WO1995012098A1 - Dispositif de commande pour equipement de climatisation - Google Patents

Dispositif de commande pour equipement de climatisation Download PDF

Info

Publication number
WO1995012098A1
WO1995012098A1 PCT/JP1994/001784 JP9401784W WO9512098A1 WO 1995012098 A1 WO1995012098 A1 WO 1995012098A1 JP 9401784 W JP9401784 W JP 9401784W WO 9512098 A1 WO9512098 A1 WO 9512098A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
temperature
defrost
heat exchanger
air conditioner
Prior art date
Application number
PCT/JP1994/001784
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Kawakita
Satoshi Takagi
Hideki Tsutsumi
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP94930358A priority Critical patent/EP0676602A4/en
Priority to US08/454,276 priority patent/US5689964A/en
Priority to AU79502/94A priority patent/AU669460B2/en
Publication of WO1995012098A1 publication Critical patent/WO1995012098A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle

Definitions

  • the present invention relates to an operation control device for an air conditioner, and more particularly to a control measure for starting defrost operation.
  • Shaun background technology :!
  • an air conditioner has a compressor, a four-way switching valve, a heat source side heat exchanger, and a check valve as disclosed in Japanese Patent Application Laid-Open No. 61-11442.
  • a heating expansion valve in which valves are juxtaposed
  • a cooling expansion valve in which check valves are juxtaposed
  • a use-side heat exchanger are sequentially connected. During the heating operation, if frost forms on the fins of the heat source side heat exchanger, a defrost operation is performed.
  • the operation of the use-side fan is stopped, heat is stored in the use-side heat exchanger with the high-pressure refrigerant, and then the defrost operation is performed in a cooling cycle, and the stored heat is used.
  • the defrost operation is completed efficiently and in a short time.
  • the defrost operation control since the use-side fan is merely stopped and heat is stored before the defrost operation is performed, and the expansion valve is fully opened, the heat source The defrost operation is started in a state where the liquid refrigerant is stored in the side heat exchanger, so that the condensate is used for melting the icing and is also released to the low-temperature refrigerant such as the liquid refrigerant. As a result, the amount of heat of condensation is not effectively used for melting the icing, and the storage portion of the liquid refrigerant in the heat source side heat exchanger is not used for the condensing area of the gas refrigerant. There is a problem that the defrost operation becomes longer.
  • the present invention has been made in view of the above points, and has been made to use the refrigerant condensation only for melting the icing, increase the refrigerant condensation area to improve the defrost capacity and reduce the defrost time. The purpose is to shorten it. Disclosure of the invention :!
  • Means taken by the present invention to achieve the above object is to fully close the expansion mechanism before executing the defrost operation.
  • means taken by the invention according to claim 1 includes: a compressor (1); a heat source side heat exchanger (3) having a heat source side fan (3f); An expansion mechanism (5) having an adjustable opening and a use-side heat exchanger (6) having a use-side fan (6f) are connected in order and have at least a refrigerant circuit (9) capable of heating cycle operation. It is assumed that the air conditioner is used.
  • a defrost requesting means (11) for outputting a defrost request signal for requesting a defrost operation is provided.
  • the defrost request means (11) outputs a defrost request signal
  • the refrigerant recovery means (12) which fully closes the opening of the expansion mechanism (5) in the heating cycle state of the refrigerant circuit (9) to recover the refrigerant. ) Power is provided.
  • Lost execution means (15) is provided.
  • the means taken by the invention according to claim 2 is, in addition to the invention according to claim 1, when the defrost request means (11) outputs a defrost request signal, the user-side fan (6f) is stopped.
  • a heat storage operation means (13) for storing heat is provided.
  • the means taken by the invention according to claim 3 is the invention according to claim 1 or 2, wherein the refrigerant circuit (9) is configured to be capable of performing a cooling cycle operation and a heating cycle operation;
  • the default execution means (15) is configured to execute reverse cycle defrost operation.
  • the means of the invention according to claim 4 is the invention according to claim 1 or 2, wherein the high-pressure liquid line in the refrigerant circuit (9) is provided with a receiver (4) for storing a liquid refrigerant. It is.
  • the means adopted by the invention according to claim 5 is the invention according to claim 1 or 2, wherein the end determination means (14) receives the detected temperature signal from the heat source side temperature detection means (The) and operates the expansion mechanism. When the current refrigerant temperature Tc of the heat source side heat exchanger (3) falls below a predetermined difference temperature with respect to the reference refrigerant temperature Tel of the heat source side heat exchanger (3) before the fully closed state of (5), an end signal is output. It is configured to output.
  • the end determination means (14) receives the detected temperature signal of the heat source side temperature detection means (The), When the refrigerant temperature Tc of the side heat exchanger (3 :) falls below a predetermined temperature, an end signal is output.
  • the means taken by the invention according to claim 7 is the invention according to claim 1 or 2, wherein the end judging means (14), the end judging means (14) is detected by the use side temperature detecting means (The). Temperature signal When the refrigerant temperature Te of the use side heat exchanger (6) rises to a predetermined temperature or higher in response to the signal, the end signal is output.
  • the means taken by the invention according to claim 8 is the invention according to claim 1 or 2, wherein the end judging means (14) is the heat source side temperature detecting means (Tiic) and the use side temperature detecting means (The).
  • the current refrigerant temperature Tc of the heat source side heat exchanger (3) falls below a predetermined temperature or the expansion mechanism (5)
  • the current refrigerant temperature Tc of the heat source side heat exchanger (3) is lower than a predetermined difference temperature with respect to the reference refrigerant temperature Tcl of the heat source side heat exchanger (3) before closing, or the current use side heat exchange
  • an end signal is output.
  • the defrost request means (11) when the defrost request means (11) outputs a defrost request signal, for example, the heating operation time after the end of the defrost operation and the preset expected differential opening operation time
  • the average heating capacity is calculated by dividing the accumulated heating capacity by the added time of, and when the average heating capacity becomes smaller than the previous average heating capacity, a defrost request signal is output.
  • the refrigerant recovery means (12) starts the fully closing operation of the expansion mechanism (5) and recovers the liquid refrigerant accumulated in the heat source side heat exchanger (3). I do.
  • the refrigerant is collected in the receiver (4).
  • the heat storage operation means (13) stops the use side fan (6f) and stores heat in the heat source side heat exchanger (3) with the high-pressure refrigerant.
  • the end determination means (14) determines the end, and In the invention according to claim 5, when the current refrigerant temperature Tc is lower than a predetermined differential temperature from the reference refrigerant temperature Tcl of the heat source side heat exchanger (3) before the start of heat storage, an end signal is output. In the invention according to claim 6, when the refrigerant temperature Tc of the heat source side heat exchanger (3) drops below a predetermined temperature, an end signal is output.
  • the use side heat exchanger (6 ) An end signal is output when the refrigerant temperature Te rises above a predetermined temperature. Will do.
  • the defrost executing means (15) starts the defrost operation.
  • the icing is melted by executing the reverse cycle defrost operation.
  • the expansion mechanism (5) is fully closed before the defrost operation is performed.
