WO1995015932A1 - Brique exempte de chrome - Google Patents

Brique exempte de chrome Download PDF

Info

Publication number
WO1995015932A1
WO1995015932A1 PCT/JP1994/001892 JP9401892W WO9515932A1 WO 1995015932 A1 WO1995015932 A1 WO 1995015932A1 JP 9401892 W JP9401892 W JP 9401892W WO 9515932 A1 WO9515932 A1 WO 9515932A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesia
free brick
brick
chrome
corrosion resistance
Prior art date
Application number
PCT/JP1994/001892
Other languages
English (en)
French (fr)
Inventor
Akihiro Tsuchinari
Hiroaki Osaki
Hisato Okamoto
Tetsuo Yamamoto
Original Assignee
Harima Ceramic Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Ceramic Co., Ltd. filed Critical Harima Ceramic Co., Ltd.
Priority to US08/360,819 priority Critical patent/US5559064A/en
Priority to KR1019960702968A priority patent/KR100297091B1/ko
Priority to EP95900278A priority patent/EP0733604A4/en
Publication of WO1995015932A1 publication Critical patent/WO1995015932A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/043Refractories from grain sized mixtures

Definitions

  • the present invention relates to a chrome-free brick, and more particularly to a chrome-free brick suitable for use as a lining material that is stretched on the inside of a production furnace, a cement kiln, a glass melting furnace, or the like that is in direct contact with high temperatures. -It is about bricks. Background art
  • magnesia brick has been used as a lining material because of its high melting point and excellent erosion resistance to basic slag.
  • magnesia brick has poor structural sporting properties, it is mainly composed of a magnesia-based material and chromite ore to prevent separation due to the structural sporting.
  • Magnesia chrome brick is considered. This magnesia-chromic brick has excellent corrosion resistance and heat-resistant sponging properties in addition to structural spoiling resistance.
  • the present invention does not include such a problematic chromium, and Despite the fact that it does not contain, it is intended to provide a chrome free brick which is not inferior in structural spoiling resistance, in addition to corrosion resistance and heat resistant spoiling property. It is. Disclosure of the invention
  • the present inventors have found that an appropriate amount of a titania component and an alumina component are present in a composition mainly composed of a magnesia material and a magnesia / alumina-based spinel material.
  • a titania component and an alumina component are present in a composition mainly composed of a magnesia material and a magnesia / alumina-based spinel material.
  • the chrome-free brick according to the present invention is mainly composed of a magnesia-based material and / or a magnesia-alumina-based spinel-based material, and contains 1 to 10 wt% of titanium and 1 to 15 wt% of alumina. It is characterized by having.
  • a mixture of these matrix additives and magnesia-based raw materials and / or magnesia-based spinel-based raw materials is kneaded, molded, and baked, or is used at a high temperature when used without firing.
  • the reaction is as follows.
  • a solid solution consisting of A 1 203 ⁇ T i 02 and M g O * 2 T i 02 is generated.
  • Toku ⁇ of the present invention is the main reaction product produced on the basis of these reactions [M g O 'A l 2 03 - is related to 2 M g 0 ⁇ T i 02 ] ss
  • This main reaction product is mainly formed on the surface of the particles of the magnesium raw material or magnesia-alumina-based spinel raw material, which is the main raw material as aggregate particles, or on the matrix. Is done.
  • the boundary between these main reaction products and the aggregate particles is caused by expansion and contraction. Cracks are generated, and the main reaction product migrates to the gaps between the aggregate particles and fills the gaps, thereby increasing the denseness of the chrome free brick. The diameter of the pores is small and the shape becomes complicated.
  • the generation of hair cracks improves heat-resistant spoilability, and the diameter of the pores becomes small and complicated without increasing the denseness of the chrome-free brick. This prevents slag and molten metal from penetrating, and the expansion of shrinkage is absorbed by the fact that the denseness does not rise so much that structural spoiling resistance is improved.
  • the structural sporting resistance decreases when the density increases to some extent by £ 1 o
  • chrome free brick according to the present invention is composed of 1 to 10 wt% of metal powder, 1 to 2 wt% of iron oxide, and 1 to 2 wt% of oxide materials other than iron oxide. At least one of them.
  • the metal powder and the oxide raw material act as sintering aids for imparting strength and, for example, (F e, Mg) g ⁇ (A 1, F e) 2 0 Ri by the 3 becomes general formula composite spinel which is shown and this raw made is penetration of slag and ⁇ is prevented, thereby improving the corrosion resistance.
  • slag and molten metal are impregnated by carbon. Penetration is prevented and corrosion resistance is improved.
  • the chrome pre-brick according to the present invention is used as a fired product and as an unfired product utilizing high heat during use, but is used as an unfired product when it contains carbon. It is desirable.
  • chrome free brick according to the present invention can contain clay for improving the moldability.
  • the chrome-free brick according to the present invention does not cause problems such as environmental pollution, and it has corrosion resistance, structural spoiling resistance, and heat-resistant spoiling regardless of whether or not chrome is used. Excellent in properties. Also, due to high durability, the amount of raw materials used is reduced, which contributes to resource saving.
  • the chrome free brick according to the present invention can be used as a fired product or an unfired product.
  • magnesia-based material magnesia-alumina-based spinel-based material, and alumina used in the present invention
  • the purity does not affect the effect of the present invention, but it is desirable to use a high-purity substance having a purity of 95% or more, that is, a substance having few impurities.
  • the grain size is 5 to 1 mm or 3 to 1 mm coarse grain, 1 to 0.05 mm medium grain, and 0 to 5 mm so that a densely packed structure can be obtained, similar to conventional magnesia brick. It is desirable to adjust the particle size to 0.5 mm or less.
  • -Titania Ti02 is rutile type or anatase type, or the combined use of rutile type and anatase type ⁇
  • the titania Ti02 content is preferably 1 to 10 wt%, lwt less comes to than% [M g O * A l 2 0 3 - 2 M g 0 ⁇ T i 02] Since the amount of ss generated is small, the effect of reducing the pore diameter and complicating the pore shape is hardly obtained. On the other hand, when the content exceeds 10 wt%, the amount of the lower melt 2 Mg0 ⁇ Ti02 (melting point: 1732 t) increases, and the liquid phase sinterability becomes remarkable.
  • titania T i 0 2 Noaru Mi Na a l 2 ⁇ 3 molar ratio from 0.3 to 1.3 is rather to desired titania T i 0 2
  • Aluminum burner a 1 2 0 3 molar ratio in the force rather connexion Aluminum Na a 1 2 content of 03 arbitrary desirable that it is a 1 ⁇ 1 5 wt%.
  • iron oxide can be used ferric oxide or red iron oxide which is usually commercially available, purity even of the preferred that you use particularly but not limited F e 2 03 that more than 90% arbitrariness.
  • the content of this iron oxide is desirably 0.5 to 10 wt%, and if it is less than 0.5 wt%, the amount of the solid solution or composite spinel described above is small, and the hydration resistance and heat resistance are reduced. No improvement in inter-strength can be seen.
  • the content is more than 10 wt%, the composition changes easily between divalent and trivalent states during use, which tends to cause a structural change, which tends to lower the corrosion resistance and the heat-resistant sparkling property.
  • the metal powder one of A and Mg, Si, Al—Mg and the like can be used.
  • the content of the metal powder is preferably 1 to 10 wt%, but if it is less than 1 wt%, the strength is improved and the composite is improved. No improvement in corrosion resistance due to spinel formation is observed, and the effect of containing metal powder cannot be obtained. Further, 1 0 becomes more Ri by wt%, it reacts with S i 0 2, C a O in brick or slag, C a O- A l 2 0 3 C a O -M g O - S i 0 There is a tendency for the amount of low-melting-point substances such as those of type 2 to be increased and the corrosion resistance to decrease.
  • oxide material other than iron oxide one or more of silica, lime, zirconia, mullite, and zircon can be used.
  • the content of the oxide raw material is preferably 1 to 20 wt%, and if the content is less than 1 wt%, improvement in strength and improvement in corrosion resistance due to formation of composite spinel or solid solution cannot be obtained.
  • the content when the content is more than 20 wt%, it reacts with Si 02 and Ca 0 in the brick or slag to increase the amount of low-melting-point products, which tends to lower the corrosion resistance.
