WO1995013886A1 - Procede de mise au rebut de dechets - Google Patents

Procede de mise au rebut de dechets Download PDF

Info

Publication number
WO1995013886A1
WO1995013886A1 PCT/JP1994/001909 JP9401909W WO9513886A1 WO 1995013886 A1 WO1995013886 A1 WO 1995013886A1 JP 9401909 W JP9401909 W JP 9401909W WO 9513886 A1 WO9513886 A1 WO 9513886A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste
water
water glass
parts
treating
Prior art date
Application number
PCT/JP1994/001909
Other languages
English (en)
French (fr)
Inventor
Takuji Nomura
Hidekazu Kuromatsu
Masakazu Uekita
Original Assignee
Kanegafuchi Kagaku Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Kagaku Kogyo Kabushiki Kaisha filed Critical Kanegafuchi Kagaku Kogyo Kabushiki Kaisha
Priority to EP95900289A priority Critical patent/EP0684087A4/en
Priority to US08/464,865 priority patent/US5626552A/en
Publication of WO1995013886A1 publication Critical patent/WO1995013886A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • A62D3/33Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents by chemical fixing the harmful substance, e.g. by chelation or complexation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/021Agglomerated materials, e.g. artificial aggregates agglomerated by a mineral binder, e.g. cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/02Selection of the hardening environment
    • C04B40/0263Hardening promoted by a rise in temperature
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/08Toxic combustion residues, e.g. toxic substances contained in fly ash from waste incineration
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/40Inorganic substances
    • A62D2101/43Inorganic substances containing heavy metals, in the bonded or free state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a method for treating waste which is effective for stabilizing waste containing harmful metals and the like, and particularly to C hydroxide such as Ca hydroxide, Ca oxide and Ca chloride. a) It relates to an effective treatment method for stably treating waste incineration fly ash containing lead compounds (Pb), in which elution of lead (Pb) is difficult to suppress.
  • C hydroxide such as Ca hydroxide, Ca oxide and Ca chloride.
  • the slaked lime (Ca hydroxide), the reaction product of slaked lime and hydrochloric acid (Ca chloride), and the product generated by heating slaked lime (C oxide, etc.), and the fly ash collected by the electrostatic precipitator and the bag fill collected under such operating conditions have a particularly high Pb elution amount.
  • elution cannot be sufficiently suppressed by conventional techniques. For this reason, at present, landfill treatment is being performed with insufficient stabilization of harmful metals, etc., and the problem of secondary pollution after treatment appears.
  • the present invention is capable of reliably solidifying and encapsulating industrial materials containing various harmful metals and stabilizing the harmful metals and the like so that they do not elute again. It is an object of the present invention to provide a method of processing an object. Disclosure of the invention
  • the waste treatment method of the present invention comprises a waste containing a Ca compound such as a Ca hydroxide, a Ca oxide, and a Ca chloride, and water glass as a main constituent ⁇ component.
  • a Ca compound such as a Ca hydroxide, a Ca oxide, and a Ca chloride
  • water glass as a main constituent ⁇ component.
  • the water glass used in the present invention may be a general-purpose water glass.
  • the composition of water glass is generally represented by M 2 0 ⁇ n S i 0 2 (where M is the cation of water glass), and the cation (alkaline component) is exemplified by Na, K, etc.
  • M is the cation of water glass
  • the cation alkaline component
  • the cation is a water glass of N, that is, sodium silicate.
  • the amount of water glass added is the content of Pb in waste, the content of Ca compounds in waste, the amount of harmful metals eluted from waste without treatment, and the target allowable amount of elution
  • the addition of the least amount of water glass from the cost point of view makes the elution amount less than the target elution amount.
  • almost 100% by weight of waste 100 parts by weight of water glass solids (M 2 ⁇ and the sum of Si O s, where M is the cation of water glass, The same applies to the following.)
  • the content can be suppressed to 3 pPm or less, which is the legally regulated value of Pb. If the solids content of the water glass to be added is less than the above range, the elution of harmful metals may not be sufficiently suppressed. However, it is not preferable because the addition is more than necessary and the cost is often increased.
  • No. 1 There are four types of water glass that can be industrially obtained: No. 1, No. 2, No. 3, and No. 4, depending on the standard. From the viewpoint of the balance between the solid content ratio and the price, No. 3 should be used. It is suitable.
  • the treatment agent and the waste are mixed and kneaded so that sufficient contact between the treatment agent and the waste can be achieved in order to exhibit a harmful metal emission suppressing effect. is important. Therefore, it is effective to dilute the treating agent in advance with water, or to mix or knead the treating agent and the solid, add water, and mix the two.
  • the water content and the wettability with the treatment agent vary depending on the waste, but it cannot be unconditionally determined.However, when treating relatively dry waste such as incinerated fly ash, the water in the treatment Total water content (hereinafter referred to as "amount”) force It is preferable that the amount of waste is 100 parts by weight or more and 25 parts by weight or more.
  • the total water volume is preferably 75 parts or less.
  • the order of mixing the waste, the treating agent used in the present invention, and the added water is also an important factor. That is, adding a treating agent to a material and mixing or kneading it, and then adding water and further kneading is a mixing 01? That is effective to bring out the effect of the treating agent, but it is a waste. If the treating agent is added after the water is added and kneaded before the treating agent, the treating agent often does not sufficiently exert the effect of suppressing the elution of harmful metals. There is no convincing evidence that this is due to the fact that if water is added to the waste first, the harmful metals in the material will dissolve into the added water before coming into contact with the treatment agent.
  • a surfactant or the like in addition to diluting the viscosity as described above to lower the viscosity.
  • auxiliary agents such as flocculants, precipitants, chelating agents, and reducing agents that enhance the effect of suppressing elution of harmful metals, and increase the solidification strength of kneaded products of materials and treatment agents Addition of an additive or the like is also one of the preferable embodiments.
  • mixing and kneading the waste and the treatment agent and curing the mixture is an extremely effective means for sufficiently exhibiting the effect of the treatment agent. This is because the treatment agent and the waste components are mixed and kneaded, so that the reaction starts instantaneously and the effect of the treatment agent is expressed, but the reaction power gradually progresses thereafter. It is thought that it suggested.
  • the curing after kneading is preferably performed for 6 hours or more.
  • the solidification strength of a kneaded product of a processed material and a treatment agent increases with the curing time. Therefore, if the curing time is not sufficient, the solidification strength of the processed material is insufficient, and the curing is insufficient.
  • the treated material may break down, and dust containing harmful metals etc. may be scattered, contaminating the surrounding environment. There is. Furthermore, if the curing time is less than 6 hours, the treating agent reacts with the Ca compound etc.
  • the waste stabilizes it by including harmful metals, etc., and the reaction generated during the reaction Since the reaction does not proceed until the product reaches a sufficient state, there is a possibility that the treating agent does not exhibit a certain toxic metal stabilizing performance, which is not preferable. For the above reasons, it is preferable to knead the waste and the treating agent and then to carry out Lh for 6 hours.
  • the temperature at the time of this curing depends on the Pb content of the waste, the content of the Ca compound, the amount of harmful metals and the like eluted from the material without treatment, and the target elution allowance. For example, it depends on the legal and regulatory values applied to the place where the processed waste and the processing agent are disposed. In general, when the curing temperature is lower than 40 ° C, the harmful metal stabilization effect by the treating agent is low, so the curing at a temperature above 40 is preferable, and the target elution tolerance However, by setting the curing temperature to a higher temperature, the ability to stabilize harmful metals and the like is improved.
  • the object and the temperature at the time of curing the kneaded product of the treatment agent 4 0 or 1 0 0 or not Mai good, 0 also be spoon working conditions by heating more than necessary Considering the curing temperature is 40 ° C 8 ire or less is a more preferable range.
  • the waste treatment method of the present invention as described above is also effective in a case where a place for curing the treated material after treating the waste is not sufficiently secured in the waste treatment plant.
  • waste treatment plants especially intermediate treatment plants for waste incineration fly ash
  • waste incineration facilities are often attached to waste incineration facilities.
  • the heat generated during waste incineration is generated. In some cases, it is recovered as steam in heat exchangers, and power is generated using these steams.
  • steam recovered by a heat exchanger of the incineration plant as described above is used as a heat source when curing a kneaded material obtained by kneading waste and a treating agent, or using this steam. Utilizing the power obtained from this method can use energy efficiently and is industrially useful.
  • various mixers and kneaders are selected and used according to the properties of the waste and the amount of the treatment agent added. Can be. If necessary, itt water can be added during mixing and kneading.
  • the method for treating crane according to the present invention is particularly useful when treating incinerated fly ash from waste. It is generally known that Pb in waste incineration trays generated in a furnace and captured by an electrostatic precipitator and a butterfly filter elutes and cleans in an atmosphere of Alkyrie. ing. As mentioned above, slaked lime is blown into these municipal waste incinerators and the like in order to reduce the amount of hydrochloric acid gas generated during operation. In many cases, elution cannot be sufficiently suppressed by conventional techniques. On the other hand, the treatment method using water glass according to the present invention exhibits an extremely high elution suppression effect.
  • the water glass is water from the viewpoint of the elution suppressing effect.
  • the water glass in order to obtain the effect of water glass to suppress the elution of harmful metals and the like, which is the object of the present invention, the water glass must be uniformly wet (contact) with the waste during mixing and kneading.
  • the amount of water contained in the treating agent and the amount of water to be added are 25 MSSP i for 100 parts by weight of waste: 7 Adjust the concentration of the water glass solution and the amount of water to be added so that it is 5 dragon parts or less.
  • the concentration of the aqueous solution of water glass in this way, store the diluted solution in advance in a tank and use it as a treating agent, or put it in a tank without diluting the aqueous solution of water glass.
  • the power can be diluted by merging with the water pipe in the middle of the pipe from the tank to the kneading machine, and in many cases the former has a problem that the tank occupies a large volume. It is preferable to select the latter method.
  • Solid water glass can also be used.
  • a water glass solution is a water glass solution that takes into account the strength of water, the power that is preferred, and the ease of handling, handling, and handling of the treatment agent. As it reacts with carbon dioxide in the air to form a gel, great care must be taken when storing, transporting and using it as a treatment agent.
  • water glass erodes A1, Zn, and Sn, if water glass power ⁇ water, there is a container for storing water glass, a mixture of water glass and waste, and both. Be careful about the materials of mixers and kneaders.
  • solid water glass it is possible to eliminate the intention of the material for the treatment agent and the container for storing the kneaded material of the treatment agent and the waste as described above. or If the water glass is solid, it is easy to mix it uniformly with the object, and in addition to water glass, it also has the effect of suppressing dissolution such as a flocculant, a precipitant, a chelating agent, a reducing agent, and an adsorbent.
  • a fixed additive such as an auxiliary for strengthening or an additive for enhancing the solidification strength of a kneaded product of waste and a treating agent
  • solid water glass is used instead of aqueous water glass. Is a force of uniformly mixing, and the point force is a force that the form of water glass is solid (preferable).
  • the amount of water glass added in the present invention may be 3 to 30 parts by weight in terms of solid content with respect to 100 parts by weight of waste as described above in the case of water glass, but in the case of solid water glass. Because it is assumed that not all of the added solid water glass is necessarily completely dissolved in the kneaded material, it is preferable to add a little more than the aqueous solution, and 100 parts by weight of waste On the other hand, the addition amount of the solid water glass is preferably 3 to 50 parts by weight. However, adding more than necessary to the solid water glass will increase the volume of the treated material and increase the cost, so that less than 3 O fiS parts for 100 parts by weight of waste This is a preferred range.
  • the solid water glass power is quickly dissolved when mixing and kneading with waste in order to obtain the effect of suppressing the elution of scented metals, etc.
  • the water temperature and the pH of the water added when kneading the solid water glass with the waste are very important for accelerating the dissolution rate of the solid water glass. For example, when comparing the temperature of the water to be added to the water at 10 ° C with that at 30 ° C, the dissolution rate of the solid water glass at 30 ° C is about 2 to 10 times.
  • the temperature of the water to be added be 30 ° C or higher in order for the solid water glass to dissolve quickly and evenly contact the waste. If the pH of the water to be added is lower than near neutrality (from 5 to 9), the dissolution rate of the solid water glass is slow, and the added Pb elution suppression performance of the solid water glass may not be sufficiently exhibited. . Therefore, the pH of the water to be added is preferably 9 or more. Further, it is more preferable to add water having a pH of 9 Ji and a water temperature of 30 ° C. or higher. In this way, by adjusting the pH and temperature of the water
  • the dissolution can be promoted even with solid water glass having a composition that is hardly soluble in water, and the dissolution rate should be further accelerated even with solid water glass having a composition that is easily soluble. It can be expected to improve the tt of harmful metal elution control. However, depending on the pH of the water to be added and the water temperature, the elution of harmful metals and the like in the waste may be promoted. Therefore, care must be taken in setting the conditions.
