WO1995006121A2 - Rekombinante chladosporium herbarum allergene - Google Patents

Rekombinante chladosporium herbarum allergene Download PDF

Info

Publication number
WO1995006121A2
WO1995006121A2 PCT/AT1994/000120 AT9400120W WO9506121A2 WO 1995006121 A2 WO1995006121 A2 WO 1995006121A2 AT 9400120 W AT9400120 W AT 9400120W WO 9506121 A2 WO9506121 A2 WO 9506121A2
Authority
WO
WIPO (PCT)
Prior art keywords
gly
recombinant
ala
allergens
glu
Prior art date
Application number
PCT/AT1994/000120
Other languages
English (en)
French (fr)
Other versions
WO1995006121A3 (de
Inventor
Gernot Achatz
Hannes Oberkofler
Birgit Simon
Andrea Unger
Erich Lechenauer
Reinhold Hirschwehr
Christoph Ebner
Dietric Kraft
Hans-Jörg PRILLINGER
Michael Breitenbach
Original Assignee
Biomay Produktions- Und Handelsgesellschaft M.B.H.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biomay Produktions- Und Handelsgesellschaft M.B.H. filed Critical Biomay Produktions- Und Handelsgesellschaft M.B.H.
Priority to DE59410221T priority Critical patent/DE59410221D1/de
Priority to CA002170356A priority patent/CA2170356A1/en
Priority to AU73572/94A priority patent/AU7357294A/en
Priority to AT94923586T priority patent/ATE229074T1/de
Priority to EP94923586A priority patent/EP0714441B1/de
Priority to DK94923586T priority patent/DK0714441T3/da
Priority to JP50722595A priority patent/JP3758671B2/ja
Publication of WO1995006121A2 publication Critical patent/WO1995006121A2/de
Publication of WO1995006121A3 publication Critical patent/WO1995006121A3/de
Priority to NO960749A priority patent/NO960749L/no
Priority to FI960881A priority patent/FI960881A/fi

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the invention relates to recombinant DNA molecules which code for polypeptides which have the antigenicity of the allergens Clah 53, Clah47, Clah22 and Clahll or for peptides which have at least one epitope of these allergens.
  • allergens mentioned for the extramural mold Cladosporium herbarum, as well as for the molecular fragments (B- and T-cell stimulating peptides) lead to an excess of IgE antibody production in allergy sufferers in the context of an immune response.
  • Recombinant allergens or immunogenic partial peptides can be used both in vitro and in vivo for improved diagnosis of mold allergies but also for the induction of an immune tolerance or anergy of allergen-specific T cells.
  • the immune system of the vertebrates developed in evolution as an effective weapon against attacks on the individual from outside, but also from the inside. Under “normal” conditions, the immune system can distinguish between “self” and “not-self". However, as we know from many regulatory cascades today, such regulatory mechanisms do not always run flawlessly, which in the case of immunology equates to an attack on one's own tissue. Several basic situations are known today in which the body becomes a victim of its own immune system. One of these unwanted immunological responses can be triggered by environmental antigens. The
  • Hypersensitivity types types I, II, III and IV. Allergens such as fungal spores belong to the "type I” or "anaphylaxis hypersensitivity” antigens.
  • the contraction of the smooth muscles and a dilation of the capillaries is the
  • the allergy patient replies with a massive one
  • IgE production primarily formed IgEs bind with their Fc parts specific high affinity Fc-epsilon receptors, the main location of which can be found on the outside of mast cells and basophils.
  • Fc-epsilon receptors the Fc parts specific high affinity Fc-epsilon receptors
  • a cross-linking occurs between the bound IgE molecules through the allergen, which ultimately results in degranulation of the mast cells and basophils and thus the release of mediator substances such as histamine and arachidonic acid metabolites etc.
  • the most important environmental allergens are proteins with a molecular weight between 10 and 50kD.
  • the most important source of these allergenic proteins, which cause a Type I allergy, are inhalation inhaler genes such as fungal spores, pollen, feces from house dust mites, etc. (Review Bold et al. 1973).
  • the fungi relevant for a fungal allergy belong to a group of eukaryotic, filament-growing, spore-forming fungi. Since the spores represent the form of spread of the fungus (the spores can be easily tolerated by the wind), it can be assumed that they play a decisive role in triggering allergies.
  • Cladosporium herbarum (or the spores of Cladosporium herbarum) is the most common fungus in the air (Gravesen 1979). The very dry spores of Cladosporium herbarum can be tolerated relatively easily by the wind. In busy times it is not uncommon to find around 35,000 conidia per m 3 of air. Due to the slight spreading of the spores, an increased spore load can be measured on such peak days even in closed rooms. The main stress period is between spring and early autumn. This high number of conidia can be explained by the fact that Cladosporium herbarum can be found almost everywhere because of its "frugal" way of life. However, preferred habitats are dying plants, different types of soil, but also a wide variety of foods. Uncleaned refrigerators, window frames, thatched roofs and various textiles are further locations of this fungus.
  • Cladosporium herbarum has become the subject of intensive allergological research. For example, react. in Finland 8% of asthmatic children positive for Cladosporium (Foucard et al. 1984).
  • the description of the allergenic proteins of Cladosporium herbarum is made by means of sometimes complex molecular biological techniques.
  • the measured number of Cladosporium herbarum allergens is around 60 (Aukrust 1979, 1980).
  • the main allergen Clahl 1 described in the literature was purified from crude extracts.
  • the molecular weight is around 13kD. Cloning of various Cladosporium herbarum allergens has not yet been carried out.
  • the advantage of genetically engineered allergenic proteins - or their partial peptides prerequisite for this is an immunologically comparable reactivity - has already been shown in Betula verucosa (Ferreira et al. 1993) and other allergens):
  • test systems such as RIA (radioimmunoassay), IRMA (immunoradiometric assay), ELISA (enzyme-linked immunosorbent assay), LIA (luminescense immunoassay), immunoblots, histamine release assay, T-cell proliferation sassay and many more .
  • hyposensitization therapy consists in the supply of allergen extracts in the form of injections or oral application in aqueous form as drops in increasing doses until a maintenance dose over several years is reached.
  • the result of this therapy is tolerance towards the allergens used, which is reflected in a decrease in the symptoms of the disease (Birkner et al. 1990).
  • the problem with this type of treatment lies in the large number of side effects that it causes.
  • Hyposensitization therapy has seen cases of anaphylactic shock during treatment. The problem here is the difficulty in standardizing the fungal protein isolates. If allergens-derived but non-anaphylactic peptides are used, higher doses could be administered without risk, which can lead to a significant improvement in hyposensitization.
  • T and B cell epitopes have the ability e.g. To stimulate T lymphocytes and stimulate proliferation, but also to put the cells (at a precisely defined dose) into a state of tolerance or non-reactivity (anergy) (Rothbard et al. 1991).
  • DNA molecules of the type mentioned at the outset are created which have nucleic acid sequences which correspond to the Sequences 1, 3-5, 7-9, 12-14 as well as 16 and 17, or with partial regions of these sequences in a homologous manner, or nucleic acid sequences which hybridize with the sequences mentioned under stringent conditions.
  • the DNA molecules can also have nucleic acid sequences which can be derived from the aforementioned sequences by degeneration.
  • Cladosporium herbarum (Prof. Windisch [Berlin] number: 28-0202) was grown in liquid medium (2% glucose, 2% peptone, 1% yeast extract) and then lyophilized. The allergenic proteins were then washed out of this material and concentrated using a lyophilizer. The separation was carried out on a denaturing polyacrylamide gel, which was then blotted, incubated with patient serum and detected with 125 I-labeled anti-human IgE. Expressed in percentages, the patients reacted to the allergenic proteins as follows:
  • Clah53 and Clah47 can be classified as major allergens with regard to the patient spectrum available to us, Clah22 and Clah11 as minor allergens.
  • the attached two figures show an overview of the patient spectrum available for cloning the allergens described.
  • the first of the two pictures shows a 13.5% acrylamide gel.
  • the patients with the numbers 19 and 35 (these are also the patients who were used for the later screening) show bands of the order of 53kD, 46kD and 22kD.
  • this is a 17.5% polyacrylamide gel the small molecular weight band (11kD) is also visible in patient 35.
  • 1 shows a Western blotting of a 13.5% polyacrylamide gel after separation of Cladosporium herbarum protein extract and incubation with sera from different patients.
  • Poly (A) plus mRNA enrichment was carried out using Oligo (dT) cellulose from Bschreibinger.
  • the cDNA synthesis (1st and 2nd strand) was carried out as described in the manual of the Lambda ZAP system from Stratagene.
  • the cDNA was then provided (3 'side) with EcoRI and (5' side) with Xbal linkers, ligated into predigested Lambda-ZAP arms and packaged.
  • the primary bank titer was 1,000,000 clones.
  • the expression bank was screened by incubating the "lifted" phage plaques with a sera mixture from 2 patients, who were known by western blotting to cover the spectrum of the detected antigens. The detection was again carried out using anti-human IgE RAST antibody from Pharmacia.
  • 30 were excised in vivo with the help of a helper phage and religated to a bluescript vector that was already sequenceable (implementation as in the manual of the Lambda ZAP kit). Restriction digests of the excised plasmids showed (EcoRI-Xbal double digestion) 4 different insert types. These 4 clones were sequenced using the Sanger method (Sanger 1977). d) Expression of the Clah53, Clah47, Clah22 and Clah11 cDNA's as
  • the total E.coli protein extract was then electrophoresed and blotted onto nitrocellulose.
  • the fusion protein was obtained using serum IgE from allergy sufferers and one with a 125 I-labeled rabbit anti-human IgE antibody (Pharmacia, Uppsala Sweden).
  • FIG. 3 shows the recombinant ⁇ -galactosidase fusion protein after incubation with patient serum and detection with iodine-labeled anti-human IgE.
  • the ⁇ -galactosidase portion of the fusion protein is 36 amino acids, which is equivalent to a molecular weight of 3800 daltons. Taking this "enlargement" of the allergenic protein into account, the Fig is also. 3 to see.
  • Lane 1 (clone 1-1) and 4 (clone 6-1) show the recombinant fusion protein Clah47, now larger by the amount of fusion.
  • Lane 2 (clone 3-2) shows the recombinant Clah53 allergen.
  • the recombinant proteins of Clah22 and Clah11 cannot be seen in this figure.
  • the recombinant primary sequence of the allergens provides the prerequisite for the prediction of B and T cell epitopes using suitable computer programs.
  • the specific epitopes are given in the description of the recombinant protein in separate figures. With these examinations specific T and B cell epitopes can be defined which have the ability eg. To stimulate T lymphocytes and stimulate proliferation, but also to put the cells (at a precisely defined dose) into a state of tolerance or non-reactivity (anergy) (Rothbard et al. 1991).
  • T cell epitope prediction was in principle based on the algorithm of Margalit et al. (1987). The principle consists in the search for amphipathic helices according to the primary sequence of the protein to be determined, flanked by hydrophilic areas. The calculated score must be greater than 10 for relevant T cell epitopes. In the case of peptides associated with MHC II (major histo compatibility locus), no consensus can be defined, either in terms of the sequence or the length of the peptide, as associated with HLA-A2 (human leucocyte antigen).
  • the length of the peptide is 10 amino acids, the second amino acid being a tyrosine and the last amino acid being a leucine (Rammenee et al. 1993).
  • the calculated epitopes are listed separately in the description of the individual allergenic sequences. Molecular characterization of the cloned fungal allergens (sequence protocols)
  • Sequence 1 shows the complete cDNA sequence and the amino acid sequence derived therefrom, starting with the start methionine.
  • the calculated molecular weight is 53364 daltons and thus corresponds to the size of the allergenic protein in the size of 53 kD detected in the western emblot. According to previous analysis, the mature protein should not be preceded by a signal peptide.
  • the open reading frame of Clah53 is 1491 base pairs or 497 amino acids.
  • ORGANISM Cladosporium herbarum
  • C DEVELOPMENT STAGE: spores and vegetative hyphae
  • a homology search of the protein sequence shown in the SWISSPROT protein database showed significant homology of the protein to various aldehyde dehydrogenases.
  • Pseudomonas and the fungi Cladosporium herbarum and Alternaria alternata reflect the high homology of Clah53 to aldehyde dehydrogenases (Seq.2).
  • the consensus found shows identities of amino acids across all organisms.
  • the NAD-dependent ALDH is the main enzyme that is involved in the oxidation of acetaldehyde, a primary product of alcohol metabolism, in humans. Isoenzymes are often found here (Harada et al. 1982). In humans e.g. the isoenzyme ALDH I is found in mitochondria, ALDH II in the cytoplasm. Interestingly, the absence of ALDH I is not uncommon in Asians (Harada et al. 1982). The deficiency of ALDH I results in a high level of acetaldehyde, which manifests itself as a so-called "flushing syndrome", as well as other vasomotor symptoms after alcohol consumption. The loss of isoenzyme can be attributed to a mutation that changes the structure of the native protein (Hsu et al. 1987). The relationship between ALDH and allergy triggering is not yet known.
  • ORGANISM Cladosporium herbarum
  • Sequence 4 shows the amphipathic helices determined with the aid of the computer program and flanked by hydrophilic areas. Such areas, with a score higher than 10, represent possible T cell epitopes. Sequence 4: Predicted amphipathic segments
  • ORGANISM Cladosporium herbarum
  • T cell epitopes are calculated from the amino acid positions of the midpoints, which are flanked N-terminally by a lysine (K), C-terminally by a proline (P). Potential T cell epitopes are only present if the "score index" is greater than 10.
  • Sequence 5 shows the complete cDNA sequence of the allergenic protein Clah47.
  • the amino acid sequence was derived from the DNA sequence. There are no signs of a signal sequence with this protein either.
  • the total DNA sequence is 1323 base pairs, which corresponds to a protein length of 441 amino acids.
  • the calculated molecular weight of the recombinant protein is 47617 daltons and thus corresponds to the detected band (47kD) in the western emblot.
  • the allergenic protein with the molecular weight of 47 kD is recognized by 53% of the patients and thus represents an important main allergen.
  • Sequence 5: Clah47 Enolase_clado -> 1-phase translation 47617 Dalton (1) INFORMATION ABOUT SEQ ID NO : 5
  • ORGANISM Cladosporium herbarum
  • Rat mouse, Drosophila, yeast.
  • ORGANISM Cladosporium herbarum
  • Sequence 8 shows the calculated T cell epitopes in the 1 letter code. Amphipathic areas with a score less than 10 were assumed not to be relevant. Sequence 8: Predicted amphipathic segment
  • ORGANISM Cladosporium herbarum
  • T cell epitopes are calculated from the amino acid positions of the midpoints, which are flanked N-terminally by a lysine (K), C-terminally by a proline (P). Potential T cell epitopes are only present if the "score index" is greater than 10.
  • Clah22 The amino acid sequence derived from this is also evident.
  • the open reading frame of Clah22 is 615 bp, which corresponds to an amino acid length of 205 amino acids.
  • Protein is 22341 daltons.
  • ORGANISM Cladosporium herbarum
  • YCP4 The sequence, or the open reading frame of YCP4, was localized and published as part of the yeast genome project on chromosome 3 of Saccharomyces cerevisiae (Biteau et al. 1992). A disruption of YCP4 showed no phenotype according to (Biteau et al. 1992).
  • Clah22 also has a homologous partner in Alternaria alternata.
  • the following sequence 11 shows a "sequence alignment" between the allergens Alta22 and Clah22.
  • the B cell epitopes found with computer support can be seen in the next sequence 12.
  • ORGANISM Cladosporium herbarum
  • the following sequence 13 shows the calculated T cell epitopes. Amphipathic helices flanked by hydrophilic areas represent the basic pattern of the calculation for MHC II associated peptides.
  • ORGANISM Cladosporium herbarum
  • T cell epitopes are calculated from the amino acid positions of the midpoints, which are flanked N-terminally by a lysine (K), C-terminally by a proline (P). Potential T cell epitopes are only present if the "score index" is greater than 10.
  • Sequence 14 below shows the complete cDNA sequence of Clah11 and the amino acid sequence derived from it.
  • the open reading frame includes
  • the calculated molecular weight is 11078 daltons and thus corresponds to the 11 kD antigenic protein, which is recognized by 4% of patients in western emblot.
  • ORGANISM Cladosporium herbarum
  • Sequence comparisons using FASTA in the SWISSPROT protein database showed that the present 1 lkD large allergenic protein has significant homologies or identities to RLA2, a highly conserved ribosomal protein.
  • the following sequence 15 reflects the high homology. Shown are "multiple alignments" of humans, rats, Drosophila, Schizosaccharomyces pombe, Saccharomyces cerevisiae, Dictyostelium, Trypanosoma and the two fungi Cladosporium herbarum and Altemaria altemans.
  • the allergenic protein Clah11 is not only because of its property as
  • Ribosomal proteins here in particular the human ribosomal proteins P1 and P2 have been described in the literature as autoantigens (Francoeur et al. 1985, Rieh et al. 1987, Hines et el. 1991). 20% of patients with lupus erythematosus have autoantibodies (anti-rRNP) against components of the ribosomes, in particular autoantibodies against the ribosomal proteins P0 (38kD), P1 (16kD) and P2 (15kD). The homology of the P2 protein corresponds to the allergenic protein Clah11.
  • the human autoantibodies cross-react with similar proteins, which means that epitopes are recognized that have been highly conserved in evolution.
  • the basis of the immunological cross-reactivity is the 17 amino acid residue carboxy-terminal region KEESEESD (D / E) DMGFGLFD.
  • ORGANISM Cladosporium herbarum
  • Sequence 17 shows the calculated T cell epitopes. Areas with a score less than 10 are not considered relevant.
  • ORGANISM Cladosporium herbarum
  • T cell epitopes are calculated from the amino acid positions of the midpoints, which are flanked at the N-terminal by a lysine (K) and C-terminal by a proline (P). Potential T cell epitopes are only present if the "score index" is greater than 10.
  • Betvl the major birch pollen allergen. Immunological equivalence to natural BetVI.
  • Anti-P autoantibody production requires P1 / P2 as immunogens but is not driven by exogenous self-antigen in mrl mice.
  • Yeast heat shock protein of MW 48000 is an isoprotein of enolase.
  • MHC molecules as peptide receptors.
  • Human acidic ribosomal phosphoproteins P0, P1 and P2 analysis of cDNA clones, in vitro synthesis and assembly.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pulmonology (AREA)
  • Mycology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Burglar Alarm Systems (AREA)