  • the type of carbon contained in the chrome free brick according to the present invention is not particularly limited.
  • it because of its high corrosion resistance, it has high fixed carbon content. It is preferred to use graphite graphite.
  • the carbon content is preferably 1 to 20 wt% . If the carbon content is less than 1 wt%, the effect due to the carbon content is not obtained, and if the carbon content is more than 20 wt%, the strength decreases. Large, wear tends to increase due to wear due to melting.
  • Clay is preferably contained in an amount of 0.5 to 5 wt%.
  • the chrome free brick according to the present invention comprises kneading, molding,
  • the method of kneading, molding, drying and baking is no different from the ordinary brick manufacturing method.
  • the kneading may be carried out, if necessary, as a binder, for example, an organic material such as phenol resin, franc resin, bitter, calcium lignin sulfonate, sodium silicate, aluminum phosphate, or the like. 'Do this with the addition of an inorganic binder.
  • press molding is performed using, for example, a friction press, an oil press, a rubber press, etc., according to the application of the brick and the manufacturing equipment owned.
  • the composition shown in Table 1 was used as a binder, and calcium lignin sulfonate was externally applied to this composition (the amount was 100 wt% in the composition. The same applies hereinafter). After wt% was added and kneaded, it was press-formed into a parallel shape by a friction press. Next, after drying at 120 for 16 hours, the fired product was fired at 180 t for 5 hours in a tunnel kiln, and the resulting brick was used as a test brick. .
  • the electrofused magnesia raw material had a purity of 99.4% by Tateho Chemical Industry Co., Ltd., and the sintered product was Shin Nippon Chemical ( The purity of 99.0%, manufactured by Magnesia-Alumina-based spinel material, and the fused and sintered products are all 99.0% manufactured by Ceramics Co., Ltd. %, Nickel trioxide powder has a purity of 99.6%, manufactured by Nippon Denko KK, chromite ore is Turkish chromite ore with a purity of 5.2.72%, and titania has a purity of 52.72%. It is a rutile type.
  • test bricks obtained as described above were tested for apparent specific gravity, bending strength, heat-resistant sporting properties, corrosion resistance, penetration resistance, and service life in actual equipment by the following methods. . Table 1 shows the results.
  • the apparent porosity was measured by the usual refractory test method (based on JISR225).
  • test bead having a size of 30 ⁇ 15 ⁇ 20 mm was cut out from the test brick having the regular shape and heated in an electric furnace maintained at 150 t, and then a three-point bending test was performed.
  • Corrosion resistance, penetration resistance A plurality of test pieces in the form of pillars are cut out from the test brick, these test pieces are lined in a drum, and oxygen-propane flame is blown in the axial direction of the drum while rotating the drum. Heated to 00 ° C.
  • the erosion agent and the slag (the ratio of CaO to Sio2 is 3: 1) have the ratio of 6: 4 while keeping the value of 1700. And eroded for 30 minutes. Next, after the erosion agent was discharged, forced air cooling with pressurized air was performed for 20 minutes. This operation from gas flame heating to forced air cooling was repeated five times.
  • the test piece was cut, and the corrosion resistance and the penetration resistance were evaluated by measuring the amount of erosion and the slag penetration thickness by the average value of each part of each test piece.
  • the amount of erosion of Comparative Example 1 in Table 1 is 100 and the corrosion resistance index is shown, and the slag penetration thickness is shown in mm.
  • the brick manufactured in the shape of the actual machine was built on the lining of the lower tank, which is easily damaged by the 250 t RH type vacuum degassing furnace, and then started operating. Based on the remaining dimensions of Comparative Example 1 and the working example, the wear rate ( The expected service life (ch) was calculated based on mm (ch).
  • the value in () is the outer value (wt%) of the composition) asfe.
  • Titania T i 02, alumina A l 2 03 of desired correct content respectively 1 ⁇ 1 O wt%, a 1 ⁇ 1 5 wt%.
  • Desirable content of clay is 5wt or less.
  • test brick was prepared using the composition shown in Table 2 in the same manner as in Example 1, and the apparent specific gravity, bending strength, heat-resistant sporting property, corrosion resistance, penetration resistance, and durability in actual equipment were used as in Example 1. A number of tests were performed. The results are shown in Table 2.
  • the value in parentheses is the value (wt%) multiplied by the composition.
  • Titania T i 0 2 respectively desired correct content of Aluminum Na A l 2 03 1 ⁇ 1 O wt%, a 1 ⁇ 1 5 wt%.
  • test brick was prepared with the composition shown in Table 3 in the same manner as in Example 1, and the apparent specific gravity, bending strength, heat-resistant sporting property, corrosion resistance, corrosion resistance, and durability in actual equipment were used in the same manner as in Example 1. A number and hydration resistance tests were performed. Table 3 shows the results.
  • iron oxide (F e 2 03) has had use of a purity of 9 8. 1 6 wt%.
  • the hydration resistance was tested as follows.
  • the hydration resistance was evaluated by exposing to a steam atmosphere at 120 for 40 hours (autocreep method).
  • the weight change (wt%) was evaluated.
  • Desirable iron oxide content is 0.5 to 10 wt%.
  • Example 4 Same as Example 1 except that in the composition shown in Table 4, 1.5 to 3.3 wt% of phenolic resin was externally added to the composition instead of calcium lignin sulfonate.
  • An unfired test brick was prepared in the same manner as in Example 1, and tests for apparent specific gravity, flexural strength, heat-resistant spongeability, corrosion resistance, penetration resistance, and service life on a real machine were performed. Table 4 shows the results.
  • Examples 3 ', 6', 10 ', and 15' non-sintered products were produced with the composition corresponding to those in Examples 36, 10, and 15 and which were not fired in the cement kiln. And a similar test was performed.
  • parentheses in parentheses are outside the parentheses.
  • Corrosion resistance is improved by the presence of carbon, but if it exceeds 20 wt%, on the contrary, the corrosion resistance decreases and the strength decreases.
  • Corrosion resistance is improved by the presence of aluminum powder, which is a metal powder, but if it exceeds 10 wt%, it becomes brittle and its heat-resistant sporting properties deteriorate.
  • Corrosion resistance is improved by using iron oxide, carbon, aluminum powder as a metal powder, and zirconia as an oxide material alone or in combination.
  • Magnesia ⁇ Alumina-based spinel and magnesia raw material can be used together even when iron oxide, carbon, metal powder, and oxide raw materials are included.
  • the chrome free brick of the present invention can be a fired product or an unfired product.
  • Example 1 1.5 wt% of lignin sulfonate calcium as a binder was added to the composition shown in Table 5 as a binder, and kneading, drying, and firing were performed in the same manner as in Example 1. I got a test brick. In the same manner as in Example 1, the test bricks obtained in this way were tested for apparent specific gravity, bending strength, heat spoiling resistance, corrosion resistance, and service life in actual equipment. Table 5 shows the results. Five
  • the chrome-free brick of the present invention has excellent corrosion resistance despite not containing chromium.
  • Titania T i 0 2 Aluminum Na A 1 2 0 3 of the content respectively 1 O wt% or less, 1 5 wt% £ l under is rather preferred, these 1 0 wt%,
  • Comparative Example 1 of the conventional product showed 325 ch, whereas the chrome free brick according to the present invention showed 335 to 4666 ch in both unfired and sintered products. It is 1.03 to 1.43 times that of Comparative Example 1, which means that it has excellent durability.
  • Tables 1 to 4 show the results of testing the effect of the chrome-free brick according to the present invention on a cement rotary kiln.
  • the chromium-free brick of the present invention was applied to the magnesia-chromium material of Comparative Example 1 in a calcined zone of a cement mouth with a kiln diameter of 4.2 ⁇ and a length of 79 m. Partially split with bricks.
  • Tables 1 to 4 show the inspection results of this cement rotary kiln six months later. From these Tables 1 to 4, it can be seen that the chrome-free brick according to the present invention does not show a tendency to spall, and the coating layer is larger than the magnesium chrome brick of Comparative Example 1. Was unnecessary.
  • the reaction between the CaO component in the cement and the titania T102 component in the brick is as follows: CaO + Tio2- ⁇ by reacting according to Ca0 ⁇ Tio2. It is considered that C a 0 ⁇ T i 0 2 (0 lobskite) is generated.