  • the dissolution rate of this solid water glass greatly depends on the composition of the water glass.
  • M the cation of water glass
  • solid water glass (M 20 ⁇ n S i 0 £ ) is easily dissolved in water as the value of ⁇ is small.
  • 2.65 or less
  • the dissolution rate in water is relatively fast.
  • a Ca compound may be added to the waste or the treating agent, or a gelling agent may be added for gelling the water glass.
  • the gelling agent include Ca salt, Mg salt, A 1 salt, baking soda, sodium aluminate, acid, alcohol, and an aqueous solution thereof.
  • the Ca compound is contained from the beginning by blending the Ca compound or the above-mentioned gelling agent into the treating agent.
  • the release of harmful metals such as Pb from waste can be suppressed and stabilized.
  • industrial waste that does not contain Ca compounds such as Ca hydroxide, Ca oxide and Ca chloride, such as dust collected in electric furnaces and dust collected in the zinc plating process
  • ItJtCa Add a gelling agent such as hydroxide, Ca oxide, Ca chloride, other Ca salt, other metal salt, etc. at the time of treating agent, or mixing and kneading of treating agent and waste.
  • a gelling agent such as hydroxide, Ca oxide, Ca chloride, other Ca salt, other metal salt, etc.
  • a method for adding the gelling agent a method in which a solid substance is used as a treating agent in advance and mixed with water glass, or a solid substance which is easily soluble in water, or a method in which water is previously added to water
  • a method of adding a gelling agent of a dissolved aqueous solution at the time of kneading waste and solid water glass can be exemplified.
  • the waste, the solid water glass, and the gelling agent can be uniformly mixed, which is more preferable.
  • solid water glass has a high dissolution rate in an alkaline aqueous solution, it is preferable to add water having a high pH of 9 or more as described above. Ancillary equipment such as piping is required. Therefore, if the solid water glass and NaOH are mixed to form a treating agent, the solid water glass can be quickly dissolved without any special equipment as in the case of adding high-pH water, so that it is effective. The effect of suppressing harmful metal elution can be obtained.
  • the amount of NaOH added to ⁇ varies depending on the type of solid water glass used and the required performance of the treating agent.In general, the larger the molar ratio of the solid water glass used, the lower the dissolution rate in water.
  • the amount of NaOH required to exert the harmful metal elution suppression performance of such solid water glass tends to increase.
  • NaOH 5 to 50 parts by weight with respect to 100 parts by weight of solid water glass a force within a preferred range It is necessary to select an appropriate one in consideration of the above-mentioned matters.
  • the NaOH is preferably in powder form, but powdered NaOH is easily absorbed by moisture, and its deliquescent causes the treatment agent to solidify.
  • NaOH in the form of granules or tablets having no problem in the effect of inhibiting elution. Further, it is also preferable to coat the NaOH surface with a water-soluble polymer or the like. It is also preferable to further add silica gel, geese earth, bentonite, activated clay, stearate, terra alba, activated bauxite, activated alnami, silicate A1 and the like as an anti-caking agent.
  • water glass used as a treating agent in the method of the present invention tends to have a lower strength of a treated material with waste than cement, which is a problem when a large strength is required for the treated material.
  • silica sand used in the present invention may be a commercially available one, and a natural one may be used in some cases.
  • the particle size of the silica sand is preferably approximately 1 mm or less in average diameter, which is preferable, but it must be appropriately selected in consideration of the required strength, the amount of the treatment agent added, the price of the silica sand, and the like.
  • silica sand added, the required strength and Depending on the amount of the agent added, the price of the silica sand, etc .; the ability to select, it is preferred, but usually the preferred range is 10 to 10 parts per 100 parts by weight of solid water glass.
  • the mechanism of action due to the addition of silica sand has not been verified, a force that is thought to enhance the strength of water glass by bonding between the silica sand particles.
  • silica sand also acts as an anti-caking agent Jh ⁇ J when NaOH is added as described above.
  • the method for treating waste according to the present invention is as described above, and although the mechanism of stabilizing harmful metals such as Pb by this method is not always clear, the Cd (Ca hydroxide, Ca oxide, Ca chloride, etc.) Understand that the gelation of the water glass generated by the reaction of the water glass causes the Ca compound, etc. and the Pb compound to be encapsulated and solidified vigorously. can do.
  • the Cd Ca hydroxide, Ca oxide, Ca chloride, etc.
  • the above-described reaction force is performed therein to improve the solidification strength of the kneaded product of the object and the treating agent, and at the same time increase the harmful metal. Etc. are more reliably suppressed.
  • solid water glass is used as water glass; if ⁇ "is used, water is used at least 30 times, and kneading is performed using water having a pH of 9 or more.
  • the water glass waste is sufficiently corroded and exhibits the effect of suppressing the elution of harmful metals. Enclosed and solidified.
  • silica sand improves the solidification strength of the kneaded product of the waste and the treatment agent by causing the water glass to act as a binder and bond between the silica sand particles.
  • Table 1 shows the component analysis results of the bag filter fly ash (A :), (B), and (C) generated at the three municipal waste incineration facilities (A), (B), and (C), respectively.
  • a dissolution test hereinafter simply referred to as a “dissolution test” of the Environment Agency Notification No. 13 (Japan) was performed without treatment.
  • Component analysis of fly ash generated in municipal waste incineration facilities weight
  • Table 3 shows the results of component analysis of the fly ash collected by the bag filter (D) generated at the municipal waste incineration facility (D). Using this fly ash D, a dissolution test was performed without any treatment. Table 3 shows the results. Table 3 Component analysis and elution volume
  • water glass solution 50 g of the above (CD) and sodium silicate solution manufactured by Nippon Kagaku Kogyo Co., Ltd. (product name: J sodium silicate No. 3 (solid content: 38%)), referred to simply as "water glass solution” in the following examples and comparative examples.
  • a mixture of 13 g and 2 g of water was added to a water glass aqueous solution (total water amount: 10 g, 100 parts by weight of fly ash: 20 SS parts by weight), and the mixture was kneaded and cured for 1 day. After that, the pulverized material was classified with a sieve having an opening of 2 mm, and 30 g of the material passed through the sieve was sampled and subjected to a dissolution test.
  • a water glass aqueous solution obtained by adding 32 g of water to 13 g of the above water glass solution (solid content: 38%) (total water amount: 40 g, fly ash: 100 parts by weight, water: 80%)
  • the dissolution test was carried out in exactly the same manner as in Comparative Example 4, except that (weight part) was used.
  • Example 6 As an aqueous water glass solution, 13 g of the above water glass ⁇ (solid content: 38%) was added with 22 g of water. The amount of water glass solution was 30 g, and 100 parts by weight of fly ash was 60 times water. The dissolution test was performed in exactly the same manner as in Comparative Example 4, except that the same amount was used. (Example 6)
  • an aqueous water glass solution As an aqueous water glass solution, an aqueous water glass solution obtained by adding 27 g of water to 13 g of the above water glass ⁇ (solid content: 38%) (total water amount: 35 g, 70 parts by weight with respect to 10 parts of fly ash) The dissolution test was carried out in exactly the same manner as in Comparative Example 4, except that was used. Table 4 shows the dissolution test results of Comparative Examples 4 and 5 and Examples 3 to 6 described above. Table 4
  • Example 7 of the present invention From the comparison between Example 7 of the present invention and Comparative Example 6 (Table 5), it is found that the mixing of the ⁇ substance and the treating agent and the addition of the treating agent followed by the mixing of the waste and water It is clear that the method of adding and kneading is superior.
  • Powdered ortho (hereinafter simply referred to as "powder ortho") water glass water obtained by adding 10 g of water to 13 g (total water 10 g, fly ash 100 parts by weight of water and 20 parts by weight of water), kneaded and cured for 1 day, then classify the powdered frame with a 2 mm sieve and sieve through the sieve. Then, 30 g was dispensed and a dissolution test was conducted.
  • a water glass aqueous solution As a water glass aqueous solution, a water glass 7k solution (40 g of total water, 10 parts of fly ash and 8 parts of water for 10 parts of fly ash) obtained by adding 40 g of water to 13 g of the above powdery ortho-orthogonal solution was used. A dissolution test was performed in exactly the same manner as in Comparative Example 7.
  • a water glass aqueous solution obtained by adding 30 g of water to 13 g of the above powdery ortho-sodium (a total water amount of 30 g, and 60 parts by weight of water with respect to the fly ash of 10 or nm parts) was used as the water glass aqueous solution.
  • Table 7 shows the analysis results of the fly ash collected in the bag filter (E) generated in the municipal waste incineration facility (E) and the dust collected in the electric furnace (F). Use these wastes Table 7 Component analysis (Dragon)
  • the above water glass separation (solid content 38%) was obtained by adding 23.4 g of water to 13.2 g (solid content: 5.0 g), and adding 2.5 g of calcium chloride to water. It was impossible to mix it with waste as a treatment agent.
  • Example 10 From the comparison between Example 10 and Comparative Examples 9 and 10, the addition of 20 parts of the cement of Comparative Example 10 can reduce the Pb elution amount as compared with the untreated case of Comparative Example 9; It can be seen that the solid water glass of No. 0 shows more excellent Pb elution suppression performance than the cement treatment of Comparative Example 10 with the addition of 10 parts.
  • Example 11 From the comparison between Example 11 and Example 12, it was found that the dissolution was insufficient by using hot water having a water temperature of 30 ° C or higher as the water added during kneading as in Example 12 Therefore, the performance of suppressing Pb elution by solid water glass was improved from Example 11 in which the performance was considered to be insufficient. In other words, the advantage of using water having a water temperature of 30 ° C. or higher is apparent.
  • Example 13 Furthermore, from the comparison between Example 11 and Difficult Example 13, it was found that, as shown in Example 13, the water added at the time of kneading was water-soluble with a pH of 9 or more, and the water was dissolved. It is considered that the performance was insufficient due to insufficient water content. Thus, the elution suppressing ability of the solid water glass was improved more than in Example 11. In other words, the advantage of using water with the pH value of added water is clear.
  • Example 14 From the comparison between Example 10 and Example 14, as in Example 14, the water temperature of the water to be added was kept at 30 and the pH of the water was set to 9 or more. Compared to this, the stabilization performance of the solid water glass was brought out more clearly. That is, it is clear that setting the pH and the water temperature to more preferable conditions (water temperature 30 ° C. or more, pH 9 or more) improves the Pb elution suppression performance of the solid water glass. Further, as is clear from the results of Comparative Example 11, the aqueous solution of water glass gelled instantaneously when calcium chloride was added, so that it became impossible to knead with the ⁇ product and could not be used as a treating agent.
  • Example 15 On the other hand, ⁇ of solid water glass can be used as a treating agent even when calcium chloride as a gelling agent is added, as is clear from Example 15. Furthermore, from the comparison between Example 15 and Comparative Examples 10 and 11, it can be seen from the comparison between solid water glass and calcium chloride as a gelling agent that solid water glass has excellent elution suppression performance even if it cannot be prevented from being eluted with water glass aqueous solution. It shows a dissolution prevention effect that is higher than the strength and cement treatment. From these facts, it is preferable that the water glass is solid in view of the wide range of application of the object to be treated and the handling of the treatment agent.
  • the water-kneaded material (100 parts by weight of ash and 10 parts by weight of water-glass solids) was kneaded with 30.0 g of water and solidified for 7 days. Classify with a sieve, weigh 30 g of what passed through the sieve, and perform a dissolution test. went.
  • the powdered ortho is the most excellent in the ability to suppress Pb elution. Furthermore, from the table, the addition of NaOH greatly contributes to the improvement of the Pb elution suppression performance, and the addition of NaOH also provides an excellent Pb elution prevention effect for solid water glass other than powdered ortho. It is understood that it is possible.
  • Example 26-1 50 g of the above fly ash (D) and the above water glass sickle (an aqueous solution obtained by adding 27.5 g of water to 6.49 g of solid content of 38%) were mixed and kneaded.
  • Water glass solids 5 5S part based on parts by weight was cured at room temperature (20 ° C) for 24 hours (Example 26-1) and I68 hours (Example 26-6-2) Then, the crushed material was classified with a sieve having an opening of 2 mm, and 30 g of the sifted sieve was collected and subjected to a dissolution test.
  • Regeneration temperature was set at 40 ° C (Example 27-1), 60 ° (Example 27-2), 80 ° C (Example 27-3), 100 ° C ( ⁇
  • the dissolution test was performed in exactly the same manner as in Example 26, except that the time was changed to 24 hours, except that Example 27-4) was changed.
  • Example 28-1 The curing temperature was 60 ° C, and the curing time was 0.5 hours (Example 28-1), 2 hours (actual Example 28-2), 6 hours (Example 28-3), 18 hours (Example 28-4)
  • the dissolution test was performed in exactly the same manner as in the above.
  • the results of Comparative Example 20 and Examples 26 to 28 are summarized in Table 11 above. Table 11
  • waste treatment method of the present invention industrial waste containing Ca compounds such as Ca hydroxide, Ca oxide and Ca chloride, particularly fly ash containing slaked lime, is produced.
  • the treatment stabilizes harmful metals in the substance, especially Pb, and reduces the amount of elution.
  • the kneaded product obtained by kneading the ⁇ 3 ⁇ 4 waste and the treatment agent is kept at a predetermined temperature.
  • the curing time can be shortened and the treated material can be disposed of promptly.
  • the ⁇ product obtained by the present invention and a treating agent mainly containing water glass are mixed and kneaded, and the resulting product is solidified. It can be reused as aggregate for cement, etc., and can be a valuable resource.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Civil Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Description