Abstract

Die Erfindung bezieht sich auf rekombinante DNA Moleküle, die für Polypeptide kodieren, die die Antigenität der Allergene Clah53, Clah47, Clah22 und Clah11 besitzen oder für Peptide, die mindestens ein Epitop dieser Allergene aufweisen. Diese Moleküle sind dadurch gekennzeichnet, daß sie Nukleinsäuresequenzen aufweisen, die mit den Sequenzen 1, 3-5, 7-9, 12-14 sowie 16 und 17, oder mit Teilbereichen dieser Sequenzen in homologer Weise übereinstimmen, bzw. Nucleinsäuresequenzen, die mit den gennanten Nucleinsäuresequenzen unter stringenten Bedingungen hybridisieren.

Description

Rekombinante Chladosporium herbarum Allergene
Die Erfindung bezieht sich auf rekombinante DNA-Moleküle, die für Polypeptide kodieren, die die Antigenität der Allergene Clah 53, Clah47, Clah22 und Clahll besitzen oder für Peptide, die mindestens ein Epitop dieser Allergene aufweisen.
Die genannten Allergene des extramuralen Schimmelpilzes Cladosporium herbarum, sowie auf die Molekülfragmente ( B- und T-Zell stimulierende Peptide) führen im Rahmen einer Immunantwort zu einem Überschießen der IgE Antikörperproduktion bei Pilzallergikern. Rekombinante Allergene bzw. immunogen wirkebde Teilpeptide können sowohl in vitro als auch in vivo zu einer verbesserten Diagnostik von Schimmelpilzallergien aber auch zur Induktion einer Immuntoleranz bzw. Anergie von allergenspezifischen T-Zellen herangezogen werden.
Das Immunsystem der Vertebraten entwickelte sich in der Evolution als wirksame Waffe gegen Angriffe auf das Individuum von außen, aber auch von innen. Unter "normalen" Bedingungen kann das Immunsystem zwischen "Selbst" und "Nicht-Selbst" unterscheiden. Wie man aber heute von vielen Regulationskaskaden weiß, laufen solche Regulationsmechanismen nicht immer fehlerlos ab, was im Falle der Immunologie einem Angriff auf eigenes Gewebe gleichkommt. Man kennt heute mehrere prinzipielle Situationen, in denen der Körper Opfer seines eigenen Immunsystems wird. Eine dieser unerwünschten immunologischen Antworten kann durch Umweltantigene ausgelöst werden. Die
Reaktion, die durch diese Fehlsteuerung verursacht wird, nennt man Allergie oder Hypersensibilitäts-Reaktion. Gell und Coombs (1975) definierten 4
Hypersensibilitätstypen (Typ I,II,III und IV). Allergene wie Pilzsporen gehören zu den "Typ I" oder "Anaphylaxie-Hypersensibilitäts" auslösenden Antigenen.
Das typische Bild einer Typ I Hypersensibilität besteht darin, daß ein einmaliger Kontakt mit einem bestimmten Antigen (z.B. mit Pilzsporen) keinen nennenswerten Effekt auf das Individuum zeigt. Kommt es jedoch nach einigen
Wochen ein zweites Mal zu einem Allergenkontakt, dann reagiert der nun sensibilisierte Organismus mit Symptomen einer allgemeinen Anaphylaxie. Eine
Kontraktion der glatten Muskulatur sowie eine Dilatation der Kapillaren ist die
Folge. Dies beruht darauf, daß der primäre Kontakt mit dem allergenen Proteine in einer ungewöhnlichen humoralen Immunantwort resultiert. Neben einer in diesem
Fall erwünschten IgG-Antwort, antwortet der Allergiepatient mit einer massiven
IgE-Produktion. Diese primär gebildeten IgEs, binden mit ihren Fc-Teilen an spezifische hochaffine Fc-Epsilon-Rezeptoren, deren Hauptlokalisation an der Außenseite von Mastzellen und Basophilen zu finden ist. Bei einem Zweitkontakt mit dem Allergen kommt es zwischen den gebundenen IgE-Molekülen durch das Allergen zu einer Quervernetzung, was schließlich eine Degranulation der Mastzellen und Basophilen und somit die Freisetzung von Mediatorstoffen wie Histamin und Arachidonsäuremetaboliten etc. zur Folge hat.
Die wichtigsten Umweltallergene sind Proteine mit einem Molekulargewichte zwischen 10 und 50kD. Die wichtigste Quelle dieser allergenen Proteine, die eine TypI-Allergie hervorrufen, stellen Inhalationsaliergene wie Pilzsporen, Pollen, Kot von Hausstaubmilben etc. dar (Review Bold et al. 1973). Die für eine Pilzallergie relevanten Pilze gehören einer Gruppe von eukaryontischen, filamentös wachsenden, Sporen bildenden Pilzen an. Da die Sporen die Verbreitungsform des Pilzes darstellen (die Sporen können durch den Wind leicht vertragen werden), ist anzunehmen, daß ihnen eine entscheidende Rolle bei der Allergieauslösung zukommt.
Man weiß heute, daß 20% der Atopiker durch Pilzsporen sensibilisiert wurden (Lazey 1981). Solche Patienten zeigen, wenn der obere Atmungstrakt mit Pilzsporen in Kontakt gekommen ist, eine typische TypI-Allergie mit Symptomen wie Heuschnupfen und Asthma. Wenn Pilzsporen in einer solchen TypI-Antwort involviert sind, beträgt die Größe der Sporen mehr als 5μm. Die Größen Selektion begünstigt Pilze wie Cladosporium herbarum und Alternaria alternata als Allergieauslöser.
Cladosporium herbarum (bzw. die Sporen von Cladosporium herbarum) ist der am häufigsten vorkommende Pilz in der Luft (Gravesen 1979). Die sehr trockenen Sporen von Cladosporium herbarum können durch den Wind relativ leicht vertragen werden. In belasteten Zeiten ist es nicht selten, daß man an die 35000 Konidien pro m3 Luft findet. Durch die leichte Verschleppung der Sporen ist an solchen Spitzentagen auch in geschlossenen Räumen eine erhöhte Sporenbelastung meßbar. Die Hauptbelastungszeit liegt zwischen Frühling und Frühherbst. Diese hohe Konidienzahlen lassen sich damit erklären, daß Cladosporium herbarum wegen seiner "genügsamen" Lebensweise nahezu überall zu finden ist. Bevorzugte Lebensräume sind jedoch absterbende Pflanzen, verschiedene Bodentypen, aber auch diverseste Nahrungsmitteln. Nicht gereinigte Kühlschränke, Fensterrahmen, Strohdächer und verschiedene Textilien gehören zu den weiteren Stand- bzw. Lebensorten dieses Pilzes.
Aus diesen Gründen (ein Kontakt mit Cladosporium herbarum Sporen kann praktisch niemals gänzlich ausgeschlossen werden) ist es nicht verwunderlich, daß Cladosporium herbarum zum Gegenstand intensiver allergologischer Forschung geworden ist. So reagieren zB. in Finnland 8 % der asthmatischen Kinder positiv auf Cladosporium (Foucard et al. 1984).
Die Beschreibung der allergenen Proteine von Cladosporium herbarum erfolgt mittels zum Teil aufwendiger molekularbiologischen Techniken. Die vermμtete Zahl von Cladosporium herbarum Allergenen liegt bei ca. 60 (Aukrust 1979, 1980). Das in der Literatur beschriebene Hauptallergen Clahl 1 wurde aus Rohextrakten aufgereinigt. Das Molekulargewicht liegt bei etwa 13kD. Klonierungen von diversen Cladosporium herbarum Allergenen sind noch nicht vorgenommen worden. Der Vorteil von gentechnologisch hergestellten allergenen Proteinen - bzw. deren Teilpeptiden (Voraussetzung dafür ist jedoch eine immunologisch vergleichbare Reaktivität - konnte bei Betula verucosa (Ferreira et al. 1993) und anderen Allegenen schon gezeigt werden) liegt:
a) In der Verbesserung der Testsysteme wie RIA (Radioimmunassay), IRMA (Immunradiometrische Assay), ELISA (Enzyme-linked immunosorbent Assay), LIA (luminescense immunoassay), Immunblots, Histamine-release-assay, T-Zell Proliferation sassay und viele mehr.
b) In der Verbesserung der Hyposensibilisierungstherapie: Diese Therapie besteht in der Zufuhr von Allergenextrakten in Form von Injektionen oder peroraler Applikation in wässriger Form als Tropfen in steigender Dosierung, bis eine Erhaltungsdosis über mehrere Jahre erreicht ist. Resultat dieser Therapie ist das Erreichen einer Toleranz gegenüber den eingesetzten Allergenen, was sich in einer Abnahme der Krankheitssymptome äußert (Birkner et al. 1990). Das Problem bei dieser Art der Behandlung liegt in der Vielzahl der dadurch auftretenden Nebenwirkungen. Bei der Hyposensibilisierungstherapie sind Fälle von anaphylaktischem Schock während der Behandlung aufgetreten. Das Problem hierbei liegt in der schweren Standardisierbarkeit der Pilzprotein-Isolate. Bei einem Einsatz von von Allergenen abgeleiteten aber nicht anaphylaktisch wirkenden Peptiden könnten risikolos höhere Dosen verabreicht werden, wodurch eine wesentliche Verbesserung der Hyposensibilisierung erreicht werden kann.