  • the expansion mechanism (5) is accumulated in the heat source side heat exchanger (3). Since a cold refrigerant such as a liquid refrigerant is recovered and the defrost operation is started, the heat of condensation can be used only for melting the icing. Further, the entire area of the outdoor heat exchanger can be used for the condensing area of the gas refrigerant.
  • the defrost capability can be improved, and the defrost time can be shortened.
  • heat is stored in the use-side heat exchanger (6) and the refrigerant before the defrost operation is performed, and icing is performed using the stored heat. Since the melting is performed, the defrosting ability can be further improved and the defrosting time can be shortened.
  • the reverse cycle defrost operation is executed. In particular, the defrost operation can be performed more quickly and efficiently in the normal cycle than in the frost operation.
  • the receiver (4) is provided in the refrigerant circuit (9).
  • the refrigerant can be reliably recovered in the receiver (4).
  • the capacity can be reliably improved, and the defrost time can be reduced.
  • refrigerant recovery and the like are terminated.
  • the defrost operation can be executed quickly. Further, it is possible to prevent an excessive decrease in the low-pressure refrigerant pressure.
  • FIG. 1 is a block diagram showing the configuration of the present invention.
  • FIG. 2 is a refrigerant circuit diagram showing an embodiment of the first to eighth aspects of the present invention.
  • FIG. 3 is a timing chart showing control of the defrost operation.
  • FIG. 2 shows a refrigerant piping system of an air conditioner to which the present invention is applied, which is a so-called separate type in which one outdoor unit (A) is connected to one indoor unit (B). It is.
  • the outdoor unit KA) is a scroll-type compressor (1) whose operating frequency is variably adjusted by an inverter, and a four-way switch that switches as shown by the solid line in the cooling operation and as shown by the dashed line in the heating operation during the cooling operation.
  • the outdoor heat exchanger (3) is provided with an outdoor fan (3f) as a heat source side fan.
  • the indoor unit (B) is provided with an indoor heat exchanger (6), which is a use side heat exchanger that functions as an evaporator during cooling operation and as a condenser during heating operation. 6) is provided with an indoor fan (6f) as a use side fan.
  • the compressor (1), the four-way switching valve (2), the outdoor heat exchanger (3), the pressure reducing section (20), and the indoor heat exchanger (6) are sequentially connected to the refrigerant pipe (8).
  • the refrigerant circuit (9) is connected to generate heat transfer by circulating the refrigerant.
  • the pressure reducing section (20) includes a bridge-shaped rectifier circuit (8r) and a common path (8a) connected to a pair of connection points (P, Q) in the rectifier circuit (8r).
  • (8a) has a receiver (4) located on the upstream common path (8X), which is always a high-pressure liquid line, for storing liquid refrigerant, and an auxiliary heat exchanger for the outdoor heat exchanger (3).
  • An electric expansion valve (5) which is an expansion mechanism and whose degree of opening is adjustable, is arranged in series.
  • the other pair of connection points (R, S) in the rectifier circuit (8r) are connected to the refrigerant pipe (8) on the side of the outdoor heat exchanger (3) and the refrigerant pipe on the side of the indoor heat exchanger (6).
  • a main line (9a) is connected to the compressor (1) from the rectifier circuit (8r) via the indoor heat exchanger (6) and the four-way switching valve (2).
  • the rectifier circuit (8r) connects the upstream connection point (P) of the common path (8a) to the connection point (S) on the outdoor heat exchanger (3) side, and connects the rectifier circuit (8r) to the outdoor heat exchanger (3).
  • the second inflow path (D2) having a second check valve (D2) connecting the connection point (R) on the side of the heat exchanger (6) and allowing only refrigerant flow from the indoor heat exchanger (6) to the receiver (4) 8b2) and the downstream connection point (Q) of the common path (8a) to the connection R) on the indoor heat exchanger (6) side to connect the electric expansion valve (5) to the indoor heat exchanger (6).
  • the first outflow path (8cl) provided with a third check valve (D3) that allows only refrigerant flow, the downstream connection point (Q) of the common path (8a) and the outdoor heat exchanger (3) side Connects to the connection point (S) to allow only refrigerant flow from the electric expansion valve (5) to the outdoor heat exchanger (3).
  • 4th second outflow path having a non-return valve (D4) (8c2) and is provided for.
  • a liquid ring prevention bypass path (8f) is provided between the connection points (P, Q) of the common path (8a) in the rectifier circuit (8r) with a capillary tube (C) interposed therebetween. Then, the liquid seal when the compressor (1) is stopped is prevented by the liquid seal prevention no-pass path (8f).
  • Opening / closing means is provided between the upper portion of the receiver (4) and the downstream side of the electric expansion valve (5) which is a downstream common path (8Y) and is always a low-pressure liquid line.
  • a bypass passage (4a) which is provided with an on-off valve (SV) force and bypasses the electric expansion valve (5), is connected to discharge the gas refrigerant in the receiver (4).
  • the degree of pressure reduction of the capillary tube (C) is set to be sufficiently larger than that of the electric expansion valve (5), and the function of adjusting the refrigerant flow rate by the electric expansion valve (5) during normal operation. Is maintained in a good condition.
  • (F1,..., F4) are filters for removing dust in the refrigerant
  • (ER) is a muffler for reducing the operation noise of the compressor (1).
  • the above-mentioned air conditioner is provided with sensors and the like.
  • (Thd) is a discharge pipe sensor that is disposed on the discharge pipe of the compressor (1) and detects the discharge pipe temperature Td
  • (Tha) is an outdoor The outdoor suction sensor, which is located at the air inlet of the unit (A) and detects the outdoor air temperature Ta, which is the outside air temperature, is installed in the outdoor heat exchanger (3).
  • the external heat exchange sensor which is a heat source side detecting means for detecting the external heat exchange temperature Tc, which is the evaporating temperature during the heating operation, (Thr) is disposed at the air inlet of the indoor unit (B) and has the indoor temperature.
  • the indoor suction sensor (The) which detects the indoor air temperature Tr, is located in the indoor heat exchanger (6) and detects the internal heat exchange temperature Te, which becomes the evaporating temperature during cooling operation and the condensing temperature during heating operation.
  • the internal heat exchange sensor (HPS) which is The high-pressure switch which detects the refrigerant pressure and turns on due to an excessive rise in the high-pressure refrigerant pressure and outputs a high-pressure signal.
  • LPS low-pressure refrigerant pressure
  • HPS high-pressure refrigerant pressure
  • liquid refrigerant condensed and liquefied in the outdoor heat exchanger (3) flows in from the first inflow path (8bl), and the first check valve (D1)
  • the indoor heat exchanger passes through the first outflow passage (8cl)
  • the liquid refrigerant condensed and liquefied in the indoor heat exchanger (6) passes through the second inflow path (8b2) while the refrigerant evaporates in (6) and returns to the compressor (1).
  • the controller (10) divides the operating frequency of the inverter into 20 steps N from zero to the maximum frequency, and compresses each frequency step N so that the discharge pipe temperature Td becomes the optimum discharge pipe temperature.
  • the opening of the electric expansion valve (5) is controlled so that the discharge pipe temperature Td becomes the optimum discharge pipe temperature.
  • the controller (10) includes, as features of the present invention, defrost request means (11), refrigerant recovery means (12), heat storage operation means (13), end determination means (14), and defrost execution means (15 ).
  • the defrost request means (11) outputs a defrost request signal when the refrigerant circuit (9) enters a predetermined state, for example, stores the accumulated heating capacity from the start of the heating operation after the end of the defrost operation, and terminates the defrost operation.
  • the average heating capacity is calculated by dividing the above-mentioned cumulative heating capacity by the addition time of the subsequent heating operation time and the preset expected defrost operation time, and when the average heating capacity becomes smaller than the previous average heating capacity, defrosting is performed. It is to output a request signal.