明 細 書 麟物の処理方法
技術分野
本発明は、 有害金属等を含有する廃棄物を安定化するに有効な廃棄物の処理方 法に関するものであり、 特に、 C a水酸化物、 C a酸化物、 C a塩化物等の C a ィヒ合物を含み、 鉛 (P b ) の溶出抑制が困難な廃棄物焼却飛灰を安定ィヒ処理する のに有効な処理方法に関するものである。 背景技術
現在、 有害金属等を含有する産業^ ¾物を処理する際には、 セメントと廃棄物 を混合し、 水を加えて混棟した後、 固化し、 有害金属等を安定化して溶出を 抑制する方法が用いられている。 しかしながら、 このように単にセメントで固化 する従来の産業廃棄物の処理法には種々の問題があり、 用途を限定しなければ 2 次公害が発生する恐れがある。 特にゴミ焼却の際、 電気集塵器やバグフィルター で捕捉された飛灰には、 鉛 CP b ) 等の有害金属が高濃度に含まれているにもか かわらず、 従来技術であるセメント処理では充分に溶出を抑制できない。 更に、 この廃棄物焼却灰中の P はアル力リ雰囲気下で溶出しゃす L、ことが一般的に知 られているが、 都巿ゴミの焼却炉等では稼働中に発生する塩酸ガス量を抑制する 目的で消石)^を吹き込んでいるため、 飛灰中には消石灰 (C a水酸化物) 、 消石 灰と塩酸の反応生成物 (C a塩化物) 、 消石灰の加熱によって生じる生成物 ( C a酸化物等) 等の C a化合物が含有されており、 このような運転条件下で生成す る電気集塵器捕集飛灰やバグフィル夕一捕集,は特に P b溶出量が多く、 従来 技術では充分に溶出を抑制できない。 このため、 現在では有害金属等の安定化が 不十分なまま埋め立て処理されており、 処理後の 2次公害の問題が喰出している ο
このように、 今日では、 単にセメン卜によって固化するだけでは有害金属等を 含有する産業廃棄物を、 有害金属等が溶出してこない状態に安定化することが困 難なことが国内外で明らかとなってきている。 そこで、 有害金属等が l^t埋め立 て処分時あるレ、は海洋投棄処分時においても確実に封入され、 有害な重金属等が 溶出せず 2次公害が発生しない藤物の処理方法力、 Ήまれていた。
本発明は、 このような廃棄物処理の現状に鑑み、 種々の有害金属等を含有した 産業 物を確実に固化封入し、 有害金属等が再溶出しないように安定化するこ とが可能な m¾物の処理方法を提供することを目的とするものである。 発明の開示
即ち、 本発明の廃棄物の処 ¾¾"法は、 C a水酸化物、 C a酸化物、 C a塩化物 等の C a化合物を含有する廃棄物と、 水ガラスを主たる構 β¾¾分としてなる処理 剤とを混合し、 必要に応じて水を添加して、 廃棄物 1 0 0重量部に対して総水量 が 2 5 mmmsi± 1 5重量部以下となるように調整し、 これを混練することを内 容とする。
本発明に使用される水ガラスは汎用の水ガラスでよい。 水ガラスの組成は、 ― 般に M2 0 ■ n S i 02 (但し、 Mは水ガラスのカチオン) で表され、 カチオン (アルカリ成分) としては N aや K等が例示できる力、'、 ¾的入手の容易さ、 価 格の点からカチォンが N の水ガラス、 即ち珪酸ソ一ダであることが好まし L、0 又、 ] V 0と S i 02 との比、 つまり nは、 おおよそ n = 0. 5〜4の範囲であ り、 工業的に入手しやすく、 安価であることから n = 2〜4のものが好ましい。 又、 本発明で使用する水ガラスには 等の^ Γ避的不純物を含有しても問題は ない。 この水ガラスとしては、 固形及び水溶液のものが入手可能である。
前記水ガラスの添加量は、 廃棄物中の P b含有量、 廃棄物中の C a化合物含有 量、 無処理の場合の廃棄物からの有害金属の溶出量、 更には目標とする溶出許容 量、 例えば法規制値等によって異なるが、 実用上は、 コスト的な面から最も少な い水ガラスの添加で目標溶出量以下にすること力 \ 添加量を決定する要因となる 。 そして、 実際には、 ほとんど全ての廃 «3の^、 物1 0 0重量部に対し 水ガラス固形分 (M2 ◦と S i O s との重量和、 但し、 Mは水ガラスのカチオン 、 以下同じ。 ) でおおよそ 3〜 3 0重量部の添加で、 P bの法規制値である 3 p P m以下に抑制できる。 添加される水ガラスの固形分が前記の範囲より少ないと 有害金属の溶出を充分に抑制できない場合があり、 一方、 この範囲を超えて添加 しても必要以上の添加となってコストアツプになる場合が多いので好ましくない
。 尚、 工業的に入手できる水ガラス^には規格により 1号、 2号、 3号、 4号 の 4種があるが、 固形分比率と価格のバランスの点からは、 3号を用いることが 好適である。
本発明に係る廃棄物の処 ¾¾■法においては、 処理剤を 物と混合、 混練する ことで、 処理剤と廃棄物とが充分に接触することが有害金厲抑制効果の発現のた めに重要である。 そのため、 処理剤を予め水で希釈したり、 又は、 処理剤と « 物とを混合又は混練したのち水を添加し、 混棟することが効果的である。 廃棄物 によって含水率、 処理剤との濡れ性等が異なるため一概には言えないが、 焼却飛 灰のような比较的乾燥した廃棄物を処理する^^には、 処理剤中の水分と添加す る水分の総和 (以下 量と記す) 力 廃棄物 1 0 0重量部に対し 2 5重量部以 上であること力、'好ましい。 し力、し、 その一: T -、 水分が多すぎると、 廃棄物と混 練した後の混練物が軟弱で、 ハンドリング性が悪く、 又、 極端な希釈は、 処理剤 の濃度を必要以上に低下させて水ガラス成分と廃棄物との接触確率を低下させ、 所定の溶出抑制効果を示さない、 等の問題が発生する可能性があり、 本発明の効 果が得られない場合もあるので注意を要する。 これらの点を考慮すると、 総水量 は 7 5 部以下であること力、'好ましい。
又、 廃棄物と本発明で用いられる処理剤、 添加水の混合順序も重要な因子であ る。 即ち、 物に処理剤を添加して混合、 又は混練した後、 水を添加して更に 混練することは、 処理剤の効果を発現せしめるのに有効な混合 01?であるが、 廃 棄物に処理剤より先に水を添加して混練した後、 処理剤を添加した場合には、 処 理剤が有害金属溶出抑制効果を充分に発揮しない場合が多い。 これは、 廃棄物に 先に水を添加すると、 «物中の有害金属が処理剤と接触する前に添加された水 の中に溶け出すためではないかと推定している力 確証はない。
尚、 廃棄物に対する水ガラスの襦れ性を向上させるためには、 上記のように希 釈して粘度を下げることの他に、 表面活性剤等を添加することも可能である。 更 には、 水ガラスの他に、 凝集剤、 沈殿剤、 キレート剤、 還元剤等といった、 有害 金属溶出抑制効果を增強する助剤や、 物と処理剤との混練物の固化強度を増 強する添加剤等を添加することも好適な態様の一つである。 i
本発明の廃棄物の処^法において、 ϋ¾物と処理剤を混合、 混練後、 これを 養生することは、 処理剤の効果を充分に発現せしめるために極めて有効な手段で ある。 これは、 処理剤と廃棄物成分とが混合、 混練により接触することによって 、 瞬時に反応が開始して処理剤の効果の多くを発現するものの、 その後にも徐々 に反応力、'進行することを示唆しているものと考えられる。
この混練後の養生は、 6時間以上養生するのが好ましい。 一般的に、 «物と 処理剤との混練物の固化強度は、 養生時間に伴って増加するため、 養生に充分な 時間をかけなかった場合、 処理物の固化強度力、'不足し、 養生ピットから運搬車、 ¾ Ε地等への運搬中、 更には ¾t地等で、 処理物が崩壌し、 有害金属等を含有し た粉塵等が飛散することによって、 周囲の環境を汚染する恐れがある。 更に、 養 生時間が 6時間未満であると、 処理剤が廃棄物中の C a化合物等と反応し、 有害 金属等を包含して安定化する反応、 及び、 その反応の際に生成する反応生成物が 充 定な状態になるまで反応が進行しないため、 処理剤か 定の有害金属安定 化性能を示さない恐れがあり好ましくない。上記の理由から、 廃棄物と処理剤と を混練した後、 6時間 Lh するのが好ましい。
更に、 この養生する際の 温度は、 廃棄物の P b含有量、 C a化合物含有量 、 無処理の場合の 物からの有害金属等の溶出量、 更には目檩とする溶出許容 量、 '例えば、 処理した廃棄物と処理剤との処理物を廃棄する場所に適用される法 規制値等によって異なる。 一般的には、 養生温度が 4 0 °C未満の低温では、 処理 剤による有害金属安定化' iif が低いため、 4 0で以上の温度で養生するの力好ま しく、 目標とする溶出許容量が厳しい^、 養生温度をより高温に設定すること で有害金属等を安定化する能力は向上する。 しかし、 1 0 0てを越える温度で養 生した場合、 混練物中の水分が急激に 発し、 充分に固化するための水分力、'失わ れてしまうため、 処理剤の有害金属安定化性能か著しく低下する恐れがあるだけ でなく、 養生後の処理物がパサついた状態となり、 運搬作業等の際に有害金属を 含有する処理物力 <飛散し、 周囲の環境を汚染する恐れがある。 従って、 1 0 o °c を越える温度で養生するのは好ましくない。上記の理由から、 物と処理剤と の混練物を養生する際の温度は、 4 0 以上 1 0 0 以下が好まい、0又、 必要 以上に加温することで作業条件等が 匕することを考慮すると養生温度は 4 0 °C 社 8 ire以下がより好ましい範囲である。
上記のような本発明の廃棄物処理方法は、 廃棄物処理場に、 廃棄物を処理した 後の処理物を養生する場所が充分に確保されていないような場合にも有効である
。 即ち、 本発明によれば、 廃棄物と処理剤を混練した混練物を所定の温度で養生 することで 時間を短縮することが可能であり、 処理物を速やかに^^するこ と力く可能となる。
又、 廃棄物処理場、 特に廃棄物焼却飛灰の中間処理場は、 廃棄物焼却設備に併 設されているケースが多く、 一般に、 これら焼却場では、 廃棄物焼却の際に生じ る熱が熱交換器等で蒸気として回収されており、 更には、 これらの蒸気を利用し て発電が行われているケースもある。 本発明に係る廃棄物の処理方法において、 廃棄物と処理剤を混練した混練物を養生する際の熱源に、 前記のような焼却場の 熱交換器により回収した蒸気や、 この蒸気を利用して得られた電力を活用するこ とは、 エネルギーを効率よく利用でき、 工業的にも有用である。