Description

明 細 書 ク ロムフ リ ーれん力く
技術分野
本発明は、 ク ロムフ リ ーれんがに関し、 よ り詳し く は直接に高温 に接触する製鐧炉、 セメ ン トキルンおよびガラス溶解炉などの内側 に張る内張り材と して用いて好適なク ロムフ リ ーれんがに関する も のである。 背景技術
従来から、 マグネシア質れんがは、 融点が高く 、 更には塩基性ス ラグに対する浸食抵抗性が優れている こ とから、 内張り材と して用 いられている。 と ころが、 このマグネシア質れんがは、 耐構造的ス ポー リ ング性が劣っているために、 構造的スポー リ ングによる剝離 の防止を図ってマグネシア質原料とク ロム鉄鉱とを主原料とするマ グネシアーク ロム質れんがが考えられている。 このマグネシア一ク ロム質れんがにおいては、 耐構造的スポー リ ング性に加えて、 耐食 性および耐熱スポ一リ ング性においても優れている。
と ころが、 近年、 生体がク ロムを大量に摂取、 吸入あるいは接触 したときに、 ク ロム特有の障害と して鼻炎, 皮膚炎, 気管支炎など の炎症を引き起こすこ とが報告され、 特に 6価ク ロムによる障害は 社会問題になっている。 したがって、 ク ロム鉄鉱または酸化ク ロム を用いるれんがは、 環境汚染の公害上の問題から使用後れんがの廃 棄処理が困難な状態にあり、 ク ロムを含まないいわゆるク ロムフ リ 一れんがの開発要求が強ま っている。
本発明は、 このよ う に問題となるク ロムを含まず、 しかもク ロム を含まないにもかかわらず、 耐構造的スポーリ ング性、 更には耐食 性、 耐熱スポ一 リ ング性においても劣る こ とがないク ロムフ リ ーれ んがを提供する こ とを目的とする ものである。 発明の開示
本発明者らは、 実験検討を重ねた結果、 マグネ シア質原料およ びノまたはマグネシア · アルミ ナ系ス ピネル質原料を主原料とする 配合組成にチタニア成分とアルミ ナ成分とを適量存在させ、 ポアの 径などを後述する反応を利用 してコ ン ト ロールする こ とによ りれん がの緻密性をあま り上げる こ となく スラグおよび溶鐧の浸透を防止 する こ とができ、 耐食性と と もに耐構造的スポ一 リ ング性を向上さ せ得るこ とを確認し、 本発明を完成させるに至ったものである。 本発明によるク ロムフ リ 一れんがは、 マグネシア質原料および/ またはマグネシア · アルミ ナ系ス ピネル質原料を主原料と し、 チタ ニァを 1〜 1 O w t %、 アルミ ナを 1〜 1 5 w t %^有する こ とを 特徴とする ものである。
このチタニア T i 〇 2 とアルミ ナ A 1 2 03 とは主に反応を促進 させるためのマ ト リ ッ クス添加物と して用いられる。 これらマ ト リ ッ クス添加物とマグネシア質原料および またはマグネシア ♦ アル ミ ナ系ス ピネル質原料との混合物を混練 · 成形して焼成した場合、 あるいは不焼成で使用 した場合の高温で生じる基本的な反応は、 次 の通りである。
マグネシアにチタニア T i 〇 2 とアルミ ナ A 1 2 03 とを添加し て焼成すると、
( 1 ) M g O + A l 2 03 →M g O - A l 2 03
( 2 ) 2 M g O + T i 02 -→ 2 M g O - T i 02
( 3 ) M g 0 · A 1 2 03 + 2 M g 0 · T i 02 → 〔M g 0 A l 23 — 2 M g〇 ' T i 02 〕 s s なる反応に基づいて、
[M g 0 A 1 2 0 2 M g 0 · T i 02 ] s s が生成される。
( s s : 固溶体) さ らに、 マグネシア アルミ ナ系ス ピネルにチタニア T i 〇 2 と アルミ ナ A 1 2 03 とを添加すると、
( 4 ) M g O + A l 2 03 →M g O - A l 2 03
( 5 ) A l 23 + T i 02 →A l 2 03 · T i 02
( 6 ) 2 M g〇 + T i 〇 2 — 2 M g O * T i 02
( 7 ) M g 0 + 2 T i 02 →M g 0 · 2 T i 02
( 8 ) M g 0 · A 1 2 03 + 2 M g 0 · T i 02
― [M g 0 · A 1 a 03 - 2 M g 0 · T i 02 ] s s
( 9 ) A 1 2 03 - T i 02 + M g O - 2 T i 02
→ C A 1 2 03 · Τ ί 〇 2 — M g〇 ' 2 T i 〇 2 〕 s s なる反応に基づいて、
M g 0 · A 1 2 03 と 2 M g〇 * T i 〇 2 よ りなる固溶体 および
A 1 2 03 · T i 02 と M g O * 2 T i 02 よ りなる固溶体 が生成される。
( s s : 固溶体) 本発明の特徵は、 これら反応に基づいて生成される主反応生成物 である 〔M g O ' A l 2 03 - 2 M g 0 · T i 02 ] s sに関係し ており、 この主反応生成物が主に骨材粒子と しての主原料であるマ グネシァ質原料またはマグネシア · アルミ ナ系ス ピネル質原料の粒 子の表面に、 あるいはマ ト リ ッ クス部に生成される。
これら主反応生成物と骨材粒子との境界部には膨張収縮によるへ ァク ラ ッ クが発生したり、 この主反応生成物が骨材粒子の間隙部に 移動してその間隙部を充塡するためにク ロムフ リ ーれんがの緻密性 をあま り上げる こ とな く ポアの径が小さ く かつ複雑な形状を呈する よ う になる。
したがって、 ヘアク ラ ッ クの発生によ り耐熱スポー リ ング性が向 上し、 またク ロムフ リ ーれんがの緻密性をあま り上げる こ となく ポ ァの径が小さ く かつ複雑な形状になる こ とによ ってスラグおよび溶 鐧の浸透を防止でき、 緻密性があま り上がらないこ とで膨張収縮が 吸収される こ とから耐構造的スポー リ ング性が向上する。 なお、 緻 密性がある程度 £1上大き く なると耐構造的スポー リ ング性が低下す る o
前述の本発明によるク ロムフ リ ーれんがが酸化鉄を含有している と、 〔M g , A 1 , F e , T i 〕 系の固溶体、 も し く はマグネシア フ ェライ ト (M g 〇 * F e 2 03 ) にチタニア T i 02 , アルミ ナ A 1 2 03 が固溶した一種の複合ス ピネルが生成し、 熱間強度が向 上するのみならず耐水和性が著し く 向上する。 言い換えれば、 従来 のマグネシア一ク ロム質れんがおよびセメ ン トキルンで用いられて いるス ピネル系ク ロムフ リ ーれんがよ り も耐用性が向上しているク ロムフ リ一れんがが得られる。
また、 本発明によるク ロムフ リ ーれんがは、 1〜 1 0 w t %の金 属粉末、 1〜 2 O w t %の力一ボンおよび 1〜 2 O w t %の酸化鉄 以外の酸化物原料のうちの少なく と も一種を含有してもよい。
