WO1994026016A1 - Multi-rotor a.c. electrodynamic device - Google Patents

Multi-rotor a.c. electrodynamic device Download PDF

Info

Publication number
WO1994026016A1
WO1994026016A1 PCT/CN1994/000022 CN9400022W WO9426016A1 WO 1994026016 A1 WO1994026016 A1 WO 1994026016A1 CN 9400022 W CN9400022 W CN 9400022W WO 9426016 A1 WO9426016 A1 WO 9426016A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
electric device
transmission
gear
auxiliary
Prior art date
Application number
PCT/CN1994/000022
Other languages
English (en)
French (fr)
Inventor
Mingyuen Law
Original Assignee
Mingyuen Law
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mingyuen Law filed Critical Mingyuen Law
Priority to JP6523717A priority Critical patent/JPH08509594A/ja
Priority to AU64228/94A priority patent/AU676549C/en
Priority to EP94911822A priority patent/EP0703659B1/en
Priority to DE69425740T priority patent/DE69425740T2/de
Priority to US08/535,166 priority patent/US5708314A/en
Publication of WO1994026016A1 publication Critical patent/WO1994026016A1/zh
Priority to TW087211510U priority patent/TW456462U/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • H02K16/025Machines with one stator and two or more rotors with rotors and moving stators connected in a cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/10Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with one or more one-way clutches as an essential feature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/262Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators the motor or generator are used as clutch, e.g. between engine and driveshaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/727Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a type of AC electric device, including an AC motor and a power part using an AC power source in the machine.
  • the electric device includes a stator capable of generating a rotating magnetic field or an alternating magnetic field, a rotor capable of generating electromagnetic torque at an asynchronous speed, and a transmission member called an output member for dragging a mechanical load.
  • the rotor drives the output member to rotate at a fixed speed ratio directly or through a transmission.
  • the so-called 'rotators that can generate electromagnetic torque at asynchronous speeds' include' inductive rotors' which generate torque mainly by the electromagnetic effect of induced current, and 'hysteresis rotors which generate torque mainly by the hysteresis effect of iron core materials And other similar rotors, such as a rotor with a solid steel core.
  • the rotor rotates at a non-synchronous speed under the action of a rotating or alternating magnetic field, it can generate torque not only due to the electromagnetic effect of induced eddy currents, but also due to the hysteresis effect of iron core steel.
  • AC motors are most commonly used.
  • asynchronous motors especially squirrel-cage motors, are the most widely used.
  • Asynchronous motors have a simple structure, reliable operation, long life, and low cost, but the starting torque is small and the starting current is very large, the overload capacity is not large, and the mechanical characteristics are relatively hard. Usually, they can only work in a narrow speed range. Therefore, ordinary asynchronous motors and similar electric devices should not be used for dragging large starting loads or for machines that require speed to vary with the load over a large range. This disadvantage of asynchronous motors can be improved by increasing the resistance of the rotor windings.
  • This method can limit the starting current, and increase its starting torque and soften its characteristics to a certain extent, but it cannot increase its maximum torque, and usually will greatly reduce the rated efficiency of the motor. Therefore, whenever the performance of asynchronous motors and similar electric devices cannot meet the requirements of users, it is often necessary to switch to more complicated electric devices such as commutator motors. However, these electric devices are either relatively expensive or have poor reliability and long life.
  • the object of the present invention is to provide a simple structure, reliable operation, large starting torque and overload capacity, and effective dragging in a large speed range.
  • An AC electric device with mechanical load is used as the prime mover or power part of the working machine.
  • the present invention provides an electric device comprising an electromagnetic part and a transmission part.
  • the electromagnetic part includes a stator that generates a rotating or alternating magnetic field and at least two rotors that can generate rotating torque at asynchronous speeds.
  • One of the rotors is called the main rotor, and the others are called the auxiliary rotors.
  • the transmission part has a plurality of transmission parts having a fixed speed ratio with each other, including a transmission part called an output part for dragging a mechanical load.
  • Each of said zero rotors is connected to one of said transmission members, so that the output members can be driven at different speed ratios respectively, and the speed ratio of any of the secondary rotors to output members of said main rotor to output member is compared For small.
  • the speed ratio of a rotor to the output means the ratio of the speed of the rotor to the speed of the output.
  • each of the 5 rotors After the electric device is started, when the rotation speed of each rotor is lower than the synchronous rotation speed, each of the 5 rotors is in a motor state and drives the output member together. With the acceleration of the electric device, since the speed ratio of each auxiliary rotor to the output member is greater than the speed ratio of the main rotor to the output member, each auxiliary rotor will successively enter the generator state and generate the reverse direction before the main rotor reaches the synchronous speed. Force Torque to reduce the output torque of the electric device. Sometimes, this effect is slight; but in many cases, it can't be ignored. In order to prevent the secondary rotor from having the effect, an automatic unloading device can be added to the electric device.
  • the automatic unloading device When the auxiliary rotor is accelerated to a predetermined speed approximately equal to the synchronous rotation speed, the automatic unloading device immediately makes the rotor lose its driving effect on the output member, for example, the transmission link between the auxiliary rotor and the output member is released, so that Free-floating or making the secondary rotor no longer generate electromagnetic torque.
  • the output shaft is driven by the rotors in common.
  • the output torque of the electric device is the sum of the electromagnetic torques generated by the rotors at different speed ratios, which includes the part of the torque generated by the auxiliary rotors that is amplified by the drive train. Therefore, the electric device of the present invention has a larger starting torque and overload capacity than the existing ordinary asynchronous motors and similar electric devices.
  • the electric device of the present invention has a higher rotation speed of the sub-rotor than that of the main rotor. Under low-speed conditions, the slip rate of the sub-rotor is smaller, and it can output more efficiently. Active power. Therefore, the electric device has higher efficiency under low-speed working conditions, and can effectively drag mechanical loads in a wide speed range.
  • the auxiliary rotor of the electric device of the present invention is provided with appropriate copper or iron consumption, it is as if additional rotor resistance is added in the equivalent circuit of the electric device, which will better limit the electric power The starting current of the device and the starting torque are increased.
  • the invention can be used to develop a variety of electric devices with different characteristics to meet the requirements of various uses.
  • Brief description of the drawings are far more structural factors affecting the characteristics of the electric device of the present invention than ordinary asynchronous motors, including the electromagnetic coupling relationship between each rotor and the stator, the structure and size ratio of each rotor, and the speed ratio of each rotor to the output And whether it has an automatic unloading device, etc., the invention can be used to develop a variety of electric devices with different characteristics to meet the requirements of various uses. Brief description of the drawings
  • FIG. 1 is a schematic axial sectional view of an electric device including two auxiliary rotors according to the present invention.
  • FIGS 2 and 3 are schematic perspective sectional views of two electromagnetic parts of the electric device of the present invention.
  • FIG. 4 and 5 are schematic cross-sectional views of two types of electromagnetic parts of the electric device of the present invention, and FIG. 4 is a cross-sectional view taken along lines 'AA' of FIGS. 16, ⁇ , and ⁇ , and FIG. 5 is taken along FIG. 15. 'B-B, cross-sectional view taken on line.
  • Figures 6, 7, 8, and! are schematic axial sectional views of the transmission part of the electric device of the present invention.
  • FIG. 10, FIG. 1, FIG. 12 and FIG. 13 are schematic axial sectional views of four different embodiments of the electric device of the present invention.
  • Each electric device includes FIG. 6 in addition to the electromagnetic part shown in FIG. , 7, 8 and 9 drive parts.
  • FIG. 14 is a schematic axial sectional view of another embodiment of the electric device according to the present invention, which includes the electromagnetic part shown in FIG. 3 and the transmission part shown in FIG. 6.
  • FIG. 15 is a circuit diagram of the electric device shown in FIG. 14.
  • each electric device includes a transmission portion shown in FIGS. 8 and 9 in addition to the electromagnetic portion shown in FIG. 4.
  • the main rotor of each electric device is located in the center of the hollow sub-rotor.
  • FIG. ⁇ is a schematic axial sectional view of another embodiment of an electric device according to the present invention. It includes the electromagnetic part shown in Figure 4 and the transmission part shown in Figure ⁇ .
  • the auxiliary rotor of the electric device is located at the center of the hollow main rotor.
  • FIG. 19 is a schematic axial sectional view of an embodiment of an electric device including the electromagnetic part shown in FIG. 5 according to the present invention.
  • FIG. 2G is an embodiment of the present invention including the electromagnetic part shown in FIG. 4 and the transmission part shown in FIG. 6. Schematic diagram of the axial section of the embodiment.
  • Fig. 21 is a circuit diagram of the electric device shown in Fig. 2G.
  • FIG. 22 is a schematic axial cross-sectional view of an embodiment of the present invention including an electromagnetic portion shown in FIG. 2 and a transmission portion shown in FIG. 6. The best way to implement the invention
  • an electric device of the present invention includes an electromagnetic part 1 and a transmission part.
  • the electromagnetic part includes a stator 6 fixed on the frame 3, which can generate a rotating or alternating magnetic field, and a rotor 4, which can generate torque at asynchronous speeds.
  • I and I are called the main rotor, the first auxiliary rotor, and The second auxiliary rotor.
  • the stator and each rotor have their own cores.
  • the rotors 4 and 8 also have windings or conductors 5 and 7 equivalent to the windings, respectively, which conduct the induced current.
  • Part of the stator 6 and the rotor S respectively surround different parts of the rotor 4, and the other part of the rotor I revolves, so that the electromagnetic part has three closed magnetic circuits that conduct the main magnetic flux.