更に、 本発明に係る廃棄物の処理方法においては、 6時間以上、 かつ 4 0 以 上 1 0 0 °C以下の養生を行うことは、 その各々の効果が加算的に究揮され、 最も 好ましい態様である。
尚、 本発明で施される廃棄物と処理剤との混合、 混練には、 廃棄物の'性状、 処 理剤の添加量等に応じて、 各種混合機、 混練機を選択、 使用することができる。 又、 必要に応じて混合、 混練の際に ittの水を添加することもできる。
本発明に係る鶴物の処理方法は、 廃棄物焼却飛灰を処理する場合に特に有用 である。 都市ゴミの処理 ¾¾¾の »1炉で生成して電気集塵器やバタフィルターで 捕捉される廃棄物焼却皿中の P bは、 アル力リ雰囲気下で溶出しゃすいことが 一般的に知られている。 先に述べたように、 これら都市ゴミの焼却炉等では、 稼 働中に究生する塩酸ガス量を抑制する目的で消石灰を吹き込んでいるため、 この ような飛灰は特に P b溶出量が多く、 従来技術では充分に溶出を抑制できない。 これに対し、 本発明に係る水ガラスを用いた処理方法は、 極めて高い溶出抑制効 果を示す。 この作用機構は必ずしも明らかではないが、 投入した水ガラスと、 飛 灰中の消石灰 (C a水酸化物) 、 消石灰と塩酸の反応生成物 (C a塩化物) 、 消 石灰の加熱によって生じる生成物 (C a酸化物等) 、 及びこれらの複塩のいずれ 力、、 又はいくつか、 更には他の C a塩、 他の金属塩と反応することによって水ガ ラスがゲル化し、 消石灰等の塩基性成分及び P b化合物を封入、 固化するためと 推定している。
前記のように、 水ガラスには固形のもの及び水溶液のものが入手可能であるが 、 溶出抑制効果の点からは、 水ガラスが水^であること力く好ましい。 水ガラス 水溶液の p Hは組成、 濃度によって異なるが、 一般的には p H = 9〜l 4 . 6の 範囲である。 又、 既に述べたように、 本発明の目的とする、 水ガラスによる有害 金属等の溶出抑制効果を得るためには、 混合、 混練に際して水ガラスがまんべん なく廃棄物と濡れる (接触する) ことが重要である力 \ 水ガラス水 を希釈す るほど濡れ性は向上するが、 希釈しすぎると廃棄物との混練物がスラリ一状にな つてハンドリング、 運搬等に支承をきたしたり、 又、 極端な希釈は水ガラス成分 と廃棄物との接触確率を低下させる。 これらの点を考慮して、 水ガラスとして水 溶液のものを用いる場合には、 処理剤中に含まれる水量と、 添加する水量の が、 廃棄物 1 0 0重量部に対し 2 5 MSSP i: 7 5龍部以下となるように水ガ ラス溶液濃度、 及び添加する水量を調整する。 このように水ガラス水溶液の濃度 を調整するには、 事前に希釈したものをタンクに狞蔵しておき、 これを処理剤と して使用したり、 あるいはタンクに水ガラス水溶液を希釈しないまま入れておき 、 タンクから混練機までの配管の途中で水配管と合流させることによつて希釈す ることもできる力く、 多くの^^、 前者はタンクの占有体積が大きくなる問題があ り、 後者の方法を選択することが好ましい。
又、 水ガラスとして固形のものも使用可能である。上記のように、 溶出抑制効 果の点からは、 水^ ¾のもの力、'好ましいのである力 処理剤の保管、 運搬、 作業 上の取り扱いやすさ等を考慮した^、 水ガラスカ 溶液であると、 空気中の炭 酸ガスと反応してゲル化するため、 保管、 運搬、 及び処理剤として用いて作業す る際は充分に注意を払う必要がある。 又、 水ガラスは A 1、 Z n、 S nを浸食す るため、 水ガラス力《水^ あると、 水ガラスや、 水ガラスと廃棄物との混練物 の貯蔵するための容器や、 両者を混合機、 混練機等の材質には注意を擁する。 こ れに対し、 固形水ガラスを用いる場合には、 前記のような処理剤や、 処理剤と廃 棄物との混練物を貯蔵するための容器等の材質についての 意力 <排除できる。 又 、 水ガラスが固形であると、 物と均一に混合することが容易であり、 更に、 水ガラスの他に、 凝集剤、 沈殿剤、 キレート剤、 還元剤、 吸着剤等、 溶出抑制効 果を増強する助剤、 又は廃棄物と処理剤との混練物の固化強ィヒを増強するための 添加剤等、 固定の添加剤を添加する場合には、 水溶液の水ガラスより、 固形の水 ガラスのほうが均一に混合すること力、'^であり、 この点力、らは、 水ガラスの形 態が固形であること力《好ましい。
本発明における水ガラスの添加量は、 水ガラスカ の場合は前記のように 廃棄物 1 0 0重量部に対し固形分で 3〜 3 0重量部の添加でよいが、 固形水ガラ スの場合には、 添加した全ての固形水ガラスが混練物中で必ずしも完全に溶解し ない場合も想定されることから、 水溶液の^より、 やや多めに添加することが 好ましく、 廃棄物 1 0 0重量部に対して、 固形水ガラスの添加量を 3〜5 0重量 部とするのがよい。 只、 この固形水ガラスの ^にも、 必要以上に添加すると、 処理物の体積が増大したり、 コストアップになったりするので、 廃棄物 1 0 0重 量部に対し 3 O fiS部以下が好ましい範囲である。
又、 水ガラスとして固形水ガラスを用いる場合には、 有香金属等の溶出抑制効 果を得るために、 廃棄物との混合、 混練に際して、 固形水ガラス力、'速やかに溶解 し、 まんべんなく廃棄物と濡れる (接触する) こと力、 '重要である。 このため、 こ の固形水ガラスを廃棄物と混練する際に添加する水の水温、 及び水の p Hは、 固 形水ガラスの溶解速度を促進するために非常に重要である。 例えば、 添加する水 の水温が 1 0 °Cのものと 3 0でのものを比較した場合、 3 0 °Cの温水では固形水 ガラスの溶解速度は 2倍から 1 0倍程度になる。 従って、 固形水ガラスが速やか に溶解し、 廃棄物とまんべんなく接触するには、 添加する水の水温が 3 0 °C以上 であること力、'望ましい。 又、 添加する水の P Hが中性付近 (5から 9難) より 低い場合は、 固形水ガラスの溶解速度が遅く、 添加した固形水ガラスの P b溶出 抑制性能が充分に発揮されない恐れがある。従って、 添加する水の p Hは 9以上 であることが好ましい。 更に、 p H力、' 9 Jiで、 且つ水温が 3 0 °C以上の水を添 加するがより好ましい。 このように、 翻ロする水の p Hや水温を調整することで
、 水に溶解し難い組成の固形水ガラスでも溶解を促進させることができ、 又、 本 来、 溶解しやすい組成の固形水ガラスについても、 溶解速度を更に促進すること ができ、 有害金属溶出抑制 tt の向上が期待できる。 但し、 添加する水の p H、 水温によっては、 廃棄物中の有害金属等の溶出を促進させる恐れもあるので、 条 件の設定は充分注意を払わなければならない。
前記のように、 この固形水ガラスの溶解速度は、 水ガラスの組成にも大きく左 右される。 水ガラスの は一般に M2 0 · n S i 0 (但し、 Mは水ガラスの カチオン) で表わされ、 nはおおよそ n = l . 2〜4の範囲である力、'、 工業的に 入手しやすく、 安価であることから n = 2〜4のものが好ましい。 又、 一般的に 固形水ガラス (M2 0 · n S i 0 £ ) は、 ηの値が小さいほど水に溶解しやすく 、 η = 2. 6 5以下では水に対する溶解速度は比較的早 、が、 η = 3. 0 0以上 になると溶解速度が極端に遅くなることから、 水ガラスとして固形水ガラスを用 いる場合には、 ηは 2. 8 0以下のものがより好ましい。
尚、 詳細に検討した結果、 本発明で用いる固形水ガラスとしては、 粉状オルソ 力《最も好適であり、 更に、 価格の点からは、 粉状オルソ珪酸 N aが最も好ましい 又、 本発明では、 処理する廃棄物中の C a量を調整する目的で、 廃棄物、 又は 処理剤に C a化合物を添加したり、 あるいは水ガラスをゲルイ匕させるためのゲル 化剤を添加することもできる。 前記、 ゲル化剤としては、 C a塩、 Mg塩、 A 1 塩、 重曹、 アルミン酸ソーダ、 酸、 アルコール、 更には、 これらの水溶液等が例 示できる。又、 本発明方法によれば、 C a化合物を含まない廃棄物であっても、 処理剤中に C a化合物や前記のようなゲル化剤を配合することにより、 始めから C a化合物を含有する廃棄物の場合と同様に廃棄物からの P b等の有害金属の溶 出を抑制して安定化することができる。 例えば、 電気炉で発生する集塵ダストや 亜鉛メツキ工程の集塵ダスト等、 C a水酸化物、 C a酸化物、 C a塩化物等の C a化合物を含有しないような産業廃^も、 itJtC a水酸化物、 C a酸化物、 C a塩化物、 他の C a塩、 他の金属塩等のゲル化剤を処理剤、 又は処理剤と廃棄物 との混合、 混練時に添加することにより、 有害金属の溶出を抑制することができ る。 '
前記ゲル化剤の添加方法としては、 固形のものを用いてあらかじめ処理剤とし て水ガラスに配合する方法、 又は水に溶けやすい固形のもの、 あるいは予め水に 溶かした水溶液のゲル化剤を廃棄物と固形水ガラスとの混練の際に添加する方法 等が例示できる。 特に、 前者の場合、 廃棄物、 固形水ガラス、 及びゲル化剤を均 一に混合することが可能であり、 より好ましい。
又、 固形水ガラスはアルカリ水溶液に対する溶解速度力く大きいため、 前記のよ うに p H 9以上の高 p Hの水を添加することが好ましいが、 その: if^は、 アル力 リ水溶液タンク、 配管等の付帯設備が必要となる。 そこで、 固形水ガラスと N a OHを混合して処理剤とすれば、 高 p Hの水を添加する場合のように特別な設備 を設けることなく固形水ガラスを速やかに溶解せしめて効果的な有害金属溶出抑 制効果が得られる。 この^の N a OHの添加量は、 用いる固形水ガラス種、 処 理剤の要求性能によっても異なる力 一般的には用いる固形水ガラスのモル比が 大きいものほど水に る溶解速度が小さいため、 そのような固形水ガラスの有 害金属溶出抑制性能を発揮せしめるのに必要な N a O H量は增加する傾向がある 。 一般的には、 固形水ガラス 1 0 0重量部に対し、 N a OH 5〜5 0重量部力、'好 適範囲となる力 上述の事項を考慮し適宜選択する必要がある。 添加された N a O Hが効果的に作用するためには、 N a O Hは粉末状が好ましレ、が、 粉末状の N a O Hは吸湿しやすく、 その潮解性によって処理剤を固結させ、 貯蔵タンク内で 粉体流動性を失う恐れがあり、 P題となる がある。 そこで、 この問題を皿 するため、 N a OHを、 溶出抑制効果に問題のない程度の粒状又は錠剤状にして 使用することカ<好ましい。 更には、 N a OH表面を水溶性ポリマ一等でコ一ティ ングすることも好適な手段である。 又、 シリカゲル、 ゲイソゥ土、 ベントナイト 、 活性白土、 ステアリン酸塩、 白土、 活性ボーキサイト、 活性アルナミ、 珪 酸 A 1等を固結防止剤として更に添加することも好適である。