  • the refrigerant recovery means (12) When the defrost requesting means (11) outputs a defrost request signal, the refrigerant recovery means (12) fully closes the opening of the expansion valve (5) in the heating cycle state of the refrigerant circuit (9) to remove the refrigerant.
  • the receiver (4) is configured to collect it.
  • the end determination means (14) is configured to determine the end of refrigerant recovery by the refrigerant recovery means (12) and the end of heat storage by the heat storage operation means (13) .
  • the end determination means (14) When the defrost requesting means (11) outputs the defrost request signal while receiving the temperature signals detected by the external heat exchange sensor (The) and the internal heat exchange sensor (The), the time signal of the timer means (TM) is started. receive,
  • the current external heat exchange temperature Tc force falls below a predetermined temperature, for example,
  • the defrost executing means controls the opening and closing of the electric expansion valve (5) and the on-off valve (SV) to perform the reverse cycle differential opening operation. It is configured to run. Further, the defrost executing means (15) is configured to execute the operation when the frequency step N of the compressor (1) decreases to 6, when the discharge pipe temperature Td decreases below 110 ° C, or when the defrost operation time is 10 minutes. If any of the longer cases is met, the defrost operation is terminated. ⁇ Teno Lost Implantation Sakuichi
  • the four-way switching valve (2) is turned on, that is, the four-way switching valve (2) is switched to the broken line shown in FIG. Heating operation is performed by fuzzy control of the frequency step N of the compressor (1) and the optimum discharge pipe temperature.
  • the defrost requesting means (11) calculates the average heating capacity by dividing the accumulated heating capacity by the addition time of the heating operation time after the end of the defrost operation and the preset expected defrost operation time.
  • a defrost request signal is output.
  • this defrost request signal is output, the completion of the preparation of the defrost operation of the indoor unit (B) is waited until the point c, for example, after the processing of the heater, etc., and then the low pressure switch (LPS) is masked to the point d.
  • LPS low pressure switch
  • the refrigerant recovery means (12) starts the fully closing operation of setting the opening degree of the electric expansion valve (5) to 0 pulse from the point d and accumulates in the outdoor heat exchanger (3). Collect the liquid refrigerant in the receiver (4).
  • the heat storage operation means (13) stops the indoor fan (6f). Then, heat is stored in the indoor heat exchanger (6) by the high-pressure refrigerant. This refrigerant recovery and heat storage operation is performed for a maximum of 10 seconds by the end determination means (14) determining the end, or the internal heat exchange temperature Te rises above 35 ° C, or the external heat exchange temperature Tc — If the temperature falls below 30 ° C or if the current external heat exchange-Tc falls below 4 ° C from the reference external heat exchange temperature Tel (specifically, the temperature at point d) before the start of heat storage, End (see point f).
  • the process ends when the internal heat exchange temperature Te rises above 35 ° C in order to prevent a high pressure rise, and the external heat exchange temperature Tc is -35. If the temperature drops below 4 ° C, the refrigerant ends when the temperature difference rises above 4 ° C, and some refrigerant is recovered. It is because it is thought that it was. Thereafter, at this point f, the defrost executing means (15) stops the outdoor fan (3f) and switches the four-way switching valve (2), that is, the four-way switching valve (2) based on the defrost request signal. Is changed to the solid line in Fig. 2 and the cooling cycle is set, and the high-temperature refrigerant discharged from the compressor (1) is supplied to the outdoor heat exchanger (3) to start the reverse cycle differential opening operation.
  • the electric expansion valve (5) When the defrost operation is started, the electric expansion valve (5) is fully closed with 0 pulses, the on-off valve (SV) is also closed, and both the common path (8a) and the bypass path (4a) are shut off.
  • the four-way switching valve (2) by switching the four-way switching valve (2), the pressure in the refrigerant circuit (9) is reversed, and the high-temperature and high-pressure liquid refrigerant flows from the receiver (4) to the outdoor heat exchanger (3) and the indoor heat exchanger ( 6).
  • the defrost executing means opens the opening / closing valve (SV), gradually increasing the operating frequency N of the compressor (1), Refrigerant discharged from the chiller condenses in the outdoor heat exchanger (3) to melt frost and flows to the receiver (4). From the receiver (4), the gas refrigerant flows through the bypass path (4a) to the indoor heat exchanger (6), and returns to the compressor (1), whereby the refrigerant circulates. Defrosting is performed.
  • the wetness control means (13) outputs a closing signal of the on-off valve (SV) from point k to the on-off valve (SV). ) Is closed for 20 seconds. That is, the common path (8a) and the bypass path (4a) are both shut off to prevent return of the liquid refrigerant, thereby preventing the wet operation.
  • the closing operation of the on-off valve (SV) is performed only once every 50 seconds as shown in m, and excessive closing operation is prohibited.
  • the defrost executing means ends the defrost operation, turns on the four-way switching valve (2) to switch to the broken line in FIG. 2, and drives the outdoor fan (3f) And start the heating operation by hot start.
  • the frequency step N of the compressor (1) is always set to 6 based on the timer or the discharge pipe temperature Td.
  • the on-off valve (SV) is opened for 2 minutes from the point n to the point o and then closed to prevent a shortage of the refrigerant, and the electric expansion is performed from the point n to the point p. 5) is gradually opened to prevent wet operation.
  • the opening degree of the electric expansion valve (5) and the frequency step N of the compressor (1) are fuzzy controlled so as to reach the optimum discharge pipe temperature. Restart the heating operation of.
  • the electric expansion valve (5) is fully closed before the defrost operation is executed.
  • the cold operation of the liquid refrigerant or the like stored in the outdoor heat exchanger (3) is performed. Since the refrigerant is recovered and defrost operation is started, the amount of heat of condensation is used only for melting ice. Can be Further, the entire area of the outdoor heat exchanger (3) can be used as the condensing area of the gas refrigerant.
  • the defrost capability can be improved, and the defrost time can be shortened.
  • heat is stored in the indoor heat exchanger (6) and the refrigerant before the defrost operation is performed. Since the stored heat is used to melt icing, the defrost capacity is further improved. And the defrost time can be reduced.
  • the reverse cycle defrost operation is executed. In particular, the defrost operation can be performed quickly and efficiently in the forward cycle compared to the frost operation.
  • the receiver (4) is provided in the refrigerant circuit (9).
  • the refrigerant can be reliably collected in the receiver (4), so that the defrost capacity can be improved without fail.
  • the defrost time can be reduced.
  • the current external heat exchange temperature is 4 with respect to the reference external heat exchange temperature Tcl.
  • the refrigerant recovery and the like are terminated. Firstly, the refrigerant recovery and the like can be completed in a short time, so that the defrost operation can be executed quickly.
  • excessive low pressure refrigerant pressure reduction can be prevented.In other words, judgment of only the external heat exchange temperature Tc may result in excessive low pressure refrigerant pressure reduction.
  • the reliability of the compressor (1) can be improved.
  • the on-off valve (SV), the electric expansion valve (5) and the like are opened and closed during the defrost operation.
  • the defrost operation of the present invention is not limited to these. . '
  • the refrigerant circuit (9) is not limited to the embodiment, and for example, may not include the rectifier circuit (8r).
  • the operation control device for an air conditioner is effective for an air conditioner performing a heating operation, and is particularly effective for an air conditioner performing a defrost operation.