c) Mit diesen Untersuchungen können aber auch spezifische T- und B-Zell-Epitope definiert werden. Solche Peptide besitzen die Fähigkeit zB. T-Lymphozyten zu stimulieren und zur Proliferation anzuregen, aber die Zellen (bei genau definierter Dosis) auch in einen Zustand der Toleranz bzw. Nicht-Reaktivität (Anergie) zu versetzen (Rothbard et al. 1991).
Erfindungsgemäß werden rekombinante DNA Moleküle der eingangs genannten Art geschaffen, die Nucleinsäuresequenzen aufweisen, die mit den Sequenzen 1, 3-5, 7-9, 12-14 sowie 16 und 17, oder mit Teilbereichen dieser Sequenzen in homologer Weise übereinstimmen, bzw. Nucleinsäuresequenzen, die mit den genannten Sequenzen unter stringenten Bedingungen hybridisieren. Die DNA Moleküle können auch Nucleinsäuresequenzen aufweisen, die durch Degeneration von den vorgenannten, Sequenzen ableitbar sind.
Weitere Merkmale gehen aus den nachstehenden Darlegungen hervor.
Beispiele:
a)Beschreibung der allergenen Proteine von Cladosporium herbarum mittels Western-Blotting
Für die Klonierung der vorliegenden Allergene von Cladosporium herbarum standen Sera von 142 Atopikern zur Verfügung. Um die Reaktivität der Patienten mit Pilzproteinextrakt zu testen, wurde Cladosporium herbarum (Sammlung Prof. Windisch [Berlin] Nummer: 28-0202) in Flüssigmedium (2% Glukose, 2% Pepton, 1 % Hefeextrakt) gezüchtet und anschließend lyophilisiert. Aus diesem Material wurden sodann die allergenen Proteine ausgewaschen und mittels Lyophilisator aufkonzentriert. Die Auftrennung erfolgte auf einem denaturierenden Polyacrylamidgel, das anschließend geblottet, mit Patientenserum inkubiert und mit 125I-markiertem anti human IgE detektiert wurde. In Prozentzahlen ausgedrückt reagierten die Patienten auf die allergenen Proteine wie folgt:
Clah53 53%
Clah47 53%
Clah22 8.2%
Clah11 4%
Wurde Protein aus gekauftem Pilzmaterial der Firma Allergon (Schweden) isoliert und für den Immunblot verwendet, konnte nahezu dasselbe Bandenmuster detektiert werden. Somit können Clah53 und Clah47 in Bezug auf das uns zur Verfügung stehende Patientenspektrum als Hauptallergene, Clah22 und Clah11 als Nebenallergene eingestuft werden.
Die angeschlossenen zwei Figuren zeigen einen Überblick über das zur Klonierung der beschriebenen Allergene zur Verfügung gestandene Patientenspektrum. Das erste der beiden Bilder zeigt ein 13,5 %iges Acrylamidgel. Die Patienten mit der Nummer 19 und 35 (es handelt sich hier auch um die Patienten, die für das spätere Screenen verwendet wurden) zeigen Banden in der Größenordnung 53kD, 46kD und 22kD. Im zweiten Bild, es handelt sich hier um ein 17,5% Polyacrylamidgel, wird auch die kleine Molekulargewichtsbande (11kD) bei Patient 35 sichtbar. Fig.1 zeigt ein Westernblotting eines 13,5%iges Polyacrylamidgels nach Auftrennung von Cladosporium herbarum Proteinextrakt und Inkubation mit Sera verschiedener Patienten.
Fig.2 zeigt eine Auftrennung von Cladosporium herbarum Proteinextrakt auf einem 17,5%igen Polyacrylamidgel; Inkubation mit Patientensera; Detektion mit Jod-markiertem anti-human IgE.
b) Konstruktion der cDNA Expressionsbank
Gesamt RNA wurde nach der sauren Guanidium-Phenol-Extraktionsmethode aus selbst gezüchtetem Pilzmaterial gewonnen. Poly(A)plus mRNA- Anreicherung erfolgte mit Oligo(dT) Cellulose der Firma Böhringer. Die cDNA Synthese (1. und 2. Strang) wurde wie im Manual des Lambda ZAP-Systems der Firma Stratagene beschrieben durchgeführt. Die cDNA wurde anschließend (3'- seitig) mit EcoRI und (5'-seitig) mit Xbal Linkern versehen, in vorverdaute Lambda-ZAP-Arme ligiert und verpackt. Der Titer der Primärbank betrug 1000000 Klone. c) Screening der cDNA Genbank mit Patientensera, in vivo Excision, Sequenzierung Das Screenen der Expressionsbank erfolgte mittels Inkubation der "gelifteten" Phagenplaqυes mit einem Seragemisch aus 2 Patienten, von denen man durch das Westernblotting wußte, daß sie das Spektrum der detektierten Antigene abdecken. Die Detektion erfolgte wieder mit anti human IgE RAST Antikörper der Firma Pharmacia. Von den nach Sekundär- und Tertiärscreening übriggebliebenen 200 positiven Klonen wurden 30 mit Hilfe eines Helferphagen in vivo exzisiert und zu einem bereits fertig sequenzierbaren Bluescriptvektor religiert (Durchführung wie im Manual des Lambda ZAP-Kits). Restriktionsverdaue der exzisierten Plasmide zeigten (EcoRI-Xbal Doppelverdaue) 4 verschiedene Inserttypen. Diese 4 Klone wurden nach der Sangermethode (Sanger 1977) sequenziert. d) Expression der Clah53, Clah47, Clah22 und Clah11 cDNA's als
ß-Galaktosidasefusionsprotein
Mit Hilfe des vorher beschriebenen IgE-Screenings konnten vier vollständige cDNA-Klone erhalten werden. Die jeweiligen rekombinanten Plasmide wurden in den E.coli Stamm XL1-Blue transformiert und mit IPTG
(Isopropyl-ß-D-thiogalactopyranosid) induziert. Der E.coli Gesamtproteinextrakt wurde ansschließend elektrophoretisch aufgetrennt und und auf Nitrozellulose geblottet. Das Fusionsprotein wurde mittels Serum IgE von Pilzallergikern und einem mit einem 125I-markiertem Kaninchen-anti human IgE Antikörper (Pharmacia, Uppsala Schweden) detektiert.
Fig. 3 zeigt das rekombinante ß-Galaktosidasefusionsprotein nach Inkubation mit Patientenserum und Detektion mit jodmarkiertem anti-human IgE. Der ß-Galaktosidaseanteil des Fusionsproteins beträgt 36 Aminosäuren, was einem Molekulargewicht von 3800 Dalton gleichkommt. Unter Berücksichtigung dieser "Vergrößerung" des allergenen Proteins ist auch dieFig. 3 zu sehen. Spur 1 (Klon 1-1) und 4 (Klon 6-1) zeigen das rekombinante Fusionsprotein Clah47, jetzt um den Fusionsanteil größer. Spur 2 (Klon 3-2) zeigt das rekombinante Clah53 Allergen. Die rekombinanten Proteine von Clah22 und Clah11 sind auf dieser Figur nicht zu sehen.
Fig.3 zeigt somit eine Expression der rekombinanten Proteine Clah47 und
Clah53 im Vektor BS-SK+ nach IPTG Induktion. e) Bestimmung von B- und T-Zell Epitopen bei den rekombinanten Allergenen
Die rekombinante Primärsequenz der Allergene bietet die Voraussetzung für die Vorhersage von B- und T-Zellepitopen mittels geeigneter Computerprogramme. Die bestimmten Epitope werden jeweils bei der Beschreibung des rekombinanten Proteins in eigenen Figuren angeführt. Mit diesen Untersuchungen können spezifische T- und B-Zell-Epitope definiert werden die die Fähigkeit besitzen zB. T-Lymphozyten zu stimulieren und zur Proliferation anzuregen, aber die Zellen (bei genau definierter Dosis) auch in einen Zustand der Toleranz bzw. Nicht-Reaktivität (Anergie) zu versetzen (Rothbard et al. 1991).
Die Suche nach B-Zellepitopen wurde mit Hilfe des G CG-Program mes
(Genetics-Computer-Group) "PROTCALC", das jedoch von der Arbeitsgruppe um Prof. Modrow mit wesentlichen Parametern erweitert wurde, durchgeführt. Die Bestimmung beruht auf einer Abwägung der Parameter Hydrophilität (Kyte-Doolittle), Sekundärstruktur (Chou-Fasman), Oberflächenlokalisation (Robson-Garnier) und Flexibilität, wodurch die Antigenität von Teilpeptiden errechnet wird.
Das Prinzip der T-Zellepitop-Voraussage erfolgte im Prinzip nach dem Algorithmus von Margalit et al. (1987). Das Prinzip besteht in der Suche nach amphipathischen Helices laut Primärsequenz des zu bestimmenden Proteins, flankiert von hydrophilen Bereichen. Der berechnete Score muß für relevante T-Zellepitope größer als 10 sein. Bei MHC II (major histo compatibility locus) assoziierten Peptiden kann kein Konsensus, weder der Sequenz noch der Länge des Peptids nach, wie bei HLA-A2 (human leucocyte antigen) assoziierten definiert werden. Bei HLA-A2 assoziierten Peptiden beträgt die Länge des Peptids 10 Aminosäuren, wobei die 2. Aminosäure ein Tyrosin und die letzte Aminosäure ein Leucin darstellt (Rammensee et al. 1993). Die berechneten Epitope werden bei der Beschreibung der einzelnen allergenen Sequenzen getrennt angeführt. Molekulare Charakterisierung der klonierten Pilzallergene (Sequenzprotokolle)