又、 本発明方法で処理剤として用いられる水ガラスは、 セメントに比べ廃棄物 との処理物の強度が低い傾向にあり、 処理物に大きな強度力、'要求される場合に問 題となる。 この問題を皿する手段として、 固形水ガラスに加えて、 珪砂を添加 するのが有効である。 本発明に用いられる珪砂は市販のものでよく、 場合によつ ては天然のものも使用可能である。 珪砂の粒度は、 おおよそ平均 l mm径以下の もの力、'好ましいが、 要求される強度、 処理剤の添加量、 珪砂の価格等との関係で 適宜選択する必要がある。 同様に珪砂の添加量についても、 要求される強度、 処 理剤の添加量、 珪砂の価格等との関係で; 選択すること力、'好ましいが、 通常、 固形水ガラス 1 0 0重量部に対し 1 0〜1 0 部が好適範囲となる。 この珪 砂の添加による作用機構は、水ガラスが珪砂粒子間を結合することにより強度が 向上するものと考えられる力、'、 検証されていない。 又、 珪砂は、 先に述べた N a OHを添加した場合の処理剤の固結防 Jh^Jとしても作用することを付記しておく o
本発明に係る廃棄物の処理方法は以上のようなものであって、 この方法で P b 等の有害金属力安定化される機構は必ずしも明らかではないが、 物中の C a ィ匕合物 (C a水酸化物、 C a酸化物、 C a塩化物等) と水ガラスの反応で生じる 水ガラスのゲル化により、 C a化合物等と P b化合物力く封入、 固化されるものと 理解することができる。
このとき、 水ガラスを主たる構^分とする処理剤を水で希釈することで、 処 理剤と離物とが充分に接触して反応がむらなく起こり、 有害金属等の溶出を効 果的に抑制することができる。
更に、 廃棄物と処理剤とを混合、 混練した後に、 これを養生すると、 中に 上記の反応力 ¾t行し、 物と処理剤との混練物の固化強度を向上させると同時 に、 有害金属等の溶出をより確実に抑制する。
又、 水ガラスとして、 固形水ガラスを用いる; if^"に、 3 0て以上の水を用い、 又、 p H 9以上の水を用いて混練することで、 固形水ガラスを速やかに溶解させ 、 水ガラス力廃棄物を充分に接蝕して、 有害金属の溶出抑制効杲を発揮する。 ゲル化剤の添加は、 水ガラスとゲルィ匕剤の反応による水ガラスがゲル化により 有害金属が封入、 固化される。
N a OHの添加は、 水への固形水ガラスの溶解を促進し、 固形水ガラスが速や かに溶解して廃棄物と充分に接触し、 有害金属溶出抑制効果を充分に発揮せしめ る。
珪砂の添加は、 水ガラスがバインダ一の作用を示して珪砂粒子間を結合するこ とによつて廃棄物と処理剤との混練物の固化強度を向上せしめる。 発明を実施するための最良の形態 以下に実施例を挙げて本発明を更に具体的に説明するが、 本発明はこれに限定 されるものではない。
賺例 1 )
3箇所の都市ゴミ焼却施設 (A) 、 (B) 、 ( C) でそれぞれ生成したバグフ ィルター捕集飛灰 (A:) 、 (B〕 、 (C) の成分分析結果を表 1に示す。 この 3 種類の飛灰 (A) 〜 (C) を用いて無処理のまま環境庁告示第 1 3号 (日本) の 溶出試験 (以下、 単に 「溶出試験」 という。 ) を行った。 表 1 都市ゴミ焼却施設で生成する飛灰の成分分析 (重量
Figure imgf000013_0001
(比較例 2 )
上記の 3種類の皿 (A) 〜 (C) のそれぞれ 5 0 gと、 普通ポルトランドセ メント (宇部セメント製) 1 5 gを混合し、 水 2 5 gを添加して混練した混練物
(飛灰 1 0 0重量部に対しセメント 3 0 Jtg部) を、 Ί曰間養生固化し、 固化物 につ L、て溶出試験を行つた。
(実施例 1 )
上記 3種類の飛灰 (A) 〜 (C) のそれぞれ 5 0 と、 日本化学工業株式会社 製珪酸ソーダ溶液 (品名: J珪酸ソーダ 3号:固形分 3 8 %) 1 3 . 2 gに水 2 1 . 8 gを添加した水ガラス水^^とを混合、 混線した混練物 (飛灰 1 0 0重量 部に対し水ガラス固形分 1 部) を、 7日間養生固ィヒし、 固ィ匕物について溶 出試験を行った。 尚、 以下、 水ガラスの固形分とは、 固形水ガラス中に含まれる M2 0 · n S i 02 (但し、 Mは水ガラスのカチオン) の総量を示す。
(実施例 2 )
上記薩 (A) を 5 0 gと、 日本化学工業株式会社製珪酸ソ一ダ (品名: J珪 酸ソーダ 3号:固形分 1 0 0 %) 5 . 0 gとを混合し、 水 3 0 . 0 gを添加して 混練した混練物 (瓶 1 0 O mg部に対し水ガラス固形分 1 O ftM部) を、 7日 間 固化し、 固化物について溶出試験を行つ 以上の比較例 1、 2、 及び実 施例 1、 2の溶出試験結果を表 2に示す。 表 2 からの P b溶出量 (p m)
Figure imgf000014_0001
N. D. :検出限界 0 . 1 p p m以下 実施例 1と、 比較例 1、 2との比較から、 職にセメント 3 0部を添加して混 合し、 水を加えて混練することにより、 無処理の場合に較べて P b溶出量を低減 できるものの、 充分ではない。 これに対し、 本発明に係る水ガラス水溶液を用い た処理方法では、 1 0部 (固形分) の水ガラスの添加で、 セメント 3 0部の添加 よりも高い P b溶出防止 tt^を示す。 又、 比較例 2と実施例 2との比較から明ら かなように、 固形水ガラスは、 セメントの 1 Z 3の添加量で同程度の溶出防止性 能を示す。又、 実施例 1と ¾S¾例 2との比較から、 水ガラス水溶液と固形水ガラ スとでは、 同じ添加量 (固形分) の であれば、 水ガラス水溶液の方がより効 果が大きいことがわかる。
(比較例 3 )
都市ゴミ焼却施設(D) で生成したバグフィルター捕集飛灰 (D) の成分分析 結果を表 3に示す。 この飛灰 Dを用いて無処理のまま溶出試験を行った。 結果を 表 3に示す。 表 3 成分分析及び溶出量
Figure imgf000015_0001
C比較例 4 )
上記顾 CD) 5 0 gと、 日本化学工業株式会社製珪酸ソーダ溶液 (品名: J 珪酸ソーダ 3号 (固形分 3 8 %) 、 以下の実施例、 比較例中では単に 「水ガラス 溶液」 という。 ) 1 3 gに水 2 gを添加した水ガラス水溶液 (総水量 1 0 g、 飛 灰 1 0 0重量部に対して水 2 0 SS部) とを混合、 混練したものを 1日間養生し た後、 粉砕したものを目開き 2 mmのふるいで分級し、 ふるいを通過したものに ついて 3 0 gを分取して溶出試験を行った。
(比較例 5 )
水ガラス水溶液として、 上記水ガラス溶液 (固形分 3 8 %) 1 3 gに水 3 2 g を添加した水ガラス水溶液 (総水量 4 0 g、 飛灰 1 0 0重量部に対して水 8 0重 量部) を用いた以外は、 比較例 4と全く同様にして溶出試験を行った。
(実施例 3 )
水ガラス水溶液として、 上記水ガラス^ (固形分 3 8 %) 1 3 gに水 7 gを 添加した水ガラス水溶液 (総水量 1 5 g、 飛灰 1 0 0重量部に対して水 3 0重量 部) を用いた以外は、 比較例 4と全く同様にして溶出試験を行った。
(実施例 4 )
水ガラス水溶液として、 上記水ガラス^ (固形分 3 8 %) 1 3 gに水 1 7 g を添加した水ガラス水溶液 (総水量 2 5 g、 飛灰 1 0 0 MS部に対して水 5 0重 量部) を用いた以外は、 比較例 4と全く同様にして溶出試験を行った。
(実施例 5 )
水ガラス水溶液として、 上記水ガラス^ ¾ (固形分 3 8 %) 1 3 gに水 2 2 g を添加した水ガラス水溶液 量 3 0 g、 飛灰 1 0 0重量部に対して水 6 0重 量部) を用いた以外は、 比較例 4と全く同様にして溶出試験を行った。 (実施例 6 )
水ガラス水溶液として、 上記水ガラス^ (固形分 3 8 %) 1 3 gに水 2 7 g を添加した水ガラス水溶液 (総水量 3 5 g、 飛灰 1 0 部に対して水 7 0重 量部) を用いた以外は、 比較例 4と全く同様にして溶出試験を行った。 以上の比 較例 4、 5、 及び実施例 3〜 6の溶出試験結果を表 4に示す。 表 4
Figure imgf000016_0001
以上の本発明の実施例 3〜 6と比較例 4、 5の比較 (表 4 ) から、 飛灰 1 0 0 重量部に対して水量が 2 0 MS部の には、 P b溶出防止効果が低く、 又、 水 量が 8 0重量部になると、 混練物が泥状となってしまいハンドリング性が悪くな る。 よって、 P b溶出量、 及び混練物の性状から、 §ϋな総 7量が 2 5〜7 5重 量部であることが明らかである。
雌例 6 )
上記顯 (D) 5 0 gを水 2 2 gと混練した後、 上記水ガラス溶液 (固形分 3 8 %) 1 3 gを添加し (総水量 3 0 g、 飛灰 1 0 0 S 部に対して水 6 0重量部 ) 、 更に混練したものを 1日間養生した後、 扮枠したものを目開き 2 mmのふる いで分极し、 ふるいを通過したものについて 3 0 gを分取して溶出試験を行った
(実施例 7 )
上記飛灰 (D) 5 0 gと上言 57kガラス溶液 (固形分 3 8 %) 1 3 gを混合した 後、 水 2 2 gを添加し (総水量 3 0 . 0 0重量に対して水 6 0 部) 、 更に混練したものを 1日間養生した後、 粉砕したものを目開き 2 mmのふるい で分級し、 ふるいを通過したものについて 3 0 gを分取して溶出試験を行った。 以上の比較例 6及び実施例 7の溶出試験結果を表 5に示す。 表 5