Description

明 糸田 書 空気調禾口装置の運車云制御装置 匸技術分野:]
本発明は、空気調和装置の運転制御装置に関し、 特に、 デフロスト運転の開始制 御対策に係るものである。 匚背景技術:!
従来より、 空気調和装置には、 特開昭 6 1 - 1 1 4 0 4 2号公報に開示されてい るように、 圧縮機と、 四路切換弁と、熱源側熱交換器と、逆止弁が並設された暖房用 膨脹弁と、逆止弁が並設された冷房用膨脹弁と、利用側熱交換器とが順に接続されて いるものがある。 そして、 暖房運転時において、 熱源側熱交換器のフィンに着霜が生 ずると、 デフロスト運転を行うようにしている。
更に、上記デフロスト運転を開始する前において、利用側ファンの運転を停止し て利用側熱交換器に高圧冷媒による蓄熱を行い、 その後、 冷房サイクルでデフロスト 運転を実行し、上記蓄熱した冷媒を用いてデフロスト運転を効率よく且つ短時間で終 了するようにしている。
—解決課題—
しかしな力 ら、上述したデフロスト運転制御においては、 デフロスト運転を実行 する前に、単に利用側ファンを停止して蓄熱しているのみであって、膨張弁を全開状 態にしているので、 熱源側熱交換器に液冷媒が溜っている状態でデフロスト運転を開 始することになり、凝縮 «が着氷の融解に使用される他、液冷媒等の低温冷媒に放 熱されることになる。 この結果、 着氷の融解に凝縮熱量が有効に使用されないことになると共に、 熱源 側熱交換器における液冷媒の貯溜部分がガス冷媒の凝縮面積に使用されないことにな り、 デフロスト能力が低く、 デフロスト運転が長くなるという問題があった。
本発明は、 斯かる点に鑑みてなされたもので、冷媒の凝縮 が着氷の融解にの み使用されるようにすると共に、 冷媒の凝縮面積を大きくしてデフロスト能力の向上 とデフロスト時間の短縮とを図ることを目的とするものである。 匚発明の開示:!
上記の目的を達成するために、本発明が講じた手段は、 デフロスト運転の実行前 に膨張機構を全閉にするようにしたものである。 一構成一
具体的に、 図 1に示すように、請求項 1に係る発明が講じた手段は、 先ず、 圧縮 機(1 )と、 熱源側ファン (3f)を有する熱源側熱交換器(3 )と、 開度調整自在な膨張機 構(5 )と、 利用側ファン (6f)を有する利用側熱交換器(6 )とが順に接続され、 少なく とも暖房サイクル運転の可能な冷媒回路(9 )を備えている空気調和装置を前提として いる。
そして、 デフロスト運転を要求するためのデフロスト要求信号を出力するデフ口 スト要求手段 (11)が設けられている。
更に、 該デフロスト要求手段 (11)がデフロスト要求信号を出力すると、上記冷媒 回路( 9 )の暖房サイクル状態で膨張機構( 5 )の開度を全閉にして冷媒を回収する冷媒 回収手段 (12)力設けられている。
加えて、 該冷媒回収手段 (12)による冷媒回収の終了を判定する終了判定手段 (14) と、該終了判定手段 (14)が終了信号を出力すると、 デフロスト運転を実行させるデフ ロスト実行手段 (15)とが設けられている。 また、請求項 2に係る発明が講じた手段は、 上記請求項 1の発明に加えて、 デフ ロスト要求手段 (11)がデフロスト要求信号を出力すると、 利用側ファン (6f)を停止さ せて蓄熱する蓄熱運転手段 (13)が設けられたものである。 また、請求項 3に係る発明が講じた手段は、上記請求項 1又は 2の発明において、 冷媒回路( 9 )が、冷房サイクル運転と暖房サイクル運転とに可;^転可能に構成され る一方、 デフ c ト実行手段 (15)が、逆サイクルデフロスト運転を実行するように構 成されたものである。
また、請求項 4に係る発明が講じた手段は、 上記請求項 1又は 2の発明において、 冷媒回路( 9 )における高圧液ラインには、 液冷媒を貯溜するレシーバ( 4 )が設けられ たものである。 また、請求項 5に係る発明が講じた手段は、上記請求項 1又は 2の発明において、 終了判定手段 (14)が、熱源側温度検出手段 (The)の検出温度信号を受けて、膨張機構 ( 5 )の全閉前における熱源側熱交換器( 3 )の基準冷媒温度 Telに対して現在における 熱源側熱交換器( 3 )の冷媒温度 Tcが所定差温以上に低下すると、終了信号を出力する ように構成されたものである。
また、 請求項 6に係る発明が講じた手段,ま、上記請求項 1又は 2の発明において、 終了判定手段 (14)が、 熱源側温度検出手段(The)の検出温度信号を受けて、熱源側熱 交換器( 3:)の冷媒温度 Tcが所定温度以下に低下すると、終了信号を出力するように構 成されたものである。
また、請求項 7に係る発明が講じた手段は、上記請求項 1又は 2の発明において、 終了判定手段 (14)が、終了判定手段 (14)が、利用側温度検出手段 (The)の検出温度信 号を受けて、利用側熱交換器(6 )の冷媒温度 Teが所定温度以上に上昇すると、 終了信 号を出力するように構成されたものである。
また、 請求項 8に係る発明が講じた手段は、上記請求項 1又は 2の発明において、 終了判定手段 (14)が、 熱源側温度検出手段 (Tiic)及び利用側温度検出手段(The)の検 出温度信号を受けると共に、 タイマ手段 (T1Qのタイム信号を受けて、現在における熱 源側熱交換器( 3 )の冷媒温度 Tcが所定温度以下に低下するか、膨張機構( 5 )の全閉前 における熱源側熱交換器 ( 3 )の基準冷媒温度 T clに対して現在における熱源側熱交換 器( 3 )の冷媒温度 Tcが所定差温以上に低下するか、現在における利用側熱交換器( 6 ) の冷媒温度 Te力所定温度以上に上昇するか、或いは所定時間が経過すると、終了信号 を出力するように構成されたものである。 一作用—
上記の構成により、請求項 1に係る発明では、先ず、 デフロスト要求手段 (11)が デフロスト要求信号を出力すると、 例えば、 デフロスト運転終了後の暖房運転時間と 予め設定した予想デフ口スト運転時間との加算時間で上記積算暖房能力を除算して平 均暖房能力を算出し、該平均暖房能力が前回の平均暖房能力より小さくなると、 デフ ロスト要求信号を出力する。 そして、 このデフロスト要求信号が出力されると、 冷媒回収手段 (12)が、 膨張機 構( 5 )の全閉動作を開始して熱源側熱交換器( 3 )に溜つている液冷媒を回収する。 特 に、 請求項 4に係る発明では、 レシーバ(4 )に冷媒を回収する。 また、請求項 2に係 る発明では、 蓄熱運転手段 (13)が、 利用側ファン (6f)を停止して熱源側熱交換器(3 ) に高圧冷媒による蓄熱を行う。 この冷媒回収及び蓄熱動作は、終了判定手段 (14)が終了を判定し、具体的に、請 求項 5に係る発明では、 蓄熱開始前の熱源側熱交換器 ( 3 )の基準冷媒温度 T clより現 在の冷媒温度 Tcが所定差温より低下すると、終了信号を出力し、 また、請求項 6に係 る発明では、熱源側熱交換器(3 )の冷媒温度 Tcが所定温度より低下すると、終了信号 を出力し、 また、請求項 7に係る発明では、 利用側熱交換器(6 )の冷媒温度 Teが所定 温度より上昇すると、終了信号を出力し、 また、 請求項 8に係る発明では、 所定時間 行うか、上記請求項 3〜 5の発明の条件になると、終了信号を出力することになる。 この終了信号によってデフロスト実行手段 (15)がデフロスト運転を開始し、特に、 請求項 3に係る発明では、逆サイクルデフロスト運転を実行して着氷を融解すること になる。
—効果- 従って、請求項 1に係る発明によれば、 デフロスト運転の実行前に膨張機構(5 ) を全閉にするようにした、めに、 熱源側熱交換器( 3 )に溜っている液冷媒等の冷たい 冷媒を回収してデフロスト運転を開始することになるので、凝縮熱量を着氷の融解に のみ使用することができる。 また、上記室外熱交換器における全面積をガス冷媒の凝 縮面積に使用することができる。
この結果、 デフロスト能力を向上させることができると共に、 デフロスト時間を 短縮することができる。 また、請求項 2に係る発明によれば、 デフロスト運転の実行前に利用側熱交換器 ( 6 )及び冷媒に蓄熱するようにした、め ί―、 この蓄熱した m»を利用して着氷の融解 を行うので、 よりデフロスト能力を向上させることができると共に、 デフロスト時間 を短縮することができる。 まだ、 請求項 3に係る発明によれば、逆サイクルデフロスト運転を実行するよう にした、めに、 正サイクルでフロスト運転に比してデフロスト運転を迅速且つ効率よ く行うことができる。
また、請求項 4に係る発明によれば、冷媒回路(9 )にレシーバ(4 )を設けるよう にした、めに、該レシーバ(4 )に冷媒を確実に回収することができるので、 デフロス ト能力を確実に向上させることができると共に、 デフロスト時間を短縮することがで きる。 また、請求項 5及び 8に係る発明によれば、熱源側熱交換器(3 )の基準冷媒温度 Telに対して現在の冷媒 Tcが所定差温以上に低下すると、冷媒回収等を終了する ようにした、めに、 冷媒回収等を短時間で終了することができるので、 デフロスト運 転を迅速に実行することができる。 更に、過度の低圧冷媒圧力の低下を防止すること ができ、 つまり、冷媒温度 Tcのみの判定では、過度に低圧冷媒圧力力低下する場合が あることから、 この低下を防止して圧縮機( 1 )の信頼性を向上させることができる。 また、 請求項 6及び 8に係る発明によれば、 熱源側熱交換器(3 )の冷媒温度 Tcが 所定温度より低下すると、冷媒回収等を終了するようにした、めに、 低圧冷媒圧力の 過低下を防止することができる。