これら添加剤のうちの金属粉末および酸化物原料は強度を付与す るための焼結助剤と して作用するとと もに、 例えば ( F e , M g ) 〇 · ( A 1 , F e ) 2 03 なる一般式で示される複合ス ピネルが生 成されスラグおよび溶綱の浸透が防止されるこ とによ り、 耐食性が 向上する。 また、 カーボンによっても同様にスラグおよび溶鐧の浸 透が防止されて耐食性が向上する。
なお、 本発明によるク ロムプ リ 一れんがは焼成品と して、 また使 用中の高熱を利用する不焼成品と して用いられるが、 カーボンを含 有する場合、 不焼成品と して用いられるのが望ま しい。
さ らに、 本発明によるク ロムフ リ一れんがに成形性を良好にする ため粘土を含有させる こ とができる。
したがって、 本発明によるク ロムフ リ ーれんがは、 環境汚染など の問題を引き起こすこ とがなく 、 ク ロムを合んでいないにもかかわ らず耐食性, 耐構造的スポー リ ング性, 耐熱スポ— リ ング性に優れ ている。 また、 高耐用性のために、 原料の使用量が少なく なり省資 源に役立つ。 また、 本発明によるク ロムフ リ ーれんがは焼成品また は不焼成品と して用いられ得る。
次に、 本発明によるク ロムフ リ一れんがの前述の構成材料につい てより詳細に説明する。
本発明で使用できるマグネシア質原料, マグネシア · アルミ ナ系 ス ピネル質原料, アルミ ナの具体例は、 天然原料または人工原料に よる焼結品または電融品から選ばれる一種または二種以上が使用で きる。 特に純度は本発明の効果に影響する ものではないが、 9 5 % £1上の高純度のもの、 要するに不純物の少ないものを使用するのが 望ま しい。 また、 粒度は従来のマグネシア質れんがと同様、 密充塡 組織が得られるよ う に 5〜 1 mmま たは 3〜 1 m mの粗粒、 1 ~ 0. 0 5 mmの中粒、 0. 0 5 mm以下の微粒に調整するのが望ま しい。 - チタニア T i 02 はルチル型またはアナターゼ型あるいはそれら ルチル型およびアナターゼ型が併せて用いられる力《、 このチタニア T i 02 の含有量は 1〜 1 0 w t %であるこ とが好ま し く 、 l w t %より少なく なると 〔M g O * A l 2 03 - 2 M g 0 · T i 02 ] s s の生成量が少な く 、 ポア径を小さ く したり、 ポア形状を複雑に する効果があま り得られな く なる。 また、 1 0 w t %を超えると、 よ り低融物である 2 M g 0 ♦ T i 02 (融点 1 7 3 2 t ) の生成量 が増し、 液相焼結性が著し く なり構造安定性が低下する傾向がある ( なお、 前記 ( 1 ) 〜 ( 9 ) 式に基づく 固溶体反応でポア径を小さ く - かつポア形状を複雑にする には、 チタ ニア T i 0 2 ノアル ミ ナ A l 23 のモル比は 0 . 3 〜 1 . 3 が望ま し く 、 このチタニア T i 02 アル ミ ナ A 1 2 03 のモル比に した力くつて、 アル ミ ナ A 1 2 03 の含有量は 1 〜 1 5 w t %である こ とが望ま しい。 この よ う な量でアル ミ ナ A 1 2 03 が存在する こ とによ り 〔M g O * A 1 2 03 一 2 M g 0 · T i 〇 2 〕 s s の融点がマグネシア ' アル ミ ナ系ス ピネルの融点である 2 1 3 5 近く まで上昇する。 なお、 アルミ ナ A 1 2 03 の含有量が 1 w t %よ り少ないと融点上昇の効 果が得られな く なり、 1 5 w t %を超えると、 ス ピネル自体の生成 に基づいて膨張し、 見掛気孔率が高く なつて耐食性が低下する傾向 力 ある。
酸化鉄と しては通常市販されている第二酸化鉄またはベンガラが 使用でき、 純度は特に限定されないが F e 2 03 が 9 0 %以上のも のを使用するこ とが好ま しい。 この酸化鉄の含有量は 0. 5〜 1 0 w t %が望ま し く 、 0. 5 w t %よ り少なく なると前述した固溶体 も し く は複合ス ピネルの生成量が少なく 、 耐水和性および熱間強度 の向上が見られなく なる。 また、 1 0 w t %よ り多く なると、 使用 中に 2価と 3価との間を相互変化して組織変化を起こ しやすく なり 耐食性および耐熱スポ一リ ング性が低下する傾向がある。
また、 金属粉末と しては、 A し M g , S i , A l — M gなどの うちの 1 種 £ί上が用いられ得る。 この金属粉末の含有量は 1 〜 1 0 w t %が好ま しいが、 1 w t %より少なく なると、 強度向上、 複合 ス ピネルの生成による耐食性の向上が見られず、 金属粉末含有の効 果が得られな く なる。 また、 1 0 w t %よ り多く なると、 れんが中 またはスラグ中の S i 02 , C a Oと反応して、 C a O— A l 2 03 C a O -M g O - S i 02 系などの低融点物の生成量が多く なり耐 食性が低下する傾向がある。
酸化鉄以外の酸化物原料と しては、 シ リ カ, ライム, ジルコユア, ムライ ト, ジルコ ンなどのうち 1 種以上が使用可能である。 この酸 化物原料の含有量は 1〜 2 0 w t %が好ま し く 、 1 w t %よ り少な く なると、 強度向上、 複合ス ピネルまたは固溶体の生成による耐食 性の向上が得られなく なる。 また、 2 0 w t %よ り多く なると、 れ んが中またはスラグ中の S i 02 、 C a 0と反応して低融点物の生 成量が多く なり耐食性が低下する傾向がある。
また、 本発明によるク ロムフ リ 一れんがに含有されるカーボンの 種類については特に限定されない。 例えばリ ン状黒鉛, 土状黒鉛, 人造黒鉛, ピッチコークス, 無煙炭, カーボンブラ ッ クなどから選 ばれる 1 種以上が使用可能であるが、 高耐食性という こ とから固定 炭素含有量の高いリ ン状黒鉛を使用するのが好ま しい。
カーボンを含有する場合、 このカーボン含有量は 1〜 2 0 w t % が好ま し く 、 1 w t %よ り少なく なるとカーボン含有による効果が 得られなく なり、 2 0 w t %よ り多く なると強度低下が大き く 、 溶 鐧による摩耗のため損耗が大き く なる傾向がある。
また、 粘土は 0. 5〜 5 w t %の量で含有させる こ とが好ま し く 、
0. 5 w t %よ り少なく なると成形性を良好にする粘土含有の効果 が得られなく なり、 5 w t %よ り多く なると低融物であるシリ ケ一 トボン ドの生成によ り耐食性が低下する傾向があり好ま し く ない。 本発明によるク ロムフ リ一れんがは前述の配合物を混練、 成形、