Figure imgf000017_0001
本発明の実施例 7と比較例 6の比較 (表 5 ) から、 廃棄物と水とを混練したの ち処理剤を添加し混練することよりも、 ^^物と処理剤を混練したのち水を添加 し混練する方法の方が優れていることが明らかである。
(比較例 7 )
飛灰 (D) と、 日本化学工業株式会社製粉状オルソ (以下、 単に 「粉状オルソ 」 という。 ) 1 3 gに水 1 0 gを添加した水ガラス水 (総水量 1 0 g、 飛灰 1 0 0重量部に対して水 2 0重量部) とを混合、 混練したものを 1日間養生した 後、 粉枠したものを目開き 2 mmのふるいで分級し、 ふるいを通過したものにつ いて 3 0 gを分取して溶出試験を行った。
C比較例 8 )
水ガラス水溶液として、 上記粉状オルソ 1 3 gに水 4 0 gを添加した水ガラス 7k溶液 (総水量 4 0 g、 飛灰 1 0 部に対して水 8 O ltS部) を用いた以外 は、 比較例 7と全く同様にして溶出試験を行った。
(実施例 8 )
水ガラス水溶液として、 上記粉状オルソ 1 3 gに水 1 5 gを添加した水ガラス 水溶液 (総水量 1 5 g、 飛灰 1 0 0重量部に対して水 3 0重量部) を用いた以外 は、 比較例 7と全く同様にして溶出試験を行つた。
C¾5S 9 )
水ガラス水溶液として、 上記粉状オルソ 1 3 gに水 2 5 gを添加した水ガラス 水溶液 (総水量 2 5 g、 i 0 0重量部に対して水 5 0重量部) を用いた以外 1 δ
は、 比較例 7と全く同様にして溶出試験を行った。
(実施例 1 0 )
水ガラス水溶液として、 前記粉状オルソ 1 3 gに水 3 0 gを添加した水ガラス 水溶液 (総水量 3 0 g、 飛灰 1 0 o rnm部に対して水 6 0重量部) を用いた以外 は、 比較例 7と全く同様にして溶出試験を行った。
(実施例 1 1 )
水ガラス水^ ¾として、 前記粉状オルソ 1 3 gに水 3 5 gを添加した水ガラス 水 j§¾ (総水量 3 5 g、 EJi l 0 0 m¾部に対して水 7 0 部) を用いた以外 は、 比較例 5と全く同様にして溶出試験を行った。以上の比較例 7、 8、 及び実 施例 8〜: I 1の溶出試験結果を表 6に示す。 表 6
Figure imgf000018_0001
以上の本発明の実施例 8〜 1 1と比較例 7、 8の比較 (表 6 ) から、 固形水ガ ラスの場合でも、 脈 1 0 0重量部に対して添加する水量が 2 0 ¾g部の場合に は、 P b溶出防止効果が低く、 一方、 添加する水量が 8 0 MS部になると、 混練 物力、'泥状となってしまいハンドリング性が悪くなる。 よって、 P b溶出量、 及び 混練物の性状から、 固形水ガラスを用いる場合にも、 添加する最適な総水量は 2 5〜7 5 Μ¾部であることが明らかである。
〔比較例 9 )
都市ゴミ焼却施設 (E) で生成したバグフィルター捕集飛灰 (E) 及び電気炉 で発生する集塵ダスト (F) の 分析結果を表 7に示す。 これらの廃棄物を用 いて無処理のまま溶出試験を行つた c 表 7 成分分析 (龍
Figure imgf000019_0001
(比較例 1 0 )
上記飛灰 (E) 、 ダスト (F) のそれぞれ 50 gと、 普通ポルトランドセメン ト (宇部セメント製) 1 0 gとを混合したものに水 30 gを添加して混練した混 練物 (廃棄物 1 00重量部に対しセメント 2 部) を、 7曰間養生固化し、 固化後、 粉碎したものを目開き 5 mmのふるいで分級し、 ふるいを通過したもの について 30 gを分取して溶出試験を行った。
(:比較例 1 1 )
上記水ガラス離 (固形分 38%) 1 3. 2 g (固形分: 5. 0 g) に水 23 . 4 gを添加した水 に塩化カルシウム 2. 5 gを添加したところ、 急速にゲ ル化してしまい、 処理剤として廃棄物と混合することは不可能であつた。
(実施例 1 0 )
上記飛灰 (E) 50 gと粉末珪酸ソ一ダ (日本化学工業株式会社製、 品名:粉 末珪酸ソ一ダ 2号: ri= 2. 50 :固形分 1 00%) 5. 0 gとを混合し、 水 3 0. 0 gを添加して混練した混練物 灰 1 00 MS部に対して水ガラス固形分 1 0重量部) を 7日間養生固化し、 固化後、 粉碎したものを目開き 5mmのふる いで分級し、 ふるいを i©したものについて 3 0 gを分取して溶出試験を行った
(実施例 1 1 )
上記飛灰 (E) 50 gと上記粉末珪酸ソーダ (n = 3. 1 5 :固形分 1 00 % ) 5. 0 gとを混合し、 水 30. 0 gを添加して混練した混練物 (皿 1 0 0重 量部に対して水ガラス固形分 1 部) を、 7日間養生固化し、 固化後、 粉碎 したものを目開き 5 mmのふるいで分級し、 ふるいを通過したものについて 3 0 gを分取して溶出試験を行った。
(実施例 1 2 )
上記飛灰 (E) 50 gと上記粉末珪酸ソ一ダ (η=3· 1 5 :固形分 1 0 0% ) 5. O gと混合し、 30。Cの水 30. 0 gを添加して混練した混練物 (飛灰 1 00重量部に対して水ガラス固形分 1 0重量部) を、 7日間養生固化し、 固化後 粉碎したものを目開き 5 mmのふるいで分級し、 ふるいを通過したものについて 30 gを分取して溶出試験を行った。
(実施例 1 3 )
上記飛灰 (E) 50 gと上記粉末珪酸ソーダ (n-2. 50 :固形分 1 00% ) 5. O gとを混合し、 pHが 9. 0のアルカリ性の水 3 0. O gを添加して混 線した混練物 〔飛灰 1 00重量部に対して水ガラス固形分 1 0重量部) を、 7日 間^ ΐ固化し、 固化後、 粉砕したものを目開き 5 mmのふるいで分級し、 ふるい を通過したものについて 30 gを分取して溶出試験を行った。
(実施例 1 4)
上記飛灰 (E) 50 gと粉末珪酸ソーダ (日本化学工業株式会社製、 品名:粉 末珪酸ソ一ダ 2号: n=2. 50 :固形分 1 00%〕 5. O gとを混合し、 水温 が 30てで、 p Hが 9. 0のアル力リ性の水 30. 0 を添加して混練した混練 物 (飛灰 1 0 0重量部に対して水ガラス固形分 1 0重量部) を、 7日間養生固化 し、 固化後、 粉砕したものを目開き 5 mmのふるいで分級し、 ふるいを通過した ものについて 3 0 gを分取して溶出試験を行った。
〔実施例 1 5 )
上記粉末珪酸ソ一ダ (n=2. 50 :固形分 1 00%) 5. 0 g及び塩化カル シゥム 2. 5 gと上記ダスト (B) 50 gを混合し、 水 30. 0 gを添加、 混練 したもの (ダスト 1 0 0重量部に対して水ガラス固形分 1 0重量部〕 を 7日間戔 生固化し、 固化後粉砕したものを百開き 5 mmのふるいで分級し、 ふるいを通過 したものについて 30 gを分取して上記方法により溶出試験を行った。 以上の比 較例 9、 1 0、 及び実施例 1 0 ~ 1 5の溶出試験結果を表 8に示す。 表 8 Pb溶出量 (ppm)
Figure imgf000021_0001
実施例 1 0と比較例 9、 1 0の比較から、 比較例 1 0のセメント 2 0部の添加 により比較例 9の無処理の場合に比べて P b溶出量は低減できるものの、 実施例 1 0の固形水ガラスは 1 0部の添加で比較例 1 0のセメント処理よりも俊れた P b溶出抑制性能を示すことがわかる。
次に、 実施例 1 0と実施例 1 1の比較から、 固形水ガラスの S i 02 ノ Nas 0比 (n) の値は、 実施例 1 1の n=3. 1 5のもの (粉末珪酸ソーダ 3号) よ りも、 実施例 1 0の n=2. 5 0のもの (粉末珪酸ソ一ダ 2号) の方が溶出防止 性能が髙いことから、 n= 2. 8 0以下の固形水ガラスの方が n= 2. 8 0以上 のものよりも好ましいことが明らかである。 これは、 固形水ガラスの場合、 nが 小さい方が水に溶解し易く 物と効果的に するための思われる。
又、 実施例 1 1と実施例 1 2の比較から、 H½例 1 2のように、 混練する際に 添加する水の水温が 3 0°C以上の温水を用いることによって、 溶解が不十分なた め性能が不足していたと考えられる実施例 1 1より固形水ガラスによる Pb溶出 抑制性能が向上した。 即ち、 添加する水の水温が 3 0°C以上のものを用いる優位 性が明らかである。
更に、 実施例 1 1と難例 1 3の比較から、 錢例 1 3のように、 混練する際 に添加する水として pHが 9以上のアル力リ性の水を用いることによって、 溶解 が不十分なため性能が不足していたと考えられる実施例 1 1より固形水ガラスに よる溶出抑制性能力く向上した。 即ち、 添加する水の PHが のものを用いる 優位性が明らかである。
そして、 実施例 1 0と 例 1 4の比較から、 実施例 1 4のように、 添加する 水の水温を 30てに保ち、 しかも水の pHを 9以上に設定することにより、 例 1 0に較べて固形水ガラスによる安定化性能をより一眉引き出せた。 即ち、 P H及び水温をより好ましい条件 (水温 30°C以上、 pH9以上) に設定すること で、 固形水ガラスによる P b溶出抑制性能が向上することが明らカ、である。 又、 比較例 1 1の結果から明らかなように、 水ガラス水溶液は塩化カルシゥム を添加すると瞬時にゲル化してしまい、 ^^物との混練カ<不可能となり、 処理剤 として使用できない。 一方、 固形水ガラスの^は、 例 1 5から明らかなよ うに、 ゲル化剤の塩化カルシウムを添加しても処理剤として使用可能である。 更 に、 実施例 1 5と比較例 1 0、 1 1の比較から、 固形水ガラスはゲル化剤として 塩化カルシウムを配合することにより水ガラス水溶液で溶出防止できないものに も優れた溶出抑制性能を示し、 力、つセメント処理以上の溶出防止効果を示す。 こ れらのことから、 被処理物の適用範囲の広さ、 及び処理剤の取り扱いの点からは 、 水ガラスが固形であること力、'好ましい。