Im folgenden Kapitel werden nun die cDNA Sequenzen und die mit ihnen durchgeführten Analysen der Reihe nach angeführt. Die Computerauswertung der nachfolgenden Sequenzen wurden auf einer Ultrix-DEC 5000 Workstation unter
Zuhilfename des GCG-Softwarepaketes (= Wisconsin Paket: die Algorithmen dieses Paketes wurden von der Universität Wisconsin entwickelt) durchgeführt.
A. Clah53
Die nachfolgende Sequenz 1 zeigt die vollständige cDNA Sequenz und die daraus abgleitete Aminosäuresequenz, beginnend mit dem Start-Methionin. Das berechnete Molekulargewicht beträgt 53364 Dalton und entspricht somit der Größe nach dem im Westemblot detektierten allergenen Protein in der Größe von 53kD. Dem reifen Protein dürfte nach bisheriger Analyse kein Signalpeptid voranstehen. Der offene Leserahmen von Clah53 beträgt 1491 Basenpaare bzw. 497 Aminosäuren.
Sequenz 1: Clah53=ALDH_clado -> 1-phase Translation 53364 Dalton (1) ANGABEN ZU SEQ ID NO: 1
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 1491 Basenpaare / 497 Aminosäurereste
(B) ART: Nukleinsäure / Protein
(C) STRANGFORM: ds
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: cDNA zu mRNA / Protein
(iii) HYPOTHETISCH: nein
(iv) ANTISENSE: nein
(v) ART DES FRAGMENTS: Gesamtsequenz
(vi) URSPRÜNGLICHE HERKUNFT:
(A) ORGANISMUS: Cladosporium herbarum (C) ENTWICKLUNGSSTADIUM: Sporen und vegetative Hyphen
Figure imgf000010_0001
Figure imgf000011_0002
Eine Homologiesuche der gezeigten Proteinsequenz in der SWISSPROT-Proteindatenbank zeigte signifikante Homologie des Proteins zu verschiedenen Aldehyddehydrogenasen. Das nachfolgene "multiple Alignment" mit ALDH-Sequenzen von Aspergillus, Rind, Pferd, Maus, Ratte, Mensch, E.coli. Pseudomonas sowie den Pilzen Cladosporium herbarum und Alternaria alternata spiegelt die hohe Homologie von Clah53 zu Aldehyddehydrogenasen wieder (Seq.2). Der ermittelte Konsensus zeigt Identitäten von Aminosäuren quer durch alle Organismen.
Figure imgf000011_0001
Figure imgf000012_0001
Figure imgf000013_0001
Die NAD-abhängige ALDH ist das Hauptenzym, das an der Oxidation von Azetaldehyd, ein Primärprodukt des Alkoholmetabolismus, im Menschen beteiligt ist. Isoenzyme sind hierbei oft zu finden (Harada et al. 1982). Beim Menschen z.B. findet man das Isoenzym ALDH I in Mitochondrien, ALDH II im Zytoplasma. Interessanterweise ist die Abwesenheit von ALDH I bei Asiaten keine Seltenheit (Harada et al.1982). Die Defizienz von ALDH I resultiert in einem hohen Spiegel von Acetaldehyd, was sich als sogenanntes "flushing syndrome", sowie anderen vasomotorischen Symptomen nach Alkoholgenuß bemerkbar macht. Der Isoenzymverlust läßt sich auf eine Mutation zurückführen, die das native Protein in seiner Struktur verändert (Hsu et al. 1987). Der Zusammenhang zwischen ALDH und Allergieauslösung ist zum Zeitpunkt noch nicht bekannt.
Die nachfolgende Sequenz 3 zeigt die mit Computersuche identifizierten Bereiche mit hohem antigenem Index. Diese Bereiche stellen hochpotente B-Zellepitope dar. Sequenz 3: Clah53=ALDH_cIado: B-Zellepitope (1) ANGABEN ZU SEQ ID NO:3
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: einzeln angeführt
(B) ART: Protein
(ii) ART DES MOLEKÜLS: Peptide
(iii) HYPOTHETISCH: nein
(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
(vi) URSPRÜNGLICHE HERKUNFT:
(A) ORGANISMUS: Cladosporium herbarum
(C) ENTWICKLUNGSSTADIUM: Sporen und vegetative Hyphen
Ser Val Gln Leu Glu Thr Pro His Ser Gly Lys Tyr Glu Gln Pro Thr Gly (3-19)
Asn Asn Glu Phe Val Lys Gly Gln Glu Gly Lys Thr Phe (23-35)
Ile Asn Pro Ser Asp Glu Ser Val Ile (38-46)
Ala Ala Ala Arg Gln Ala Phe Glu Gly Ser Arg Lys Glu Thr Pro Glu Asn Arg Gly Lys Leu Leu
Asn (62-84)
Cys Ala Ser Gly Cys Leu Arg Tyr Tyr Gly Gly Trp Ala Asp Lys Ile Thr Gly (118-135)
Lys Val Ile Asp Thr Thr Pro Asp Thr Phe Asn Tyr Ser Arg Arg Ser Pro Leu Val (136-154)
Leu Lys Thr Ala Glu Gln Thr Pro Leu GlyGGly (184-194)
Ala Ser Leu Val Lys Glu Ala Gly Phe Pro Pro Gly Val Ile Asn (198-212)
Ala Ala Ser Ser Asn Leu Lys Lys Val Thr Leu (250-260)
Glu Leu Gly Gly Lys Ser Pro Asn Ile Val Phe (261-271)
Tyr Asp Lys Phe Val Gln Lys Phe Lys Glu Arg Ala Gln Lys Asn Val Val Gly (308-325)
Tyr Ile Gln Ala Gly Lys Asp Ala Pro Ser Thr Val Glu Thr Gly Gly Ser Gly Lys Gly Asp Lys
Gly Tyr Phe Ile (349-374)
Ile Ala Lys Phe Lys Thr Lys Glu Asp Ala Ile Lys Leu Asn Ala Ser Thr Tyr Gly Leu Ala
(400-420)
Trp Val Asn Thr Tyr Asn Thr Leu His His Gln Met Pro Phe Gly Gly Tyr Lys Glu Ser Gly Ile Gly Arg Glu Leu Gly Glu (444-471)
Asp Ala Leu Ala Asn Tyr Thr Gln Thr Lys Thr Val Ser Ile (472-485) Die nachfolgende Sequenz 4 zeigt die mit Hilfe des Computerprogrammes bestimmten amphipathischen Helices, die von hydrophilen Bereichen flankiert werden. Solche Bereiche, mit einem Score höher als 10, stellen mögliche T-Zellepitope dar. Sequenz 4: Vorausgesagte amphipathatische Segmente
T-Zellepitope
- - - - - - - - - - - - - - - - - -
PHSGKYE KTFDVIN KLLNNLANLFE AAVESLDNGKATS GCLRYYGGWADKITGKVIDTTP GVINVISGFGKVAGAAL IYDKFVQKFKERAQKNV QFDRIMEYIQA APSTVETGGSG FSNVTEEM EVSNALK NTYNTL RELGEDALANYTQT
(1) ANGABEN ZU SEQ ID NO:4
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: einzeln angeführt
(B) ART: Protein
(ii) ART DES MOLEKÜLS: Peptide
(iii) HYPOTHETISCH: nein
(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
(vi) URSPRÜNGLICHE HERKUNFT:
(A) ORGANISMUS: Cladosporium herbarum
(C) ENTWICKLUNGSSTADIUM: Sporen und vegetative Hyphen
Pro His Ser Gly Leu Lys Tyr Glu (9-15)
Lys Thr Phe Asp Val Ile Asn (27-31)
Lys Leu Leu Asn Asn Leu Ala Asn Leu Phe Glu (81-91) Ala Ala Val Glu Ser Leu Asp Asn Gly Lys Ala Thr Ser (98-110)
Gly Cys Leu Arg Tyr Tyr Gly Gly Trp Ala Asp Lys Ile Thr Gly Lys Val Ile Asp Thr Thr Pro (121-142)
Gly Val Ile Asn Val Ile Ser Gly Phe Gly Lys Val Ala Gly Ala Ala Leu (209-225)
Ile Tyr Asp Lys Phe Val Gln Lys Phe Lys Glu Arg Ala Gln Lys Asn Val (307-323)
Gln Phe Asp Arg Ile Met Glu Tyr Ile Gln Ala (342-352)
Ala Pro Ser Thr Val Glu Thr Gly Gly Ser Gly (356-366)
Phe Ser Asn Val Thr Glu Glu Met (379-386)
Glu Val Ser Asn Ala Leu Lys (433-439)
Asn Thr Tyr Asn Thr Leu (446-451)
Arg Glu Leu Gly Glu Asp Ala Leu Ala Asn Tyr Thr Gln Thr (467-480)
Die T-Zellepitope errechnen sich aus den Aminosäurepositionen der Midpoints, die N-terminal von einem Lysin (K), C-terminal von einem Prolin (P) flankiert werden (=Flags). Es sind nur dann potentielle T-Zellepitope vorhanden, wenn der "Score-Index" größer als 10 ist. B. CIah47
Die nachfolgende Sequenz 5 zeigt die vollständige cDNA Sequenz des allergenen Proteins Clah47. Die Aminosäuresequenz wurde von der DNA Sequenz hergeleitet. Auch bei diesem Protein sind keine Anzeichen einer Signalsequenz vorhanden. Die Gesamt DNA Sequenz beträgt 1323 Basenpaare, was einer Proteinlänge von 441 Aminosäuren entspricht. Das berechnete Molekulargewicht des rekombinanten Proteins beträgt 47617 Dalton und entspricht somit der detektierten Bande (47kD) im Westemblot. Wie zu Beginn erwähnt, wird das allergene Protein mit dem Molekulargewicht von 47kD von 53 % der Patienten erkannt und stellt somit ein wichtiges Hauptallergen dar. Sequenz 5: Clah47=Enolase_clado - > 1-phasen Translation 47617 Dalton (1) ANGABEN ZU SEQ ID NO:5
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 1323 Basenpaare / 441 Aminosäurereste
(B) ART: Nukleinsäure / Protein
(C) STRANGFORM: ds (D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: cDNA zu mRNA / Protein
(iii) HYPOTHETISCH: nein
(iv) ANTISENSE: nein
(v) ART DES FRAGMENTS: Gesamtsequenz
(vi) URSPRÜNGLICHE HERKUNFT:
(A) ORGANISMUS: Cladosporium herbarum
(C) ENTWICKLUNGSSTADIUM: Sporen und vegetative Hyphen
DNA Sequenz 1323 b.p. ATGCCTATCTCC ... ATCAACTTGTAA linear
Figure imgf000017_0001
Figure imgf000018_0002
Nachfolgende Sequenzvergleiche (Seq.6) der Aminosäuresequenz mit der SWISSPROT Proteinbank ergaben, daß Clah47 signifikante Homologie zu Enolasen zeigt. Im nachfolgenden "multiple sequence alignment" sieht man die hohen
Homologien und Identitäten zwischen Clah47 und den übrigen Enolasen (Mensch,
Ratte, Maus, Drosophila, Hefe).
Figure imgf000018_0001
Figure imgf000019_0001
