination der Ansprüche gelöst. Weil die beiden Wärmetauscher nur einseitig von der Abluft bzw. vom Reingas durchströmt werden, können sie leicht sowohl von Rückständen der Abluft als auch von Rückständen im Reingas, z.B. Siliciumoxyd, gereinigt werden. Weil das Wärmeübertra¬ gungsmedium um die Wärmeüberträgungsflächen des zweiten Wärme¬ tauschers flüssig ist, sind die Wandtemperaturen dieses Wärme¬ tauschers bedeutend geringer als bei herkömmlichen TNV-Anlagen, sodass gewöhnliche Stähle verwendet werden können und die Le¬ bensdauer wesentlich länger ist als bei TNV-Anlagen.
Besonders vorteilhaft ist die Ausführungsform nach Ansprüchen 2-5. Wenn der an den Thermalölkreislauf der beiden Wärmetau¬ scher angeschlossene Verbraucher gleichzeitig der Schadluft¬ emittent ist, ist sichergestellt, dass immer dann, wenn Abluft anfällt, auch entsprechend Energie verbraucht wird.
Besonders vorteilhaft ist auch die Ausführungsform nach den An¬ sprüchen 7 bis 10, weil damit mit relativ geringem Aufwand ent¬ fernt von einem vorhandenen Kesselhaus die variable Last eines vorhandenen Dampfkessels in einem unteren Lastbereich gedeckt und der Wärmeinhalt der Abluft teilweise zurückgewonnen werden kann. Die Anlage nach diesen Ansprüche ist in vielen Fällen hinsichtlich Energierückgewinnung den Anlagen nach den eingangs erwähnten US-Patenten gleichwertig.
Nachfolgend werden Ausführungsbeispiele der Erfindung anhand der. Zeichnungen erläutert. Darin zeigen die Figuren 1-3 und 5 Schemen von vier verschiedenen Ausführungsformen, und Figur 4 einen Längsschnitt durch einen Wärmetauscher.
Die Anlage nach Figur 1 ist dargestellt in der Anwendung zur Reinigung der Abluft eines Spannrahmens 1. Dieser hat z.B. sechs Felder 2-7, aus denen die Abluft über je eine Leitung 8 durch Gebläse 9 , 10 abgesaugt wird. Die Abluft des ersten Fel¬ des 2 enthält sehr wenig Schadstoffe und kann über einen Kamin 11 direkt ins Freie geleitet werden. Die Abluft der übrigen Felder 3-7 wird durch das Gebläse 10 über eine thermisch iso¬ lierte Leitung 12 der Reinigungsanlage 20 zugeführt..
Die Anlage 20 umfasst eine einfache, innen durch refraktäres Material, z.B. Leichtschamottesteinen thermisch isolierte Brennkammer 21 mit einem Konus- oder Flächenbrenner 22 zum Be¬ trieb mit hohem Luftüberschuss. Der Brenner 22 hat einen Ab- lufteintritt 23, der über ein weiteres Gebläse 24 an die Lei¬ tung 12 angeschlossen ist. Die Leistung des Gebläses 24 wird über einen Temperaturfühler 25 in einem Ausgleichskamin 26 und einen Regler 31 so geregelt, dass durch den Kamin 26 ständig eine geringe Menge Frischluft einströmt. Ein Brennstoffregel- ventil 27, welches mittels eines Stellmotors 28 durch einen Regler 29 eingestellt wird, regelt die Zufuhr von Brennstoff, z.B. Erdgas, zum Brenner 22 derart, dass die mit einem Tempera¬ turfühler 30 gemessene Temperatur in der Kammer 21 z.B. nicht unter 750° C sinkt, was eine sichere Verbrennung sämtlicher or¬ ganischer Schadstoffe in der Abluft garantiert. Der Reingasaustritt 35 der Kammer 21 ist an einen Gas-Flüssig¬ keits-Wärmetauscher 36 angeschlossen, der detaillierter in Fi¬ gur 4 im Schnitt dargestellt ist. Ein mit beidseitigen Endplat¬ ten 37 versehener zylindrischer Mantel 38 ist zwischem dem Aus¬ tritt 35 und einem Kamin 39 befestigt. In die Endplatten 37 sind achsparallele Rohre 40 eingeschweisst, durch deren Innen¬ raum das Reingas strömt. Dadurch kann der Wärmetauscher 36 reingasseitig sehr leicht gereinigt werden.
Die Aussenseite der Rohre 40 wird von einem Wär eträgeröl 41 umspült, das innerhalb des Rohres 38 durch Schikanen 42 mean- derförmig um die Rohre 40 geführt ist. Die Schikanen 42 sind am gaseingangsseitigen Ende dichter gesetzt, damit das Wärmeträ¬ geröl dort rascher fliesst. Damit werden tiefere Wandtempera¬ turen erreicht und die lokale Erhitzung des Oels über die Ver- krakungstemperatur von etwa 380° C vermieden. Die ölseitigen Grenzschichttemperaturen liegen also unterhalb 380°.
Das Oel 41 dient einerseits zur Versorgung des Spannrahmens 1 mit Wärme, andererseits zum Vorwärmen der zu reinigenden Ab¬ luft. Es wird über eine Umwälzpumpe 48 umgewälzt. Im Spannrah¬ men 1 hat jedes Feld 2-7 ein Heizregister 49, das über ein Re¬ gelventil 50 an eine durch die Pumpe 48 versorgte Zuleitung 51 für Oel 41 sowie eine Rückleitung 52 angeschlossen ist. Das Ventil 50 wird durch einen Temperaturfühler 53 des betreffenden Feldes und einen Regler 54 geregelt. Der besseren Uebersicht wegen sind die obigen Elemente nur im Feld 7 angedeutet. Die Abluftvorwärmung erfolgt über einen weiteren Wärmetauscher 60, der als gut zu reinigender Rippenrohr-Wärmetauscher ausge¬ bildet ist. Um die Rippenrohre strömt die zu erwärmende Abluft, durch die Rohre im Gegenstrom zur Abluft das Warmeträgerol. Die Aufteilung der von der Pumpe 48 geförderten Oelmenge auf den Versorgungskreislauf des Spannrahmens und auf den Wärmetauscher 60 erfolgt über ein Drei-Wege-Proportionalventil 61, das über einen Steilmotor 62 durch einen Regler 63 in Abhängigkeit der von einem Temperaturfühler 64 gemessenen Rücklauftemperatur des Oels in der Leitung 52 geregelt wird.
Im Betrieb arbeitet die Anlage 20 wie folgt: Ueber den Regler 31 wird das Gebläse 24 so geregelt, dass sämtliche in der Lei¬ tung 12 anfallende Abluft dem Brenner 22 als Verbrennungsluft zugeführt wird. Durch den Regler 29 wird das Brennstoffregel- ventil so geregelt, dass in der Kammer 21 eine Temperatur von z.B. 750° C aufrecht erhalten bleibt. Der Regler 63 regelt das Ventil 61 derart, dass die Temperatur in der Rücklaufleitung 52 annähernd konstant ist. Ist der Wärmebedarf in den Feldern 2-7 hoch, so sinkt die Rücklauftemperatur und der Regler 63 ver¬ stellt das Ventil 61 so, dass mehr oder alles Oel in die Lei¬ tung 51 geleitet wird und wenig oder kein Oel durch den Wärme¬ tauscher 60 fliesst, die Abluft also wenig oder nicht vorge¬ wärmt wird. Sinkt