(比較例 1 2 )
日本化学工業株式会 ¾ ^粉末珪酸ソーダ 3号 (n=3. 1 5、 固形分 =78. 0 %) 6. 4 1 gを処理剤とし、 これを上記瓶 (D) 50 gと混合し、 水 3 0 . 0 gを添加して混練した混練物 (灰 1 00 ttS部に対し水ガラス固形分 1 0重 量部) を、 7日間養生固化し、 固化後、 粉碎したものを目開き 5mmのふるいで 分級し、 ふるいを通過したものについて 30 gを分取して溶出試験を行った。 (比較例 1 3 )
処翻として、 日本化学工業株式会ネ 粉末珪酸ソーダ 2号 〔n=2. 5 0、 固形分 =78. 5%) 6. 37 g (灰 1 00重量部に対し水ガラス固形分 1 0重 量部) を用いた以外は、 比較例 1 2と全く同様にして溶出試験を行った。
(比較例 14)
処理剤として、 日本ィ匕学工業株式会棚粉末珪酸ソーダ 1号 (n=2. 1 5、 固形分 =77. 5%) 6. 45 g (灰 1 00重量部に対し水ガラス固形分 1 0重 量部) を用いた以外は、 比較例 1 2と全く同様にして溶出試験を行った。
(比較例 1 5 )
処理剤として、 日本化学工業: |«会ネ: 無水メタ珪酸ソ一ダ (n= l. 0、 固 形分 =97. 0%) 5. 1 5 g (灰 1 00SS部に対し水ガラス固形分 1 0重量 部) を用いた以外は、 比較例 1 2と全く同様にして溶出試験を行った。
(比較例 1 6 )
処理剤として、 曰本化学工業株式会ネ メタ珪酸ソーダ 1水塩 (品名: ドライ メタ、 n= 1. 0、 固形分 =82. 5%) 6. 06 g (灰 1 0 0 部に対し水 ガラス固形分 10重量部) を用いた以外は、 比較例 1 2と全く同様にして溶出試 験を行った。
(比較例 1 7 )
処理剤として、 日本化学工業株式会 ¾ メタ珪酸ソ一ダ 5水塩 (n= l. 0、 固形分 =57. 5%) 8. 70 g (灰 10 0¾g部に対し水ガラス固形分 1 0重 量部) を用いた以外は、 比較例 1 2と全く同様にして溶出試験を行った。
纖例 1 8 )
処理剤として、 曰本化学 ϋ株式会ネ: メタ珪酸ソーダ 9水塩 (n=l. 0、 固形分 =4 1. 5%) 1 2. 0 g (灰 1 0 OSS部に対し水ガラス固形分 1 0重 量部) を用いた以外は、 比較例 12と全く同様にして溶出試験を行った。
(実施例 1 6 )
処理剤として、 日本化学工業抹式会社製粉状オルソ (n=0. 5、 固形分 91 . 5%) 5. 46 g (灰 1 00 MS部に対し水ガラス固形分 1 部) を用い た以外は、 比較例 1 2と全く同様にして溶出試験を行った。
(実施例 17 )
上記粉末珪酸ソーダ 3号 (n = 3. 1 5、 固形分 =78. 0 6. 4 1 gと NaOH粉末 2 gを混合したものを処理剤として、 上記飛灰 (D) 50 gと混合 し、 水 30. 0 gを添加して混練した混練物 (灰 1 00重量部に対し水ガラス固 形分 1 0S 部) を、 7日間 固ィヒし、 固化後、 粉砕したものを目開き 5mm のふるいで分級し、 ふるいを通過したものについて 30 gを分取して溶出試験を 行った。
(実施例 1 8 )
上記粉末珪酸ソーダ 2号(π= 2. 5 0、 固形分 =7 8. 5%) 6. 3 7 gと NaOH粉末 2 gを混合したもの (灰 1 0 0重量部に対し水ガラス固形分 1 0重 量部) を処理剤とした以外は、 実施例 1 7と全く同様にして溶出試験を行った。
(実施例 1 9 )
上記粉末珪酸ソ一ダ 1号(n= 2. 1 5、 固形分 =7 7. 5%) 6. 4 5 gと NaOH粉末 2 gを混合したもの (灰 1 0 0 M 部に対し水ガラス固形分 1 0重 量部) を処理剤とした以外は、 実施例 1 7と全く同様にして溶出試験を行った。
(実施例 2 0 )
上記無水メタ珪酸ソーダ(n=l. 0、 固形分 =9 7. 0%) 5. 1 5 と - aOH粉末 2 gを混合したもの (灰 1 0 0重量部に対し水ガラス固形分 1 0M 部) を処理剤とした以外は、 ¾SS例 1 7と全く同様にして溶出試験を行った。 (実施例 2 1 )
上記メタ珪酸ソ一ダ 1水塩 (品名: ドラメタ、 n=l. 0、 固形分 =8 2. 5 %) 6. 0 6 gと NaOH粉末 2 gを混合したもの (灰 1 0 0重量部に対し水ガ ラス固形分 1 0重量部) を処 とした以外は、 例 1 7と全く同様にして溶 出試験を行った。
(実施例 2 2)
上記メタ珪酸ソーダ 5水塩 (n=l. 0、 固形分 =5 7. 5%) 8. 7 0 gと NaOH粉末 2 gを混合したもの (灰 1 0 0重量部に対し水ガラス固形分 1 0重 量部) を処理剤とした以外は、 実施例 1 7と全く同様にして溶出試験を行った。
(実施例 2 3 )
上記メタ珪酸ソ一ダ 9水塩 (n= 1- 0、 固形分 =4 1. 5¾) 1 2. 0 gと NaOH粉末 2 gを混合したもの (灰 1 0 0重量部に対し水ガラス固形分 1 0重 量部) を処理剤とした以外は、 実施例 1 7と全く同様にして溶出試験を行った。 施例 24)
上記粉状オルソ (n=0. 5、 固形分 9 1· 5%) 5. 46 と &〇;^粉末 2 gを混合したもの (灰 1 00 MS部に対し水ガラス固形分 1 部) を処理 剤とした以外は、 実施例 1 7と全く同様にして溶出試験を行った。 以上の比較例 1 2〜: 1 8、 及び実施例 1 6-2 の溶出試験結果を表 9に示す。 表 9
Figure imgf000025_0001
表 9より、 各種固形水ガラスのうちでも、 粉状オルソの Pb溶出抑制性能力く最 も優れていることがわかる。更に、 同表から、 NaOHの添加がPb溶出抑制性 能の向上に大きく寄与しており、 粉状オルソ以外の固形水ガラスでも N a OHを 添加することで優れた P b溶出防止効果が得られることがわかる。
(比較例 1 9 )
上記粉状オルソ 54. 6 gを処理剤として飛灰 (D) 50 0 gと混合し、 水 3 00 gを添加して混練した混據物を円筒状容器に入れ、 7日間養生固化したもの の一軸圧縮強度測定を行つた。
(実施例 25 )
上記粉状オルソ 54. 6 gを珪砂 40 gと混合したものを処理剤として用いた 以外は比較例 1 9と全く同様にして一軸圧縮強度測定を行った。 比較例 1 9、 実 施例 2 5の溶出試験結果を表 1 0に示す。 表 1 0
Figure imgf000026_0001
表 1 0力、ら、 珪砂の添加により m¾物と.処理剤との混練物の強度力く上昇するこ とが明らかである。
(:比較例 2 0 )
上記匿 (D) 5 0 gと、 上 f¾ ガラス離 (固形分 3 8 %) 6 . 4 9 gに水 2 7 . 5 gを添加した水ガラス水^とを混合、 混練した混練物 (灰 1 0 0重量 部に対し水ガラス固形分 5 部) を、 養生を行うことなく直ちに粉砕したもの を、 目開き 2 mmのふるいで分极し、 ふるいを したものについて 3 0 gを分 取して、 溶出試験を行った。
(実施例 2 6 -1、 実施例 2 6 -2)
上記飛灰 (D) 5 0 gと、 上記水ガラス鎌 (固形分 3 8 % 6 . 4 9 gに水 2 7 . 5 gを添加した水溶液とを混合、 混練した混練物 (灰 1 0 0重量部に対し 水ガラス固形分 5 ¾S部) を、 常温 (2 0 °C) で 2 4時間 (実施例 2 6 - 1) 、 及 び I 6 8時間 (実施例 2 6 -2) 養生した後、 粉砕したものを、 目開き 2 mmのふ るいで分級し、 ふるいを iiigしたものについて 3 0 gを分取して、 溶出試験を行
(実施例 2 7 -1〜実施例 2 7 - 4)
茭生温度を 4 0 °C (実施例 2 7 -1) 、 6 0 ¾ (実施例 2 7 -2) 、 8 0 °C (実施 例 2 7 -3) 、 1 0 0 °C (^施例 2 7 -4) と変化させ、 ¾ΐ時間を 2 4時間とした 以外は、 実施例 2 6と全く同様にして溶出試験を行った。
(実施例 2 8 -1〜実施例 2 8 -4)
養生温度を 6 0 °Cとし、 養生時間を 0. 5時間 (実施例 2 8 -1) 、 2時間 (実 施例 2 8-2) 、 6時間 (実施例 2 8-3) 、 1 8時間 (実施例 2 8-4) と変化させ た以外は、
Figure imgf000027_0001
と全く同様にして溶出試験を行った。 以上、 比較例 2 0、 及び実施例 2 6〜 2 8の結果を表 1 1にまとめて示す。 表 1 1
Figure imgf000027_0003
本発明に係る実施例 2 6〜2 8と、 比較例 3、 2 2との比較から、 水ガラスと 廃棄物とを混合、 混練し、 することで Pbの溶出量を抑制しうることが明ら かである。 又、 ¾¾¾例 2 6、
Figure imgf000027_0002
の結杲から、 養生時間が増えるほど、 P b溶出防止効果力、'大きいこと力、'分かる。 更に、 難例 2 6と実施例 2 8との比較 、 及び実施例 2 7-1〜実施例 27 -4の結果から、 養生 が高いほど Pb溶出量 が少なく、 又、 養生温度が高くかつ養生時間力、'長い場合に最も Pb溶出防止効果 力、'大きいことが明らかである。 産業上の利用可能性
本発明の廃棄物の処理方法を用いて、 C a水酸化物、 C a酸化物、 C a塩化物 等の C a化合物を含有する産業廃棄物、 特に消石灰を含有する廃棄物焼却飛灰を 処理することにより、 «物中の有害金属、 特に; P bが安定化され、 溶出量が減 少する。
又、 廃棄物処理場に、 廃棄物を処理した処理物を養生する場所が充分に確保さ れていないような場合であつても、 ^¾物と処理剤を混練した混練物を所定の温 度で養生することで、 養生時間を短縮すること力く可能であり、 処理物を速やかに 廃棄することが可能となるのである。
そして、 本発明で得られる、 ^^物と水ガラスを主とする処理剤とを混合、 混 練し、 これを固化した物は、 有害金属の溶出量力、'極めて少ない材料として、 路盤 材、 セメントの骨材等に再利用することができ、 貴重な資源となり得る。