1 0 0〜 5 0 0 tで乾燥、 1 6 0 0〜 1 9 0 0 でで焼成する こ とに よ り焼成品と して、 または混練、 成形、 1 0 0〜 5 0 0 °Cで乾燥す る こ とによ り不焼成品と して製造され得る。 なお、 焼成する場合、 未焼成部分が残らないよ う に充分な保持時間をとる こ とが好ま しい 力 混練、 成形、 乾燥、 焼成の方法は通常のれんが製造法と変わり はない。
なお、 混練は、 必要に応じて結合剤と して例えば、 フエノ ール樹 脂, フ ラ ン樹脂, 苦汁, リ グニ ンスルフ ォ ン酸カルシウム, 珪酸ソ ーダ, 燐酸アル ミ ニウムなどの有機 ' 無機結合剤を添加して行う。 また、 成形は、 れんがの用途、 所有する製造設備などに合わせて、 例えばフ リ ク シ ョ ンプ レス, オイ ルプレス, ラバ一プレスなどで加 圧成形する。
本発明の他の目的は、 後述される詳細な説明から明らかにされる < しかしながら、 詳細な説明および具体的実施例は最も好ま しい実施 態様について説明するが、 本発明の精神および範囲内の種々の変更 および変形はその詳細な説明から当業者にとって明らかである こと から、 具体的例と してのみ述べる ものである。 発明を実施するための最良の形態
次に、 本発明によるク ロム フ リ一れんがについて実施例および比 較例を挙げてよ り詳細に説明する。
(実施例 1〜 7、 比較例 1〜 4 )
表 1 に示す配合組成に結合剤と して、 この配合組成に対してリ グ ニ ンスルフ ォ ン酸カルシウムを外掛け (配合組成を 1 0 0 w t %と した量。 以下同様) で 1 . 5 w t %添加し、 混練後、 フ リ ク シ ョ ン プレスにて並型形状に加圧成形した。 次に、 1 2 0 でで 1 6 時間乾 燥後、 焼成品については ト ンネルキルンにて 1 8 0 0 tで 5 時間焼 成を行い、 こ う して得られたれんがを供試れんがと した。 なお、 実施例、 比較例において使用されている配合剤において、 マグネシア質原料の電融品はタテホ化学工業 (株) 製の純度 9 9 . 4 4 %の もの、 焼結品は新日本化学 (株) 製の純度 9 9 . 0 0 %の もの、 マグネシア · アルミ ナ系ス ピネル質原料の電融品、 焼結品は いずれも内外セラ ミ ッ クス (株) 製の純度 9 9 . 0 1 %のもの、 三 酸化ニク ロム粉末は日本電工 (株) 製の純度 9 9 . 0 6 %のもの、 ク ロム鉄鉱は トルコク ロム鉄鉱であり純度 5 2 . 7 2 %のもの、 ま たチタニアはルチル型のものである。
前述のよ う にして得られた供試れんがについて、 次に示す方法で 見掛比重, 曲げ強さ, 耐熱スポー リ ング性, 食性, 耐浸透性, 実 機での耐用数の試験を行った。 この結果を表 1 に示す。
見掛比重 ;
通常の耐火物試験法 ( J I S R 2 2 0 5 準拠) によ り見掛気孔率 を測定した。
曲げ強さ ;
前記並形形状の供試れんがから 3 0 X 1 5 X 2 0 m mのテス ト ビー スを切り出し、 1 5 0 0 tに保持した電気炉で加熱した後、 3 点曲 げ試験を行つた。
耐熱スポー リ ング性 ;
供試れんがから 5 5 X 5 5 X 2 3 0 m mの角柱状テス ト ピースを切 り出し、 片面を 1 4 0 0 tに保持した電気炉中に入れて 1 5分間保 持する。 次に、 炉外に取り出し 1 5分間室温で強制空冷する加熱一 冷却サイ クルによる熱衝擊を 2 5 回を限度に反復した。 こ う して、 剝落に至るまでの熱衝擊の回数で評価した。 なお、 耐熱スポー リ ン グ性は剝落に至るまでの熱衝撃の回数の多い方が良好であり、 2 5 回反復した時点で剝落しないものは 2 5 +で表した。
耐食性、 耐浸透性 ; 供試れんがから複数の合形柱状のテス ト ピースを切り出 し、 これら テス ト ピースを ドラム内に内張り し、 この ドラムを回転させながら ドラ ムの軸線方向に酸素一プロパ ン炎を吹き込み 1 7 0 0 °Cに加熱 し た。 こ の 1 7 0 0 で に保 っ た ま ま 侵食剤 と し て鐧 と ス ラ グ ( C a O と S i 0 2 との比が 3 : 1 のもの) を 6 : 4 の比率となる よ うに投入し、 3 0分間侵食を行わせた。 次に、 侵食剤を排出後、 加圧空気による強制空冷を 2 0分間行った。 このガス炎による加熱 から強制空冷までの操作を 5 回繰り返した。 この後、 テス ト ピース を切断し、 溶損量、 スラグ浸透厚さを各テス ト ピースの各部の平均 値で測定して耐食性、 耐浸透性を評価した。 なお、 表 1 〜表 4 では 表 1 の比較例 1 の溶損量を 1 0 0 と して耐食性指数で、 スラグ浸透 厚さは m mで示している。
実機試験 ;
実機形状に製造したれんがを 2 5 0 t R H式真空脱ガス炉の損傷を 受け易い部位である下部槽の内張り に築造後稼働し、 比較例 1 と実 施例との残存寸法から損耗速度 (m mノ c h ) に基づいて予想耐用 数 ( c h ) を求めた。
本発明実施例とその比皎例
Figure imgf000013_0001
1. 配^ において、 ( ) 内の数値は配合)asfeに対して外掛け (w t %) である。
. 実機試験において、 空欄は試験しなかったものである。 次のこ と力く、 表 1 よ りわかる。
( 1 ) 本発明の実施例 1 〜 7 のク ロムフ リ ーれんがは骨材粒子と して電融マグネシア, 焼結マグネシアまたはそれら電融マグネシ ァおよび焼結マグネ シァの組み合わせのいずれを用いるかによ ら ず、 比較例 1 の現在 R H式真空脱ガス炉に使用されている従来の マグネシア一ク ロム質れんがよ り耐食性が向上している。 特に電 融マグネシアを用いる (実施例 4 ) と耐食性が大き く 向上する。
( 2 ) チタニア T i 02 , アルミ ナ A l 2 03 の望ま しい含量は それぞれ 1 ~ 1 O w t %, 1 〜 1 5 w t %である。
( 3 ) 粘土の望ま しい含量は 5 w t以下である。
(実施例 8 〜 1 6、 比較例 5 〜 6 )
表 2 に示す配合組成で実施例 1 と同様に供試れんがを作製し、 実 施例 1 と同様に見掛比重、 曲げ強さ、 耐熱スポー リ ング性、 耐食性 耐浸透性、 実機での耐用数の試験を行った。 この結果を表 2 に示す
表 2
本発明実施例とその比校例
Figure imgf000015_0001
. 配合組成において、 ( ) 内の数値は配合組成に対して外掛け (w t %) である。
. 実機試験において、 空 は試験しなかったものである。 次のこ と力く、 表 1 および表 2 よ りわかる。
( 1 ) 骨材粒子と してマグネシア · アル ミ ナ系ス ピネルを用いて も (実施例 8 〜 1 6 ) 、 従来のマグネシア一ク ロム質れんが (比 較例 1 ) よ り耐食性が向上するが、 マグネシア原料のみを用いた もの (実施例 1 〜 7 ) よ り は曲げ強さが低下し耐食性もやや低下 す o