  • the first magnetic circuit includes a part of the stator core and the core of the rotor 4 and is interlinked with the rotor winding 5;
  • the second magnetic circuit includes the core of the rotor 4 and each part of the core of the rotor 8 and the rotor winding 5 and 7 interlinking;
  • the third magnetic circuit includes the other part of the core of the rotor 8 and the core of the rotor!), And the rotor winding 7 is interlinked. .
  • the transmission part includes: transmission shafts 10, 12, and 14; transmission shaft 16 as an output member; gears 11, 13, 15, 17, ID, and 20; and one-way clutches ⁇ and 21 as an automatic unloading device.
  • the drive shafts lfl and 12 are hollow shafts.
  • the transmission shaft 12 is rotatably mounted on the transmission shaft 14, and the transmission shaft 10 is rotatably mounted on the transmission shaft ⁇ .
  • Gears 11, 13, 15 and ⁇ are coupled to drive shafts 1 ⁇ , 12, 14 and, respectively.
  • Gears 19 and 2G are coupled to drive shaft 16 via one-way clutches 1S and 21, respectively.
  • Gears 11, 13, and 15 mesh with gears 2G, IS, and 17, respectively.
  • the rotor 4 is coupled to the drive shaft 14 as a main rotor.
  • Rotors 8 and 9 are coupled as auxiliary rotors to drive shafts 10 and 12, respectively.
  • Rotors 8 and! Drives drive shaft 16 in the normal forward direction of rotor 4
  • the speed ratio of each rotor driving the transmission shaft 16 is the largest of the auxiliary rotor 9, the second of the auxiliary rotor 8, and the smallest of the main rotor 4.
  • the stator 6 After the electric device is connected to an appropriate AC power source, the stator 6 generates a rotating or alternating magnetic field; the magnetic field generates an induced current in the winding 5 and generates a torque in the rotor 4; the induced current in the winding 5 includes the rotor A magnetic field is induced in the magnetic circuit of the iron core of 8 and a current is induced in the winding 7.
  • the rotor 8 also generates torque; the current in the winding 7 induces a magnetic field in the magnetic circuit of the iron core including the rotor 9 and causes the rotor 9 Torque is also generated, so that the three rotors drive the drive shaft to rotate.
  • the electric device can also use the transmission shaft 14 as an output member.
  • the electric device of the present invention can use a transmission member coupled to the main rotor as an output member, and accordingly, it is only necessary to make each auxiliary rotor drive the output member to have a speed ratio greater than 1 through the transmission portion.
  • the electromagnetic part of the electric device provided by the present invention may include at least one of the auxiliary rotors, and may have a variety of different structures.
  • an electromagnetic part of the electric device of the present invention includes: a stator 22 that can generate a rotating or alternating magnetic field, and a main rotor 26 and a sub-rotor 25 that can generate torque at asynchronous speeds.
  • the stator and each rotor have their own iron cores, and the main rotor also has a closed winding or a conductor 23 corresponding to the winding that conducts the induced current.
  • the iron cores of the stator 22 and the auxiliary rotor 25 respectively surround different parts of the main rotor core, so that the electromagnetic part has two closed magnetic circuits which are respectively linked with the main rotor winding 23.
  • the first magnetic circuit includes the iron core of the stator 22 and a part of the core of the main rotor 26, and the second magnetic circuit includes the iron core of the auxiliary rotor 25 and the main The other part of the iron core of the rotor 26.
  • the stator 22 excites a magnetic flux 24 in the first magnetic circuit; the magnetic flux 24 generates an induced current in the winding 23 and causes the main rotor 26 to generate torque; in the winding 23
  • the current again excites magnetic flux 27 in the second magnetic circuit, so that the auxiliary rotor 25 also generates torque.
  • the core of the auxiliary rotor 25 may include a single piece of steel or electric pure iron.
  • another electromagnetic part of the electric device of the present invention includes a stator 31 that can generate a rotating or alternating magnetic field, and a main rotor 28 and an auxiliary rotor 33 that can generate torque at asynchronous speeds.
  • the stator has a winding and an iron core, and each of the rotors has its own iron core.
  • the different parts of the iron core of the stator 31 surround the rotors 2 S and 33 respectively, so that the electromagnetic part has two closed magnetic circuits each linked to the stator winding.
  • the first magnetic circuit of the two magnetic circuits includes the iron core of the main rotor 28 and a part of the iron core of the stator 31; and the second magnetic circuit includes the iron core of the auxiliary rotor 33 and the iron of the stator 31 Another part of the core.
  • an electromagnetic part of the electric device of the present invention includes a stator capable of generating a rotating or alternating magnetic field, and rotors 37 and 38 capable of generating torque at asynchronous speeds.
  • the stator 36 has a winding 34 and an iron core; the rotor 38 also has its own iron core; the rotor 37 has a metal circle surrounding the rotor ⁇ , and the stator 36 surrounds the circle.
  • the electromagnetic part has a closed magnetic circuit including a stator and a rotor 38, a metal circular wall that crosses the rotor 37, and is linked to the stator winding 34. After the proper power is connected, the current in the winding generates magnetic flux 35 in the magnetic circuit, and the rotors 37 and 38 can generate torque under its action.
  • another electromagnetic part of the electric device of the present invention includes a stator 43 that can generate a rotating or alternating magnetic field and a rotor 4 that can generate torque at asynchronous speeds.
  • the stator 43 is located in the electromagnetic part Center with windings and iron core; rotor 42 has a package The metal circle surrounding the stator 43; the rotor 41 has an iron core of said metal circle surrounding the rotor 42. Therefore, the electromagnetic part has a closed magnetic circuit including a stator W and an iron core of the rotor 41, a metal circular wall crossing the rotor, and a link with the stator winding 39. After an appropriate power source is connected, the current in the winding 39 generates magnetic flux 40 in the magnetic circuit, and the rotors 41 and U can generate torque under the action thereof.
  • the metal circle of the rotor 42 can be made of ferromagnetic materials, such as electrical pure iron, steel, or semi-hard magnetic alloy; non-ferromagnetic metals, such as copper or molybdenum can also be used.
  • the transmission part of the electric device provided by the present invention may also have a variety of different structural forms o.
  • a transmission part of an electric device includes: gears 46, 4 and 4 and transmission shafts ", 45 and".
  • the transmission shaft 45 is a hollow shaft and is rotatably mounted on the transmission shaft 44.
  • Gears 46 and 47 are coupled to drive shafts 45 and 44 respectively; gears 49 and 50 are coupled to drive shaft 48.
  • Gears 46 and 47 mesh with gears 50 and 49, respectively. If so, the transmission shafts 44, 45 and 48 have a fixed transmission speed ratio.
  • another transmission part of the electric device of the present invention includes a gear 53 and a first gear and a second gear, respectively; a double gear 56; and the transmission shafts 51 and 52 are respectively referred to as a first and a second gear.
  • the transmission shaft 52 is a hollow shaft rotatably mounted on the transmission shaft 51.
  • Gears 53 and 51 are coupled to drive shafts 52 and 51, respectively.
  • the double gear 56 is rotatably mounted on the spindle 55, and its two ring gears mesh with the gears 53 and 54 respectively. If so, the transmission shafts 51 and 52 have a fixed transmission speed ratio.
  • another transmission part of the electric device of the present invention includes: a transmission shaft 57, an internal gear 59, a planet carrier, a planet wheel 61 and a center wheel 62.
  • the internal gear 5! Is rotatably mounted on the transmission shaft 57.
  • the planet carrier is coupled to the transmission shaft 57.
  • the planet wheel ⁇ is rotatably mounted on the planet carrier 6D and meshes with the center wheel 62 and the internal gear 59 at the same time.
  • 62 is coupled to the frame 58.
  • the internal gear 59 has a fixed speed ratio of greater than 1 to the transmission shaft 57.
  • another transmission part of the electric device of the present invention includes: a transmission shaft 63, sun gear 64, planet gear 65, planet carrier and internal gear 67.
  • the center wheel 64 is rotatably mounted on the transmission shaft 63
  • the planet carrier 66 is coupled to the transmission shaft ⁇
  • the planet gear 65 is rotatably mounted on the planet carrier 66 and simultaneously meshes with the center wheel and the internal gear ⁇ , and the internal gear ⁇ and ⁇ joining.
  • the center wheel 64 has a fixed speed ratio of greater than 1 to the transmission shaft 63.
  • the electric device of the present invention may include any one of the foregoing electromagnetic parts, and may also include any of the foregoing transmission parts.
  • One such electric device has a one-way clutch 69 as its automatic unloading device.
  • the gear 49 in the transmission part is coupled to the transmission shaft 41 through the one-way clutch 69, which can be disengaged when the auxiliary rotor 25 is fixed and the main rotor 26 rotates in the original forward direction.
  • the one-way clutch is automatically released, and the auxiliary rotor 25 no longer bears the load on the output shaft and floats freely.
  • the one-way clutch 69 may also be installed between any two associated transmission members in the transmission chain in which the auxiliary rotor 25 drives the transmission shaft W as an output member. For example, it is used to couple the transmission shaft 44 and the gear 47, or to couple the auxiliary rotor 25 and the transmission shaft 44.
  • FIG. 11 shows another embodiment of the electric device of the present invention including the electromagnetic part shown in FIG. 2 and the transmission part shown in FIG. 7.
  • Transmission shafts 51 and 52 in the transmission section are coupled to a main rotor 26 and a sub-rotor 25 in the electromagnetic section, respectively.
  • the transmission shaft 51 can be used as an output of the electric device.
  • the auxiliary rotor 25 drives the transmission shaft 51 through the transmission portion at a speed ratio greater than 1.
  • One type of said electric device has a one-way clutch as its automatic unloading device.
  • the gear 54 in the transmission part is coupled to the transmission shaft 51 through the one-way clutch 70, and the one-way clutch 7C can be disengaged when the auxiliary rotor 25 is fixed and the main rotor rotates in the original forward direction. Therefore, the auxiliary rotor 25 can be turned into a floating state after being accelerated to a speed close to or reaching a synchronous rotation speed.
  • Fig. 12 shows still another embodiment of the electric device of the present invention including the electromagnetic portion shown in Fig. 2 and the transmission portion shown in Fig. 8.
  • a transmission shaft 57 and an internal gear 59 in the transmission section are coupled to a main rotor and a sub-rotor 25 in the electromagnetic section, respectively.
  • the transmission shaft W can be used as an output of the electric device.
  • One such electric device has a one-way clutch 71 as its automatic unloading device.