Wie schon bei Clah53 erwähnt, kann auch in diesem Fall die Verbindung zwischen Proteinfunktion und Allergenität nicht hergestellt werden. Enolasen sind aber aus einem anderen Punkt heraus interessant. Bei Saccharomyces cerevisiae konnte die Enolase (ENO1) als "heat-shock-Protein" nachgewiesen werden. Die Expression von ENO1 wird hier als Mehrgebrauch von Energie in dieser schwierigen Stressbedingung gedeutet (lida und Yahara 1985). In Hefe wird Enolase auch in der stationären Phase sowie unter Schwefelhunger vermehrt exprimiert (Cohee 1987). Die nachfolgende Sequenz 7 zeigt mit Computerunterstützung gefundene B-Zellepitope. Hoher Antigenindex, unter Berücksichtigung von Sekundärstruktur, Oberflächenlage, Hydrophilität, Flexibilität etc.
Sequenz 7: CIah47=Enolase_cIado: B-Zellepitope
(1) ANGABEN ZU SEQ ID NO: 7
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: einzeln angeführt
(B) ART: Protein
(ii) ART DES MOLEKÜLS: Peptide
(iü) HYPOTHETISCH: nein
(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
(vi) URSPRÜNGLICHE HERKUNFT:
(A) ORGANISMUS: Cladosporium herbarum
(C) ENTWICKLUNGSSTADIUM: Sporen und vegetative Hyphen Tyr Val Tyr Asp Ser Leu Gly Asn Pro Thr Val Glu Val (10-22)
Pro Ser Val Ala Ser Thr Gly Ser His Glu Ala Cys Glu Leu Arg Asp Gly Asp Lys Ser Lys Trp
Ala Gly Lys Gly Val Thr Lys (36-64)
Asn Lys Leu Asp Gly Thr Thr Asn Lys Thr Lys Ile Gly Ala (95-108)
Ala His Ile Ser Asp Leu Ser Gly Thr Lys Lys Pro Phe Val (132-145)
Tyr Gln Lys Leu Lys Ser Leu Thr Lys Lys Arg Tyr Gly Gln Ser Ala Gly Asn Val Gly Asp Glu (190-211)
Phe Lys Asn Pro Asp Ser Asp Lys Ser Lys Trp Ile Thr Tyr Glu (264-278)
Ser Tyr Phe Tyr Lys Thr Ser Gly Ser Asp Phe (309-319)
Ala Ile Asn Ala Ala Lys Asp Ser Phe Ser Ala Gly Trp Gly (359-372)
Met Val Ser His Arg Ser Gly Glu Thr Glu Asp Val Thr Met (374-387)
His Ile Val Arg Arg Ser Arg Ala Gly Gln Ile Lys Thr Gly (388-401)
Ala Pro Ala Arg Ser Asp Gly Leu Ala Lys Leu Asn (402-413)
Ile Leu Arg Ile Glu Glu Glu Leu Gly Asp Lys Arg Leu Tyr Ala Gly Asp Asn Phe Arg Thr Ala (415-436)
Die nachfolgende Sequenz 8 zeigt die berechneten T-Zellepitope im 1 -Lettercode. Amphipathische Bereiche mit einem Score geringer als 10 wurden für nicht relevant angenommen. Sequenz 8: Vorausgesagte amphipathatische Segment
T- Zellepitope
- - - - - - - - - - - - - - - - - - - -
IHSRYVYDSLGN KGVTKAVANVNEIIAP DAFLNKLDGTAHISDLSG PSFTEAMRQGAEVYQKLKSLTK GQSAGNV EALDLITDAIEE LADQYNEL EAWSYFY VNQIGTITEAINAAK DGLAKLNQILRIEE
(1) ANGABEN ZU SEQ ID NO: 8
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: einzeln angeführt
(B) ART: Protein
(ii) ART DES MOLEKÜLS: Peptide
(iii) HYPOTHETISCH: nein
(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
(vi) URSPRÜNGLICHE HERKUNFT:
(A) ORGANISMUS: Cladosporium herbarum
(C) ENTWICKLUNGSSTADIUM: Sporen und vegetative Hyphen
Ile His Ser Arg Tyr Val Tyr Asp Ser Leu Gly Asn (6-17)
Lys Gly Val Thr Lys Ala Val Ala Asn Val Asn Glu Ile Ile Ala Pro (60-75)
Asp Ala Phe Leu Asn Lys Leu Asp Gly Thr (91-100)
Ala His Ile Ser Asp Leu Ser Gly (132-139)
Pro Ser Phe Thr Glu Ala Met Arg Gln Gly Ala Glu Val Tyr Gln Lys Leu Lys Ser Leu Thr Lys (177-198) Gly Gln Ser Ala Gly Asn Val (202-208)
Glu Ala Leu Asp Leu Ile Thr Asp Ala Ile Glu Glu (223-234)
Leu Ala Asp Gln Tyr Asn Glu Leu (280-287)
Glu Ala Trp Ser Tyr Phe Tyr (306-312)
Val Asn Gln Ile Gly Thr Ile Thr Glu Ala Ile Asn Ala Ala Lys (350-364)
Asp Gly Leu Ala Lys Leu Asn Gln Ile Leu Arg Ile Glu Glu (407-420)
Die T-Zellepitope errechnen sich aus den Aminosäurepositionen der Midpoints, die N-terminal von einem Lysin (K), C-terminal von einem Prolin (P) flankiert werden (=Flags). Es sind nur dann potentielle T-Zellepitope vorhanden, wenn der "Score-Index" größer als 10 ist.
C. Clah22
Die nachfolgende Sequenz 9 zeigt die vollständige cDNA Sequenz von
Clah22. Die daraus abgeleitete Aminosäuresequenz ist ebenfalls ersichtlich. Der offene Leserahmen von Clah22 beträgt 615bp, was einer Aminosäurelänge von 205 Aminosäuren entspricht. Das berechnete Molekulargewicht des rekombinanten
Proteins beträgt 22341 Dalton.
Sequenz 9: YCP4_clado -> 1-phasen Translation 22341 Dalton
(1) ANGABEN ZU SEQ ID NO:9
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 615 Basenpaare / 205 Aminosäurereste
(B) ART: Nukleinsäure / Protein
(C) STRANGFORM: ds
(D) TOPOLOGIE: linear
(ü) ART DES MOLEKÜLS: cDNA zu mRNA / Protein
(iii) HYPOTHETISCH: nein
(iv) ANTISENSE: nein
(v) ART DES FRAGMENTS: Gesamtsequenz
(vi) URSPRÜNGLICHE HERKUNFT:
(A) ORGANISMUS: Cladosporium herbarum
(C) ENTWICKLUNGSSTADIUM: Sporen und vegetative Hyphen
Figure imgf000023_0002
Homologiesuchen mit dem sequenzierten Protein in der SWISSPROT-Proteindatenbank zeigten, daß das Allergen Clah22 signifikante Homologie zu dem Hefeprotein YCP4 aufweist. Die Identität der beiden Proteine beträgt 56%, die Homologie sogar 70%. Eine so hohe Ähnlichkeit läßt wohl eine gemeinsame Funktion dieser beiden Proteine vermuten. Die nachfolgende Sequenz 10 spiegelt die hohe Homologie von Clah22 und YCP4 wieder.
Figure imgf000023_0001
Figure imgf000024_0002
Die Sequenz, bzw. der offene Leserahmen von YCP4, wurde im Rahmen des Hefegenomprojektes am Chromosom 3 von Saccharomyces cerevisiae lokalisiert und publiziert (Biteau et al. 1992). Eine durchgeführte Disruption von YCP4 zeigte nach (Biteau et al. 1992) keinen Phänotyp.
Es hat sich auch gezeigt, daß auch Clah22 einen homologen Partner in Alternaria alternata besitzt. Die folgende Sequenz 11 zeigt ein "sequence alignment" zwischen den Allergenen Alta22 und Clah22.
Figure imgf000024_0001
Die mit Computerunterstützung gefundenen B-Zellepitope sind in der nächsten Sequenz 12 zu sehen.
Sequenz 12: Clah22=YCP4_clado: B-Zellepitope
(1) ANGABEN ZU SEQ ID NO: 12
(i) SEQUENZKENNZEICHEN: (A) LÄNGE: einzeln angeführt
(B) ART: Protein
(ii) ART DES MOLEKÜLS: Peptide
(iii) HYPOTHETISCH: nein
(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
(vi) URSPRÜNGLICHE HERKUNFT:
(A) ORGANISMUS: Cladosporium herbarum
(C) ENTWICKLUNGSSTADIUM: Sporen und vegetative Hyphen
Tyr Ser Thr Trp Gly His Val Gln (10-17)
Glu Ala Glu Ala Lys Gly Ile Arg Glu Ala Gly Gly Ser (21-33)
Lys Met His Ala Pro Pro Lys Asp Asp Ser Ile Pro Glu Ile Thr Asp Pro (50-66)
Leu Glu Gln Tyr Asp Arg Phe Pro His Gly His Pro Thr Arg Tyr Gly Asn Phe (69-86)
Pro Ala Gln Trp Arg Thr Phe Trp Asp Arg Thr Gly Gly Gln Trp Gln Thr Gly (87-104)
Ile Ser Thr Gly Thr Gln Gly Gly Gly Gln Glu Ser Thr Ala Leu Ala (115-130)
Ile Tyr Val Pro Leu Gly Tyr Lys Thr Thr Phe (141-151)
Leu Leu Gly Asp Asn Ser Glu Val Arg Gly Ala (153-163)
Gly Ala Gly Thr Phe Ser Gly Gly Asp Gly Ser Arg Gln Pro Ser Gln Lys Glu Leu Glu Leu Thr (167-188)
Die folgende Sequenz 13 zeigt die berechneten T-Zellepitope. Amphipathische Helices, flankiert von hydrophilen Bereichen stellen das Grundmuster der Berechnung für MHC II assoziierte Peptide dar.
Sequenz 13:Vorausgesagte amphipathatische Segmente
T-Zellepitope
- - - - - - - - - - - - - - - - - - - - - - - - - -
YSTWGHVQTLAEA IREA GSVDLYRVPETLTQEVLTKMH DSIPEITD
YDRFPHGHPTRYGNFPAQWRTFWDRTGGQ AAMSTLS AFYEA
(1) ANGABEN ZU SEQ ID NO: 13
(i) SEQUENZKENNZEICHEN: (A) LÄNGE: einzeln angeführt
(B) ART: Protein
(ii) ART DES MOLEKÜLS: Peptide
(iii) HYPOTHETISCH: nein
(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
(vi) URSPRÜNGLICHE HERKUNFT:
(A) ORGANISMUS: Cladosporium herbarum
(C) ENTWICKLUNGSSTADIUM: Sporen und vegetative Hyphen
Tyr Ser Thr Trp Gly His Val Gln Thr Leu Ala Glu Ala (10-22)
Ile Arg Glu Ala (27-30)
Gly Ser Val Asp Leu Tyr Arg Val Pro Glu Thr Leu Thr Gln Glu Val Leu Thr Lys Met His
(32-52)
Asp Ser Ile Pro Glu Ile Thr Asp (58-65)
Tyr Asp Arg Phe Pro His Gly His Pro Thr Arg Tyr Gly Asn Phe Pro Ala Gln Trp Arg Thr Phe
Trp Asp Arg Thr Gly Gly Gln (72-100)
Ala Ala Met Ser Thr Leu Ser (130-136)
Ala Phe Tyr Glu Ala (193-197)
Die T-Zellepitope errechnen sich aus den Aminosäurepositionen der Midpoints, die N-terminal von einem Lysin (K), C-terminal von einem Prolin (P) flankiert werden (=Flags). Es sind nur dann potentielle T-Zellepitope vorhanden, wenn der "Score-Index" größer als 10 ist.