また、請求項 7及び 8に係る発明によれば、利用側熱交換器(6 )の冷媒温度 Teが 所定温度より上昇すると、冷媒回収等を終了するようにした、めに、高圧冷媒圧力の 過上昇を確実に防止することができる。 匸図面の簡単な説明:]
図 1は、 本発明の構成を示すブロック図である。
図 2は、請求項 1〜 8の発明の実施例を示す冷媒回路図である。 図 3は、 デフロスト運転の制御を示すタイミング図である。 匸発明を実施するための最良の形態コ 以下、 本発明の実施例を図面に基づいて詳細に説明する。
図 2は、 本発明を適用した空気調和装置の冷媒配管系統を示し、一台の室外ュニ ット(A )に対して一台の室内ュニット(B )が接続されたいわゆるセパレートタイプの ものである。 上記室外ュニッ K A )は、 インバータにより運転周波数を可変に調節されるスク ロールタイプの圧縮機(1 )と、冷房運転時に図中実線の如く、 暖房運転時に図中破線 の如く切換わる四路切換弁(2 )と、冷房運転時に凝縮器として、暖房運転時に蒸発器 として機能する熱源側熱交換器である室外熱交換器(3 )と、冷媒を減圧するための減 圧部 (20)とを備えており、上記室外熱交換器(3 )には熱源側フ 7ンである室外ファン (3f)が設けられている。
また、 室内ュニット(B)は、冷房運転時に蒸発器として、 暖房運転時に凝縮器と して機能する利用側熱交換器である室内熱交換器( 6 )が配置され、 上記室内熱交換器 ( 6 )には利用側ファンである室内ファン(6f)が設けられている。
そして、上記圧縮機( 1 )と四路切換弁( 2 )と室外側熱交換器( 3 )と減圧部 (20)と 室内側熱交換器(6 )とは、冷媒配管(8 )により順次接続され、 冷媒の循環により熱移 動を生ぜしめるようにした冷媒回路( 9 )が構成されている。 上記減圧部 (20)は、 ブリッジ状の整流回路 (8r)と、該整流回路 (8r)における一対 の接続点 (P, Q)に接続された共通路 (8a)とを備え、該共通路 (8a)には、常時高圧液ラ ィンとなる上流側共通路 (8X)に位置して液冷媒を貯溜するためのレシーバ(4 )と、 室 外熱交換器( 3 )の補助熱交換器 (3a)と、 液冷媒の減圧機能及び' 調節機能を有する 膨張機構である開度調整自在な電動膨張弁( 5 )とが直列に配置されている。 そして、 上記整流回路 (8r)における他の一対の接続点 (R, S)には、上記室外熱交換器(3 )側の 冷媒配管( 8 )と室内熱交換器( 6 )側の冷媒配管( 8 )と力接続され、 上記圧縮機( 1 )か ら四路切換弁( 2 )と室外側熱交換器( 3 )とを経て整流回路 (8r)と共通路 (8a)とを繋ぐ と共に、 該整流回路 (8r)から室内側熱交換器( 6 )と四路切換弁( 2 )とを経て圧縮機 ( 1 )を繋ぐメインライン (9a)が構成されている。
更に、上記整流回路 (8r)は、 上記共通路 (8a)の上流側接続点(P )と室外熱交換器 ( 3 )側の接続点( S )とを繋ぎ室外熱交換器( 3 )からレシーバ( 4 )への冷媒流通のみを 許容する第 1逆止弁 (D1)を備えた第 1流入路(8bl)と、上記共通路 (8a)の上流側接続 点( P )と室内熱交換器( 6 )側の接続点( R )とを繋ぎ室内熱交換器( 6 )からレシーバ ( 4 )への冷媒流通のみを許容する第 2逆止弁 (D2)を備えた第 2流入路(8b2)と、上記 共通路 (8a)の下流側接続点( Q )と室内熱交換器( 6 )側の接 R )とを繋ぎ電動膨張 弁( 5 )から室内熱交換器( 6 )への冷媒流通のみを許容する第 3逆止弁 (D3)を備えた第 1流出路(8cl)と、上記共通路 (8a)の下流側接続点( Q )と室外熱交換器( 3 )側の接続 点( S )とを繋ぎ電動膨張弁( 5 )から室外熱交換器( 3 )への冷媒流通のみを許容する第 4逆止弁 (D4)を備えた第 2流出路(8c2)とが設けられている。 また、 上記整流回路 (8r)における共通路 (8a)の両接続点 (P, Q)の間には、 キヤピ ラリチューブ(C )を介設してなる液封防止バイパス路 (8f)が設けられて、該液封防止 ノ ィパス路 (8f)により、圧縮機(1 )の停止時における液封を防止している。 また、上 記レシ一バ( 4 )の上部と、下流側共通路 (8Y)であつて常時低圧液ラインとなる電動膨 張弁( 5 )より下流側との間には、 開閉手段である開閉弁 (SV)力設けられて上記電動膨 張弁(5 )をバイパスするバイパス路 (4a)が接続されてレシーバ(4 )内のガス冷媒を抜 - <ようになっている。 尚、上記キヤビラリチューブ(C )の減圧度は電動膨張弁(5 )よノも十分大きくな るように設定されていて、通常運転時における電動膨張弁( 5 )による冷媒流量調節機 能を良好に維持し得るようになされている。
また、 (F1,〜, F4)は、冷媒中の塵埃を除去するためのフィルタ、 (ER)は、 圧縮機 ( 1 )の運転音を低減させるための消音器である。 更に、 上記空気調和装置にはセンサ類力設けられていて、 (Thd)は、圧縮機(1 ) の吐出管に配置されて吐出管温度 Tdを検出する吐出管センサ、 (Tha)は、 室外ュニッ ト( A )の空気吸込口に配置されて外気温度である室外空気温度 Taを検出する室外吸込 センサ、 (The)は、 室外熱交換器(3 )に配置されて、 冷房運転時には凝縮温度となり、 暖房運転時には蒸発温度となる外熱交温度 Tcを検出する熱源側 検出手段である外 熱交センサ、 (Thr)は、 室内ュニット(B )の空気吸込口に配置されて室内温度である 室内空気温度 Trを検出する室内吸込センサ、 (The)は、 室内熱交換器(6 )に配置され て、冷房運転時には蒸発温度となり、 暖房運転時には凝縮温度となる内熱交温度 Teを 検出する利用側 検出手段である内熱交センサ、 (HPS)は、 高圧冷媒圧力を検出し て、該高圧冷媒圧力の過上昇によりオンとなって高圧信号を出力する高圧圧力スィッ チ、 (LPS)は、 低圧冷媒圧力を検出して、該低圧冷媒圧力 f 通下によりオンとなつ て低圧信号を出力する低圧圧力スィツチである。 そして、 上記各センサ (Thd, 〜, The)及び各スィッチ (HPS, LPS)の出力信号は、 コントローラ(10)に入力されており、該コントローラ(10)は、 入力信号に基づいて空 調運転を制御するように構成されている。
上述した冷媒回路(9 )において、冷房運転時には、 室外熱交換器(3 )で凝縮して 〜液化した液冷媒が第 1流入路(8bl)から流入し、 第 1逆止弁 (D1)を経てレシーバ( 4 ) に貯溜され、電動膨張弁(5 )で減圧された後、 第 1流出路(8c l)を経て室内熱交換器 ( 6 )で蒸発して圧縮機(1 )に戻る循環となる一方、瑕房運転時には、 室内熱交換器 ( 6 )で凝縮して液化した液冷媒が第 2流入路( 8 b 2 )から流入し、第 2逆止弁 (D2)を経 てレシーバ(4 )に貯溜され、 電動膨張弁(5 )で減圧された後、 第 2流出路(8c2)を経 て室外熱交換器( 3 )で蒸発して圧縮機( 1 )に戻る循環となる。
一方、上記コントローラ(10)は、 インバ一夕の運転周波数を零から最大周波数ま で 2 0ステップ Nに区分して、各周波数ステップ Nを吐出管温度 Tdが最適吐出管温度 になるように圧縮機( 1 )の容量を制御すると共に、 吐出管温度 Tdが最適吐出管温度に なるように電動膨張弁( 5 )の開度を制御している。 また、上記コントローラ(10)には、本発明の特徴として、 デフロスト要求手段 (11)と冷媒回収手段 (12)と蓄熱運転手段 (13)と終了判定手段 (14)とデフロスト実行手 段 (15)とを備えている。
該デフロスト要求手段 (11)は、冷媒回路(9 )が所定状態になるとデフロスト要求 信号を出力し、 例えば、 デフロスト運転の終了後の暖房運転開始からの積算暖房能力 を記憶すると共に、 デフロスト運転終了後の暖房運転時間と予め設定した予想デフ口 スト運転時間との加算時間で上記積算暖房能力を除算して平均暖房能力を算出し、 該 平均暖房能力が前回の平均暖房能力より小さくなると、 デフロスト要求信号を出力す ることになつている。 上記冷媒回収手段 (12)は、 デフロスト要求手段 (11)がデフロスト要求信号を出力 すると、上記冷媒回路( 9 )の暖房サイクル状態で «膨張弁( 5 )の開度を全閉にして 冷媒をレシーバ( 4 )に回収するように構成されている。
上記蓄熱運転手段 (13)は、 デフロスト要求手段 (11)がデフロスト要求信号を出力 -すると、室内ファン (6f)を停止させ、室内熱交換器に高圧冷媒による蓄熱を行うよう に構成されている。 上記終了判定手段 (14)は、冷媒回収手段 (12)による冷媒回収の終了及び蓄熱運転 手段 (13)による蓄熱の終了を判定するように構成され、 具体的に、終了判定手段 (14) は、上記外熱交センサ(The)及び内熱交センサ(The)の検出温度信号を受けると共に、 デフロスト要求手段 (11)がデフロスト要求信号を出力するとスター卜するタイマ手段 (TM)のタイム信号を受けて、
① 現在における外熱交温度 Tc力所定温度以下に低下するか、例えば、 — 3 0 °C より低下するか、
② 電動膨張弁(5 )の全閉前における基準外熱交温度 Tel, 対して現在における 外熱交温度 Tcが所定差温以上に低下するか、 例えば、 差温が 4 °Cより大きくな るか、