  • the center wheel 62 in the transmission part is coupled to the frame through the one-way clutch 71, and the one-way clutch 71 can be disengaged when the auxiliary rotor 25 is fixed and the main rotor 26 rotates in the original forward direction.
  • the one-way coupling 71 will automatically disengage, and the auxiliary rotor 25 will also turn into a floating state.
  • Fig. 13 shows still another embodiment of the electric device of the present invention including the electromagnetic portion shown in Fig. 2 and the transmission portion shown in Fig. 9.
  • a transmission shaft 63 and a center wheel 64 in the transmission section are coupled to a main rotor 26 and a sub-rotor 25 in the electromagnetic section, respectively.
  • the transmission shaft 63 can serve as an output member of the electric device.
  • One such electric device has a one-way clutch 72 as an automatic unloading device.
  • the internal gear ⁇ 7 is connected to the frame through the one-way clutch 72.
  • the one-way clutch can be automatically released when the auxiliary rotor 25 is fixed and the main rotor 26 rotates in the original forward direction. If so, the acceleration of the electric device In the process, when the speed of the sub-rotor 25 approaches or reaches the synchronous rotation speed, the sub-rotor will turn into a floating state.
  • FIG. 14 and 15 show another embodiment of the electric device of the present invention including the electromagnetic portion shown in FIG. 3 and the transmission portion shown in FIG. 6.
  • Drive shafts 45 and 44 in the drive section The rotors 28 and 33 are respectively connected to the electric motor, so that both the rotors can drive the transmission shaft as an output member.
  • the figure shows a main rotor 28 and a sub-rotor 33 of the electric device.
  • the speed ratio of the main rotor 28 to the transmission shaft 48 is smaller than the speed ratio of the auxiliary rotor 33 to the shaft 41.
  • the automatic unloading device includes a set of automatic switching devices 74 operating according to the rotation speed of the transmission member.
  • Such automatic switching devices may be, for example, well-known centrifugal switches or speed relays.
  • the automatic switching device has a plurality of pairs of normally closed contacts 75, as shown in FIG. At least one pair of the normally closed contacts are connected in series in each phase closed loop of the winding of the auxiliary rotor.
  • each pair of normally closed contacts 75 of the switching device will be opened. Thereby, the induced currents in the windings 73 of the phases of the sub-rotor are interrupted, and the sub-rotor no longer generates electromagnetic torque, and no longer affects the output of the motor.
  • Fig. 16 shows still another embodiment of the electric device of the present invention including the electromagnetic part shown in Fig. 4 and the transmission part shown in Fig. 8.
  • a transmission shaft 57 and an internal gear 59 in the transmission section are connected to a rotor 38 in the electromagnetic section and the rotor 37 having a metal round shape, respectively.
  • the speed ratio of the rotor 37 driving the transmission shaft 57 is greater than 1, so the rotor 31 is the main rotor of the electric device and the rotor 37 is the sub-rotor.
  • the transmission shaft 57 can be used as an output member of the electric device.
  • One type of said electric device has a one-way clutch as an automatic unloading device, and the planet carrier in said transmission part is coupled with a transmission shaft 57 through the one-way clutch 76.
  • the one-way clutch 76 can be disengaged when the auxiliary rotor 37 is fixed and the main rotor 31 is rotated in the normal forward direction. If so, when the auxiliary rotor 37 of the electric device accelerates to close to or reaches the synchronous speed, when the main rotor 38 continues to accelerate, the one-way clutch will automatically disengage, and the auxiliary rotor 37 also turns into a floating state.
  • FIG. ⁇ shows still another embodiment of the electric device of the present invention including the electromagnetic part shown in FIG. 4 and the transmission part shown in FIG. 9.
  • the transmission shaft 63 and the middle in the transmission part The core wheel 64 is respectively coupled to a rotor 38 and a rotor 37 having a simple shape in the electromagnetic part.
  • the speed ratio of the rotor 37 driving the transmission shaft 63 is greater than one. Therefore, the rotor is the main rotor of the electric device, and the rotor 37 is the sub-rotor.
  • the transmission shaft ⁇ can be used as an output shaft of the electric device.
  • One such electric device has a one-way clutch 77 as an automatic unloading device.
  • the planetary carrier 66 in the transmission part is coupled to the transmission shaft through a one-way clutch ⁇ , and the one-way clutch ⁇ can be disengaged when the sub-rotor 37 is fixed and the main rotor ⁇ rotates in the original forward direction. If so, the sub-rotor 37 will turn into a floating state after accelerating to or near the synchronous speed.
  • Fig. 18 shows still another embodiment of the electric device of the present invention including the electromagnetic part shown in Fig. 4 and the transmission part shown in Fig. 8.
  • the rotor 37 is coupled to a transmission shaft 51 as an output member, and the rotor 31 is rotatably mounted on the transmission shaft 57 and coupled to the internal gear 59. If so, the speed ratio of the rotor 38 driving the transmission shaft 57 is greater than 1, the rotor 37 is the main rotor and the rotor is the sub rotor.
  • One such electric device has a one-way clutch 78 as an automatic unloading device.
  • the auxiliary rotor 31 is coupled to the internal gear 59 through the one-way clutch 78, and the one-way clutch 78 can be disengaged when the auxiliary rotor 38 is fixed and the main rotor 37 rotates in the original forward direction. If so, the sub-rotor 38 will turn into a floating state after accelerating to or near the synchronous speed.
  • FIG. ID shows an embodiment of the electric device of the present invention including the electromagnetic part shown in FIG. 5.
  • the electric device includes a mandrel H fixed on a frame, and its transmission part includes transmission shafts 80, 82, and ⁇ , which are called first, second, and third transmission shafts, and gears U, 83, M, and 85. They are called the first, second, third, and fourth gears and the rotating housing 7 as the output member, respectively!).
  • Both the transmission shaft and 82 are hollow shafts.
  • the transmission shaft 82 is rotatably mounted on the mandrel M, and the transmission shaft 80 is rotatably mounted on the transmission shaft.
  • Gears 81 and 83 are coupled to the drive shafts 80 and 82, respectively; gears 85 and U are coupled to the drive shaft ⁇ .
  • Gears 8 1 and 83 mesh with gears U and ⁇ , respectively.
  • the rotating housing 79 is coupled with the transmission shaft. Said electric equipment
  • the stator 43 of the electromagnetic part is fixed on the mandrel 4 and the rotor 41 is mounted on the inner wall of the rotating housing 79 as a main rotor.
  • the rotor U is coupled to the transmission shaft U as a sub-rotor, and the speed ratio of the rotor driving the rotating housing 79 through the transmission part is greater than 1.
  • One such electric device has a one-way clutch 86 as an automatic unloading device.
  • the 5 transmission shaft ⁇ is coupled to the gear 85 through the one-way clutch 86, and the one-way clutch can be disengaged when the auxiliary rotor is fixed and the main rotor 41 is rotated in the normal forward direction. If so, the secondary rotor 42 will turn into a floating state after accelerating to or near the synchronous speed.
  • 20 and 21 show an electric device of the present invention including an electromagnetic portion shown in FIG. 4 and a transmission portion shown in FIG. 6.
  • the rotors 31 and 31 are connected to the transmission shafts 45 and 44 respectively, so as to drive the shafts 48 as output members.
  • the speed of the rotor 37 is smaller than that of the rotor, 37 is the main rotor, and 38 is the auxiliary rotor.
  • the rotor 3 has a wire-wound winding 89 for conducting an induced current.
  • the electric device has an automatic unloading device, which includes a rectifying element 9 ⁇ , such as a well-known semiconductor diode or a rectifying circuit including a controllable silicon transistor.
  • the auxiliary rotor winding 89 has a closed loop that conducts currents induced in different phases; at least one of the rectifying elements is connected in series in each of the closed loops. The direction of flow of each of the rectifying elements is set to turn on the auxiliary rotor 3 8 when the speed in the predetermined forward direction is lower than the induced current generated when the speed is lower than the synchronous speed.
  • the rotor can generate torque of the main rotor 2037 jointly drive the output shaft 48.
  • the speed of the rotor 38 exceeds the synchronous speed, the induced electromotive force in the winding ⁇ is reversed, and the rotor current is blocked by the rectifying element, so the auxiliary rotor 38 cannot generate torque, that is, it loses the drive or resistance to the shaft 48. Lag effect.
  • Appropriate electrical components 9 1 can also be connected in series to the sub-rotor windings 9, such as resistors or capacitors, as shown in FIG. 21 to improve the driving characteristics of the sub-rotor.
  • FIG. 22 illustrates an electric device including an electromagnetic part shown in FIG. 2 and a transmission part shown in FIG. 6.
  • the transmission shaft 44 has a thread and a step 93.
  • the auxiliary rotor 25 has a corresponding thread and a step corresponding thereto. After the screw pair of the shaft "and the screw pair of the rotor 25 is screwed together, the steps of the two are compressed, and the auxiliary rotor 25 is coupled with the shaft", so that the output shaft 48 can be driven. After the spiral pair M is unscrewed, the sub-rotor 25 can rotate freely.
  • the main rotor 526 is coupled to the transmission shaft 45. The speed of the main rotor drive shaft is smaller than that of the sub rotor.
  • the rotation direction of the spiral pair M is set such that, if the transmission shaft is fixed and the auxiliary rotor 25 is rotated in a predetermined forward direction, the spiral pair M will be turned on and the step 93 will be compressed.
  • one type of said electric device has a spring 95.
  • the spring is forced to deform when the helical pair is disengaged, thereby generating a force that acts on the sub-rotor 25 and points in the direction of the axial movement of the sub-rotor when the helical pair H is turned on.
  • Another main rotor core of said electric device having a truncated cone-shaped core is surrounded by the sub-portion 92 of the rotor 25.
  • the spiral pair M When the spiral pair M is turned on, the air gap between the cone portion 92 of the main rotor and the sub-rotor is reduced due to the axial movement of the sub-rotor 25.
  • the electromagnetic force between the conical portion ⁇ 2 of the main rotor 26 and the sub-rotor 25 will include a force acting on the sub-rotor 25 and pointing to the sub-rotor. 2 5 Force component in the direction of axial movement.
  • the type or arrangement position of the automatic unloading device can also be used to make a variety of electric devices of the present invention different from the above embodiments.
  • Ordinary skilled technicians in the technical field to which the present invention pertains, according to the foregoing disclosure, can already make different designs within the scope defined by the claims of the present invention patent in this way.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Synchronous Machinery (AREA)