hingegen der Wärmebedarf des Spannrahmens 1, so steigt die Rücklauftemperatur und der Regler 63 verstellt das Ventil so, dass ein grösserer Prozentsatz Oel durch den Wärmetauscher 60 geleitet wird und die Abluft entsprechend mehr vorgewärmt wird. Dadurch sinkt der Brennstoffverbrauch des Brenners 22. Falls der Wärmebedarf des Spannrahmens 1 über den mit der obi¬ gen Betriebsweise abdeckbaren ansteigt, d.h. die mit dem Fühler 64 gemessene Rücklauftemperatur unter einen einstellbaren Wert absinkt, kann entweder mittels des dem Regler 31 zusätzlich aufgeschalteten Signals des Fühlers 64 die Leistung des Geblä¬ ses 24 erhöht und also durch den Kamin 26 zusätzlich Frischluft angesaugt werden, was den Massenstrom des Reingases durch den Wärmetauscher 36 und damit die Wärmeleistung erhöht, oder es kann mittels des Reglers 29, dem das Signal des Fühlers 64 zu¬ sätzlich aufgeschaltet ist, die Temperatur in der Brennkammer über 750° C angehoben werden.
Im Trocknungsbetrieb bei leichter Ware ist der Wärmebedarf des Spannrahmens 1 niedrig. Allerdings enthält dann die Abluft auch nur sehr wenig Schadstoffe und kann teilweise über den Kamin 26 ins Freie abgegeben werden, indem bei zu hoher Rücklauftempera- tur mittels des auf den Regler 31 aufgeschalteten Signals des Fühlers 64 die Leistung des Gebläses 24 gesenkt wird.
Alternativ dazu wäre es in einem solchen Fall auch möglich, durch eine nicht dargestellte Klappe und eine zusätzliche Ver¬ bindungsleitung die Abluft des zweiten Feldes 3 zusätzlich in den Kamin 11 zu leiten.
Die beschriebene Anlage verbindet in idealer Weise die Wärmeer¬ zeugung zur Deckung des Wärmebedarfs der Schadstoffquelle mit der Abluftreinigung. Die Kammer 21 mit dem Brenner 22 sind sehr einfach aufgebaut und deshalb preiswert in der Herstellung und leicht zu transportieren. Die beiden Wärmetauscher 36, 60 sind sehr leicht zu warten. Der Strombedarf für das Gebläse 24 ist bedeutend geringer als bei TNV-Anlagen, weil die Rohre 40 mit grossem Strömungsquerschnitt dimensioniert werden können. Die Anlage kann modular aufgebaut und damit leicht an den Bedarf angepasst werden. Wenn Spannrahmen mit Thermalöl beheizt wer¬ den., waren bisher zur Erwärmung dieses Oels Thermalölkessel er¬ forderlich, die oft eine kurze Lebensdauer und einen schlechten feuerungstechnischen Wirkungsgrad haben und erheblich Platz be¬ anspruchen. Durch die erfindungsge ässe Anlage werden diese Thermalölkessel überflüssig.
Bei den nachfolgenden Ausführungsbeispielen sind analoge Teile mit gleichen Bezugszeichen versehen, sodass sich eine detail¬ lierte Beschreibung dieser Teile erübrigt.
Bei der Ausführungsform nach Fig. 2 ist dem Wärmetauscher 36 gasseitig ein weiterer, gleich aufgebauter Wärmetauscher 70 nachgeschaltet. Diesem wird mittels einer Pumpe 71 Wasser eines gewöhnlichen Dampfkessels 72 zugeführt. Der Druck im Wärmetau¬ scher 70 ist höher als im Dampfkessel 72, damit das Wasser im Wärmetauscher 70 nicht verdampft. Das Wasser wird vom Wärmetau¬ scher 70 zurück zum Dampfkessel 72 geführt und dort in einer Trenneinrichtung 73 auf den Kesseldruck entspannt, wobei ein Teil des Wassers verdampft. Die Verdampfungsmenge entspricht der thermischen Leistung des Wärmetauschers 70.