③ 現在における内熱交温度 Teが所定温度以上に上昇するか、 例えば、 3 5 °Cよ り上昇するか、
④ 所定時間が経過するか、例えば、室内ファン (6f )を停止してから 1 0秒が経 過するか、
の何れかに該当すると、 終了信号を出力することになる。 上記デフロスト実行手段 (15)は、終了判定手段 (14)が終了信号を出力すると、上 記電動膨張弁( 5 )及び上記開閉弁 (SV)を開閉制御して逆サイクルデフ口ス卜運転を実 行するように構成されている。 また、上記デフロスト実行手段 (15)は、圧縮機(1 )の 周波数ステップ Nが 6に低下した場合、 吐出管温度 Tdが 1 1 0 °Cより低下した場合、 或いはデフロスト運転時間が 1 0分より長くなつた場合の何れかに該当すると、 デフ ロスト運転を終了するようになっている。 ーテノロスト埋 励作一
次に、上記空気調和装置におけるデフロスト運転の制御動作について図 3に示す タイミング図に基づき説明する。
先ず、 暖房サイクル運転時においては、 a点から b点に示すように、 四路切換弁 ( 2 )を O N状態にし、 つまり、 図 2に示す破線に切換え、 電動膨張弁(5 )の開度及び 圧縮機( 1 )の周波数ステップ Nを最適吐出管温度になるようにフアジィ制御して暖房 運転を行っている。
この b点において、 デフロスト要求手段 (11)は、 デフロスト運転終了後の暖房運 転時間と予め設定した予想デフロスト運転時間との加算時間で上記積算暖房能力を除 算して平均暖房能力を算出し、該平均暖房能力が前回の平均暖房能力より小さくなる と、 デフロスト要求信号を出力する。 このデフロスト要求信号が出力されると、 c点 まで室内ュニット(B )のデフロスト運転準備の完了を待ち、例えば、 ヒータの処理等 を待った後、 低圧圧力スィッチ(LPS)をマスクして d点まで 3 5秒待機し、 つまり、 四路切換弁( 2 )を切換える圧縮機( 1 )の周波数ステツプ Nが 6であるので、 この周波 数ステップ Nになるまで待機する。 その後、本発明の特徴として、冷媒回収手段 (12)が、 d点から電動膨張弁(5 )の 開度を 0パルスにする全閉動作を開始して室外熱交換器( 3 )に溜っている液冷媒をレ シ一バ(4 )に回収する。
そして、 この電動膨張弁(5 )が全閉になるに必要な時間が経過すると、 e点にお いて、 本発明の特徴として、 蓄熱運転手段 (13)が、室内ファン (6f)を停止して室内熱 交換器 ( 6 )に高圧冷媒による蓄熱を行う。 この冷媒回収及び蓄熱動作は、終了判定手段 (14)が終了を判定し、最大 1 0秒間 行うか、又は、 内熱交温度 Teが 3 5 °Cより上昇するか、外熱交温度 Tcが— 3 0 °Cより -低下するか、 或いは、蓄熱開始前の基準外熱交温度 Tel (具体的に、 d点の温度) よ り現在の外熱交- Tcが 4 °Cより低下すると、終了する (f点参照) 。 つまり、 上記内熱交温度 Teが 35°Cより上昇した場合に終了するのは、 高圧上昇 を防止するためで、 外熱交温度 Tcがー 35。Cより低下した場合に終了するのは、 低圧 圧力が低下して冷媒が少なく、冷媒回収の必要がなくなつたからで、 差温が 4 °Cより 大きくなつた場合は、 ある程度の冷媒が回収されたと考えられるからである。 その後、 この f点において、 デフロスト実行手段 (15)は、 室外ファン (3f)を停止 すると共に、 四路切換弁(2)を切換え、 つまり、 デフロスト要求信号に基づいて四路 切換弁( 2 )を図 2実線に切換えて冷房サイクルに設定し、圧縮機( 1 )から吐出された 高温の冷媒を室外熱交換器( 3 )に供給して逆サイクルデフ口スト運転を開始すること になる。
このデフロスト運転が開始されると、上記電動膨張弁(5)を 0パルスの全閉にし たま、開閉弁 (SV)も閉鎖し、 共通路 (8a)及びバイパス路 (4a)を共に遮断する。 つまり、 上記四路切換弁(2)の切換えによって、 冷媒回路(9)内の圧力カ逆転し、 レシーバ ( 4 )から高温高圧の液冷媒が室外熱交換器( 3 )及び室内熱交換器( 6 )に流れることを 防止している。 その後、上記 15秒が経過すると、 g点において、 デフロスト実行手段 (15)が開 閉弁 (SV)を開放し、 圧縮機(1)の運転周波数 Nを徐々に高くし、圧縮機(1)からの吐 出冷媒が室外熱交換器(3)で凝縮して着霜を融解し、 レシーバ(4)に流れる。 このレ シ一バ(4)からは、 ガス冷媒がバイパス路 (4a)を通って室内熱交換器(6)に流れ、圧 縮機(1)に戻ることになり、 この冷媒循環が行われてデフロス卜が行われる。
続いて、上記デフロスト運転時において、 吐出管温度 Tdが 90°Cより上昇すると、 h点から i点において、 電動膨張弁(5)の開閉信号を出力し、電動膨 51 (5)を一旦 、200パルスまで開動して閉動する。 つまり、上記レシーバ(4)内から液冷媒を室内 熱交換器(6)に流し、過熱運転を防止している。 そして、 この電動膨張弁(5)の開閉 動作は、 jに示すように、 1分間に 1回のみ行い、過度の開閉動作を禁止している。 一方、上記デフロスト運転時において、 吐出管温度 Tdが 8 5 °Cより低下すると、 k点から 点において、 湿り制御手段 (13)が開閉弁 (SV)の閉鎖信号を出力し、 開閉弁 (SV)を 20秒閉鎖する。 つまり、上記共通路 (8a)及びバイパス路 (4a)を共に遮断して液 冷媒の戻りを阻止し、上記湿り運転を防止している。 そして、 この開閉弁 (SV)の閉鎖 動作は、 mに示すように、 5 0秒間に 1回のみ行い、過度の閉鎖動作を禁止している。
その後、圧縮機(1 )の周波数ステップ Nが 6に低下した場合、 吐出管温度 Tdが 1 1 0 °Cより上昇した場合、 或いはデフロスト運転時間が 1 0分より長くなつた場合 の何れかに該当すると、 n点に示すように、 デフロスト実行手段 (15)はデフロスト運 転を終了し、 四路切換弁(2 )を O Nして図 2の破線に切換えると共に、室外ファン (3f)を駆動して暖房運転をホットスタートで開始する。 尚、 このデフロスト運転を終 了する前は、 タイマ或いは吐出管温度 Tdに基づいて圧縮機( 1 )の周波数ステツプ Nが 必ず 6になるようにしている。 そして、上記デフロスト運転が終了すると、 n点から o点において、 開閉弁 (SV) を 2分間開放した後に閉鎖して冷媒不足を防止すると共に、 n点から p点において、 電動膨? 1^( 5 )を徐々に開動して湿り運転を防止、 その後、電動膨張弁(5 )の開度及 び圧縮機( 1 )の周波数ステップ Nを最適吐出管温度になるようにフアジィ制御して通 常の暖房運転を再開する。
—実施例の特有の効果一
従って、 本実施例によれば、 デフロスト運転の実行前に電動膨張弁(5 )を全閉に 、するようにした、めに、室外熱交換器( 3 )に溜つている液冷媒等の冷たい冷媒を回収 してデフロスト運転を開始することになるので、凝縮熱量を着氷の融解にのみ使用す ることができる。 また、上記室外熱交換器(3 )における全面積をガス冷媒の凝縮面積 に使用することができる。
この結果、 デフロスト能力を向上させることができると共に、 デフロスト時間を 短縮することができる。 ' また、 デフロスト運転の実行前に室内熱交換器(6 )及び冷媒に蓄熱するようにし た、めに、 この蓄熱した熱量を利用して着氷の融解を行うので、 よりデフロスト能力 を向上させることができると共に、 デフロスト時間を短縮することができる。 また、 逆サイクルデフロスト運転を実行するようにした、めに、正サイ ルでフ ロスト運転に比してデフロスト運転を迅速且つ効率よく行うことができる。
また、 冷媒回路(9 )にレシーバ(4 )を設けるようにした、めに、該レシーバ(4 ) に冷媒を確実に回収することができるので、 デフロスト能力を確実に向上させること ができると共に、 デフロスト時間を短縮することができる。 また、基準外熱交温度 T clに対して現在の外熱交温度 が 4。Cより低下すると、 冷媒回収等を終了するようにした、めに、冷媒回収等を短時間で終了することができ るので、 デフロスト運転を迅速に実行することができる。 ^に、過度の低圧冷媒圧力 の低下を防止することができ、 つまり、 外熱交温度 Tcのみの判定では、過度に低圧冷 媒圧力が低下する場合があることから、 この低下を防止して圧縮機( 1 )の信頼性を向 上させることができる。
また、 外熱交温度 Tcがー 3 0 °Cより低下すると、冷媒回収等を終了するようにし た、めに、低圧冷媒圧力の過低下を防止することができる。
、 また、 内熱交温度 Teが 3 5°Cより上昇すると、上記冷媒回収等を終了するように した、めに、 高圧冷媒圧力の過上昇を確 に防止することができる。 —その他の変形例—
尚、上記実施例においては、 デフロスト運転中において、 開閉弁 (SV)及び電動膨 張弁(5 )等を開閉するようにしたが、 本発明のデフロスト運転は、 これらに限定され るものではない。 '
また、 請求項 1の発明においては、 蓄熱運転を行わないものであってもよいこと は勿論である。
また、冷媒回路(9 )は、 実施例に限定されるものではなく、例えば、 整流回路 (8r)を有しないものであってもよい。
[産業上の禾 'J用分野]
以上のように、本発明による空気調和装置の運転制御装置は、 暖房運転を行う空 気調和装置に有効であり、特に、 デフロスト運転を行う空気調和装置に効果を発揮す る。