D. Clah11
Die folgende Sequenz 14 zeigt die vollständige cDNA-Sequenz von Clah11 und die von ihr abgeleiteten Aminosäuresequenz. Der offene Leserahmen umfaßt
336bp bzw. 112 Aminosäuren. Das berechnete Molekulargewicht bertägt 11078 Dalton und entspricht somit dem 11kD großen antigenen Protein, das im Westemblot von 4% der Patienten erkannt wird.
Sequenz 14: Clahl 1 =rla2_clado - > 1-phasen Translation 11078 Dalton
(1) ANGABEN ZU SEQ ID NO: 14 (i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 336 Basenpaare / 112 Aminosäurereste
(B) ART: Nukleinsäure / Protein
(C) STRANGFORM: ds
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: cDNA zu mRNA / Protein
(iii) HYPOTHETISCH: nein
(iv) ANTISENSE: nein
(v) ART DES FRAGMENTS: Gesamtsequenz
(vi) URSPRÜNGLICHE HERKUNFT:
(A) ORGANISMUS: Cladosporium herbarum
(C) ENTWICKLUNGSSTADIUM: Sporen und vegetative Hyphen
Figure imgf000027_0001
Sequenzvergleiche mittels FASTA in der SWISSPROT-Proteindatenbank ergaben, daß das vorliegende l lkD große allergen wirkende Protein signifikante Homologien bzw. Identitäten zu RLA2, einem hoch konservierten ribosomalen Protein, besitzt. Die nachfolgende Sequenz 15 spiegelt die hohe Homologie wieder. Gezeigt sind "multiple alignments" von Mensch, Ratte, Drosophila, Schizosaccharomyces pombe, Saccharomyces cerevisiae, Dictyostelium, Trypanosoma und den beiden Pilzen Cladosporium herbarum und Altemaria altemans.
Figure imgf000027_0002
Figure imgf000028_0001
Das allergene Protein Clah11 ist nicht nur wegen seiner Eigenschaft als
Allergen von Cladosporium herbarum interessant. Ribosomale Proteine, hier im speziellen die humanen ribosomalen Proteine P1 und P2, sind in der Literatur als Autoantigene beschrieben worden (Francoeur et al. 1985, Rieh et al. 1987 , Hines et el. 1991). 20% der Patienten mit Lupus erythematosus besitzen Autoantikörper (anti-rRNP) gegen Komponenten der Ribosomen, im speziellen Autoantikörper gegen die ribosomalen Proteine P0 (38kD), P1 (16kD) und P2 (15kD). Das P2 Protein entspricht in seiner Homologie dem allergenen Protein Clah11. Die humanen Autoantikörper kreuzreagieren mit ähnlichen Proteinen, was heißt, daß Epitope erkannt werden die in der Evolution stark konserviert wurden. Die Basis der immunologischen Kreuzreaktivität bildet die 17 Aminosäurereste lange carboxyterminale Region KEESEESD(D/E)DMGFGLFD. Ob eine in der Kindheit und Jugend erfolgte Sensibilisierung durch Clahl l mit einem im Erwachsenenalter auftretenden Autoimmunkrankheit korreliert, bedarf einer genauen Prüfung. Applikationen von ribosomalen Proteinen konnten allerdings in Mäusen keine Autoimmunkrankheit erzeugen (Hines et al. 1991).
Die gezeigten B-Zellepitope in der nächsten Sequenz 16 sind unter Berücksichtigung von Sekundärstruktur, Oberflächenlage, Hydrophilität, Flexibilität etc. berechnet worden. Sequenz 16: Clah11 =rIa2_cIado: B-Zellepitope
(1) ANGABEN ZU SEQ ID NO: 16
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: einzeln angeführt
(B) ART: Protein
(ii) ART DES MOLEKÜLS: Peptide
(iii) HYPOTHETISCH: nein
(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
(vi) URSPRÜNGLICHE HERKUNFT:
(A) ORGANISMUS: Cladosporium herbarum
(C) ENTWICKLUNGSSTADIUM: Sporen und vegetative Hyphen
Gly Leu Pro Gly Asn Ser Ser Pro Ser Ala Glu Asp Ile Lys Thr Val Leu (11-27)
Gly Ile Asp Ala Asp Glu Glu Pro Ser Gln Leu Leu Leu (31-43)
Lys Glu Leu Glu Gly Lys Asp Ile Asn Glu Leu (44-54)
Ser ser Gly Ser Glu Lys Leu Ala Ser Val Pro Ser Gly Gly Ala Gly (56-71)
Ala Glu Ala Ala Pro Glu Ala Glu Lys Ala Glu Glu Glu Lys Glu Glu Ser Asp Asp Asp Met Gly Phe (85-107)
Die nachfolgende Sequenz 17 zeigt die berechneten T-Zellepitope. Bereiche mit einem Score geringer als 10 werden als nicht relevant angenommen.
Sequenz 17: Vorausgesagte amphipathatische Segmente
T-Zellepitope
- - - - - - - - - - - - - - - - - - -
EDIKTV
EGKDINELISSGSEKLASVPSG ASAGG
(1) ANGABEN ZU SEQ ID NO: 17
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: einzeln angeführt
(B) ART: Protein (ii) ART DES MOLEKÜLS: Peptide
(iii) HYPOTHETISCH: nein
(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
(vi) URSPRÜNGLICHE HERKUNFT:
(A) ORGANISMUS: Cladosporium herbarum ,
(C) ENTWICKLUNGSSTADIUM: Sporen und vegetative Hyphen
Glu Asp Ile Lys Thr Val (21-26)
Glu Gly Lys Asp Ile Asn Glu Leu Ile Ser Ser Gly Ser Glu Lys Leu Ala Ser Val Pro Ser Gly (47-68)
Ala Ser Ala Gly Gly (82-86)
Die T-Zellepitope errechnen sich aus den Aminosäurepositionen der Midpoints, die N-terminal von einem Lysin (K), C-terminal von einem Prolin (P) flankiert werden (=Flags). Es sind nur dann potentielle T-Zellepitope vorhanden, wenn der "Score-Index" größer als 10 ist.
Literatur
Aukrust, L. (1979).
Cross radioimmunoelectrophoretic studies of distinct allergens in two extracts of Cladosporium herbarum.
Int. Arch. Allergy Appl. Immunol. 58, 371.
Aukrust, L. (1980).
Allergens in Cladosporium herbarum.
In Advances in Allergology and Immunology. Edited by A. Oehling. Oxford, Pergamon Press.
Birkner, T., Rumpold, H., Jarolim, E. Ebner, H., Breitenbach, M., Skarvil, F., Scheiner, O., Kraft, D. (1990).
Evaluation of immunotherapy-induces changes in specific IgE, IgG and IgG subclasses in birch pollen allergic patients by means of immunoblotting. Correlation with clinical response.
Allergy 45, 418.
Bold, H.C., Alexopoulos, C.J., Delevoryas, T. (1973).
Morphology of plants and fungi.
New York, Harper and Row.
Cohen, R.T., Yokoi, J.P., Holland, A.E., Pepper, A.E., Holland, MJ. (1987). Transcription of the constitutively expressed yeast enolase gene ENOl is mediated by positive and negative cis-acting regulatory sequences.
Mol. Cell. Biol. 7, 2753.
Ferreira, F.D., Hoffmann-Sommergruber, K., Breiteneder, H., Pettenburger, K., Ebner, C, Sommergruber, W., Steiner, R., Bohle, B., Sperr, W.R., Valent, P., Kungl, A.J., Breitenbach, M., Kraft, D., Scheiner, O. (1993).
Purification and characterization of recombinant Betvl, the major birch pollen allergen. Immunological equivalence to natural BetVI.
J. Biol. Chem. in press. Foucard, T. Dreborg, S., Sten, E. (1984).
Mould Allergy Workshop. Uppsala, Sweden:
Ord & Form; Pharmacia Diagnostics AB 1984.
Francoeur, A.M., Peebles, C.L., Heckman, K.J., Lee, J.C, Tan, E.M. (1985). Identification of ribosomal protein autoantigens.
J. Immunol. 135, 1767.
Gell, P.G.H., Coombs, R.R.A., Lachmann, P.J. (1975).
Clinical Acpects of Immunology.
Blackwell, Oxford.
Gravesen, S. (1979).
Fungi as a cause of allergic disease.
Allergy 34, 135.
Harada, S., Agarwal, D.P., Goedde, H.W. (1982).
Mechanism of alcohol sensitivity and disulfiram-ethanol reaction.
Subst. Alco. Act. Misuse. 3, 107.
Hines, J.J., Weissbach, H., Brot, N., Elkon, K. (1991).
Anti-P autoantibody production requires P1/P2 as immunogens but is not driven by exogenous self-antigen in mrl mice.
J. immunol.. 146, 3386.
Hsu, L.C., Bendel, R.E., Yoshida, A. (1987).
Direct detection of usual and atypical alleles on the human aldehyde dehydrogenase-2 (ALDH2) locus.
Am. J. Hum. Genet. 41, 996. lida, H., Yahara, i. (1985).
Yeast heat shock protein of MW 48000 is an isoprotein of enolase.
Nature 315, 688.
Lacey, J. (1981).
The aerobiology of conidial fungi.
In Biology of conidial fungi. Vol 1. New York, Academic Press.
Margalit, H., Spogue, J.L., Cornette, J.L., Cease, K.B., Delisi, C, Berzofsky, J.A. (1987).
Prediction of immunodominant Helper T cell antigenic sites from the primary sequence.
J. Immunol. 138, 2213.
Rammensee, H.G., Falk, K., Rötzschke, O. (1993).
MHC molecules as peptide receptors.
Current Opinion in Immunol. 5, 35.
Rieh, B.E., Steitz, J.A. (1987).
Human acidic ribosomal phosphoproteins P0, P1 and P2: analysis of cDNA clones, in vitro synthesis and assembly.
Mol. Cell. Biol. 7, 4065.
Rothbard, J.B., Gefter, M. L. (1991).
Interactions between immunogenic peptides and MHC proteins.
Ann. Rev. Immunol. 9, 527. Sanger, F., Nicklen, S., Coulson, A.R. (1977).
DNA sequencing with chain-terminating inhibitors.
Proc. Natl. Acad. Sei. USA 74, 5463-5468