Bei der Ausführungsform nach Figur 3 ist der Wärmetauscher 36 ersetzt durch einen Abhitzedampfkessel 78, mit welchem Dampf bei einem höheren Druck als im Dampfkessel 72 durch das Reingas der Kammer 21 erzeugt wird, z.B. bei 20 bar entsprechend 215° C. Der erzeugte Dampf wird je nach Belastung des Kessels 72 entweder zur Abluftvorwärmung im Wärmetauscher 60 oder zur Speisung des Kessels 72 über eine Leitung 79 und ein Regelven¬ til 80 verwendet. Alternativ kann er auch direkt ins örtliche Dampfnetz eingespeist werden. Das Ventil 80 wird durch das Sig¬ nal eines Dampfdruckfühlers 81 geregelt. Wenn der Regelbereich der Steuerung 82 des Kessels 72 z.B. zwischen 6 bar und 7 bar arbeitet, d.h. der Brenner 83 des Kessels 72 bei 7 bar abschal¬ tet, wird das bis 7 bar voll offene Ventil 80 bei Ueberschrei- ten von 7 bar proportional geschlossen bis es z.B. bei einem Druck von 8 bar voll geschlossen ist. Bei Unterschreiten von 8 bar sinkt damit der mit einem Fühler 84 gemessene Dampfdruck im Kessel 78. Das Signal des Fühlers 84 schliesst über einen Pro¬ portionalregler 85 und einen Stellmotor 86 ein Ventil 87 in der Dampfzuleitung 88 zum Wärmetauscher 60, bis dieses Ventil 87 z.B. bei einem Dampfdruck des Kessels 78 von 19 bar geschlossen ist.
Sinkt der Druck im Kessel 78 weiter, so bewirkt das auf den Regler 29 aufgeschaltete Signal des Fühlers 84, dass das Brenn¬ stoffventil 27 über den durch den Fühler 30 vorgegebenen Wert geöffnet und also die Temperatur in der Kammer 21 erhöht und im Kessel 78 entsprechend mehr Dampf produziert wird. Bei einem Temperaturbereich der Kammer 21 von 750° C bis 1300° C lässt sich, auf. diese Weise bei einer anfallenden Abluftmenge von 10 t/h im Kessel 78 eine Dampfmenge zwischen 2,15 t/h und 6,1 t/h erzeugen. Wenn der Kessel 72 selten mehr belastet ist, ist er entsprechend selten eingeschaltet.
Mit der Anlage nach Figur 3 lässt sich also dezentral durch Reinigen der Abluft einer Schadstoffquelle eine variable Dampf¬ last eines entfernt stehenden Kessels 72 decken, der nur noch zur Deckung des Spitzenbedarfs eingeschaltet werden muss. Die Anlage nach Figur 3 kommt hinsichtlich der Energieeinsparung den Anlagen nach den eingangs erwähnten US-Patenten nahe, weil der mit Frischluft betriebene Kessel 72 selten in Betrieb ist.