Claims

言青 求 の 範 囲
1. 圧縮機( 1 )と、 熱源側ファン (3f)を有する熱源側熱交換器( 3 )と、 開度調整自 在な膨張機構( 5 )と、利用側ファン (6f)を有する利用側熱交換器( 6 )とが順に接続 され、少なくとも暖房サイクル運転の可能な冷媒回路(9 )を備えている空気調和装 置において、
デフロスト運転を要求するためのデフロスト要求信号を出力す デフロスト要 求手段 (11)と、
該デフロスト要求手段 (11)がデフロスト要求信号を出力すると、上記冷媒回路 ( 9 )の暖房サイクル状態で膨張機構( 5 )の開度を全閉にして冷媒を回収する冷媒回 収手段 (12)と、
該冷媒回収手段 (12)による冷媒回収の終了を判定する終了判定手段 (14)と、 該終了判定手段 (14)が終了信号を出力すると、 デフロスト運転を実行させるデ フロスト実行手段 (15)と
を備えていることを特徴とする空気調和装置の運転制御装置。
2. 圧縮機(1 )と、熱源側ファン (3f)を有する熱源側熱交換器(3 )と、 開度調整自 在な膨張機構( 5 )と、利用側ファン (6f)を有する利用側熱交換器( 6 )とが順に接続 されてなる冷媒回路(9 )を備え、少なくとも暖房サイクル運転の可能な空気調和装 置において、
デフロスト運転を要求するためのデフロスト要求信号を出力するデフロスト要 求手段 (11)と、
該デフロスト要求手段 (11)がデフロスト要求信号を出力すると、上記冷媒回路 ( 9 )の暖房サイクル状態で膨張機構( 5 )の開度を全閉にして冷媒を回収する冷媒回 収手段 (12)と、 上記デフロスト要求手段 (11)がデフロスト要求信号を出力すると、 利用側ファ ン (6f)を停止させて蓄熱する蓄熱運転手段 (13)と、
上記冷媒回収手段 (12)による冷媒回収の終了及び蓄熱運転手段 (13)による蓄熱 の終了を判定する終了判定手段 (14)と、
該終了判定手段 (14)が終了信号を出力すると、 デフロスト運転を実行させるデ フロスト実行手段 (15)と
を備えていることを特徴とする空気調和装置の運転制御装置。
3. 請求項 1又は 2記載の空気調和装置の運転制御装置において、
冷媒回路( 9 )は、 冷房サイクル運転と暖房サイクル運転とに可逆運転可能に構 成される一方、
デフロスト実行手段 (15)は、逆サイクルデフロスト運転を実行するように構成 されている
ことを特徴とする空気調和装置の運転制御装置。
4. 請求項 1又は 2記載の空気調和装置の運転制御装置において、
冷媒回路( 9 )における高圧液ラインには、液冷媒を貯溜するレシーバ( 4 )が設 けられている
ことを特徴とする空気調和装置の運転制御装置。
5. 請求項 1又は 2記載の空気調和装置の運転制御装置において、
熱源側熱交換器(3 )における冷媒温度 Tcを検出する熱源側温度検出手段(The) が設けられる一方、
終了判定手段 (14)は、上記熱源側温度検出手段 (The)の検出温度信号を受けて、 膨張機構( 5 )の全閉前における熱源側熱交換器( 3 )の基準冷媒温度 Telに対して現 在における熱源側熱交換器( 3 )の冷媒温度 Tcが所定差温以上に低下すると、 終了信 号を出力するように構成されている
ことを特徴とする空気調和装置の運転制御装置。
6. 請求項 1又は 2記載の空気調和装置の運転制御装置において、
熱源側熱交換器( 3 )における冷媒温度 Tcを検出する熱源側温度検出手段 (The) が設けられる一方、
終了判定手段 (14)は、上記熱源側温度検出手段 (The)の検出温度信号を受けて、 熱源側熱交換器( 3 )の冷媒温度 Tcが所定温度以下に低下すると、終了信号を出力す るように構成されている
ことを特徴とする空気調和装置の運転制御装置。
7. 請求項 1又は 2記載の空気調和装置の運転制御装置において、
利用側熱交換器( 6 )における冷媒温度 Teを検出する利用側温度検出手段 (The) が設けられる一方、
終了判定手段 (14)は、上記利用側温度検出手段 (The)の検出温度信号を受けて、 利用側熱交換器( 6 )の冷媒温度 Teが所定温度 j¾±に上昇すると、 終了信号を出力す るように構成されている
ことを特徴とする空気調和装置の運転制御装置。
8. 請求項 1又は 2記載の空気調和装置の運転制御装置において、
熱源側熱交換器(3 )における冷媒温度 Tcをも fる熱源側温度検出手段 (The) 利用側熱交換器( 6 )における冷媒温度 Teを検出する利用側温度検出手段 (The) と、 デフロスト要求手段 (11)がデフロスト要求信号を出力するとスター卜するタイ マ手段 (TM)と力設けられる一方、
終了判定手段 (14)は、上記熱源側温度検出手段 (The)及び利用側温度検出手段 (The)の検出温度信号を受けると共に、 タ マ手段 (TM)のタイム信号を受けて、現 在における熱源側熱交換器( 3 )の冷媒温度 Tcが所定温度以下に低下するか、 膨張機 構( 5 )の全閉前における熱源側熱交換器( 3 )の基準冷媒温度 Telに対して現在にお ける熱源側熱交換器( 3 )の冷媒温度 Tcが所定差温以上に低下するか、現在における 利用側熱交換器( 6 )の冷媒温度 Teが所定温度以上に上昇するか、 或 Lゝは所定時間が 経過すると、終了信号を出力するように構成されている
ことを特徵とする空気調和装置の運転制御装置。
PCT/JP1994/001784 1993-10-29 1994-10-25 Dispositif de commande pour equipement de climatisation WO1995012098A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP94930358A EP0676602A4 (en) 1993-10-29 1994-10-25 DEVICE FOR OPERATING CONTROL OF AN AIR CONDITIONING.
US08/454,276 US5689964A (en) 1993-10-29 1994-10-25 Operation control device for air conditioner
AU79502/94A AU669460B2 (en) 1993-10-29 1994-10-25 Operation control device for air conditioning equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5/272011 1993-10-29
JP5272011A JPH07120121A (ja) 1993-10-29 1993-10-29 空気調和装置の運転制御装置