( 2 ) マグネシア · アルミ ナ系ス ピネルにマグネシア原料を組み 合わせる こ とによ りマグネシア · アルミ ナ系ス ピネル単独よ り も 耐食性が若干向上する。
( 3 ) チタニア T i 02 , アル ミ ナ A l 2 03 の望ま しい含量は それぞれ 1 〜 1 O w t %, 1 〜 1 5 w t %である。
(実施例 1 7 〜 2 4 、 比較例 7 , 8 )
表 3 に示す配合組成で実施例 1 と同様に供試れんがを作製し、 実 施例 1 と同様に見掛比重, 曲げ強さ, 耐熱スポー リ ング性, 耐食性 耐浸透性, 実機での耐用数, 耐水和性の試験を行った。 この結果を 表 3 に示す。
なお、 酸化鉄 ( F e 2 03 ) は純度 9 8 . 1 6 w t %のものを用 いた。 また、 次のよ う に耐水和性を試験した。
耐水和性 ;
1 2 0 で 4 0 時間の水蒸気雰囲気にさ ら し (オー ト ク レープ法) 重量変化量 (w t %) によって耐水和性を評価した。 3
本発明実施例とその比 例
Figure imgf000017_0001
1. 配合)¾¾において、 ( ) 内の数値は配合 に対して外掛け (w t %) である。
. 実! ¾試験において、 空欄は試験しなかったものである。 次の こ と力く、 表 3 よ り わかる。
( 1 ) 酸化鉄が存在する こ と によ り曲げ強さが向上し、 耐食性が 向上し、 耐水和性も向上 (氷和による重量増加率が低下) する。
( 2 ) 酸化鉄の望ま しい含量は 0. 5〜 1 0 w t %である。
(実施例 2 5〜 3 6 , 3 ' , 6 ' , 1 0 ' , 1 5 ' 、 比較例 9〜 1 3 )
表 4 に示す配合組成で、 リ グニンスルフ ォ ン酸カルシウムの代わ り にフ エノ ール樹脂を配合組成に対して外掛けで 1 . 5〜 3. 3 w t %添加した以外は実施例 1 と同様に不焼成の供試れんがを作製し. この実施例 1 と同様に見掛比重, 曲げ強さ, 耐熱スポ一 リ ング性, 耐食性, 耐浸透性, 実機での耐用数の試験を行った。 この結果を表 4 に示す。 こ こで、 実施例 3 ' , 6 ' , 1 0 ' , 1 5 ' は実施例 3 6 , 1 0 , 1 5 に対応する配合組成でセメ ン トキルンにおける焼成 を行わなかった不焼成品を作製し、 同様の試験を行ったものである
本発明実施例とその比 «例
Figure imgf000019_0001
1. 合 において、 ( ) 内の致 IS合誠に対して外掛け (リ 1 96) である。
2. 実機試験において、 空 は試験しなかったものである。
次のこ と力く、 表 4 よ りわかる。
( 1 ) 力一ボンの存在によ り耐食性は向上するが、 2 0 w t %を超 えると逆に耐食性が低下し、 かつ強度が低下する。
( 2 ) 金属粉末であるアルミ ニウム粉末の存在によ り耐食性が向上 するが、 1 0 w t %を超えると脆く なり耐熱スポー リ ング性が低 下する。
( 3 ) 酸化鉄, カーボン, 金属粉末であるアルミ ニウム粉末, 酸化 物原料である ジルコニァを単独または組み合わせて用いる こ とに よ り耐食性が向上する。
( 4 ) 酸化鉄, カーボン, 金属粉末, 酸化物原料を含む場合も、 マ グネシァ ♦ アルミ ナ系ス ピネルとマグネシア原料とを併用する こ とができる。
( 5 ) 本発明のク ロムフ リ ーれんがは焼成品であっても不焼成品で の つ &よい o
(実施例 3 7 〜 4 0 、 比較例 1 4 〜 1 8 )
表 5 に示す配合組成に結合剤と してリ グニンスルフ ォ ン酸カルシ ゥムを配合組成に対して外掛けで 1 . 5 w t %添加し、 実施例 1 と 同様に混練、 乾燥、 焼成を行って供試れんがを得た。 こ う して得ら れた供試れんがについて実施例 1 と同様に見掛比重, 曲げ強さ, 耐 熱スポーリ ング性, 耐食性, 実機での耐用数の試験を行った。 この 結果を表 5 に示す。 5
本発明実施例とその比 例
Figure imgf000021_0001
1. 配合 ffl ^において、 ( ) 内の数値は配合 に対して外掛け (w t%) である。 . 実機試験において、 空攔は試験しなかったものである。
次のこ と力く、 表 5 よ りわかる。
( 1 ) 本発明のク ロムフ リ一れんがはク ロムを含んでいないにもか かわらず耐食性が優れている。
( 2 ) チタニア T i 02 , アル ミ ナ A 1 2 03 の含量はそれぞれ 1 O w t %以下, 1 5 w t %£l下が好ま し く 、 これら 1 0 w t %,
1 5 w t %よ り多い場合、 または少なすぎる場合は優れた耐食性 が得られない。 さ らに、 前述の実施例および比較例について、 次に説明する。
実機試験の結果において、 従来品に係る比較例 1 が 3 2 5 c hを 示したの対し、 本発明によるク ロムフ リ一れんがは不焼成品でも焼 成品でも 3 3 5〜 4 6 6 c hを示し比較例 1 の 1 . 0 3〜 1 . 4 3 倍となり優れた耐用性を有する こ とがわかる。
なお、 実施例および比較例における実機試験は R H式真空脱ガス 炉の下部槽で行ったが、 D H式真空脱ガス炉, A◦ D炉などの製鋼 炉, 溶解炉などにおいても適用でき、 同様の効果を得る こ とができ る。
また、 表 1〜 4 にはセメ ン ト ロータ リ ーキルンにおける本発明に よるク ロムフ リ一れんがの効果を試験したものを示している。 この 試験は、 キルン直径 4 . 2 πι φ , 長さ 7 9 mのセメ ン ト 口 一タ リ ー キルンの焼成帯に、 本発明によるク ロムフ リ 一れんがを比較例 1 の マグネシア一ク ロム質れんがと と もに部分割り して行った。 このセ メ ン トロータ リ一キルンにおける 6 ヶ月後の点検結果を表 1〜 4 に 示す。 これら表 1〜 4 から、 本発明によるク ロムフ リ ーれんがはス ポーリ ング傾向が見られず、 またコ一ティ ング層も比較例 1 のマグ ネシアーク ロム質れんがよ り も大き く 、 途中でも張り替えは不必要 であった。 特にコ一ティ ング層が大き く なる理由は断定できないが. セメ ン 卜中の C a O成分とれんが中のチタニア T 1 0 2 成分とが反 応式 ; C a O + T i 0 2 -→ C a 0 · T i 0 2 に したがって反応する こ とにより C a 0 · T i 0 2 (ぺロブスカイ ト) が生成するためで あると考えられる。
£ί上に説明したよ う に、 本発明は、 種々 に変更可能なこ とは明ら かである。 このよ うな変更は本発明の精神および範囲に反する こ と なく 、 また当業者にとって明瞭な全てのそのよ うな変形、 変更は請 求の範囲に含まれる ものである。