Claims

Patentansprüche
1. Rekombinante DNA Moleküle, die für Polypeptide kodieren, die die Antigenität der Allergene Clah53, Clah47, Clah22 und Clah11 besitzen oder für
Peptide, die mindestens ein Epitop dieser Allergene aufweisen, dadurch gekennzeichnet, daß sie Nukleinsäuresequenzen aufweisen, die mit den Sequenzen 1, 3-5, 7-9, 12-14 sowie 16 und 17, oder mit Teilbereichen dieser Sequenzen in homologer Weise übereinstimmen, bzw. Nucleinsäuresequenzen, die mit den genannten Nucleinsäuresequenzen unter stringenten Bedingungen hybridisieren.
2. Rekombinante DNA-Moleküle nach Anspruch 1 , dadurch gekennzeichnet, daß sie Nukleinsäuresequenzen aufweisen, die durch Degeneration aus den dargestellten Sequenzen 1, 3-5, 7-9, 12-14 sowie 16 und 17 ableitbar sind.
3. Rekombinante DNA Moleküle nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß sie Nukleinsäuresequenzen aufweisen, die für Polypeptide kodieren, die als Antigene kreuzreaktiv mit den Allergenen Clah53, Clah47, Clah22 und Clahll sind und zu diesen eine hohe Homologie aufweisen.
4. Rekombinante DNA-Moleküle nach Ansprüchen 1 bis 3 dadurch gekennzeichnet, daß sie funktionell mit einer Expressionskontrollsequenz zu einem Expressionskonstrukt verbunden sind.
5. Wirtssystem zur Expression von Polypeptiden, dadurch gekennzeichnet, daß es mit einem rekombinanten Expressionskonstrukt nach Anspruch 4 transformiert ist.
6. Aus einem DNA-Molekül nach einem der Ansprüche 1 bis 3 abgeleitetes rekombinantes oder synthetisches Protein oder Polypeptid, dadurch gekennzeichnet, daß es die Antigenität von Clah53, Clah47, Clah22 oder Clahl l , oder zumindest von einem Epitop dieser Proteine, aufweist.
7. Rekombinantes oder synthetisches Protein oder ein Polypeptid nach
Anspruch 6, dadurch gekennzeichnet, daß es eine Aminosäuresequenz aufweist, die den gezeigten Sequenzen 1, 3-5, 7-9, 12-14 sowie 16 und 17 zur Gänze oder teilweise entspricht.
8. Rekombinantes oder synthetisches Protein oder Polypeptid nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß es ein Fusionsprodukt darstellt, das die
Antigenität der Allergene Clah53, Clah47, Clah22 oder Clah11, oder zumindest eines Epitops davon aufweisen und einen zusätzlichen Polypeptidanteil besitzt, wobei das gesamte Fusionsprodukt von der DNA eines Expressionskonstrukts gemäß Anspruch 4 kodiert wird.
9. Rekombinantes oder synthetisches Protein oder Polypeptid nach Anspruch 8, dadurch gekennzeichnet, daß der besagte zusätzliche Polypeptidanteil ß-Galaktosidase oder ein anderes zur Fusion geeignetes Polypeptid ist.
10. Diagnostisches oder therapeutisches Reagens, dadurch gekennzeichnet, daß es ein synthetisches Protein oder Polypeptid gemäß einem der Ansprüche 6 bis 9 enthält.
11. Verfahren zum in vitro -Nachweis der Allergie eines Patienten gegen die Allergene Clah53, Clah47, Clah22 oder Clah11, dadurch gekennzeichnet, daß die
Reaktion der IgE Antikörper im Serum des Patienten mit einem rekombinanten oder synthetischen Protein oder Polypeptid nach einem der Anprüche 6 bis 9 gemessen wird.
12. Verfahren zum in vitro - Nachweis der zellulären Reaktion auf die Allergene Clah53, Clah47, Clah22 oder Clah11, dadurch gekennzeichnet, daß ein rekombinantes oder synthetisches Protein oder Polypeptid nach einem der Ansprüche 6 bis 9 zur Stimulierung oder Hemmung der zellulären Reaktion eingesetzt wird.
PCT/AT1994/000120 1993-08-27 1994-08-24 Rekombinante chladosporium herbarum allergene WO1995006121A2 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DE59410221T DE59410221D1 (de) 1993-08-27 1994-08-24 Rekombinante chladosporium herbarum allergene
CA002170356A CA2170356A1 (en) 1993-08-27 1994-08-24 Recombinant cladosporium herbarum allergens
AU73572/94A AU7357294A (en) 1993-08-27 1994-08-24 Recombinant cladosporium herbarum allergens
AT94923586T ATE229074T1 (de) 1993-08-27 1994-08-24 Rekombinante chladosporium herbarum allergene
EP94923586A EP0714441B1 (de) 1993-08-27 1994-08-24 Rekombinante chladosporium herbarum allergene
DK94923586T DK0714441T3 (da) 1993-08-27 1994-08-24 Rekombinante Cladosporium herbarum allergener
JP50722595A JP3758671B2 (ja) 1993-08-27 1994-08-24 組み換えクラドスポリウムヘルバルム(Cladosporiumherbarum)アレルゲン
NO960749A NO960749L (no) 1993-08-27 1996-02-23 Rekombinante Cladosporium herbarum allergener
FI960881A FI960881A (fi) 1993-08-27 1996-02-26 Cladosporium herbarum -yhdistelmäallergeeneja