Description

说明 书 多转子交流电动装置 技术领域
本发明涉及一类交流电动装置, 包括交流电动机及机器中使用交 流电源的动力部分。 所说电动装置包括一个可产生旋转磁场或交变磁 场的定子、 一个可以在非同步转速下产生电磁扭矩的转子及一个被称 为输出件而用以拖动机械负载的传动件。 所说转子直接地或通过一个 传动装置按固定速比驱动所说输出件旋转。 背景技术 '
所谓 '可以在非同步转速下产生电磁扭矩的转子' 包括主要依靠 感生电流的电磁效应产生扭矩的 '感应式转子' 、 主要依靠铁芯材料 的磁滞效应产生扭矩的 '磁滞式转子, 以及其他类似的转子, 例如具 有整体钢质铁芯的转子。 该转子在旋转或交变磁场作用下以非同步转 速旋转时, 既可因感生涡流的电磁效应产生扭矩, 又可因铁芯钢材的 磁滞效应产生扭矩。
现有用以拖动作功机械的电动装置中, 以交流电动机应用最为普 遍; 而现有的交流电动机中, 又以异步电动机, 特别是鼠笼式电动机 的应用最为广泛。 异步电动机结构简单、 工作可靠、 寿命长、 成本 低, 但是起动扭矩较小而起动电流甚大, 过载能力不大, 机械特性较 硬, 通常只能在很窄的速度范围内工作。 故普通的异步电动机及类似 的电动装置不宜用以拖动起动负荷较大或用于要求速度须随负荷在较 大范围内变动的机械。 异步电动机的这一缺点可以用加大其转子绕组的电阻的方法加以 改善。 这种方法能够限制起动电流, 并在一定程度上加大其起动扭矩 和软化其特性, 但是并不能使其最大扭矩得以增加, 并且通常将使所 说电动机的额定效率大大下降。 因此, 每当异步电动机及类似的电动 5 装置的性能不能满足使用者的要求时, 往往不能不改用诸如换向器电 动机之类更为复杂的电动装置。 但是, 这些电动装置如果不是较为昂 贵, 就是工作可靠性与寿命较差。
! 0 发明的公开
为了弥补现有异步电动机及类似的电动装置的不足, 本发明的目 的是提供一种结构较为简单、 工作可靠、 具有较大起动扭矩和过载能 力、 并能在较大速度范围内有效地拖动机械负载的交流电动装置, 用 作工作机械的原动机或其动力部分。
, 5 为了实现这一目的, 本发明所提供的电动装置包括电磁部分和传 动部分。 所说电磁部分包括一个产生旋转或交变磁场的定子及至少两 个可在非同步转速产生旋转力矩的转子。 所说转子其中之一称为主转 子, 其余则称为副转子。 所说传动部分具有若干彼此间有固定速比的 传动件, 包括一个被称为输出件而用以拖动机械负载的传动件。 所说 0 各转子分别与所说传动件之一联接, 从而可分别以各自不同的速比驱 动输出件, 并且, 所说主转子对输出件的速比较之任何副转子对输出 件的速比为小。 这里所说某转子对输出件的速比是指该转子的转速对 输出件转速之比。
在所说电动装置启动后, 当各转子的转速均低于同步转速时, 各 5 转子均处于电动机状态, 并共同驱动输出件。 随着所说电动装置的加 速, 由于各副转子对输出件的速比大于主转子对输出件的速比, 各副 转子将陆续先于主转子达到同步转速而进入发电机状态并产生反向力 矩, 使所说电动装置的输出扭矩减小。 有时, 这种影响是轻微的; 但 很多时, 也是不可忽视的 为了避免副转子产生所说影响, 可以在所 说电动装置内加设自动卸荷装置。 当副转子加速到某一大约等于同步 转速的既定速度时, 所说自动卸荷装置立即使该转子失去对输出件的 驱动作用, 例如, 解除该副转子与输出件间的传动联系、 使之自由浮 动, 或使该副转子不再产生电磁力矩。
如上所述, 所说电动装置在其低速工况下, 即各副转子未全部加 速到同步转速之前, 输出轴受到各转子共同的驱动作用。 此时, 所说 电动装置的输出扭矩是各转子所产生的电磁力矩按不同速比放大后的 总和, 其中包括了各副转子所产生的扭矩被传动系放大了的部分。 所 以, 本发明的电动装置较之现有的普通异步电动机及其类似的电动装 置具有更大的起动扭矩和过载能力。
一般说来, 与现有的异步电动机比较, 本发明的电动装置由于副 转子的转速较主转子的 速为高, 在低速工况下, 副转子的转差率较 小,可以更有效地输出有功功率。 故所说电动装置在低速工况下的效率 较高, 能够在较阔的速度范围内有效地拖动机械负载。
特别地, 如果使本发明电动装置的副转子具有适当的铜耗或铁耗, 即有如在所说电动装置的等效电路内增加了额外的转子电阻, 这将可 更好地限制所说电动装置的起动电流和加大起动扭矩。
又, 由于对本发明的电动装置的特性有影响的结构因素远较普通 异步电动机为多, 包括各转子与定子间的电磁耦合关系、 各转子的结 构与尺寸比例、 各转子对输出件的速比以及是否具有自动卸荷装置等, 故采用本发明可以开发出多种具有不同特性的电动装置以适应各种用 途的要求。 附图的简要说明
下面将结合附图列举示例对本发明作进一步的说明。
图 1 为本发明的一种包括两个副转子的电动装置的轴向剖面示意 图
图 2 和 3 是本发明的电动装置的两种电磁部分的立体剖视示意 图。
图 4 和 5 是本发明的电动装置的两种电磁部分的横向剖面示意图, 图 4 也是沿图1 6、 Π和 Π的 'A-A , 线截取的剖视图, 而图 5 是沿图 1 5,的 'Β-Β , 线截取的剖视图。
图 6 、 7 、 8 和!) 是本发明电动装置的传动部分的轴向剖面示意 图。
图 1 0、 1 1、 1 2和 1 3是本发明的电动装置的四种不同实施例的轴向 剖视示意图, 其中各电动装置除包括图 2 所示电磁部分外, 还分别包 括图 6 、 7 、 8 和 9 所示传动部分。
图 1 4是本发明的电动装置的又一种实施例的轴向剖面示意图, 其 中包括图 3 所示电磁部分及图 6 所示传动部分。
图 1 5是图 1 4所示电动装置的电路图。
图 1 6和 17是本发明的电动装置的其它两种实施例的轴向剖面示意 图, 其中各电动装置除包括图 4 所示电磁部分外, 还分别包括图 8 和 9 所示传动部分。 在这两种实施例中, 各电动装置的主转子均位于中 空的副转子的中心。
图 Π是本发明的又一种电动装置的实施例的轴向剖面示意图。 其 中, 包括图 4 所示电磁部分及图 ϋ 所示传动部分。 在这实施例中, 电 动装置的副转子位于中空的主转子的中心。
图 1 9是本发明的一种包括图 5 所示电磁部分的电动装置的实施例 的轴向剖面示意图。
图 2 G是本发明的一种包括图 4 所示电磁部分及图 6 所示传动部分 的实施例的轴向剖面示意图。
图 21是图 2G所示电动装置的电路图。
图 22是本发明的一种包括图 2 所示电磁部分及图 6 所示传动部分 的实施例的轴向剖面示意图。 实现本发明的最佳方式
如图 1 所示, 一种本发明的电动装置包括电磁部分 1 及传动部分
2
所说电磁部分包括固定于机架 3 上, 可产生旋转或交变磁场的定 子 6 及可在非同步转速下产生扭矩的转子 4 、 I 和!) 分别称为主转 子、 第一副转子和第二副转子。 所说定子及各转子分别具有各自的铁 芯。 转子 4 与 8 还分别具有导通感生电流的绕组或相当于绕组的导体 5 与 7 。 定子 6 及转子 S 的一部分分别环绕转子 4 的不同部分, 转子 I 的另一部分又环绕转^,从而所说电磁部分具有三条导通主磁通的 闭合磁路。 第一条磁路包括定子铁芯及转子 4 的铁芯之一部分, 与转 子绕组 5 交链; 第二条磁路包括转子 4 的铁芯及转子 8 的铁芯各一部 分, 与转子绕组 5 及 7 交链; 第三条磁路包括转子 8 的铁芯之另一部 分及转子!) 的铁芯, 与转子绕组 7 交链。.
所说传动部分包括: 传动轴 10、 12和 14; 作为输出件的传动轴 16; 齿轮 11、 13、 15、 17、 ID和 20及作为自动卸荷装置的单向离合器 Π和 21。 传动轴 lfl与 12是空心轴。 传动轴 12可转动地安装在传动轴 14上, 传动轴 10则可转动地安装在传动轴 Π上。 齿轮 11、 13、 15和 Π分别与 传动轴 1β、 12、 14和 联接。 齿轮 19和 2G则分别通过单向离合器 1S和 21与传动轴 16联接。 齿轮 11、 13和 15分别与齿轮 2G、 IS和 17啮合。
转子 4 作为主转子与传动轴 14联接。 转子 8 和 9 作为副转子分别 与传动轴 10和 12联接。 转子 8 和!) 按转子 4 的原定正向驱动传动轴 16 时,单向离合器 1 8和 2 1结合; 反之, 若分别固定转子 8 和 9,而令转子 4 驱动传动轴 1 6按原正向旋转, 则单向离合器 8 和!) 将分别解脱。 各转 子驱动传动轴 1 6的速比, 以副转子 9 的最大, 副转子 8 的次之, 主转 子 4 的最小。
所说电动装置接通适当的交流电源后, 定子 6 即产生旋转或交变 磁场; 该磁场在绕组 5 内产生感生电流并使转子 4 产生扭矩; 绕组 5 内的感生电流又在包括转子 8 的铁芯的磁路内感生出磁场并在绕组 7 内感生电流, 转子 8 亦因而产生扭矩; 绕组 7 内的电流又在包括转子 9 的铁芯的磁路内感生出磁场并使转子 9 也产生扭矩, 从而所说三个 转子均驱动传动轴 旋转。 在所说电动装置加速过程中, 副转子 ϋ 与
I 按照对传动轴 1 6的速比大小的顺序先后接近或达到同步转速后便不 再加速, 传动轴 在主转子 4 驱动下继续加速时, 其速度将先后超越 齿轮 1 !)与 单向离合器 1 8和 2 1亦依次解脱, 使副转子!) 与 8 先后进 入浮动状态。 .
所说电动装置也可将传动轴 1 4作为输出件。 一般地说, 本发明的 电动装置可以将与主转子联接的传动件作为输出件, 相应地, 只须使 各副转子通过传动部分驱动该输出件的速比大于 1 即可。
本发明所提供的电动装置的电磁部分可以包括少至一个的所说副 转子, 并且可以有多种不同的结构。
如图 2 所示, 本发明的电动装置的一种电磁部分包括: 可产生旋 转或交变磁场的定子 22 , 可在非同步转速产生扭矩的主转子 26与副转 子 25。 所说定子及各转子均具有各自的铁芯, 所说主转子还具有导通 感生电流的闭合绕组或相当于绕组的导体 23。 定子 22与副转子 25的铁 芯分别环绕主转子铁芯的不同部分, 从而该电磁部分具有两条各自与 主转子绕组 23交链的闭合磁路。 第一条所说磁路包括定子 22的铁芯及 主转子 26的铁芯的一部分, 第二条所说磁路包括副转子 25的铁芯及主 转子 26的铁芯的另一部分。 在接通适当的交流电源之后, 定子 22即在 所说第一条磁路内激发出磁通 24 ; 磁通 24又在绕组 23内产生感生电流 并使主转子 26产生扭矩; 绕组 23内的电流又在所说第二条磁路内激发 出磁通 27 , 从而使副转子 25也产生扭矩。
所说副转子 25的铁芯可以包括一个钢质或电工纯铁的整块。 如图 3 所示, 本发明电动装置的另一种电磁部分包括可产生旋转 或交变磁场的定子 3 1 , 可在非同步转速产生扭矩的主转子 28与副转子 33。 所说定子具有绕组 及铁芯, 所说各转子亦具有各自的铁芯。 定 子 3 1的铁芯的不同部分分别环绕转子 2 S与 33, 从而使该电磁部分具有 两条各自与定子绕组交链的闭合磁路。 所说两条磁路中的第一条磁路 包括主转子 28的铁芯及定子 3 1的铁芯的一部分; 而第二条磁路则包括 副转子 33的铁芯及定子 3 1的铁芯的另一部分。 在接通适当的交流电源 之后, 所说定子绕组 30内的电流即分别在所说两条磁路内激发出磁通 29和 32。 在磁通 29和 32 .的'作用下, 所说转子 28和 33可产生扭矩。
如图 4 所示, 本发明的电动装置的一种电磁部分包括可产生旋转 或交变磁场的定子 及可在非同步转速产生扭矩的转子 37和 38。 定子 36具有绕组 34及铁芯; 转子 3 8亦具有自己的铁芯; 转子 37具有一包围 转子 Π的金属圆简, 而定子 36又环绕该圆简。 从而使所说电磁部分具 有包括定子 及转子 38的铁芯、 横穿转子 37的金属圆简壁并与定子绕 组 34交链的闭合磁路。 在接通适当电源后, 绕组 内的电流即在该磁 路内产生磁通 35, 转子 37和 38即可在其作用下产生扭矩。
转子 37的金属圆简可以采用铁磁材料, 例如电工纯铁、 钢或半硬 磁合金; 亦可采用非铁磁金属, 例如铜或钼。
如图 5 所示, 本发明的电动装置的另一种电磁部分包括可产生旋 转或交变磁场的定子 43及可在非同步转速产生扭矩的转子 4 1、 42 ο 定 子 43位于所说电磁部分的中心, 具有绕组 及铁芯; 转子 42具有一包 围定子 43的金属圆简; 转子 4 1具有一包围转子 42的所说金属圆简的铁 芯。 从而, 所说电磁部分具有包括定子 W及转子 4 1的铁芯、 横穿转子 的金属圆简壁、 并与定子绕组 39交链的闭合磁路。 在接通适当的电 源后, 绕组 39内的电流即在该磁路内产生磁通 40, 转子 4 1和 U即可在 其作用下产生扭矩。
转子 42的所说金属圆简可以采用铁磁材料, 如电工纯铁、 钢或半 硬磁合金; 亦可采用非铁磁金属, 如铜或钼。
本发明所提供的电动装置的传动部分也可具有多种不同的结构形 式 o .
如图 δ 所示, 一种本发明的电动装置的传动部分包括: 齿轮 46、 、 4 ϋ和 Πι及传动轴"、 45和"。 传动轴 45是一种空心轴, 可转动地 安装在传动轴 44上。 齿轮 46和 47分别与传动轴 45和 44联接; 齿轮 49和 50均与传动轴 48联接。 齿轮 46和 47分别与齿轮 50和 49啮合。 如是, 传 动轴 44、 45和 48间具有固 '定的传动速比。
如图 7 所示, 本发明的电动装置的另一种传动部分包括齿轮 53和 分别称为第一和第二齿轮; 双联齿轮 56 ; 传动轴 5 1和 52分别称为第 一和笫二传动轴及固定的心轴 55。 传动轴 52是一种空心轴, 可转动地 安装在传动轴 5 1上。 齿轮 53和 分别与传动轴 52和 5 1联接。 双联齿轮 56可转动地安装在心轴 55上, 其两个齿圈分别与齿轮 53和 54啮合。 如 是, 传动轴 5 1及 52间具有固定的传动速比。
如图 8 所示, 本发明的电动装置的又一种传动部分包括: 传动轴 57 , 内齿轮 59, 行星架 , 行星轮 6 1及中心轮 62。 内齿轮 5 !)可转动地 安装在传动轴 57上, 行星架 与传动轴 57联接, 行星轮 Π可转动地安 装在行星架 6 D上并同时与中心轮 62及内齿轮 59啮合, 中心轮 62与机架 58联接。 如此, 内齿轮 59具有对于传动轴 57的大于 1 的固定速比。
如图 9 所示, 本发明的电动装置的又一种传动部分包括: 传动轴 63, 中心轮 64, 行星轮 65, 行星架 及内齿轮 67。 中心轮 64可转动地 安装在传动轴 63上, 行星架 66与传动轴 Π联接, 行星轮 65可转动地安 装在行星架 66上并同时与中心轮 及内齿轮 Π啮合, 内齿轮 Π与机架 联接。 如此, 中心轮 64具有对于传动轴 63的大于 1 的固定速比。 本发明的电动装置可以包括前述任何一种电磁部分, 也可以包括 前述任何一种传动部分。
图 10示出了本发明的电动装置的一种实施例, 该电动装置包括如 图 2 所示的电磁部分及图 6 所示的传动部分。 所说传动部分中的传动 轴 45和 44分别与所说电磁部分中的主转子 26及副转子 25联接, 从而使 所说两个转子均可驱动作为输出件的轴 。 主转子 26对传动轴 的速 比小于副转子 25对传动轴 的速比。
一种所说电动装置具有作为其自动卸荷装置的单向离合器 69。 所 说传动部分中的齿轮 49通过该单向离合器 69与传动轴 41联接, 该单向 离合器 可在副转子 25被 ¾定而主转子 26按原定正向旋转时脱离。 在 所说电动装置的加速过程中, 副转子 25的速度接近或达到同步转速后 面主转子 26继续加速时, 单向离合器 便自动解脱, 副转子 25亦不再 承受输出轴 上的负荷而自由浮动。
为了能使副转子 25在加速到同步转速后能自由浮动, 所说单向离 合器 69也可以安装在副转子 25驱动作为输出件的传动轴 W的传动链中 的任何两个相联传动件间, 例如用以联接传动轴 44与齿轮 47, 或联接 副转子 25与传动轴 44。
图 11示出了包括如图 2 所示的电磁部分及图 7 所示的传动部分的 本发明电动装置的另一个实施例。 所说传动部分中的传动轴 51和 52分 别与所说电磁部分中的主转子 26及副转子 25联接。 传动轴 51可作为所 说电动装置的输出件, 相应地, 副转子 25通过所说传动部分驱动传动 轴 51的速比大于 1 。 一种所说电动装置具有作为其自动卸荷装置的单向离合器 ^。 所 说传动部分中的齿轮 54通过该单向离合器 70与传动轴 5 1联接, 该单向 离合器 7 C可在副转子 25被固定而主转子 按原定正向旋转时脱离。 从 而使副转子 25在加速到其速度接近或达到同步转速后即可转入浮动状 态。
图 12示出了包括如图 2 所示的电磁部分及图 8 所示的传动部分的 本发明的电动装置又一个实施例。 所说传动部分中的传动轴 57与内齿 轮 59分别与所说电磁部分中的主转子 及副转子 25 联接。 传动轴 W 可作为所说电动装置的输出件。
一种所说电动装置具有作为其自动卸荷装置的单向离合器 7 1。 所 说传动部分中的中心轮 62通过该单向离合器 7 1与机架联接, 该单向离 合器 7 1可在副转子 25被固定而主转子 26按原定正向旋转时脱离。 在所 说电动装置的加速过程中, 当副转子 25的转速达到同步转速后, 主转 子 继续加速时, 单向^合器 71会自动脱离, 副转子 25亦将转入浮动 状态。
图 13示出了包括图 2 所示的电磁部分和图 9 所示的传动部分的本 发明的电动装置的又另一个实施例。 所说传动部分中的传动轴 63和中 心轮 64分别与所说电磁部分中的主转子 26和副转子 25联接。 传动轴 63 可作为所说电动装置的输出件。
一种所说电动装置有作为自动卸荷装置的单向离合器 72。 所说内 齿轮 ϋ 7通过该单向离合器 72与机架联接, 该单向离合器可在副转子 25 被固定而主转子 26按原正向旋转时便自动解脱, 如是, 所说电动装置 的加速过程中,当副转子 25的速度接近或达到同步转速后,该副转子将 转入浮动状态。
图 14和 15示出了包括图 3 所示的电磁部分和图 6 所示的传动部分 的本发明电动装置的另一个实施例。 所说传动部分中的传动轴 45和 44 分别与所说电磔部分中的所说转子 2 8和 3 3联接, 从而使所说两转子均 可驱动作为输出件的传动轴 。 图中示出所说电动装置的主转子 28和 副转子 33。 主转子 28对传动轴 4 8的速比小于副转子 3 3对轴 4 1的速比。
一种所说电动装置具有自动卸荷装置, 其副转子 33具有线绕式绕 组 73。 所说自动卸荷装置包括一套按照传动件转速搡作的自动开关装 置 74 , 该种自动开关装置可为例如众所周知的离心开关或速度继电 器。 所说自动开关装置具有若干对常闭触点 75, 如图 15所示。 所说副 转子的绕组的每一相闭合回路中都串接有至少一对所说常闭触点。 在 所说电动装置加速过程中, 当副转子, 即传动轴 44的转速达到一个大 约等于同步转速的预定速度时, 所说开关装置的各对常闭触点 75便会 开断。 从而使副转子的各相绕组 7 3内的感生电流断流, 所说副转子即 不再产生电磁力矩, 对所说电动机的输出也不再产生影响。
图 1 6示出了包括图 4 所示的电磁部分和图 8 所示的传动部分的本 发明的电动装置的再一个实施例。 所说传动部分中的传动轴 57和内齿 轮 59分别与所说电磁部分中的转子 3 8和所说具有金属圆简的转子 37联 接。 按照所说传动部分的结构, 转子 3 7驱动传动轴 57的速比大于 1,故 转子 3 1是所说电动装置的主转子而转子 37是副转子。 传动轴 57可作为 所说电动装置的输出件。
一种所说电动装置具有作为自动卸荷装置的单向离合器 , 所说 传动部分中的行星架 通过该单向离合器 76与传动轴 57联接。 该单向 离合器 76可在副转子 3 7被固定而主转子 3 1按原定正向旋转时脱离。 如 是, 当所说电动装置的副转子 37加速到接近或达到同步转速后, 主转 子 3 8继续加速时, 该单向离合器 会自动脱离, 而副转子 37亦随之转 入浮动状态。
图 Π示出了包括图 4 所示的电磁部分和图 9 所示的传动部分的本 发明的电动装置的又再一个实施例。 所说传动部分中的传动轴 63和中 心轮 64分别与所说电磁部分中的转子 38和具有金厲圆简的转子 37联 接。 按照所说传动部分的结构, 转子 37驱动传动轴 63的速比大于 1 。 故转子 是所说电动装置的主转子, 而转子 37是副转子。 传动轴 Π可 作为所说电动装置的输出轴。
一种所说电动装置具有作为自动卸荷装置的单向离合器 77。 所说 传动部分中的行星架 66通过单向离合器 π与传动轴 联接, 所说单向 离合器 Π可在副转子 37被固定而主转子 Π按原定正向旋转时脱离。 如 是, 所说副转子 37在加速到接近或达到同步转速之后会转入浮动状 态。
图 1 8示出了包括图 4 所示的电磁部分及图 8 所示的传动部分的本 发明的电动装置的又再一个实施例。 所说转子 37与作为输出件的传动 轴 51联接, 所说转子 3 1可转动地安装在传动轴 57上并与所说内齿轮 59 联接。 如是, 转子 38驱动传动轴 57的速比大于 1 ,转子 37是主转子而转 子 是副转子。
一种所说电动装置具有作为自动卸荷装置的单向离合器 78。 所说 副转子 31通过该单向离合器 78与内齿轮 59联接, 并且该单向离合器 78 可在副转子 3 8被固定而主转子 37按原定正向旋转时脱离。 如是, 所说 副转子 38在加速到接近或达到同步转速之后会转入浮动状态。
图 I D示出了包括图 5 所示的电磁部分的本发明的电动装置的一个 实施例。 所说电动装置包括一条固定于机架上的心轴 H, 并且其传动 部分包括传动轴 80、 82和 Π分别称为第一、 第二和第三传动轴, 齿轮 U、 83、 M和 85分别称为第一、 第二、 第三和第四齿轮及作为输出件 的旋转外壳 7 !)。 传动轴 和 82都是一种空心轴, 传动轴 82可转动地安 装于心轴 M上, 传动轴 80又可转动地安装于传动轴 上。 齿轮 8 1和 83 分别与传动轴 80和 82联接; 齿轮 85和 U均与传动轴 Π联接。 齿轮 8 1和 83分别与齿轮 U和 Π啮合。 旋转壳体 79与传动轴 联接。 所说电动装 置的电磁部分的定子 43固定在心轴 ί 4上 转子 4 1作为主转子安装于旋 转壳体 79的内壁。 转子 U作为副转子与传动轴 U联接, 并且该转子通 过传动部分驱动旋转壳体 79的速比大于 1 。
一种所说电动装置具有作为自动卸荷装置的单向离合器 8 6。 所说 5 传动轴 Π通过该单向离合器 8 6与齿轮 8 5联接, 并且, 该单向离合器 可在副转子 被固定而主转子 4 1按原定正向旋转时脱离。 如是, 所说 副转子 4 2在加速到接近或达到同步转速后会转入浮动状态。
图 20及 2 1示出了一种包括图 4 所示电磁部分及图 6 所示传动部分 的本发明的电动装置。 所说转子 31及 3 1分别与所说传动轴 4 5及 44联 1 0 接, 从而可以驱动作为输出件的轴 4 8。 转子 3 7驱动轴 的速比较转子 的为小, 3 7是主转子, 3 8是副转子。
所说转子 3 ί具有一个用以导通感生电流的线绕式绕组8 9。 所说电 动装置具有自动卸荷装置, 该装置包括整流元件 9 δ, 例如众所图知的 半导体二极管或包括可控'硅晶体管的整流回路。 所说副转子绕组 89具 有导通不同相感生电流的闭合回路; 每一所说闭合回路内均至少串联 了一个所说整流元件 。 各所说整流元件的导流方向设定为导通副转 子 3 8沿既定正向旋转的速度低于同步转速时所产生的感生电流。
如果, 在所说电动装置加速过程中, 副转子 的转速低于同步转 速时, 其绕组 Π内可以产生感生电流, 该转子亦可产生扭矩与主转子 2 0 37共同驱动输出轴 4 8。 当转子 3 8的转速超越同步转速后, 绕组 Π内的 感应电动势反向, 转子电流即被整流元件阻断, 从而副转子 3 8将不能 产生扭矩亦即失去了对轴 4 8的驱动或阻滞作用。
所说副转子绕组 ί 9的各相回路中还可以串入适当的电气元件 9 1, . 例如电阻或电容, 如图 2 1所示, 以改善副转子的驱动特性。
1 图 22示出了一种包括图 2所示电磁部分及图 6 所示传动部分的电 动装置。 所说传动轴 44具有螺紋及台阶 93。 所说副转子 25相应地具有与之 配合的螺紋及台阶。 在轴"与转子 25的螺紋组成的螺旋副 旋合后, 二者的台阶被压紧, 副转子 25即与轴"联接, 从而可以驱动所说输出 轴4 8。 在所说螺旋副 M旋离后, 副转子 25可以自由转动。 所说主转子 5 26与所说传动轴 45联接。 主转子 驱动轴 的速比较之副转子 的为 小。
所说螺旋副 M的旋向设定为, 若固定传动轴 "而令副转子 25沿既 定正向旋转, 该螺旋副将被旋合而使合阶 93被压紧。
如是, 在所说电动装置的加速过程中, 当所说副转子 25的速度低 i O 于同步转速时。 螺旋副 M被旋合, 所说主转子及副转子共同驱动输出 轴。 当副转子 25的速度近于同步转速后, 该副转子即不再加速, 轴" 的转速将超越该转子, 所说螺旋副即被旋离, 副转子 25即转入浮动状 态。
为使螺旋副 M在所说 动装置的减速过程中, 能'自动地从旋离状 1 5 态重新旋合, 需要对副转子 25施加一个适当的, 指向该副转子在螺旋 副 M旋合时的轴向运动方向的力。
为此, 一种所说电动装置具有弹簧 9 5。 该弹簧在所说螺旋副旋离 时被迫变形, 从而产生一个作用于副转子 25并指向该副转子在所说螺 旄副 H旋合时的轴向运动方向的力。
2 0 另一种所说电动装置的主转子 的铁芯具有一个被副转子 25的铁 芯所包围的园锥台形部分 92。 当所说螺旋副 M旋合时, 所说主转子的 园锥部分 92与副转子间的气隙因副转子 25的轴向移动而缩小。 当这种 电动装置工作时, 所说主转子 26的园锥台部分 ϋ 2与副转子 25间的电磁 力将包括一个作用于副转子 25并指向该副转子在所说螺旋副 94旋合时 2 5 的轴向运动方向的分力。
显然, 只须变更上述各种电磁部分与传动部分的组合, 又或.变更 022
-15 -
自动卸荷装置的种类或配置位置, 还可以再作出多种不同于上述各实 施例的本发明的电动装置。 本发明所涉及的技术领域内的普通熟练技 术人员根据前述的透露, 已可按这样的方法作出属于本发明专利案的 权利要求所限定范围内的不同设计

Claims

多转子交流电动装髯
权利 要求 书
( 1 ) 一种交流电动装置, 用作工作机械的原动机或其动力部分以拖动 机械负载, 包括电磁部分、 传动部分和文持它们的机架;
其特征在于 所说电磁部分包括一个可产生旋转或交变磁场的定 子及至少两个可在非同步转速下产生扭矩的转子, 该两转子分别称为 主转子及副转子; 所说传动部分具有彼此间有固定速比关系的传动件, 其中包括被称为输出件而用以拖动机械负载的传动件; 所说两个转子 分别与所说传动件之一联接, 从而可分别按固定速比驱动所说输出件, 并且, 所说主转子对输出件的速比小于所说副转子对输出件的速比。
( 2 ) 按照权利要求 1 所说的电动装置,
其特征在于 所说电动装置还包括一个自动卸荷装置, 在所说电 动装置的加速过程中, 当所说副转子加速到一个既定速度时, 所说自 动卸荷装置自动地使所说副转子对所说输出件失去驱动作用。
( 3 ) 按照杈利要求 2 所说的电动装置,
其特征在于 所说自动卸荷装置包括一个具有常闭触点的自动开 关装置, 而所说副转子包括一个具有线绕式绕组的转子; 所说绕组具 有导通不同相电流的闭合回路; 在每一所说闭合回路中都串接有最少 一对所说常闭触点; 当所说副转子加速到一个既定的转速时, 所说各 常闭触点自动开断, 使所说转子绕组的各相闭合回路断路。
( 4 ) 按照杈利要求 2 所说的电动装置,
其特征在于 所说自动卸荷装置包括一个单向离合器; 所说传动 部分中的一个传动件通过所说单向离合器与另外的传动件或机架联接; 该单向离合器结合时, 所说副转子可按固定速比驱动所说输出件; 该 单向离合器脱离时, 所说副转子相对于所说输出件自由浮动; 若固定 所说副转子而令主转子按原定正向旋转时, 该单向离合器脱离。
( 5 ) 按照杈利要求 1 所说的电动装置,
其特征在于 所说主转子和定子分别具有各自的铁芯, 所说主转 子并具有导通感生电流的绕组或导体, 所说副转子具有铁芯; 所说电 磁部分具有两条各自与所说主转子绕组或导体交链的闭合磁路, 其中, 笫一条磁路包括定子铁芯及主转子铁芯的一部分, 第二条磁路包括主 转子铁芯的另一部分及所说副转子铁芯的至少一部分。
( 6 ) 按照杈利要求 1 所说的电动装置,
其特征在于 所说定¥包括定子铁芯及定子绕组; 所说两个转子 分别具有各自的铁芯; 所说电磁部分包括两条各自与所说定子绕组交 链的闭合磁路, 其中, 第一条磁路包括第一个转子的铁芯及定子铁芯 的一部分, 第二条所说磁路包括第二个转子的铁芯及定子铁芯的另一 部分。
( 7 ) 按照权利要求 1 所说的电动装置,
其特征在于 所说定子和第一个转子具有各自的铁芯, 第二个转 子具有一个金属圆简; 所说电磁部分具有一条与定子绕组交链的闭合 磁路, 该磁路包括所说定子和所说第一个转子的铁芯, 并横穿所说第 二个转子的金属圆简的简壁。
( D 按照权利要求 1 所说的电动装置, 8一
其特征在于 其中所说电磁部分包括三个可在非同步转速产生扭 矩的转子, 其中之一是主转子, 其佘分别为第一副转子及第二副转子; 所说各转子分别具有各自的铁芯, 所说主转子及第一副转子并分别具 有导通感生电流的绕组或导体; 所说电磁部分具有三条闭合磁路, 其 中, 第一条磁路包括定子铁芯及主转子铁芯的一部分弁与主转子的绕 组或所述导体交链; 第二条磁路包括主转子的铁芯与第一副转子的铁 芯的各一部分并与主转子及第一副转子的所说绕组或所说导体交链; 第三条磁路包括第二副转子的铁芯及第一副转子的铁芯的一部分并与 第一副转子的绕组或所述导体交链。
( 9 ) 按照杈利要求 1 所说的电动装置,
其特征在于 其中, 所说传动部分包括三条传动轴, 分别为第一 传动轴、 第二传动轴及第=传动轱; 四个齿轮, 分别称为笫一齿轮、 第二齿轮、 第三齿轮及第四齿轮; 第二轴是空心轴, '可转动地安装在 第一轴上; 第一齿轮与第二传动轴 接, 第二齿轮与第一传动轴联接, 第三齿轮及第四齿轮均与第三传动轴联接; 第一齿轮与第三齿轮啮合, 笫二齿轮与第四齿轮啮合; 第一传动轴与第二传动轴分别与所说两个 转子之一联接。 ( l fl )按照杈利要求 1 所说的电动装置,
其特征在于 所说传动部分包括两个齿轮, 分别称为第一齿轮与 第二齿轮; 两条传动轴, 分别称为第一传动轴与第二传动轴; 一条心 轴; 及一个双联齿轮; 第二传动轴是空心轴, 可转动地安装在第一传 动轴上; 心轴固定在机架上; 第一齿轮与第二传动轴联接, 第二齿轮 与第一传动轴联接; 双联齿轮可转动地安装在所说心轴上, 其两个外 齿圈分别与笫一齿轮和第二齿轮啮合; 笫一传动轴与第二传动轴分别 与两个所说转子之一联接
(11)按照杈利要求 1 所说的电动装置,
其特征在于 所说传动部分包括一条传动轴, 一个内齿轮, 一个 中心轮, 一个行星架及一个行星轮; 所说中心轮与机架联接; 所说行 星轮可转动地安装在行星架上并同时与内齿轮及中心轮啮合; 所说行 星架及主转子均与所说传动轴联接, 所说副转子与内齿轮联接。 2)按照杈利要求 1 所说的电动装置,
其特征在于 所说传动部分包括一条传动轴, 一个内齿轮, 一个 中心轮, 一个行星架及一个行星轮; 所说内齿轮与机架联接; 所说行 星轮可转动地安装在行星架上并同时与内齿轮及中心轮啮合; 所说行 星架及主转子均与所说传动轴联接; 所说副转子与中心轮联接。 (13). 按照杈利要求 11所说的电动装置,
其特征在于 包括一个单向离合器; 所说中心轮通过该单向离合 器与机架联接; 若固定所说副转子而令所说主转子按原定正向旋转, 该单向离合器便解脱。 按照杈利要求 11所说的电动装置,
其特征在于 包括一个单向离合器; 所说行星架通过该单向离合 器与所说传动轴联接; 若固定所说副转子而令主转子按原定正向旋转, 该单向离合器便解脱。 (15). 按照杈利要求 11所说的电动装置,
其特征在于 包括一个单向离合器; 所说副转子通过该单向离合 器与所说内齿轮联接; 若固定所说副转子而令所说主转子按原定正向 旋转, 该单向离合器便解脱。
( 1 6 ) . 按照杈利要求 1 2所说的电动装置,
其特征在于 包括一个单向离合器; 所说内齿轮通过该单向离合 器与机架联接; 若固定所说副转子而令所说主转子按原定正向旋转, 该单向离合器便解脱。
( Π ) . 按 ^权利要求 1 2所说的电动装置,
其特征在于 包括一个单向离合器; 所说行星架通过该单向离合 器与所说传动轴联接; 若固定所说副转子而令所说主转子按原定正向 旋转, 该单向离合器便解脱。 按照杈利要求 2 所说的电动装置,
其特征在于 所说自动卸荷装置包括整流元件; 所说副转子包括 一个具有线绕式绕组的副转子; 所说副转子绕组具有导通不同相感生 电流的闭合回路; 在每一所说闭合回路中都串接有至少一个所说整流 元件; 所说整流元件的导流方向被设定导通所说副转子在其转速低于 同步转速时所产生的感生电流。
( 19 ) . 按照杈利要求 2 所说的电动装置,
其特征在于 所说自动卸荷装置包括属于一个所说传动件的螺紋 及台阶, 以及与之配合, 并属于所说副转子的螺紋及台阶; 所说传动 件的螺紋及所说副转子的螺紋组成一个螺旋副; 所说螺施副旋合时, 所说副转子的台阶压向所说传动件的合阶,从而所说副转子与所说传动 件联接并可驱动所说输出件; 所说螺旋副旋离后, 所说副转子可相对 于所说传动件自由转动; 按照所说螺旋副的旋向, 若固定所说传动件 而令所说副转子沿既定正向旋转, 则所说螺旋副将被旋合。
( 20 ) . 按照杈利要求 19所说的电动装置,
其特征在于 所说电动装置包括一个弹簧; 该弹簧在所说螺旋副 旋离时被迫变形, 从而产生一个作用于所说副转子, 并指向该副转子 在所说螺旋副旋合时的轴向运动方向的力。
( 2 1 ) . 按照杈利要求 Π所说的电动装置,
其特征在于 所说电动装置的主转子的铁芯包括一个被所说副转 子的铁芯所包围的园锥台形部分; 当所说螺旋副旋合时, 所说主转子 的园锥台形部分与所说副转子间的气隙因所说副转子的轴向位移而缩 小。
PCT/CN1994/000022 1993-04-27 1994-04-05 Multi-rotor a.c. electrodynamic device WO1994026016A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP6523717A JPH08509594A (ja) 1993-04-27 1994-04-05 複数の回転子を有する交流電気駆動装置
AU64228/94A AU676549C (en) 1993-04-27 1994-04-05 Multi-rotor A.C. electric drive device
EP94911822A EP0703659B1 (en) 1993-04-27 1994-04-05 Multi-rotor a.c. electric drive device
DE69425740T DE69425740T2 (de) 1993-04-27 1994-04-05 Wechselstromgespeiste elektrische antriebsvorrichtung mit mehreren rotoren
US08/535,166 US5708314A (en) 1993-04-27 1994-04-05 Multi-rotor A.C. electric drive device
TW087211510U TW456462U (en) 1994-04-05 1998-07-16 Mechanical equipment driven by AC power-driven device with dual rotors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN93105463.X 1993-04-27
CN93105463 1993-04-27

Publications (1)

Publication Number Publication Date
WO1994026016A1 true WO1994026016A1 (en) 1994-11-10

Family

ID=4985736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN1994/000022 WO1994026016A1 (en) 1993-04-27 1994-04-05 Multi-rotor a.c. electrodynamic device

Country Status (7)

Country Link
US (1) US5708314A (zh)
EP (1) EP0703659B1 (zh)
JP (1) JPH08509594A (zh)
CN (1) CN1038550C (zh)
DE (1) DE69425740T2 (zh)
TW (1) TW249869B (zh)
WO (1) WO1994026016A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113543437A (zh) * 2020-04-22 2021-10-22 合肥美亚光电技术股份有限公司 X射线发生装置和医用成像设备

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0798844A1 (en) * 1996-03-28 1997-10-01 Tai-Her Yang The combined power driven device having a three-layered electromechanical structure with common structures
GB9612231D0 (en) * 1996-06-12 1996-08-14 Harris Michael A Variable transmission apparatus
JP3000943B2 (ja) * 1996-07-02 2000-01-17 トヨタ自動車株式会社 動力出力装置およびその制御方法
JP3000953B2 (ja) * 1997-03-21 2000-01-17 トヨタ自動車株式会社 動力出力装置およびその制御方法
EP1126987B1 (de) 1998-11-03 2005-08-03 Robert Bosch Gmbh Hybridgetriebe, insbesondere für kraftfahrzeuge
JP4069556B2 (ja) * 1999-10-07 2008-04-02 トヨタ自動車株式会社 動力出力装置の制御方法
US6489692B1 (en) * 1999-12-13 2002-12-03 Capstone Turbine Corporation Method and apparatus for controlling rotation of magnetic rotor
DE10250382A1 (de) * 2002-10-29 2004-05-19 Siemens Ag Drehstrom-Asynchrongenerator
US20040200685A1 (en) * 2003-04-14 2004-10-14 Tai-Her Yang Flexible & rigid bi-status coupler and application device
US7311993B2 (en) 2003-09-04 2007-12-25 Air Products And Chemicals, Inc. Polyfluorinated boron cluster anions for lithium electrolytes
US7098563B2 (en) * 2003-11-10 2006-08-29 Tai-Her Yang Drive system having a hollow motor main shaft and a coaxial, manually driven auxiliary shaft
US20050099077A1 (en) * 2003-11-10 2005-05-12 Gerfast Sten R. Magnetic coupling using magnets on a motor rotor
US20050275303A1 (en) * 2004-06-09 2005-12-15 Tetmeyer Michael E Differential flux permanent magnet machine
US7081696B2 (en) 2004-08-12 2006-07-25 Exro Technologies Inc. Polyphasic multi-coil generator
US7981388B2 (en) 2004-08-23 2011-07-19 Air Products And Chemicals, Inc. Process for the purification of lithium salts
US7465517B2 (en) 2004-08-23 2008-12-16 Air Products And Chemicals, Inc. High purity lithium polyhalogenated boron cluster salts useful in lithium batteries
CA2654462A1 (en) 2006-06-08 2007-12-13 Exro Technologies Inc. Poly-phasic multi-coil generator
US7880355B2 (en) * 2006-12-06 2011-02-01 General Electric Company Electromagnetic variable transmission
JP4693865B2 (ja) * 2007-08-27 2011-06-01 株式会社豊田中央研究所 動力伝達装置
US8198743B2 (en) * 2009-09-11 2012-06-12 Honeywell International, Inc. Multi-stage controlled frequency generator for direct-drive wind power
DE102011009608A1 (de) * 2011-01-27 2012-08-02 Audi Ag Elektrischer Dämpfer
JP5621794B2 (ja) * 2012-01-30 2014-11-12 株式会社デンソー 磁気変調式複軸モータ
GB201210679D0 (en) * 2012-06-15 2012-08-01 Jaguar Cars Supercharger drive
ITMI20121339A1 (it) * 2012-07-31 2014-02-01 Emanuele Bisti Macchina elettrica intelligente
US20140124276A1 (en) * 2012-11-08 2014-05-08 Caterpillar, Inc. Dual Rotor Electric Drive
KR20150130551A (ko) * 2013-03-20 2015-11-23 마그나 파워트레인 인크. 탠덤 전동 펌프
DE102014208867A1 (de) * 2014-05-12 2015-11-12 Robert Bosch Gmbh Integration einer Elektromotoreneinheit in ein Getriebegehäuse
US9527600B2 (en) * 2014-05-17 2016-12-27 Hamilton Sundstrand Corporation Ram air turbine generator assemblies
EP3001067B1 (de) * 2014-09-23 2018-03-07 Arnold Sudheimer Getriebe, insbesondere Fahrzeuggetriebe
EP3082227A1 (de) 2015-04-14 2016-10-19 Siemens Aktiengesellschaft Rotor einer asynchronmaschine
CN105553202B (zh) * 2016-03-04 2018-11-23 重庆大学 多级定转子组合式电机
CN106515406A (zh) * 2016-11-18 2017-03-22 精进电动科技股份有限公司 同轴多电机驱动系统和设置有同轴多电机驱动系统的车辆
JP2020521418A (ja) 2017-05-23 2020-07-16 ディーピーエム テクノロジーズ インク. 可変コイル結線システム
US11722026B2 (en) 2019-04-23 2023-08-08 Dpm Technologies Inc. Fault tolerant rotating electric machine
CA3217299A1 (en) 2021-05-04 2022-11-10 Tung Nguyen Battery control systems and methods
WO2022236424A1 (en) 2021-05-13 2022-11-17 Exro Technologies Inc. Method and appartus to drive coils of a multiphase electric machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2860296A (en) * 1957-11-20 1958-11-11 Gen Electric Dual-voltage alternating-current motor
SU875546A1 (ru) * 1979-06-18 1981-10-23 Фрунзенский политехнический институт Асинхронный двухроторный электродвигатель
CN88102119A (zh) * 1988-04-23 1988-12-21 辽宁省能源研究所 一种绕线型异步电动机及其制造方法
CN1063183A (zh) * 1991-01-10 1992-07-29 江西省粮油机械厂 交流双转子多速异步电动机

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2864017A (en) * 1955-11-28 1958-12-09 Waltscheff Dimo Dimitroff Inducto-motive power apparatus with a plurality of rotors
FR1332959A (fr) * 1962-08-31 1963-07-19 Ensemble de moteurs électriques à vitesse variable
FR1576528A (zh) * 1968-05-17 1969-08-01
DE2138898C3 (de) * 1971-08-04 1975-10-02 Fa. Arnold Mueller, 7312 Kirchheim Regel barer Asynchronmotor mit einem Mehrfachrotorsystem
CH591178A5 (zh) * 1972-11-03 1977-09-15 Anvar
US3864017A (en) * 1973-05-31 1975-02-04 American Optical Corp Optical fiber arc-to-line converter
DE2332868C2 (de) * 1973-06-28 1975-05-22 Fa. Arnold Mueller, 7312 Kirchheim Regelbarer Drehstrommotor mit Zwischenrotor und Innenläufer
US3973137A (en) * 1975-06-16 1976-08-03 Dezso Donald Drobina Multi-rotor electric motor
US4488069A (en) * 1981-04-07 1984-12-11 Sigma Instruments Inc. Stepping motor
FR2504992B1 (fr) * 1981-04-30 1986-11-14 Valbrev Combinaison d'une turbo-machine de compression ou de detente et d'un moteur electrique
FR2517137B1 (fr) * 1981-11-25 1985-11-15 Cibie Pierre Machine electrique tournante formant notamment variateur de vitesse ou convertisseur de couple
US4625160A (en) * 1984-12-17 1986-11-25 Sundstrand Corporation Variable speed constant frequency generating system
DE3640397C1 (de) * 1986-11-26 1988-01-07 Philips Patentverwaltung Antriebsvorrichtung fuer ein kleines Haushaltsgeraet
JP2569360B2 (ja) * 1988-11-25 1997-01-08 多摩川精機株式会社 発電機
US5053664A (en) * 1989-01-18 1991-10-01 Aisan Kogyo Kabushiki Kaisha Motor-driven fuel pump

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2860296A (en) * 1957-11-20 1958-11-11 Gen Electric Dual-voltage alternating-current motor
SU875546A1 (ru) * 1979-06-18 1981-10-23 Фрунзенский политехнический институт Асинхронный двухроторный электродвигатель
CN88102119A (zh) * 1988-04-23 1988-12-21 辽宁省能源研究所 一种绕线型异步电动机及其制造方法
CN1063183A (zh) * 1991-01-10 1992-07-29 江西省粮油机械厂 交流双转子多速异步电动机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0703659A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113543437A (zh) * 2020-04-22 2021-10-22 合肥美亚光电技术股份有限公司 X射线发生装置和医用成像设备

Also Published As

Publication number Publication date
AU676549B2 (en) 1997-03-13
AU6422894A (en) 1994-11-21
DE69425740D1 (de) 2000-10-05
EP0703659A1 (en) 1996-03-27
TW249869B (zh) 1995-06-21
EP0703659B1 (en) 2000-08-30
DE69425740T2 (de) 2001-04-19
JPH08509594A (ja) 1996-10-08
CN1038550C (zh) 1998-05-27
US5708314A (en) 1998-01-13
EP0703659A4 (en) 1997-06-16

Similar Documents

Publication Publication Date Title
WO1994026016A1 (en) Multi-rotor a.c. electrodynamic device
Rasmussen et al. Motor integrated permanent magnet gear with a wide torque-speed range
JP2004215454A (ja) 遠心力によって回転子の軸方向作動の調整制御を行う電機
JPS62501188A (ja) 可変速度一定周波数
JP4828042B2 (ja) 永久磁石型風力発電機の電気ブレーキ装置
JPH11225439A (ja) 電力電送システムおよび方法
Aiso et al. Reluctance magnetic gear and flux switching magnetic gear for high speed motor system
JPH10327569A (ja) 磁石式ブラシレス電動機
JPH08298748A (ja) モーター装置
CN102647051B (zh) 伺服变矩电动机
CN202160059U (zh) 伺服变矩电动机
Aiso et al. A novel magnetic gear for high speed motor system
JP2919492B2 (ja) 複数固定子誘導電動機
JP2707924B2 (ja) 二固定子三相かご形誘導電動機
KR101670609B1 (ko) 발전 또는 회생제동 장치
JP3105232B2 (ja) 2固定子誘導電動機
CN207968199U (zh) 电动车差速双电机自动变速传动机构
JP2885460B2 (ja) 二固定子誘導電動機
CN1331305C (zh) 具有感应电机的能量转换装置及其操作方法
WO2021193714A1 (ja) 超電導回転機
CN210309773U (zh) 电动汽车整体式驱动后桥
JPH08280158A (ja) モーター装置
CN201066818Y (zh) 双电压工作模式的多额定转速无刷直流电动机
JP3105231B2 (ja) 2固定子誘導電動機
Durairaju et al. An alternative PM machine configuration suitable for low speed and beyond—rated speed applications

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR BY CA CH CN CZ DE DK ES FI GB GE HU JP KG KP KR KZ LK LU LV MD MG MN MW NL NO NZ PL PT RO RU SD SE SI SK TJ TT UA US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08535166

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1994911822

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1994911822

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1994911822

Country of ref document: EP