Claims

請求の範囲
1 . マグネシア質原料および Zまたはマグネシア · アルミ ナ系ス ピネル質原料を主原料と し、 チタニアを 1 〜 1 O w t %、 アルミ ナを l 〜 1 5 w t %含有する こ とを特徵とするク ロムフ リ ーれん が。
2. 酸化鉄を 0. 5〜 1 0 w t %合有する こ とを特徴とする請求 項 1 に記載のク ロムフ リ 一れんが。
3. l 〜 1 0 w t %の金属粉末、 l 〜 2 0 w t %のカーボンおよ び 1 〜 2 0 w t %の酸化鉄以外の酸化物原料のう ちの少なく と も 一種を含有する こ とを特徴とする請求項 1 に記載のク ロムフ リ ー れんが。
4. 粘土を 0. 5〜 5 w t %含有する こ とを特徵とする請求項 1 に記載のフロムフ リ 一れんが。
5. l 〜 1 0 w t %の金属粉末、 l 〜 2 0 w t %の力一ボンおよ び 1 〜 2 0 w t %の酸化鉄以外の酸化物原料のうちの少なく と も 一種を含有する こ とを特徵とする請求項 2 に記載のク ロムフ リ ー れんが。
6. 粘土を 0. 5〜 5 w t %舍有する こ とを特徴とする請求項 2 に記載のフロムフ リ 一れんが。
7. 粘土を 0. 5〜 5 w t %含有する こ とを特徴とする請求項 3 に記載のフ ロムフ リ 一れんが。
8. 粘土を 0. 5〜 5 w t %^有する こ とを特徴とする請求項 5 に記載のフロムフ リ 一れんが。
9. 当該フロムフ リ ーれんがが焼成品または不焼成品である こ と を特徴とする請求項 1 乃至 8のうちのいずれかに記載のフ ロムフ リ 一れんが。
PCT/JP1994/001892 1993-12-09 1994-11-09 Brique exempte de chrome WO1995015932A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US08/360,819 US5559064A (en) 1993-12-09 1994-11-09 Chrome-free brick
KR1019960702968A KR100297091B1 (ko) 1993-12-09 1994-11-09 크롬-프리벽돌
EP95900278A EP0733604A4 (en) 1993-12-09 1994-11-09 CHROME FREE BRICK

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP5/341365 1993-12-09
JP34136593 1993-12-09
JP6/37620 1994-02-09
JP3762094 1994-02-09
JP6/65512 1994-03-08
JP6551294 1994-03-08

Publications (1)

Publication Number Publication Date
WO1995015932A1 true WO1995015932A1 (fr) 1995-06-15

Family

ID=27289526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/001892 WO1995015932A1 (fr) 1993-12-09 1994-11-09 Brique exempte de chrome

Country Status (4)

Country Link
US (1) US5559064A (ja)
EP (1) EP0733604A4 (ja)
KR (1) KR100297091B1 (ja)
WO (1) WO1995015932A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6172096B1 (en) 1996-02-13 2001-01-09 G. D. Searle & Co. Immunosuppressive effects of administration of a cyclooxygenase-2 inhibitor and a leukotriene B4 receptor antagonist
KR20020050981A (ko) * 2000-12-22 2002-06-28 신현준 카본함유 내화벽돌 산화방지용 내화조성물