Bei der Ausführungsform nach Figur 5 mündet die hier kurze Brennkammer 21 direkt ins Flammrohr 92 eines 3-Zug-Dampfkessels 72. Die Brennkammer 21 und ein Teil Flammrohres 92 sind innen mit Leichtschamottesteinen oder einem andern refraktären Mate¬ rial 93 isoliert, damit auch bei hohem Luftüberschuss die Tem¬ peratur von ca. 750° C über den ganzen Strömungsquerschnitt aufrechterhalten werden kann. Bei stärker ausgelastetem Kessel 72 wird die Isolierung 93 entsprechend verkürzt. Nach dem Flammrohr 92 durchströmen die Rauchgase Konvektionsheizflächen 94, welche den zweiten und dritten Zug bilden. Der dritte Zug mündet in einen Rauchgaskanal 96, der an den Kamin 39 ange¬ schlossen ist. Im Rauchgaskanal sind Wärmetauscher 97 zur Spei¬ sewasservorwärmung und/oder Brauchwassererwärmung angeordnet.
Der Wärmeträgeröl-Wärmetauscher 36 ist hier in einer Bypasslei- tung 98 zu den Konvektionsheizflächen 94 eingebaut. Die Bypass- leitung 98 verbindet einen Reingasaustritt 35 am stromabwärti- gen Ende des Flammrohres 92 mit einer Oeffnung 99 im Rauchgas- kanal 96. Der Durchfluss durch den Bypass 98 wird durch eine Klappe 106 geregelt, die z.B. bei der Oeffnung 99 angeordnet ist. Die Klappe 106 wird mittels eines Reglers 107 und eines Stellmotors 108 in Funktion der mit dem Fühler 64 gemessenen Rücklauftemperatur des Thermalöls geregelt. Bei steigender Rücklauftemperatur wird die Klappe 106 proportional geschlos¬ sen. Ein Durchflusswächter 109 im Oelkreislauf dient der Si- -cherheit. Bei zu geringem Durchfluss wird die Klappe 106 ge¬ schlossen.
Das Brennstoffregelventil 27 wird hier durch den Regler 112 primär in Funktion des mit dem Fühler 81 gemessenen Dampfdruk- kes geregelt. Der Fühler 30 sorgt jedoch über den Regler 112 dafür, dass eine Minimaltemperatur von z.B. 750° C im Flammrohr 92 nicht unterschritten wird. Das Ventil 61, welches den Durch¬ fluss des Wärmeträgeröls durch den Wärmetauscher 60 steuert, wird ebenfalls durch den Regler 112 gesteuert. Wenn der normale Betriebsdruck des Kessels 72 z.B. 6-7 bar beträgt, ist das Ven¬ til 27 bei 7 bar auf der durch den Fühler 30 geregelten Mini¬ malöffnung. Steigt der Dampfdruck über 7 bar, wird das Ventil 61 proportional geöffnet, sodass die Rücklauftemperatur des Wärmeträgeröls sinkt und die Klappe 106 mehr geöffnet wird, wo¬ durch ein grösserer Rauchgasanteil durch den Bypass 98 strömt und durch die Konvektionsheizflächen 94 entsprechend weniger Dampf produziert wird. Dadurch kann der Kessel 72 in einem sehr breiten Lastbereich (Dampfentnähme) betrieben und dabei sämtli¬ che anfallende Abluft gereinigt werden. Vorteil dieser Lösung ist, dass die anfallende Abluftmenge auch bei minimalem Nutzdampfbedarf thermisch gereinigt werden kann. Falls der Kessel 72 durchschnittlich höher belastet ist, kann der Rauchgasaustritt 35 in den Bypass anstatt stromabwärts des Flammrohres 92 stromabwärts des zweiten Zuges, also an der zweiten Wendekammer, angeschlossen werden. Die Isolierung 93 wird in diesem Fall entsprechend verkürzt, sodass höhere Flamm¬ rohrtemperaturen gefahren werden können.
Insbesondere bei der Ausführungsform nach Fig. 5 kann der Kes¬ sel 72 auch kohlebefeuert sein, wobei statt des Brenners 22 mit dem Brennstoffregelventil 27 ein Wanderrost mit einem drehzahl¬ regelbaren Antriebsmotor vorgesehen ist.