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0172593A AT400722B (de) 1993-08-27 1993-08-27 Rekombinante cladosporium herbarum allergene
ATA1725/93 1993-08-27

Publications (2)

Publication Number Publication Date
WO1995006121A2 true WO1995006121A2 (de) 1995-03-02
WO1995006121A3 WO1995006121A3 (de) 1995-07-13

Family

ID=3519665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT1994/000120 WO1995006121A2 (de) 1993-08-27 1994-08-24 Rekombinante chladosporium herbarum allergene

Country Status (12)

Country Link
EP (1) EP0714441B1 (de)
JP (1) JP3758671B2 (de)
AT (2) AT400722B (de)
AU (1) AU7357294A (de)
CA (1) CA2170356A1 (de)
DE (1) DE59410221D1 (de)
DK (1) DK0714441T3 (de)
ES (1) ES2191033T3 (de)
FI (1) FI960881A (de)
NO (1) NO960749L (de)
PT (1) PT714441E (de)
WO (1) WO1995006121A2 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996027005A2 (de) * 1995-03-02 1996-09-06 Biomay Produktions- Und Handelsgesellschaft Mbh Rekombinante dna moleküle, die für polypeptide kodieren, die die antigenität der allergene clah8 und clah12 besitzen
EP0759034A1 (de) * 1994-03-25 1997-02-26 Curtin University Of Technology Peptide für die diagnose und therapie
WO2001005980A1 (en) * 1999-07-14 2001-01-25 Pioneer Hi-Bred International, Inc. Compositions and methods for fumonisin detoxification
US6388171B1 (en) 1999-07-12 2002-05-14 Pioneer Hi-Bred International, Inc. Compositions and methods for fumonisin detoxification
US6538177B1 (en) 1998-07-15 2003-03-25 Pioneer Hi-Bred International, Inc. Compositions and methods for fumonisin detoxification
CN108732284A (zh) * 2018-06-04 2018-11-02 山东出入境检验检疫局检验检疫技术中心 一种使用专属性肽段组鉴别对虾的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5769968B2 (ja) 2007-10-18 2015-08-26 セル・シグナリング・テクノロジー・インコーポレイテツド ヒト非小細胞肺癌における転座および変異rosキナーゼ
GB201209862D0 (en) * 2012-06-01 2012-07-18 Circassia Ltd Cladosporium peptides

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
CLINICAL AND INVESTIGATIVE MEDICINE, Bd. 16,Nr. 4sup, August 1993 Seite B6 L.ZHANG ET AL 'Molecular cloning and characterization of allergens of Cladosporium herbarum' & Annual meeting of the Canadian Society for Clinical Investigation *
EMBO JOURNAL, Bd. 8, 1989 Seiten 1935-1938, H. BREITENEDER 'The gene coding for the major birch pollen allergen BetvI, is highly homologous to a pea disease resistance response gene' *
INT. ARCHS. ALLERGY APPL. IMMUN., Bd. 78, 1985 Seiten 249-255, M. SW[RD-NORDMO ET AL 'Purification and partial characterization of the allergen Ag-54 from Cladosporium herbarum' *
JOURNAL OF BIOLOGICAL CHEMISTRY, Bd. 266,Nr. 2, 15.Januar 1991 MD US, Seiten 1204-1210, A. SILVANOVICH ET AL 'Nucleotide sequence and analysis of three cDNAs coding for Poa p IX isoallergens of Kentucky Bluegrass pollen' *
JOURNAL OF IMMUNOLOGY, Bd. 138,Nr. 7, 1.April 1987 Seiten 2213-2229, H. MARGALIT ET AL 'Prediction of immunodominant helper T cell antigenic sites from the primary sequence' in der Anmeldung erw{hnt *
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, Bd. 80, M{rz 1983 WASHINGTON US, Seiten 1194-1198, R. YOUNG AND R. DAVIS 'Efficient isolation of genes by using antibody probes' *
THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, Bd. 83,Nr. 1, 1989 Seite 292 M. BURTON ET AL 'Characterization of allergens from six isolates of Cladosporium herbarum' *
THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, Bd. 89,Nr. 1, Januar 1992 Seite 241 H. SANCHEZ ET AL 'cDNA sequence of an Alternaria allergen' *
THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, Bd. 91,Nr. 1, Januar 1993 Seite 273 L. ZHANG ET AL 'Purification and characterization of a high molecular weight antigen from Cladosporium herbarum' *
THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, Bd. 93,Nr. 1, Januar 1994 Seite 207 L. ZHANG ET AL 'A novel allergen of Cladosporium herbarum identified as a ribosomal P2 protein' *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0759034A1 (de) * 1994-03-25 1997-02-26 Curtin University Of Technology Peptide für die diagnose und therapie
EP0759034A4 (de) * 1994-03-25 1999-04-21 Univ Curtin Tech Peptide für die diagnose und therapie
WO1996027005A2 (de) * 1995-03-02 1996-09-06 Biomay Produktions- Und Handelsgesellschaft Mbh Rekombinante dna moleküle, die für polypeptide kodieren, die die antigenität der allergene clah8 und clah12 besitzen
WO1996027005A3 (de) * 1995-03-02 1997-02-20 Biomay Prod & Handel Rekombinante dna moleküle, die für polypeptide kodieren, die die antigenität der allergene clah8 und clah12 besitzen
US6538177B1 (en) 1998-07-15 2003-03-25 Pioneer Hi-Bred International, Inc. Compositions and methods for fumonisin detoxification
US6388171B1 (en) 1999-07-12 2002-05-14 Pioneer Hi-Bred International, Inc. Compositions and methods for fumonisin detoxification
US6482621B1 (en) 1999-07-12 2002-11-19 Pioneer Hi-Bred International, Inc. Compositions and methods for fumonisin detoxification
US6534291B1 (en) 1999-07-12 2003-03-18 Pioneer Hi-Bred International, Inc. Compositions and methods for fumonisin detoxification
US6822140B2 (en) 1999-07-12 2004-11-23 Pioneer Hi-Bred International, Inc. Compositions and methods for fumonisin detoxification
WO2001005980A1 (en) * 1999-07-14 2001-01-25 Pioneer Hi-Bred International, Inc. Compositions and methods for fumonisin detoxification
CN108732284A (zh) * 2018-06-04 2018-11-02 山东出入境检验检疫局检验检疫技术中心 一种使用专属性肽段组鉴别对虾的方法
CN108732284B (zh) * 2018-06-04 2021-01-12 山东出入境检验检疫局检验检疫技术中心 一种使用专属性肽段组鉴别对虾的方法

Also Published As

Publication number Publication date
CA2170356A1 (en) 1995-03-02
DK0714441T3 (da) 2003-03-24
EP0714441A1 (de) 1996-06-05
WO1995006121A3 (de) 1995-07-13
EP0714441B1 (de) 2002-12-04
PT714441E (pt) 2003-04-30
AU7357294A (en) 1995-03-21
AT400722B (de) 1996-03-25
NO960749D0 (no) 1996-02-23
NO960749L (no) 1996-04-24
DE59410221D1 (de) 2003-01-16
FI960881A (fi) 1996-04-25
JP3758671B2 (ja) 2006-03-22
JPH09503125A (ja) 1997-03-31
ATE229074T1 (de) 2002-12-15
FI960881A0 (fi) 1996-02-26
ATA172593A (de) 1995-07-15
ES2191033T3 (es) 2003-09-01

Similar Documents

Publication Publication Date Title
Vrtala et al. Molecular, immunological, and structural characterization of Phl p 6, a major allergen and P-particle-associated protein from Timothy grass (Phleum pratense) pollen
CN104710512A (zh) 用于治疗豚草变态反应的包含Amb a 1肽的疫苗
DE60301944T2 (de) Verfahren zur Vorbereitung von hypoallergenen Mosaikproteinen#
AT400722B (de) Rekombinante cladosporium herbarum allergene
DE69132653T2 (de) Birkenpollenallergen p14 zur diagnose und therapie von allergischen krankheiten
US7862828B2 (en) Allergy vaccines containing hybrid polypeptides
Vrtala et al. Induction of IgE antibodies in mice and rhesus monkeys with recombinant birch pollen allergens: different allergenicity of Bet v 1 and Bet v 2
AT503296B1 (de) Protein-allergen-derivat
Bisht et al. Purification and characterization of a major cross-reactive allergen from Epicoccum purpurascens
Shen et al. Molecular cloning of cDNA coding for the 68 kDa allergen of Penicillium notatum using MoAbs
AT400723B (de) Rekombinante alternaria alternata allergene
DE60205907T2 (de) Hypoallergene Impfstoffe gegen Allergie basierend auf Lieschgraspollenallergen Phl p 7
Zabel et al. Art v 1 IgE epitopes of patients and humanized mice are conformational
AT403166B (de) Rekombinante dna moleküle, die für polypeptide kodieren, die die antigenität der allergene clah8 und clah12 besitzen
AT401181B (de) Rekombinante dna moleküle
DE60033414T2 (de) Allergievakzine sowie ihre Herstellung
EP1768996A1 (de) Varianten der gruppe 1-allergene aus poaceae mit reduzierter allergenität und erhaltener t-zellreaktivität
DE60036132T2 (de) Quantitative immunoenzymatische messmethode
Bhalla Genetic engineering of pollen allergens for hayfever immunotherapy
WO2004000881A1 (de) Dna-sequenz und rekombinante herstellung des graspollen-allergens phl p4
Jutel et al. Clinical results from vaccination with recombinant grass pollen allergens
DE60022069T3 (de) Nicht-anaphylaktische formen des grasspollenallergens ph1 p 6 und deren verwendung
EP1532169A1 (de) Varianten des majorallergens phl p 1 aus lieschgras
EP1495115B1 (de) Nucleinsäuresequenz und protein sowie polypeptide kodierend für mannit-dehydrogenasen oder deren teile sowie deren herstellung und verwendung in diagnostik und therapie
DE10351471A1 (de) Polyvalente Allergievakzine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AU CA FI JP NO US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AU CA FI JP NO US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1994923586

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2170356

Country of ref document: CA

Ref document number: 960881

Country of ref document: FI

WWP Wipo information: published in national office

Ref document number: 1994923586

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1996 612853

Country of ref document: US

Date of ref document: 19960807

Kind code of ref document: A

WWG Wipo information: grant in national office

Ref document number: 1994923586

Country of ref document: EP