Publications (1)

Publication Number Publication Date
WO1995012098A1 true WO1995012098A1 (fr) 1995-05-04

Family

ID=17507894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/001784 WO1995012098A1 (fr) 1993-10-29 1994-10-25 Dispositif de commande pour equipement de climatisation

Country Status (6)

Country Link
US (1) US5689964A (ja)
EP (1) EP0676602A4 (ja)
JP (1) JPH07120121A (ja)
CN (1) CN1116000A (ja)
AU (1) AU669460B2 (ja)
WO (1) WO1995012098A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7209972B1 (en) 1997-10-30 2007-04-24 Commvault Systems, Inc. High speed data transfer mechanism

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5809789A (en) * 1997-05-07 1998-09-22 Baker; Philip L. Refrigeration module
JP3609286B2 (ja) * 1999-05-25 2005-01-12 シャープ株式会社 空調機器
US6810683B2 (en) * 2003-02-11 2004-11-02 General Motors Corporation Thermostatic expansion valve exit flow silencer device
CN1719130B (zh) * 2004-07-08 2010-06-23 乐金电子(天津)电器有限公司 空调机的除霜运行控制方法
JP4075933B2 (ja) 2006-01-30 2008-04-16 ダイキン工業株式会社 空気調和装置
JP4211847B2 (ja) * 2007-01-17 2009-01-21 ダイキン工業株式会社 冷凍装置
JP5053430B2 (ja) * 2010-10-05 2012-10-17 シャープ株式会社 空気調和機
US9816739B2 (en) 2011-09-02 2017-11-14 Carrier Corporation Refrigeration system and refrigeration method providing heat recovery
CN104736951B (zh) * 2012-10-18 2017-03-08 大金工业株式会社 空调装置
US20170100985A1 (en) * 2015-10-09 2017-04-13 Ritchie Engineering Company, Inc. Refrigeration efficiency monitoring system
CN105674651B (zh) * 2016-02-17 2019-05-17 广东美芝制冷设备有限公司 空调器及其冷媒含量的调节方法
DE102016203895A1 (de) * 2016-03-09 2017-09-14 BSH Hausgeräte GmbH Kältegerät mit einem Gefrierfach und einem Kältemittelkreis und Verfahren zum Betrieb eines Kältegeräts
WO2017221315A1 (ja) * 2016-06-21 2017-12-28 三菱電機株式会社 除霜判断機器、除霜制御機器及び空気調和機
CA2995779C (en) 2017-02-17 2022-11-22 National Coil Company Reverse defrost system and methods
CN107178940A (zh) * 2017-05-23 2017-09-19 青岛海尔空调器有限总公司 空调器及其除霜控制方法
CN107606725B (zh) * 2017-09-11 2020-06-05 广东美的制冷设备有限公司 蓄热化霜控制方法、控制装置和空调器
US11493260B1 (en) 2018-05-31 2022-11-08 Thermo Fisher Scientific (Asheville) Llc Freezers and operating methods using adaptive defrost
CN110762694A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762761A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762879A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762705B (zh) * 2018-07-28 2022-09-06 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762711B (zh) * 2018-07-28 2022-11-18 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762760A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762882A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762878A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762696A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762880A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762759B (zh) * 2018-07-28 2022-10-28 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762708A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762720A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762703B (zh) * 2018-07-28 2022-09-06 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762811B (zh) * 2018-07-28 2022-10-28 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762884A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762762A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762719A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762724A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762721B (zh) * 2018-07-28 2022-04-19 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762712A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762751A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762883A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762722A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762697A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762695A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762704B (zh) * 2018-07-28 2022-11-18 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762886A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762813A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762725A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762718A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762710A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762765B (zh) * 2018-07-28 2022-10-28 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762726A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762702B (zh) * 2018-07-28 2022-11-18 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762810A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762716A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762881A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762699A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762723A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762809A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762814B (zh) * 2018-07-28 2022-10-28 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762877A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762698A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762700A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762717A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762763B (zh) * 2018-07-28 2022-10-28 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762727B (zh) * 2018-07-28 2022-11-18 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110762885A (zh) * 2018-07-28 2020-02-07 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
JP7436932B2 (ja) * 2020-12-01 2024-02-22 ダイキン工業株式会社 冷凍サイクルシステム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565954U (ja) * 1979-06-26 1981-01-20
JPH04194539A (ja) * 1990-11-28 1992-07-14 Hitachi Ltd 空気調和機
JPH04350480A (ja) * 1991-05-29 1992-12-04 Daikin Ind Ltd デフロスト制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3240028A (en) * 1963-04-26 1966-03-15 Howard W Redfern Heat pump defrosting system
US4602485A (en) * 1983-04-23 1986-07-29 Daikin Industries, Ltd. Refrigeration unit including a hot gas defrosting system
JPS61114042A (ja) * 1984-11-07 1986-05-31 Daikin Ind Ltd 空気調和機の除霜制御装置
JPH079331B2 (ja) * 1986-12-26 1995-02-01 松下電器産業株式会社 ヒートポンプ式空気調和機の運転制御方法
US4949551A (en) * 1989-02-06 1990-08-21 Charles Gregory Hot gas defrost system for refrigeration systems
JPH02134481U (ja) * 1989-04-07 1990-11-08
US4979371A (en) * 1990-01-31 1990-12-25 Hi-Tech Refrigeration, Inc. Refrigeration system and method involving high efficiency gas defrost of plural evaporators
FR2667682B1 (fr) * 1990-10-03 1992-12-04 Sereth Dispositif de degivrage pour installation frigorifique.
WO1994020803A1 (en) * 1993-03-08 1994-09-15 Greenhalgh Refrigeration Pty Ltd Refrigeration process and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565954U (ja) * 1979-06-26 1981-01-20
JPH04194539A (ja) * 1990-11-28 1992-07-14 Hitachi Ltd 空気調和機
JPH04350480A (ja) * 1991-05-29 1992-12-04 Daikin Ind Ltd デフロスト制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0676602A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7209972B1 (en) 1997-10-30 2007-04-24 Commvault Systems, Inc. High speed data transfer mechanism

Also Published As

Publication number Publication date
CN1116000A (zh) 1996-01-31
EP0676602A4 (en) 1998-01-21
US5689964A (en) 1997-11-25
EP0676602A1 (en) 1995-10-11
AU669460B2 (en) 1996-06-06
JPH07120121A (ja) 1995-05-12
AU7950294A (en) 1995-05-22

Similar Documents

Publication Publication Date Title
WO1995012098A1 (fr) Dispositif de commande pour equipement de climatisation
JP3341404B2 (ja) 空気調和装置の運転制御装置
JP2500522B2 (ja) 冷凍装置の運転制御装置
JP2500519B2 (ja) 空気調和装置の運転制御装置
US4869074A (en) Regenerative refrigeration cycle apparatus and control method therefor
JPH04270876A (ja) ヒートポンプ式空気調和機の除霜制御装置
JP4269476B2 (ja) 冷凍装置
JP4499863B2 (ja) マルチ形空気調和機
JPH1038387A (ja) 空気調和機の運転制御装置
JPH0528439Y2 (ja)
JP2903862B2 (ja) 冷凍装置の運転制御装置
JP2822764B2 (ja) 空気調和装置の室外ファンの運転制御装置
JPH0493541A (ja) 空気調和装置の運転制御装置
JPH0694954B2 (ja) 冷凍装置の過熱度制御装置
JPH0772647B2 (ja) 空気調和機の均圧装置
JPH05322389A (ja) 空気調和装置
JPH04251144A (ja) 空気調和装置の運転制御装置
JPH0828930A (ja) 空気調和機
JP2002081778A (ja) 冷凍装置
JPH0626688A (ja) 空気調和装置の運転制御装置
JP2634267B2 (ja) 空気調和機の凍結防止装置
JPH0827107B2 (ja) 空気調和装置の運転制御装置
JPH06341741A (ja) 冷凍装置のデフロスト制御装置
JPH0217370A (ja) 空気調和装置の運転制御装置
JP2541178B2 (ja) 冷凍装置の運転制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 94190846.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1994930358

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08454276

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994930358

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1994930358

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1994930358

Country of ref document: EP