Claims

Patentansprüche
Anlage zur Reinigung schadstoffbelasteter Abluft von einer Abluftquelle (1), umfassend
eine Verbrennungseinrichtung (20) mit einer Brenneinheit (22) zum Betrieb mit hohem Luftüberschuss, einem Abluft¬ eintritt (23) und einem Reingas-Austritt (35);
ein Brennstoffregelgerät (27) zur Regelung der Brenn¬ stoffzufuhr zur Brenneinheit (22);
eine an den Ablufteintritt (23) angeschlossene Zuleitung (12) zur Zufuhr der Abluft zur Verbrennungseinrichtung (20);
einen in die Zuleitung (12) eingesetzten ersten Wärmetau¬ scher (60), der einerseits von der Abluft und anderer¬ seits von einem Wärmeträgermedium durchströmt ist;
einen an den Reingasaustritt (35) angeschlossenen zweiten Wärmetauscher (36, 78), der einerseits von Reingas und andererseits von dem in diesem Wärmetauscher um die Wär¬ meübertragungsflächen herum flüssigen Wärmeträgermedium durchströmt ist.
2. Anlage nach Anspruch 1, umfassend zusätzlich
ein Durchflussregelorgan (61, 87) zur Regelung des Durch¬ flusses des Wärmeträgermediums durch den ersten Wärmetau¬ scher (60);
einen Fühler (64, 84, 81) zum Messen einer Zustandsgrös- se; und
einen mit dem Durchflussregelorgan (61, 87) und dem Füh¬ ler (64, 84, 81) verbundenen Regler (63, 85, 112), wel¬ cher den Durchfluss des Wärmeträgermediums durch den er¬ sten Wärmetauscher (60) in Funktion der Zustandsgrösse regelt.
3. Anlage nach Anspruch 2, wobei das Wärmeträgermedium Ther- malöl ist, und wobei eine Umwälzpumpe (48) im Thermalöl- kreislauf angeordnet ist.
4. Anlage nach Anspruch 3, wobei an den Thermalölkreislauf ein Wärmeverbraucher angeschlossen ist.
5. Anlage nach Anspruch 4, wobei der Wärmeverbraucher die Schadstoffquelle (1) ist.
6. Anlage nach einem der Ansprüche 1-5, wobei dem zweiten Wärmetauscher (36) reingasseitig ein dritter Wärmetau- tauscher (70) nachgeschaltet ist, der einerseits vom Reingas und andererseits von Wasser durchflössen ist, das mittels einer Pumpe (71) dem dritten Wärmetauscher (70) zugeführt wird und stromabwärts des dritten Wärmetau¬ schers (70) an einen Verbraucher angeschlossen ist.
7. Anlage nach Anspruch 2, wobei der zweite Wärmetauscher (78) ein Abhitzedampfkessel und das Wärmeträgermedium Wasser ist.
8. Anlage nach Anspruch 7, wobei der Fühler (84) zusätzlich auf einen zweiten Regler (29) zur Regelung des Brenn¬ stoffregelgerätes (27) aufgeschaltet ist.
9. Anlage nach Anspruch 7 oder 8, wobei der Abhitzdampfkes¬ sel (78) über ein bedarfgeregeltes Druckminderventil (80) an das Dampfnetz eines weiteren Dampfkessels (72) ange¬ schlossen ist.
10. Anlage nach Anspruch 9, wobei das Druckminderventil (80) durch das Signal eines weiteren Fühlers (81), der eine Zustandsgrösse des Dampfes des weiteren Dampfkessels (72) isst, geregelt ist.
11. Anlage nach einem der Ansprüche 1 bis 5, wobei die Ver¬ brennungseinrichtung (20) ein Drei-Zug-Dampfkessel (82) mit einem Flammrohr (92) und Konvektionsheizflächen (94) ist und der zweite Wärmetauscher (36) in einem Bypass (98) zu mindestens einem Teil der Konvektionsheizflächen (94) angeordnet ist.
12. Anlage nach Anspruch 11, wobei der Rauchgasdurchfluss durch den Bypass (98) regelbar ist, insbesondere mittels einer Klappe (106).
PCT/EP1995/000504 1994-02-16 1995-02-13 Anlage zur reinigung schadstoffbelasteter abluft WO1995022720A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU17566/95A AU1756695A (en) 1994-02-16 1995-02-13 Plant for purifying pollutant-contaminated outgoing air
DE19580013T DE19580013D2 (de) 1994-02-16 1995-02-13 Anlage zur Reinigung schadstoffbelasteter Abluft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH46494 1994-02-16
CH464/94-0 1994-02-16

Publications (1)

Publication Number Publication Date
WO1995022720A1 true WO1995022720A1 (de) 1995-08-24

Family

ID=4187620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1995/000504 WO1995022720A1 (de) 1994-02-16 1995-02-13 Anlage zur reinigung schadstoffbelasteter abluft

Country Status (4)

Country Link
AU (1) AU1756695A (de)
DE (1) DE19580013D2 (de)
TW (1) TW274579B (de)
WO (1) WO1995022720A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103528076A (zh) * 2013-10-21 2014-01-22 昆山市盛兴设备安装有限公司 一种废气焚烧处理系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3313660A1 (de) * 1983-04-09 1984-10-18 Rudolf Dr. 6800 Mannheim Wieser Flammrohrkessel mit verbrennungsluft-vorwaermanlage
EP0434602A1 (de) * 1989-11-17 1991-06-26 Koenig Ag Wärmerückgewinnungseinrichtung und Anlage zur Reinigung von Abluft durch thermische Nachverbrennung
EP0560678A1 (de) * 1992-03-10 1993-09-15 Dumoutier Et Massetat Vorrichtung zur Reinigung von Abgasen
DE4305569A1 (de) * 1992-04-30 1993-11-04 Koenig Ag Arbon Anlage zur reinigung von schadstoffbelasteter luft
DE4222811C1 (de) * 1992-07-14 1993-11-25 Gea Luftkuehler Happel Gmbh Anordnung zur Nutzung der im Abgas eines kohlegefeuerten Kessels enthaltenen Wärme