Claims

請求の範匪
I . C a水酸化物、 C a酸化物、 C a塩化物等の C a化合物を含有する廃棄物と 、 水ガラスを主たる構 5£ ^分としてなる処理剤を混合し、 必要に応じて水を加 えて総水量が、 歸物 1 0 0重量部に対し 2 5重量部以上 7 5重量部以下とな るように調整し、 これを混練することを mとする廃棄物の処理方法。
2 . 廃棄物と処理剤とを混合、 混練した後、 これを養生することを特徵とする請 求項 1記載の廃棄物の処理方法。
3. 養生時間が、 6時間 である請求項 2記載の廃棄物の処理方法。
4. 養生温度が、 4 0。C以上 1 0 0 °C以下である請求項 2記載の廃棄物処理方法 o
5. 廃棄物焼却炉で生じる余熱を利用して加温して養生することを とする請 求項 4記載の^^物処理方法。
6. 水ガラスが水溶液であり、 処理剤中に含まれる水量と、 添加する水量の総和 が、 廃棄物 1 0 0重量部に対し 2 部以上 7 5 mm部以下となるように水 ガラス水溶液濃度及び添加する水の量を調整することを特徵とする請求項 1〜 請求項 5記載の廃棄物の処理方法。
7 . 水ガラスが、 固形水ガラスであることを特徵とする請求項 1〜請求項 5記截 の廃棄物の処理方法。
8 . 固形水ガラスの添加量が、 廃棄物 1 0 0 部に対して 3〜 5 0 部であ る請求項 7記載の廃棄物の処理方法。
9 . 水温が 3 0 eC以上の水を用 t、て廃棄物と処理剤を混練することを特徵とする 請求項 7記載の廃棄物の処理方法。
10. p Hが 9以上の水を用いて廃棄物と処理剤を混練することを特徴とする請求 項 7記載の廃棄物の処理方法。
II. 固形水ガラスの主たる構^分が S i 02 M2 0組成比が 2 . 8 0以下の 水ガラス (M2 0 · n S i 02 、 但し、 Mは水ガラスのカチオン) である請求 項 7記載の廃棄物の処理方法。
12. 固形水ガラスが固形水ガラス粉状オルソである請求項 7記載の廃棄物の処理 2 δ
方法。
13. 廃棄物と処理剤に加えてゲル化剤を添加して混合、 混練することを特徴とす る請求項 7記載の廃棄物の処理方法。
14. ^物と処理剤に加えて水酸化ナトリウム (N a OH) を添加して混合、 混 練することを特徴とする請求項 7記載の廃棄物の処 法。
15. 廃棄物と処理剤に加えて珪砂を添加して混合、 混練することを特徴とする請 求項 7記載の廃棄物の処理方法。
16. 廃棄物が廃棄物焼却飛灰である請求項 1〜請求項 1 5のいずれかに記载の廣 棄物の処理方法。
PCT/JP1994/001909 1993-11-15 1994-11-11 Procede de mise au rebut de dechets WO1995013886A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP95900289A EP0684087A4 (en) 1993-11-15 1994-11-11 WASTE DISPOSAL PROCESS.
US08/464,865 US5626552A (en) 1993-11-15 1994-11-11 Method of waste disposal

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP28538893 1993-11-15
JP5/285388 1993-11-15
JP5/337889 1993-12-28
JP33788993 1993-12-28
JP6/255154 1994-10-20
JP25515394 1994-10-20
JP6/255152 1994-10-20
JP25515494 1994-10-20
JP6/255153 1994-10-20
JP25515294 1994-10-20

Publications (1)

Publication Number Publication Date
WO1995013886A1 true WO1995013886A1 (fr) 1995-05-26

Family

ID=27530289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/001909 WO1995013886A1 (fr) 1993-11-15 1994-11-11 Procede de mise au rebut de dechets

Country Status (3)

Country Link
US (1) US5626552A (ja)
EP (1) EP0684087A4 (ja)
WO (1) WO1995013886A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5582573A (en) * 1994-04-04 1996-12-10 Applied Innovations, Inc. Method for the treatment and stabilization of hazardous waste
ES2220971T3 (es) * 1995-02-17 2004-12-16 Zeo Tech Corp. Material cementoso con cenizas volantes.
JP2000512687A (ja) * 1996-05-20 2000-09-26 アペックス・リズィデュー・リカバリー・インコーポレーテッド 鉛塩の回収を含むフライアッシュ/apc残留物の処理
US20060029653A1 (en) 1997-01-29 2006-02-09 Cronk Peter J Therapeutic delivery system
US20050061208A1 (en) * 2003-09-23 2005-03-24 Naum Sapozhnikov Composite airport concrete pavement with the enriched limestone quarry waste as a coarse aggregated for concrete of subbase
CA2597943A1 (fr) * 2005-02-21 2006-08-24 Philippe Pichat Fabrication d'un materiau solide a partir d'un hydroxyde alcalin
US7855313B2 (en) * 2005-02-28 2010-12-21 Energysolutions, Inc. Low-temperature solidification of radioactive and hazardous wastes
WO2008028088A2 (en) 2006-08-30 2008-03-06 David William Smith Method of imparting a mono-axial or multiaxial stiffness to extruded materials and products resulting therefrom
NL1036620C2 (nl) * 2009-02-24 2010-08-25 A & G Holding B V Werkwijze voor het stabiliseren en immobiliseren van anorganische zoute stromen.
US20110000483A1 (en) * 2009-05-01 2011-01-06 Matthias Joseph A External nasal dilator
IT1397056B1 (it) 2009-12-30 2012-12-28 Uni Degli Studi Brescia Metodo di trattamento dei rifiuti
ITMI20121382A1 (it) 2012-08-03 2014-02-04 Contento Trade Srl Materiale inerte, metodo di produzione del medesimo da materiali di scarto e relativi impieghi industriali.
EP2931442A1 (en) * 2012-12-05 2015-10-21 Solvay SA Treatment of sodic fly ash for reducing the leachability of selenium contained herein
EP3152491A4 (en) 2014-06-04 2018-08-01 Solvay Sa Stabilization of sodic fly ash of type f using calcium-based material
CN104083845A (zh) * 2014-07-11 2014-10-08 广西大学 一种锰矿浸渣中水溶性锰离子稳定化处理的方法
CN106924926A (zh) * 2017-04-07 2017-07-07 张洪 一种飞灰重金属固化剂及其固化方法
PL241732B1 (pl) * 2017-09-28 2022-11-28 Akademia Gorniczo Hutnicza Im Stanislawa Staszica W Krakowie Sposób redukcji poziomu wymywalności chlorków z mieszanin mineralnych zawierających odpady wykazujące się wysokimi stężeniami rozpuszczalnych chlorków

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109482A (en) * 1976-03-11 1977-09-13 Oshita Naojirou Stabilization of ashes
JPS57204276A (en) * 1981-06-09 1982-12-14 Nippon Kaihatsu Consultant:Kk Utilization of fly ash

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3988258A (en) * 1975-01-17 1976-10-26 United Nuclear Industries, Inc. Radwaste disposal by incorporation in matrix
DE2917379A1 (de) * 1979-04-28 1980-11-13 Heinz Ing Grad Hoelter Verfestigung der reaktionsprodukte aus der reinigung von abgasen aus abfallverbrennungsanlagen nach dem trocken-gas-reinigungsverfahren vorzugsweise in pumpfaehige substanzen, die sich nach der aushaertung verfestigen
JPS57197500A (en) * 1981-05-29 1982-12-03 Hitachi Ltd Method of solidifying radioactive waste pellet
US4600514A (en) * 1983-09-15 1986-07-15 Chem-Technics, Inc. Controlled gel time for solidification of multi-phased wastes
US4687373A (en) * 1986-05-21 1987-08-18 Lopat Industries, Inc. Composition to encapsulate toxic metal and/or organic pollutants from wastes
DE3938885C2 (de) * 1989-11-24 1993-10-28 Forschungszentrum Juelich Gmbh Verfahren zum Verfestigen korn- oder pulverförmiger Abfälle
GB9027425D0 (en) * 1990-12-18 1991-02-06 Sandoz Ltd Improvements in or relating to organic compounds
JPH05305280A (ja) * 1992-04-30 1993-11-19 Kubota Corp 焼却炉から排出される灰等の無害化処理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109482A (en) * 1976-03-11 1977-09-13 Oshita Naojirou Stabilization of ashes
JPS57204276A (en) * 1981-06-09 1982-12-14 Nippon Kaihatsu Consultant:Kk Utilization of fly ash

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0684087A4 *

Also Published As

Publication number Publication date
US5626552A (en) 1997-05-06
EP0684087A4 (en) 1996-02-28
EP0684087A1 (en) 1995-11-29

Similar Documents

Publication Publication Date Title
WO1995013886A1 (fr) Procede de mise au rebut de dechets
US4377483A (en) Method of removing dissolved heavy metals from aqueous waste liquids
JP4529191B2 (ja) 重金属の安定化処理方法、重金属の安定化剤
HUT75350A (en) Method for binding waste materials
WO1997012662A1 (fr) Procede de traitement des gaz brules et des poussieres
JPH09299905A (ja) 有害廃棄物処理剤および処理方法
JPH09239339A (ja) 廃棄物処理材および廃棄物処理方法
KR100258773B1 (ko) 폐기물 처리방법
JPH0760221A (ja) 廃棄物処理材
JP3724062B2 (ja) 廃棄物処理材および廃棄物処理方法
JP3332150B2 (ja) 焼却残渣の処理方法
JPH10272435A (ja) 重金属含有廃棄物用処理剤及び重金属含有廃棄物の安定化処理法
KR20010020594A (ko) 중금속 함유 폐기물의 처리 방법 및 이러한 처리에 적합한밀봉제
WO1997002101A1 (fr) Matiere et procede d&#39;elimination de dechets
JPH09108646A (ja) 廃棄物処理方法および廃棄物処理材
JPH08168736A (ja) 廃棄物の処理方法
JP4061253B2 (ja) 重金属処理剤の製造方法
JPH08155416A (ja) 廃棄物の処理方法
JPH09187750A (ja) 廃棄物処理剤および廃棄物処理方法
JPH09294967A (ja) 廃棄物の処理方法
JP2002066497A (ja) 廃棄物の安定化処理剤および処理方法
JPH1028954A (ja) 廃棄物処理方法および廃棄物処理材
JPH1071381A (ja) 廃棄物処理剤及び廃棄物の処理方法
JPH09155317A (ja) 廃棄物処理方法および廃棄物処理材
AU736283B2 (en) Method for the treatment of waste

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 94191392.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 08464865

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1995900289

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1995900289

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1995900289

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995900289

Country of ref document: EP