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4403869C2 (de) * 1994-02-08 1998-01-15 Veitsch Radex Ag Feuerfester keramischer Versatz und dessen Verwendung
DE102005051953B3 (de) * 2005-10-29 2007-06-06 Tu Bergakademie Freiberg Verfahren zur Herstellung von feuerfesten Formkörpern oder Massen
WO2008056655A1 (fr) * 2006-11-06 2008-05-15 Krosakiharima Corporation Manchons durables
KR101132670B1 (ko) * 2006-12-26 2012-04-03 재단법인 포항산업과학연구원 에지댐 보수용 조성물
EA019307B1 (ru) * 2007-04-27 2014-02-28 Эм-Ай ЭлЭлСи Способ изготовления неводного геля и способ обработки толщи пород
WO2008134359A1 (en) 2007-04-27 2008-11-06 M-I Llc Use of elastomers to produce gels for treating a wellbore
JP2010529229A (ja) * 2007-05-29 2010-08-26 ダウ グローバル テクノロジーズ インコーポレイティド 硬化制御改善のためのイソシアネート−エポキシ配合物
KR20100084561A (ko) 2007-10-26 2010-07-26 다우 글로벌 테크놀로지스 인크. 전기적 적층물에 사용하기 위한 이소시아누레이트 함유 에폭시 수지 조성물
EP2244871A1 (en) * 2007-11-29 2010-11-03 Dow Global Technologies Inc. Microwave heatable monovinyl aromatic polymers
EP2247702B1 (en) * 2008-01-18 2013-11-06 M-I L.L.C. Degradable non-aqueous gel systems
GB0902931D0 (en) 2009-02-20 2009-04-08 M I Drilling Fluids Uk Ltd Wellbore fluid and methods of treating an earthen formtion
GB0917134D0 (en) 2009-09-30 2009-11-11 M I Drilling Fluids Uk Ltd Crosslinking agents for producing gels and polymer beads for oilfield applications
GB0921711D0 (en) 2009-12-11 2010-01-27 M I Drilling Fluids Uk Ltd Use of elastomers to produce gels for treating a wellbore
KR101189998B1 (ko) 2010-09-01 2012-10-12 최성규 소성석재의 제조방법 및 그 제품
EP2836675A4 (en) 2012-04-09 2015-10-07 Mi Llc HEATING TRIGGERED FROM DRILLING WELL FLUIDS BY CARBON-BASED NANOMATHERS
WO2019122196A1 (fr) * 2017-12-22 2019-06-27 Saint-Gobain Centre De Recherches Et D'etudes Europeen Four de verrerie comportant un produit contenant de l'oxyde de chrome 3
FR3075786B1 (fr) 2017-12-22 2024-04-19 Saint Gobain Ct Recherches Produit contenant de l’oxyde de chrome 3
AU2021400415A1 (en) 2020-12-15 2023-07-06 Chevron Australia Pty Ltd Methods of using expandable polymer grout for plug and abandonment applications
WO2022132552A1 (en) 2020-12-15 2022-06-23 Chevron U.S.A. Inc. Deployment methods for expandable polymer grout for plug and abandonment applications

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52142708A (en) * 1976-05-22 1977-11-28 Mino Yogyo Kk Basic refractories
JPS59141461A (ja) * 1983-02-02 1984-08-14 太平洋セメント株式会社 スピネル質焼結体の製造方法
JPH04238855A (ja) * 1991-01-11 1992-08-26 Shinagawa Refract Co Ltd マグネシア・アルミナ系スピネル質耐火物及びその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3316108A (en) * 1963-05-21 1967-04-25 Du Pont Alumina titanate bonded magnesia
FR1393917A (fr) * 1963-05-21 1965-03-26 Du Pont Produit réfractaire et sa préparation
AT286160B (de) * 1968-08-05 1970-11-25 Oesterr Amerikan Magnesit Feuerfester gebrannter Magnesitstein
JPS55107749A (en) * 1979-02-09 1980-08-19 Kyushu Refract Co Ltd Carbon-containing fire brick
US5021374A (en) * 1987-11-17 1991-06-04 Dresser Industries, Inc. Dead-burned magnesite and magnesia-alumina spinel refractory composition
US4957887A (en) * 1988-11-21 1990-09-18 Dresser Industries, Inc. Magnesite-carbon refractories
US5007615A (en) * 1988-12-12 1991-04-16 Dresser Industries, Inc. Refractory slide gate assembly and method
US5171724A (en) * 1990-06-11 1992-12-15 Shinagawa Refractories Co., Ltd. Magnesia-alumina type spinel clinker and method of producing refractory by using same
US5250479A (en) * 1992-04-16 1993-10-05 Vesuvius Crucible Company Magnesia-carbon refractory compositions for slide gate plates and method of manufacture
US5418199A (en) * 1994-04-25 1995-05-23 Indresco Inc. Refractory mix and shapes made therefrom

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52142708A (en) * 1976-05-22 1977-11-28 Mino Yogyo Kk Basic refractories
JPS59141461A (ja) * 1983-02-02 1984-08-14 太平洋セメント株式会社 スピネル質焼結体の製造方法
JPH04238855A (ja) * 1991-01-11 1992-08-26 Shinagawa Refract Co Ltd マグネシア・アルミナ系スピネル質耐火物及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0733604A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6172096B1 (en) 1996-02-13 2001-01-09 G. D. Searle & Co. Immunosuppressive effects of administration of a cyclooxygenase-2 inhibitor and a leukotriene B4 receptor antagonist
KR20020050981A (ko) * 2000-12-22 2002-06-28 신현준 카본함유 내화벽돌 산화방지용 내화조성물

Also Published As

Publication number Publication date
KR100297091B1 (ko) 2001-11-05
EP0733604A1 (en) 1996-09-25
EP0733604A4 (en) 1997-08-27
KR960706458A (ko) 1996-12-09
US5559064A (en) 1996-09-24

Similar Documents

Publication Publication Date Title
WO1995015932A1 (fr) Brique exempte de chrome
CN1050591C (zh) 烧成微孔铝炭砖及其制作方法
JP2002193681A (ja) 不定形耐火物およびそれを利用した廃棄物溶融炉
US3106475A (en) Burned refractory product
JP3343297B2 (ja) 内張り用焼成耐火れんが
JP2003238250A (ja) イットリア質耐火物
JP5324092B2 (ja) 高耐性耐火組成物
JP5663122B2 (ja) 非鉄金属製錬容器用キャスタブル耐火物及びそれを用いたプレキャストブロック
KR101262077B1 (ko) 저시멘트 내침식 부정형 내화물
JP2021147275A (ja) マグネシア−スピネル質耐火れんが
JP2000111024A (ja) アルカリ廃液焼却炉
JP2000191363A (ja) 耐スポ―リング性スピネル質れんが
JP4538779B2 (ja) マグネシア−アルミナ系クリンカーおよびそれを用いて得られる耐火物
JPH046150A (ja) マグネシア―クロム質耐火物
JP4269148B2 (ja) 塩基性耐火物
JP2999134B2 (ja) マグネシアクロム質耐火物及びセメントロータリーキルン
JP2000263013A (ja) アルミドロス残灰の利用方法及びアルミナスピネル質キャスタブル耐火物
JPH06172020A (ja) マグネシア成分を含む耐火材料
JP3703104B2 (ja) マグネシア−クロム質不焼成れんが
JP2001182921A (ja) 廃棄物溶融炉流し込み施工用不定形耐火物およびそれを使用した廃棄物溶融炉
JP2003342080A (ja) クロミア質キャスタブル耐火物およびそれを用いたプレキャストブロック。
JPH04342454A (ja) マグネシア含有不焼成耐火物
JP2006076863A (ja) マグネシア−クロム−窒化硼素質不焼成耐火物
JPH11157917A (ja) マグネシア−クロム質耐火物の製造法
JPH02274370A (ja) 溶銑予備処理容器用耐火物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 08360819

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT ES FR GB IT NL

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995900278

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019960702968

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1995900278

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1995900278

Country of ref document: EP