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59104063D1 (de) * 1990-10-31 1995-02-09 Koenig Ag Anlage zur Reinigung von schadstoffbelasteter Luft.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3313660A1 (de) * 1983-04-09 1984-10-18 Rudolf Dr. 6800 Mannheim Wieser Flammrohrkessel mit verbrennungsluft-vorwaermanlage
EP0434602A1 (de) * 1989-11-17 1991-06-26 Koenig Ag Wärmerückgewinnungseinrichtung und Anlage zur Reinigung von Abluft durch thermische Nachverbrennung
EP0560678A1 (de) * 1992-03-10 1993-09-15 Dumoutier Et Massetat Vorrichtung zur Reinigung von Abgasen
DE4305569A1 (de) * 1992-04-30 1993-11-04 Koenig Ag Arbon Anlage zur reinigung von schadstoffbelasteter luft
DE4222811C1 (de) * 1992-07-14 1993-11-25 Gea Luftkuehler Happel Gmbh Anordnung zur Nutzung der im Abgas eines kohlegefeuerten Kessels enthaltenen Wärme

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103528076A (zh) * 2013-10-21 2014-01-22 昆山市盛兴设备安装有限公司 一种废气焚烧处理系统

Also Published As

Publication number Publication date
TW274579B (de) 1996-04-21
DE19580013D2 (de) 1996-11-21
AU1756695A (en) 1995-09-04

Similar Documents

Publication Publication Date Title
DE2519091C2 (de) Vorrichtung zur Beheizung eines Raumes
WO1995005432A1 (de) Anlage zur thermischen abfallentsorgung sowie verfahren zum betrieb einer solchen anlage
DE2254848B2 (de) Anordnung zur thermischen nachverbrennung
DE3033641A1 (de) Verbrennungsofen-heizanlage
EP0484280B1 (de) Anlage zur Reinigung von schadstoffbelasteter Luft
DE2950901C2 (de) Zentralheizungsanlage
DE2716409A1 (de) Verfahren zum vorwaermen von einer verbrennungsanlage zuzufuehrender verbrennungsluft sowie anlage zu dessen durchfuehrung
WO2010086085A2 (de) Verfahren zum betreiben einer oxidationsanlage sowie oxidationsanlage
DE19618890A1 (de) Verfahren und Anlage zur Rückgewinnung von Wärme aus den Abgasen von Feuerungsanlagen
EP1131583B1 (de) Vorrichtung und verfahren zum heizen und/oder lüften eines raumes
AT407592B (de) Blockheizkraftwerk
DE3248623C1 (de) Verfahren und Vorrichtung zum Vorwaermen der Verbrennungsmedien,insbesondere fuer die Beheizung von Winderhitzern fuer Hochoefen
DE2062842C3 (de) Brennolvorwarmsystem
WO1995022720A1 (de) Anlage zur reinigung schadstoffbelasteter abluft
CH675904A5 (de)
DE4305569A1 (de) Anlage zur reinigung von schadstoffbelasteter luft
DE3309741A1 (de) Heizanlage sowie verfahren zu deren betrieb
DE4400686C1 (de) Verbrennungsgasführung
EP0049328B1 (de) Vorrichtung zur Ausnutzung der Wärme im Abgas von mehreren Prozessbereichen
DE654640C (de) Hochleistungsdampferzeuger mit Zwangdurchlauf des Arbeitsmittels
DE10028590B4 (de) Trocknungseinrichtung zur Trocknung von Schüttgütern
DE4012119C2 (de) Vorrichtung zur Reinigung von schadstoffbelasteter Luft durch katalytische Verbrennung
WO1997041395A1 (de) Niedertemperatur-heizungssystem
DE4308522A1 (de) Lufterhitzungsanlage zur indirekten Erwärmung von Luft für Trocknungsanlagen
EP0464586B1 (de) Verfahren und Vorrichtung zur katalytischen Abluftreinigung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU JP KE KG KP KR KZ LK LR LT LU LV MD MG MN MW MX NL NO NZ PL PT RO RU SD SE SI SK TJ TT UA UG US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REF Corresponds to

Ref document number: 19580013

Country of ref document: DE

Date of ref document: 19961121

WWE Wipo information: entry into national phase

Ref document number: 19580013

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA