WO1994024666A1 - Method and apparatus for transforming signals, and recording medium - Google Patents

Method and apparatus for transforming signals, and recording medium Download PDF

Info

Publication number
WO1994024666A1
WO1994024666A1 PCT/JP1994/000627 JP9400627W WO9424666A1 WO 1994024666 A1 WO1994024666 A1 WO 1994024666A1 JP 9400627 W JP9400627 W JP 9400627W WO 9424666 A1 WO9424666 A1 WO 9424666A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
attribute
frequency components
signal information
time signal
Prior art date
Application number
PCT/JP1994/000627
Other languages
English (en)
French (fr)
Inventor
Kenzo Akagiri
Makoto Akune
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP8759293A external-priority patent/JP3225680B2/ja
Priority claimed from JP12786793A external-priority patent/JPH06318876A/ja
Priority claimed from JP12291893A external-priority patent/JP3186331B2/ja
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to KR1019940704551A priority Critical patent/KR100310547B1/ko
Priority to EP94912684A priority patent/EP0649137A4/en
Priority to US08/351,386 priority patent/US5737717A/en
Publication of WO1994024666A1 publication Critical patent/WO1994024666A1/ja
Priority to KR1019947004551A priority patent/KR950702059A/ko

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/00007Time or data compression or expansion
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10527Audio or video recording; Data buffering arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/66Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for reducing bandwidth of signals; for improving efficiency of transmission
    • H04B1/665Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for reducing bandwidth of signals; for improving efficiency of transmission using psychoacoustic properties of the ear, e.g. masking effect

Definitions

  • the present invention is applied to, for example, digital audio equipment, and changes the sound quality of an input audio signal, which is a time signal, particularly by using the property of hearing.
  • the present invention relates to a signal conversion method or device, and a recording medium on which information obtained by converting the time signal information characteristics by the method or device is recorded.
  • BACKGROUND ART Conventionally, as a method of changing the sound quality of acoustic signal information, for example, a method of changing a frequency characteristic by a filtering process, a method of generating a higher-order harmonic, or a method of changing a dynamic range by a so-called compressor. Such a method is used.
  • the sound quality is changed by changing the way of using the filter, for example, by increasing the presence by increasing the midrange, thereby generating high-order harmonics.
  • the method of changing the dynamic range by the above compressor is to prevent a loud sound from damaging the ears or a small sound from being masked by surrounding noise.
  • the problem to be solved by the present invention is to provide a method for producing sound that sounds comfortable and high quality to humans in a moment and instantaneous manner using acoustic signal information based on an auditory principle.
  • Another object of the present invention is to improve the quality by reducing the auditory influence of quantization noise from acoustic signal information that has already been digitized and to which quantization noise has been added. It is.
  • Another object of the present invention is to reduce the auditory effect of quantization noise from audio signal information that has already been digitized and to which quantization noise has been added.
  • Digital signals with word lengths exceeding 16 bits When requantization is performed for a compact disc that has the same, sound quality can be improved. Further, one of the problems of the present invention is that, for audio signal information to which quantization noise has already been added, the sound quality is equivalently improved once perceptually to 16 bits or more, and again 16 bits. When requantization is performed, the sound quality is improved by maintaining the S / N of the acoustically important frequency band at 16 bits while maintaining it at 16 bits or more.
  • the signal conversion method and apparatus of the present invention are configured to change the difference in the magnitude of the attribute between at least one frequency component obtained from time signal information and at least three adjacent frequency components. is there.
  • the time signal information uses acoustic time signal information, and the magnitude of the attribute of a frequency component obtained from the acoustic time signal information is different from that of another frequency component in a substantially critical band based on auditory characteristics. Try to change the difference.
  • the above attribute is the magnitude of the frequency component.
  • the signal conversion method and apparatus of the present invention may be arranged such that a frequency component obtained from the acoustic time signal information is a frequency exceeding a minimum audible level or a masking threshold level among other frequency components in a substantially critical band.
  • the difference in the magnitude of the attribute with the component, or the frequency component that exceeds the larger of the minimum audible level and the masking threshold level among other frequency components in the near-critical band Change the magnitude of the attribute between and, or between other frequency components within a substantially critical band and within a limited level range By changing the difference in the size of the attribute, the characteristics of the acoustic time signal information are converted.
  • the signal conversion method and apparatus of the present invention provide a method for converting a frequency component obtained from acoustic time signal information in which at least two frequency components have different frequency resolutions and time resolutions into other frequencies within a substantially critical band. By changing the difference in the size of the attribute with the component, the characteristics of the acoustic time signal information are converted.
  • the acoustic time signal information when converting the acoustic time signal information into frequency components, the acoustic time signal information is divided into a plurality of bands, and each band signal is subjected to orthogonal transform to obtain a plurality of frequency components. . Note that the frequency resolution of the plurality of frequency components is higher in lower frequencies.
  • the difference in the magnitude of the attribute is different from other frequency components in a substantially critical band.
  • the difference in the size of the attribute from other frequency components having a frequency difference of 10% to 50% of the substantially critical bandwidth is increased.
  • the value obtained by subtracting the moving peak value of the 50% width of the critical bandwidth from the moving peak value of the 50% width of the critical bandwidth reduces or eliminates the frequency components in the negative frequency range.
  • the magnitude of the frequency component is adjusted so that the short-time energy of the time signal information is preserved. Adjust the magnitude of at least three local peak frequency components to preserve the short-term energy of the time signal information. Depending on the quantization noise level Change the difference in attribute size between frequency components within a limited level range.
  • re-quantization processing having a noise-shape characteristic is performed on the time signal information recombined on the time axis.
  • the noise-shape characteristics depend on at least one of the minimum audibility, equal loudness, and masking characteristics.
  • the signal conversion method and device of the present invention obtain a frequency component by using a filter process or an orthogonal transform on an input acoustic time signal.
  • the moving peak value of each adjacent component of these frequency components is obtained in two different frequency widths related to the critical band, and the magnitude of the frequency component of the frequency band where the difference between the two kinds of moving peak values occurs is obtained. Reducing the height reduces the degree of dissonance between the local peak frequency component and other frequency components.
  • a blocked frequency analysis method such as orthogonal transformation is used, or the so-called QMF ( Frequency resolution gradually decreases from low to high frequencies by connecting band splitting filters such as Quadrature Mirror Filters and CQFs (Conjugate Quadrature Filters) in a subtle structure. Conversely, band division that improves the time resolution is performed.
  • the low-frequency band may be blocked by a block having a longer time than the high-frequency band, so that orthogonal transform or a peak value of a plurality of samples on the time axis may be obtained.
  • the frequency bandwidth and time width of the block should be sufficient to provide a frequency resolution that satisfies the critical bandwidth so that it is acoustically optimal.
  • the spectrum obtained by the analysis is determined based on its magnitude and frequency as to whether it is above a masking threshold (masking threshold), and if it is below the masking threshold, Make sure that attributes such as strength and phase are not changed. The same is true for the minimum audible limit.
  • the level of the quantization noise that has already been added can be identified or predicted, performing processing different from the other components on the frequency component at this level will not This is effective in removing noise effectively. For example, it is effective to provide a larger attenuation rate than the other components or to completely remove them. Further, reducing the bit length by performing the above-described super bit mapping processing on the audio signal information processed as described above is a problem in the case where recording / reproducing transmission or the like with a limited word length is performed, the audible sound quality deteriorates. This is effective in preventing as much as possible.
  • a recording medium of the present invention is a medium in which converted data obtained by processing by the above signal conversion method or device is recorded.
  • This recording medium may be a magneto-optical disk, an optical disk, or a semiconductor memo. Or an Ic memory card.
  • the sound quality of voice and acoustic signals is adjusted to be beneficial to humans by controlling the harmony relation between frequency components within a critical band that is acoustically supported. can do. Also, keeping the masking threshold and frequency components below the minimum audible level unchanged does not perform unnecessary processing unrelated to sound quality as much as possible, and causes extra side effects such as connection distortion. It is effective in preventing. Furthermore, despite the fact that the digital sample data recorded on the compact disc has only a resolution of 16-bit word length, a combination of the audible frequency component change and the superbit matting process is used to generate 16-bit sound.
  • FIG. 1 is a block circuit diagram showing a schematic configuration example of a signal conversion device according to the present embodiment for realizing a method (signal conversion method) for converting characteristics of time signal information according to the present invention.
  • FIG. 2 is a diagram showing a time block for each band according to the present invention.
  • FIG. 3 is a diagram showing a frequency shift peak according to the present invention.
  • FIG. 4 is a diagram showing an example of a frequency shift peak frequency characteristic according to the present invention.
  • FIG. 5 is a diagram showing the relationship between the degree of concordance and the critical band.
  • FIG. 6 is a block circuit diagram showing a configuration example of the dissonance band detection circuit of the device according to the embodiment of the present invention.
  • FIG. 7 is a block circuit diagram showing a configuration example of a masking threshold curve detection circuit of the device of this embodiment.
  • FIG. 8 is a diagram showing the sum of signal components in each critical band.
  • FIG. 9 is a diagram showing the sum of signal components in each critical band and a masking threshold.
  • FIG. 10 is a diagram showing the sum of the signal components in each critical band, the masking threshold, and the minimum audibility.
  • FIG. 11 is a diagram illustrating an example in which the magnitude of the frequency component is changed.
  • FIG. 12 is a diagram illustrating a configuration example of a feedback filter for noise shaving.
  • BEST MODE FOR CARRYING OUT THE INVENTION the signal processing device of the present embodiment to which the signal conversion method of the present invention is applied includes a band division filter 2, which will be described later, as a conversion unit for converting acoustic time signal information into a plurality of frequency components.
  • the attribute changing means of the signal conversion device of the present embodiment to which the signal conversion method of the present invention is applied includes a plurality of frequency components obtained from the conversion means, among other frequency components in a substantially critical band.
  • the difference in the magnitude of the attribute is changed between other frequency components in a substantially critical band.
  • FIG. 1 is a block circuit diagram showing a schematic configuration of one embodiment of a signal conversion device of the present embodiment for realizing the signal conversion method according to the present invention.
  • FIG. 1 will be described in detail.
  • the signal conversion device of the present embodiment divides an input digital signal such as voice or acoustic signal information (acoustic time signal information) into a plurality of frequency bands, and sets the minimum two adjacent bands to have the same bandwidth. Similarly, in the higher frequency band, the higher the frequency band, the wider the bandwidth is selected, and the orthogonal transform is performed for each frequency band, and the frequency domain is obtained from the obtained spectrum data on the frequency axis. The information on the moving peak curve and the masking curve in the frequency domain is obtained.
  • a frequency band in which a desirable change in sound quality can be expected is obtained by changing the frequency component based on the harmonic relationship between the frequency components.
  • the information on the masking curve in the frequency domain it is obtained from the information on the moving peak curve in the frequency domain.
  • a frequency region in which a sound quality change is not substantially expected due to masking is obtained, and is excluded from the frequency band in which the frequency components are changed. Frequency components below the minimum audible limit are also excluded from the change. The size of the frequency component in the frequency band in which the frequency component thus obtained is changed is reduced or eliminated.
  • time signal information is obtained by performing an inverse orthogonal transform of the frequency components, and the entire band is obtained by synthesizing the entire band with a synthesis filter.
  • a super-bit matching process for audibly optimizing a quantization noise spectrum within a band of 20 kHz or less is performed.
  • the input terminal 1 is supplied with an audio PCM signal of 0 to 22 kHz when the sampling frequency is 44.1 kHz, for example.
  • This input signal is divided into a band of 0 to 11 kHz and a band of 11 k to 22 kHz by a band division filter 2 such as the so-called CQF, and a signal of the band 0 to 11 kHz is also a CQF filter or the like.
  • a band division filter 2 such as the so-called CQF
  • a signal of the band 0 to 11 kHz is also a CQF filter or the like.
  • the signal in the 0 to 5.5 kHz band is similarly divided into the 0 to 2.75 kHz band and the 2.75 to 5.5 kHz band by the band division filter 4 such as CQF.
  • the signal in the Ilk to 22 kHz band from the band division filter 2 is sent to an MDCT (Modified Discrete Cosine Transform) circuit 5a, which is an example of an orthogonal transformation circuit, and the 5.5 k signal from the band division filter 3 ⁇ 1 1 112 band signal is sent to ⁇ 0
  • the signal in the 4.75 kHz to 5.5 kHz band of the four power filters is sent to the MDCT circuit 5 c, and the signal in the 0 kHz to 2.7 kHz band from the band division filter 4 is converted to the MDCT signal.
  • the signal is sent to the circuit 5 d, where it is subjected to MDCT processing.
  • orthogonal transforms such as fast Fourier transform (FFT) and discrete cosine transform (DCT) can be used as these orthogonal transform circuits.
  • FFT fast Fourier transform
  • DCT discrete cosine transform
  • an input audio signal is divided into blocks in a predetermined unit time (frame), and for each block, for example, fast Fourier transform (FFT), cosine transform (DCT), modifiable DCT
  • FFT fast Fourier transform
  • DCT cosine transform
  • MDCT modifiable DCT
  • IC ASSP 1987 Subband / Transform Coding Using Filter Bank Designs Based on Time Domain Aliasing Cancellation JP Princen AB B radley Univ. of Surrey Royal Melbourne Inst, of Tech.
  • FIG. 2 shows a specific example of a standard input signal for a block for each band supplied to the MDCT circuits 5a, 5b, 5c, and 5d.
  • the above four filter output signals have different orthogonal transform block sizes for each band, and perform a frequency analysis that sufficiently satisfies the critical bandwidth at each frequency.
  • the frequency resolution is selected so that the critical band is substantially divided into ten. This allows the control of the magnitude of the frequency component in the critical band to be performed with the frequency within the critical band being restricted quite freely.
  • the band from 0 Hz to 2.75 kHz is defined as the time block size of the orthogonal transform being 46.4 ms ec, and the narrowest critical bandwidth of this band is 100 Hz, which is 10 Hz. A frequency resolution of 1/10 Hz is obtained.
  • a frequency resolution of 40 Hz is obtained using the time block size of the orthogonal transformation of 11.6 msec, and a frequency resolution of 5.5 kHz to 1 lk Hz
  • the band has a frequency resolution of 80 Hz using the orthogonal block time block size of 5.8 ms ec, and the 11 kHz to 22 kHz band has a frequency block of 160 Hz using the orthogonal block time block size of 2.9 ms ec.
  • Frequency resolution Since the critical bandwidth at 11 kHz is approximately 3 kHz, it is time-resolved to reduce the orthogonal transform block size by half to achieve a frequency resolution of 320 Hz. It is effective in further improving the performance. Table 1 shows the center frequency and bandwidth of the critical band.
  • the frequency component or MDCT coefficient data obtained by performing MDCT processing in each of the MDCT circuits 5a, 5b, 5c, and 5d is different from the low-frequency peak frequency component.
  • the frequency shift peak detection circuit 12 and the dissonance frequency detection circuit 11 that determine the frequency region where the frequency component having a consonance relationship exists Supplied to the frequency shift peak detection circuit 12 and the dissonance frequency detection circuit 11 that determine the frequency region where the frequency component having a consonance relationship exists, and the masking threshold curve detection circuit 16 that calculates the masking threshold curve Be c
  • the operation of the frequency shift peak detection circuit 12 will be described below.
  • FIG. 3 a method of obtaining moving peak values for three adjacent frequency components is described for easy understanding.
  • the moving peak value centered on the component s1 is the magnitude of the component having the largest magnitude among the components s0, si, and s2 including the component s1 and its neighboring components.
  • a moving peak value is defined.
  • the moving peak value centered on the component s 2 is the magnitude of the component having the largest magnitude among the components sl, s 2, and s 3 including the component s 2 and its neighboring components. Defines the moving peak value.
  • a moving peak curve can be obtained by successively obtaining peak values in this manner.
  • Fig. 5 Is the frequency difference between the two frequency components, only the frequency shown on the horizontal axis (the axis indicating the frequency normalized by the critical bandwidth), how much coherence or dissonance these two frequency components have The vertical axis indicates whether or not the property is shown.
  • the low-frequency characteristic having a longer time width is used in common for each high-frequency time. From the frequency components given to the input terminal 41, moving peak characteristics having two different frequency widths can be obtained.
  • a moving peak detecting circuit 42 that gives a moving peak value of 10% of the critical bandwidth giving a moving peak value of 10% of the critical bandwidth and a critical band that gives a moving peak value of 50% of the critical bandwidth
  • the moving peak characteristic having two different frequency widths can be obtained by the moving peak detection circuit 43 having a width of 50% of the width.
  • the difference between the moving peak curves obtained by the moving peak detection circuit 43 with a 50% width is calculated by the difference detection circuit 44. Is obtained from the output terminals 45.
  • a frequency region in which the difference between the moving peak values obtained in this way exceeds a certain threshold is defined as a dissonant frequency region.
  • the mask circuit 10 having a mask function in FIG. 1, the masking threshold curve detecting circuit 16 having a masking force curve calculating function, and the minimum audible curve generating circuit 17 storing the minimum audible information are described above. In this way, when the masking effect and the minimum audibility are taken into account, it is used to exclude the frequency components judged not to be audible from the operation target.
  • the mask function in the mask circuit 10 the masking curve calculation function in the masking threshold curve detection circuit 16, and the minimum audible limit storage function in the minimum audible curve generation circuit 17 will be described in more detail. I will explain.
  • FIG. 7 is a block diagram showing a schematic configuration of a specific example of a masking curve calculation function in the masking threshold curve detection circuit 16.
  • the input terminal 71 is connected to each MDCT in FIG.
  • the frequency components from the circuits 5a, 5b, 5c and 5d are supplied.
  • the input data on the frequency axis is sent to the energy calculation circuit 72 for each critical band, where the energy of each critical band is calculated by calculating the sum of the amplitude values of the frequency components in each critical band. Desired. Instead of the energy for each critical area, the peak value or average value of the amplitude value may be used.
  • the spectrum of the total value of each band is shown as SB in FIG.
  • the number of divided bands is represented by 12 bands (B1 to B12) for simplicity of illustration.
  • the convolution filter circuit 73 includes, for example, a plurality of delay elements for sequentially delaying input data and a plurality of multipliers (for example, corresponding to each band) for multiplying an output from these delay elements by a filter coefficient (weighting function). 25 multipliers) and a sum adder that sums the outputs of the multipliers.
  • the convolution processing for example, for the spectrum SB of the band indicated by B6 in FIG. 8, the sum of the parts indicated by the dotted lines in FIG.
  • the masking refers to a phenomenon in which a certain signal masks another signal due to human auditory characteristics so that the other signal cannot be overheard. O-The successive masking effect of the audio signal and the signal on the frequency axis The same time masking effect. Due to these masking effects, even if signal information or noise is applied to the masked portion, they will not be heard. Therefore, in an actual audio signal, signal information and noise within the masked range do not need to be manipulated.
  • each multiplier of the convolution filter circuit 73 is as follows.
  • the coefficient of the multiplier M corresponding to an arbitrary band is set to 1, the multiplier M — A coefficient of 0.15 for 1; a coefficient of 0.000 19 for the multiplier M 1-2; a coefficient of 0.0.000 for the multiplier M-3
  • the subtracter 74 obtains a level corresponding to signal information or a noise level which can be excluded from an operation target described later in the convolved region. Note that, as will be described later, a level corresponding to signal information or a noise level that can be excluded from the operation target is subjected to inverse convolution processing, so that a critical band (critical bandwidth) is obtained for each band. This level is signal information or noise level that can be removed from the operation target.
  • the subtractor 74 has an allowable function for obtaining the level
  • a function representing the masking level is supplied.
  • the level control is performed by increasing or decreasing the allowable function.
  • the permissible function is supplied from the (n-ai) function generation circuit 75 described below. Is what is being done.
  • the level corresponding to the signal information or noise level that can be excluded from the operation target, and the number given in order from the lower band of the critical band is i, can be obtained by the following equation (1) it can.
  • n and a are constants, a> 0, S is the intensity of the convolution-processed bark vector, and (n-ai) in equation (1) is an allowable function.
  • the level ⁇ is obtained, and this data is transmitted to the divider 76.
  • the divider 76 is for inversely convolving the level in the convolved area. Therefore, by performing the inverse convolution processing, a masking vector can be obtained from the above level. That is, this masking spectrum becomes signal information or a noise spectrum that can be excluded from the operation target.
  • the masking vector is transmitted to the subtractor 78 via the synthesizing circuit 77.
  • the output from the energy detection circuit 72 for each critical band that is, the spectrum SB described above, is supplied to the subtractor 78 via the delay circuit 79. Therefore, the subtractor 78 performs a subtraction operation between the masking vector and the spectrum SB, and as a result, as shown in FIG. ⁇ ⁇ Vector
  • the mass below the level indicated by the MS level is You will be king.
  • the output from the subtracter 78 is taken out via an output terminal 81 via signal information or a noise level correction circuit (not shown) which can be excluded from the operation target, and The signal is sent to the circuit 10, where the frequency region that can be excluded from the operation target is excluded from the dissonant frequency region. .
  • the delay circuit 79 is provided for delaying the spectrum SB from the energy detection circuit 72 in consideration of the amount of delay in each circuit before the synthesis circuit 77.
  • the synthesis is performed by the circuit 77, and the data indicating the so-called minimum audibility curve RC, which is a human auditory characteristic as shown in FIG. 10, supplied from the minimum audible curve generation circuit 17 And the above-mentioned masking vector MS can be synthesized.
  • the minimum audibility curve RC which is a human auditory characteristic as shown in FIG. 10
  • This minimum audibility curve will differ, for example, due to differences in playback volume during playback, but in a realistic digital system, for example, there is no significant difference in the way music enters the 16-bit dynamic range. For example, if quantization noise in the most audible frequency band near 4 kHz is not audible, quantization noise below the level of this minimum audible curve will not be audible in other frequency bands. .
  • the system is used in such a way that noise around 4 kHz of the single length of the system cannot be detected, and by combining this minimum audible curve RC and the masking spectrum MS, If signal information or noise level that can be excluded from the operation target is obtained, The signal information or noise level that can be used can be up to the shaded portion in FIG.
  • the 4 kHz level of the minimum audible curve is adjusted to the lowest level corresponding to, for example, 20 bits.
  • FIG. 10 also shows the signal spectrum S S at the same time.
  • the frequency component to be operated there is a case in which the frequency component is limited by the level of quantization noise included in the input digital signal information.
  • the quantization noise level is almost determined by the word length. Therefore, by limiting the frequency components in this level range to a limited range, the dissonance of the quantization noise can be effectively reduced. Can be reduced or removed.
  • the frequency components to be operated are limited to the range of this level. Of course, this quantization level may be adjusted to be optimal.
  • the subtractor 78 based on, for example, information on an equal loudness curve sent from a correction information output circuit (not shown). It corrects signal information or noise level that can be excluded from the operation target in the output of.
  • the equal loudness curve is a characteristic curve relating to human auditory characteristics.For example, the loudness curve is obtained by calculating the sound pressure of sound at each frequency that sounds as loud as a pure tone of 1.kHz, and connecting the curves. It is also called the loudness iso-sensitivity curve. This equal loudness curve draws substantially the same curve as the minimum audible curve RC shown in FIG.
  • the mask circuit 10 uses the auditory effect described above to prevent the frequency components from being changed in unnecessary frequency bands.
  • the mask circuit 10 outputs, as an output, component information of a frequency component having a dissonant relationship with the local peak component that can be effectively operated to improve the auditory sound quality.
  • the frequency component changing circuit 6 in FIG. 1 changes the size of the target frequency component based on this information.
  • FIG. 11 shows how the magnitude of the frequency component is changed in the frequency component changing circuit 6.
  • Band 1 to Band 4 in the figure are frequency regions in which the magnitude of the frequency component specified by the mask circuit 10 is changed, and the degree of the change is larger at the center of each band. I'm sorry. This is based on the fact that the degree of dissonance shown in Fig. 5 differs depending on the frequency difference.
  • S ⁇ 1 to S p4 represent the gain at the position of each local peak spectrum, and show that the overall energy decreases as the frequency component of the dissonant frequency band decreases. Compensation In order to achieve this, the magnitude of the spectrum at this frequency position is increased.
  • the output of the frequency component changing circuit 6 in which the magnitude of the frequency component is changed in this way is output from the frequency axis by the I MDCT circuits 9a, 9b, 9c, 9d for performing the inverse transform of the MDCT. Converted to axis.
  • the IMDCT output signals from these IMDCT circuits 9a, 9b, 9c, and 9d are converted into band synthesis filters 13, 14, 14, and 1 having a frequency synthesis (IC QF) function opposite to the CQF.
  • the signal is frequency-synthesized by 5 and becomes a full-band time signal.
  • a compact disk recording signal having a characteristic exceeding 16 bits can be obtained by further subjecting the signal processed according to the present invention to the above noise shaving.
  • the difference between the signal supplied from the band synthesis filter 15 to the adder circuit 18 and the output signal of the feedback filter 21 is calculated.
  • the output of the adding circuit 18 is supplied to the requantizer 19 and the second adding circuit 20.
  • the requantizer 19 attempts to transmit and record a signal with a small amount of information by being output with a word length smaller than the word length of the input signal.
  • the output of the requantizer 19 is supplied to the output terminal 22 of the noise shaper and the second adder circuit 20.
  • the second addition circuit 20 obtains the difference between the input and output signals of the requantizer 19, and a quantization error is extracted as an output.
  • the output of the second adding circuit 20 is supplied to the feedback filter 21.
  • the signal supplied to the feedback filter 21 via the terminal 50 is sequentially shifted to the series circuit of the delay elements 52, 53, 54, 55.
  • the outputs of the delay elements 52, 53, 54, 55 are connected to multiplication elements 56, 57, 58, 59, respectively.
  • the outputs of the multiplication elements 56, 57, 58, and 59 are added by the addition element 60 and guided to the output terminal 61 of the feedback filter.
  • a digital audio having noise frequency characteristics close to equal loudness characteristics is given by a noise shaper composed of the above adder circuit 18, requantizer 19, second adder circuit 20, and feedback filter 21.
  • the output signal is output from the output terminal 22.
  • This output signal is subjected to predetermined error correction processing and the like, and is recorded on a recording medium (a magneto-optical disk, an optical disk, a semiconductor memory, an IC memory card, an optical disk).
  • the converted data formed according to the embodiment of the present invention can be transmitted via a transmission path in addition to being recorded on a recording medium.
  • the present invention is not limited to the above embodiment, but can be applied to image signal information and the like.
  • INDUSTRIAL APPLICABILITY According to the present invention, the sound time signal information is instantaneously and instantaneously produced with high sound quality to humans with high sound quality by using the auditory principle, as described above. be able to. Also, the quality can be improved by reducing the auditory influence of quantization noise from the acoustic time signal information that has already been digitized and has quantization noise added, and the quantization noise has already been digitized and quantization noise has been added.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Television Signal Processing For Recording (AREA)
  • Signal Processing Not Specific To The Method Of Recording And Reproducing (AREA)

Description

明細書 信号変換方法又は装置、 並びに記録媒体 技術分野 本発明は、 例えばディジタルオーディオ機器に適用され、 時間信 号である入力オーディォ信号に対して特に聴覚の性質を用いて音質 を変更する (すなわち時間信号情報の特性を変換する) 信号変換方 法又は装置、 並びにこれら方法又は装置により時間信号情報の特性 が変換された情報が記録される記録媒体に関するものである。 背景技術 従来より、 音響信号情報の音質を変化させる手法としては、 例え ば、 フィルタ処理によって周波数特性を変更する方式や、 高次高調 波を発生させる方式、 若しくはいわゆるコンプレサによってダイナ ミ ックレンジを変更するなどの方式が用いられている。
しかし、 上記フィルタを用いる方式の場合は、 例えば中域を増強 することでプレゼンスを上げるなどのフィル夕の使用の仕方を変え ることで音質を変化させるものであり、 高次高調波を発生させる方 式の場合は、 聞きやすい音を得るというよりも効果音的な使用に供 されるものである。 また、 上記コンプレサによってダイナミ ックレ ンジを変更する方式は、 大きい音が耳を痛めたり小さい音が周囲の 雑音にマスクされないようにするというものである。 これらの方式 では、 瞬時瞬時で変わってゆく音響信号情報の変化に対応して聴覚 的に心地好く聞こえる音にする最適なコントロールは困難である。 そこで、 本発明は、 上述のような実情に鑑みて提案されたもので あり、 人間の聴覚に照らして音質に関して意味のある音声及び音響 信号の変換が可能な信号変換方法及び装置、 並びに記録媒体を提供 することを目的とするものである。
すなわち、 本発明が解決しょうとする課題は、 音響信号情報を聴 覚的な原理を用いて瞬時瞬時に人間にとって音質的に高品質に心地 好く聞こえる音を作り出す手法を与えることである。 また、 本発明 の別の課題は、 既にディジタル化されて量子化雑音が付加されてし まつた音響信号情報からこの量子化雑音の聴覚的な影響を減ずるこ とにより、 品質の向上を図ることである。 また、 本発明の別の目的 は、 既にディジタル化されて量子化雑音が付加されてしまったォー ディォ信号情報からこの量子化雑音の聴覚的な影響を減じた後、 本 件出願人が、 先に、 いわゆるコンパク トディスクのようなオーディ ォ機器の音質を向上させる技術として提案しているいわゆる等ラウ ドネス特性やマスキング特性に合うように量子化雑音のスぺク トル を変更することによって聴感上の雑音レベルを低減させる技術 (以 後この技術を例えばスーパ一ビッ トマッピング: Super Bi t Mappi ng 技術と呼ぶことにする) 、 すなわち例えば特開平 2— 2 0 8 1 2号 公報、 特開平 2 - 1 8 5 5 5 2号公報、 特開平 2— 1 8 5 5 5 6号 公報等に開示した技術を用いて、 1 6ビッ トの語長を持つコ パク トディスクに記録するとき、 聴覚的な処理によって音質を向上させ たデータを作ることにある。 当該スーパービッ トマツビング技術は、
1 6 ビッ トを越える語長を有するディジタル信号を 1 6 ビッ ト長を 有するコンパク トディスクの為に再量子化する場合、 音質向上を図 ることができる。 さらに、 本発明の一^ ^の課題は、 既に量子化雑音 が付加されてしまったオーディォ信号情報について、 聴覚的に音質 を等価的に 1 6 ビッ ト以上に一度向上させ、 再び 1 6 ビッ トに再量 子化する際、 聴覚的に重要な周波数帯域の S / Nを 1 6 ビッ ト以上 に保ったまま 1 6 ビッ トとすることで、 音質の向上を図ることであ る o 発明の開示 本発明の信号変換方法及び装置は、 時間信号情報から得られた周 波数成分について、 少なく とも一^ 3の近接周波数成分との間で属性 の大きさの違いを変更するようにしたものである。 ここで、 上記時 間信号情報は音響時間信号情報を用い、 この音響時間信号情報から 得られた周波数成分について、 聴覚特性に基づく略臨界帯域内の他 の周波数成分との間で属性の大きさの違いを変えるようにする。 上 記属性とは周波数成分の大きさである。
また、 本発明の信号変換方法及び装置は、 音響時間信号情報から 得られた周波数成分について、 略臨界帯域内の他の周波数成分の内、 最小可聴限レベル又はマスキングスレツショールドレベルを越える 周波数成分との間で属性の大きさの違いを変えること、 又は、 略臨 界帯域内の他の周波数成分の内、 最小可聴限レベルとマスキングス レッショールドレベルの大きいほうのレベルを越える周波数成分と の間で属性の大きさの違いを変えること、 又は、 略臨界帯域内の他 の周波数成分の内、 限定されたレベル範囲内の周波数成分との間で 属性の大きさの違いを変えることで、 上記音響時間信号情報の特性 を変換する。
さらに、 本発明の信号変換方法及び装置は、 少なく とも 2箇の周 波数成分が異なる周波数分解能と時間分解能を持つ音響時間信号情 報から得られた周波数成分について、 略臨界帯域内の他の周波数成 分との間で属性の大きさの違いを変えることにより、 上記音響時間 信号情報の特性を変換するようにする。
ここで、 上記音響時間信号情報を周波数成分に変換する際には、 前記音響時間信号情報を複数の帯域に分割した後、 それぞれの帯域 信号を直交変換して複数の周波数成分を得るようにする。 なお、 前 記複数の周波数成分の周波数分解能は低域ほど高いものである。
また、 上記音響時間信号情報の特性を変える際には、 以下のこと を行う。 例えば、 音響時間信号情報から得られた複数の周波数成分 の少なく とも 3のローカルピークについて、 略臨界帯域内の他の 周波数成分との間で属性の大きさの違いを変える。 また、 略臨界帯 域幅の 1 0 %から 5 0 %の周波数差を持つ周波数領域の他の周波数 成分との間で属性の大きさの違いを大きくする。 さらに、 周波数成 分サンプル数の異なる周波数成分の属性の大きさの 2箇の移動ピー ク値の差により、 周波数成分の属性の大きさの違いを変える周波数 領域を決定する。 略臨界帯域幅の 5 0 %幅の移動ピーク値から略臨 界帯域幅の 1 0 %幅の移動ピーク値を引いた値が負の周波数領域の 周波数成分を小さくするか又は削除する。 時間信号情報の短時間ェ ネルギを保存するように周波数成分の大きさを調整する。 時間信号 情報の短時間エネルギを保存するように少なく とも一^ 3のローカル ピークの周波数成分の大きさを調整する。 量子化雑音レベルにより 限定されたレベル範囲内の周波数成分との間で属性の大きさの違い を変える。
さらに、 本発明の信号変換方法及び装置では、 時間軸上に再合成 された時間信号情報に対してノイズシエイプ特性を有する再量子化 処理を施すようにもしている。 このとき、 ノイズシエイプ特性は、 最小可聴限、 等ラウ ドネス若しくはマスキング特性の少なく ともひ とつに依存している。
すなわち言い換えれば、 本発明の信号変換方法及び装置は、 入力 音響時間信号をフィル夕処理若しくは直交変換を用いることにより 周波数成分を得る。 次にこれらの周波数成分の隣接した成分毎の移 動ピーク値を、 臨界帯域に関係した 2つの異なる周波数幅で得て、 この 2種類の移動ピーク値の差が生じる周波数帯域の周波数成分の 大きさを小さくすることにより、 ローカルピーク周波数成分と他の 周波数成分との間の不協和度を低減させる。 入力音響時間信号を周 波数軸上に展開するにあたっては、 フィルタなどにより複数の周波 数帯域の時間軸上成分を得た後、 直交変換等によるプロック化周波 数分析手法を用いるか、 いわゆる Q M F (Quadrature Mirror Fi l te r)や、 C Q F (Conjugate Quadrature Fi l ter) などの帯域分割フィ ル夕をッリ一構造に従属接続することにより、 低域から高域にかけ て、 徐々に周波数分解能が低下し、 逆に時間分解能が向上する帯域 分割を行う。
この時、 低域の方が高域よりも長い時間のプロックでブ口ック化 して直交変換若しくは時間軸上複数サンプルのピ一ク値を取るよう にしてもよい。 プロックの周波数帯域幅及び時間幅は聴覚的に最適 になるように臨界帯域幅を充分満足する周波数分解能を与えるよう にする。 それぞれのブロックにおいて、 分析により得られているス ぺク トルは、 その大きさと周波数により、 マスキングスレツショー ルド (マスキングのしきい値) 以上か否かが判定され、 マスキング スレッシヨールド以下の場合には強さ, 位相などの属性が変更され ないようにする。 このことは最小可聴限についても同様であり、 最 小可聴限を下回る周波数成分については、 たとえ移動ピーク値の差 がゼロではなくても変更しないようにする。 このことは最小可聴限 についても同様であり、 最小可聴限を下回る周波数成分については、 たとえ移動ピーク値の差がゼロではなくても変更しないようにする。 更に、 以上のように処理した音響信号情報を前記スーパービッ トマ ッビング処理することによってビッ ト長を減ずることは、 限られた 語長で記録再生伝送等を行う場合に、 聴感的な音質の劣化をできる だけ防ぐ上で有効である。
さらには、 既に付加されてしまった量子化雑音のレベルが同定も しくは予想し得る場合には、 このレベルの周波数成分については他 の成分とは異なる処理を行うことは、 付加済みの量子化雑音を効果 的に除去する上で有効である。 例えば他の成分よりも大きな減衰率 を与えるか、 完全に除去してしまうことは有効である。 更に、 以上 のように処理した音響信号情報を前記スーパービッ トマツピング処 理することによりビッ ト長を減ずることは、 限られた語長で記録再 生伝送等を行う場合、 聴感的な音質の劣化をできるだけ防ぐ上で有 効である。
また、 本発明の記録媒体は、 上記信号変換方法又は装置により処 理されて得られた変換データが記録されてなるものである。 この記 録媒体としは、 光磁気ディスク、 又は光ディスク、 又は半導体メモ リ、 又は I cメモリ ー力一ドなどを挙げることができる。
したがって、 本発明の信号変換方法及び装置によれば、 聴覚的に 裏付けのある臨界帯域内の周波数成分間の調和関係をコントロール することで、 音声及び音響信号の音質を人間にとって有益なように 調整することができる。 また、 マスキングスレツショールド及び最 小可聴限以下の周波数成分については変更を加えないようにするこ とは、 音質的に無関係な不必要な処理をできるだけ行わず、 接続歪 みなど余計な副作用を防ぐ上で有効である。 さらに、 コンパク トデ ィスクに記録されるディジタルサンプルデータが 1 6 ビッ トの語長 の分解能しかないにもかかわらず、 聴覚的な周波数成分の変更とス 一パービッ トマツビング処理を組み合わせて 1 6 ビッ ト音響信号情 報を作りだしコンパク トディスクなどに記録することは、 既に量子 化雑音が付加された音響信号情報及び、 聴覚的に望ましくない周波 数成分を含む音響信号情報をコンパク トディスク、 ディジ夕ルオー ディォテープ等に記録する上で有効である。 図面の簡単な説明 図 1 は、 本発明の時間信号情報の特性の変換方法 (信号変換方 法) を実現する本実施例の信号変換装置の概略構成例を示すプロッ ク回路図である。
図 2は、 本発明に係る各帯域毎の時間プロックを示す図である。 図 3は、 本発明に係る周波数移動ピークを示す図である。
図 4は、 本発明に係る周波数移動ピーク周波数特性の例を示す図 である。 図 5は、 協和度と臨界帯域の関係を示す図である。
図 6は、 本発明実施例装置の不協和帯域検出回路の構成例を示す プロック回路図である。
図 7は、 本実施例装置のマスキングスレツショールドカーブ検出 回路の構成例を示すプロック回路図である。
図 8は、 各臨界帯域の信号成分の総和値を示す図である。
図 9は、 各臨界帯域の信号成分の総和値とマスキングスレショー ルドを示す図である。
図 1 0は、 各臨界帯域の信号成分の総和値とマスキングスレショ 一ルド、 最小可聴限を示す図である。
図 1 1は、 周波数成分の大きさを変える例を示す図である。
図 1 2は、 ノイズシヱービングの為の帰還フィル夕の構成例を示 す図である。 発明を実施するための最良の形態 以下、 本発明の実施例について図面を参照しながら説明する。 本発明の信号変換方法が適用される本実施例の信号処理装置は、 図 1に示すように、 音響時間信号情報を複数の周波数成分に変換す る変換手段としての後述する帯域分割フィルタ 2, 3 , 4及び M D C T回路 5 a, 5 b , 5 c , 5 dと、 当該変換手段から得られた複 数の周波数成分の少なく とも ^の口一カルピ一クについて、 聴覚 特性に基づく略臨界帯域内の他の周波数成分との間で属性の大きさ の違いを変える属性変更手段としての後述する周波数成分変更回路 6及びマスク回路 1 0 , 周波数移動ピーク検出回路 1 2 , 不協和周 波数検出回路 1 1 , マスキングスレショールドカーブ検出回路 1 6 , 最小可聴カーブ発生回路 1 7とを有するものである。
また、 本発明の信号変換方法が適用される本実施例の信号変換装 置の属性変更手段は、 上記変換手段から得られた複数の周波数成分 について、 略臨界帯域内の他の周波数成分の内、 最小可聴限レベル 又はマスキングスレッショールドレベルを越える周波数成分との間 で属性の大きさの違いを変えること、 或いは、 上記変換手段から得 られた複数の周波数成分のうち、 少なく とも 2箇の周波数成分が異 なる周波数分解能と時間分解能を持つ音響時間信号情報から得られ た周波数成分について、 略臨界帯域内の他の周波数成分との間で属 性の大きさの違いを変えることを行う。
先ず、 図 1は、 本発明に係る信号変換方法を実現する本実施例の 信号変換装置の一実施例の概略構成を示すプロック回路図である。 以下、 図 1の具体的な構成について詳細に説明する。
すなわち、 本実施例の信号変換装置は、 音声若しくは音響信号情 報 (音響時間信号情報) 等の入力ディジタル信号を、 複数の周波数 帯域に分割すると共に、 最低域の隣接した 2帯域の帯域幅は同じで、 より高い周波数帯域ではその内の高い周波数帯域ほどバンド幅を広 く選定し、 各周波数帯域毎に直交変換を行って、 得られた周波数軸 上のスぺク トルデータから、 周波数領域の移動ピークカーブと周波 数領域のマスキングカーブの情報を求める。
上記周波数領域の移動ピークカーブの情報からは、 周波数成分間 の調和関係から周波数成分を変更することにより好ましい音質の変 化が期待できる周波数帯域を得る。 また、 周波数領域のマスキング カーブの情報からは周波数領域の移動ピークカーブの情報から求ま つた周波数成分を変更することにより好ましい音質の変化が期待で きる周波数帯域のうち、 マスキングにより実質的に音質変化が期待 できない周波数領域を求めて、 周波数成分を変化させる周波数帯域 から除外する。 最小可聴限を下回る周波数成分についても変更の対 象から除外する。 このようにして求められた周波数成分を変化させ る周波数帯域内の周波数成分の大きさを小さくするか又は除去する。 次に、 周波数成分を逆直交変換して時間信号情報を得、 全帯域を 合成フィル夕でまとめることで全帯域時間信号情報を得る。 さらに、 量子化を行うにあったては、 2 0 kHz以下の帯域内の.量子化雑音 スぺク トルを聴感的に最適化するスーパービッ トマツビング処理を 行う。
より詳細に図 1において説明すると、 入力端子 1には、 例えばサ ンプリング周波数が 44. 1 kHzの時、 0〜22 kHzのオーデ ィォ P CM信号が供給されている。 この入力信号は、 例えばいわゆ る上記 CQF等の帯域分割フィルタ 2により 0〜 1 1 kHz帯域と 1 1 k〜22 kHz帯域とに分割され、 0〜1 1 kHz帯域の信号 は同じく CQFフィルタ等の帯域分割フィルタ 3により 0〜5. 5 kHz帯域と 5. 5 k〜l l k H z帯域とに分割される。 更に 0〜 5. 5 kHz帯域の信号は同じく CQF等の帯域分割フィルタ 4に より 0〜2. 75 kHz帯域と 2. 75〜5. 5 kHz帯域とに分 割される。
帯域分割フィル夕 2からの I l k〜 22 kHz帯域の信号は直交 変換回路の一例である MD CT (モディファイ ド離散コサイン変 換) 回路 5 aに送られ、 帯域分割フィルタ 3からの 5. 5 k〜 1 1 112帯域の信号は^0( 丁回路5 bに送られ、 帯域分割フィルタ 4力ヽらの 2. 75 kHz〜 5. 5 k H z帯域の信号は MD C T回路 5 cに送られ、 帯域分割フィルタ 4からの 0 kHz〜2. 7 5 k H z帯域の信号は MDCT回路 5 dに送られることにより、 それぞれ MDCT処理される。 もちろん、 これら直交変換回路としては、 上 記 MDCT以外にも高速フーリエ変換 (FFT) , 離散コサイン変 換 (DCT) などの直交変換を用いることができる。
ここで、 上述したような帯域分割フィルタによる入力ディジタル 信号を複数の周波数帯域に分割する手法としては、 例えば、 上記 C QFなどのフィルタを用いる手法があり、 これは、 例えば、 Mark J. T. Smith and Thomas P. Barnwell, "Exact Reconstruction T echniques for Tree-Structured Subband Coders, "
IEEE Trans. ASSP, Vol ASSP-34 No 3, June 1986, pp. 434-441. に述べられている。 また、 1976 R. E. Crochiere Digital coding of speech in subbands Bell Syst.Tech. J. Vol.55, No.8 1976 には、 QMFなどのフィル夕を用いた手法が述べられている。 更に ICASSP 83, BOSTON Polyphase Quadrature filters - A new subband coding technique Joseph H. Rothweiler には等バンド幅のフィルタ分割 手法が述べられている。
また、 上述した直交変換としては、 例えば、 入力オーディオ信号 を所定単位時間 (フ レーム) でブロック化し、 当該ブロック毎に例 えば高速フーリエ変換 (FFT) 、 コサイン変換 (DCT) 、 モデ ィ フアイ ド DCT変換 (MDCT) 等を行うことで、 時間軸を周波 数軸に変換するような直交変換がある。 上記 MD C Tについては IC ASSP 1987Subband/Transform Coding Using Filter Bank Designs Based on Time Domain Aliasing Cancellation J. P. Princen A. B. B radley Univ. of Surrey Royal Melbourne Inst, of Tech.に述べら れている。
ここで、 上記各 MDCT回路 5 a、 5 b、 5 c、 5 dに供給する 各帯域毎のプロックについての標準的な入力信号に対する具体例を 図 2に示す。
この図 2の具体例において、 上述した 4つのフィルタ出力信号は、 各帯域ごとに別々の直交変換プロックサイズを持ち、 それぞれの周 波数での臨界帯域幅を充分満足するような周波数分析を行う。 これ により周波数が高くなるほど周波数分解能は低くなるが、 その代わ りに時間分解能が向上する。 本実施例では、 周波数分解は臨界帯域 をそれぞれ略 1 0分割する程度に選んでいる。 このことにより臨界 帯域内の周波数成分の大きさのコントロールが臨界帯域内周波数を かなり自由に限定して行うことができる様にしている。
すなわち、 本実施例では、 0 Hzから 2. 75 kHzまでの帯域 は、 直交変換の時間ブロックサイズを 4 6. 4ms e cとして、 こ の帯域の最も狭い臨界帯域幅 1 0 0 H zの 1 0分の 1の概略 1 0 H zの周波数分解能が得られるようにしている。 同様にして、 2. 7 5 kHzから 5. 5 kHz帯域は 1 1. 6 m s e cの直交変換の時 間ブロックサイズを用いて 4 0 Hzの周波数分解能を、 5. 5 kH zから 1 l k H z帯域は 5. 8ms e cの直交変換の時間プロック サイズを用いて 8 0Hzの周波数分解能を、 1 1 kHzから 22 k Hz帯域は 2. 9ms e cの直交変換の時間プロックサイズを用い て 1 6 0Hzの周波数分解能を得ている。 なお、 1 1 k H zにおけ る臨界帯域幅は概略 3 kHzであるから、 更に直交変換プロックサ ィズを半分にして 320 H zの周波数分解能とすることは時間分解 能を更に上げるうえで有効である。 表 1 には臨界帯域の中心周波数 と帯域幅を示している。
表 1 帯域番号 中心周波数 帯域幅
[Bark] [Hz] [Hz]
1 5 0 8 0
2 1 5 0 1 0 0
3 2 5 0 1 0 0
4 3 5 0 1 0 0
5 4 * 5 0 1 1 0
6 5 7 0 1 2 0
7 7 0 0 1 4 0
8リ 8 4 0 1 5 0
9 1 0 0 0 1 6 0
1 0 1 1 7 0 1 9 0
1 1 1 3 7 0 2 1 0
1 2 1 6 0 0 2 4 0
1 3 1 8 5 0 2 8 0
1 4 2 1 5 0 3 2 0
1 5 2 5 0 0 3 8 0
1 6 2 9 0 0 4 5 0
1 7 3 4 0 0 5 5 0
1 8 4 0 0 0 7 0 0
1 9 4 8 0 0 9 0 0
2 0 5 8 0 0 1 1 0 0
2 1 7 0 0 0 1 3 0 0
2 2 8 5 0 0 1 8 0 0
2 3 1 0 5 0 0 2 5 0 0
2 4 1 3 5 0 0 3 5 0 0
2 5 再び図 1に戻って、 各 MD C T回路 5 a, 5 b, 5 c, 5 dにて MD CT処理されて得られた周波数成分或いは MD CT係数データ は、 ロー力ルピーク周波数成分と不協和の関係を持つ周波数成分の 存在する周波数領域を確定する周波数移動ピーク検出回路 1 2及び 不協和周波数検出回路 1 1 と、 マスキングスレショールドカーブを 求めるマスキングスレショールドカーブ検出回路 1 6に供給される c ここで、 上記周波数移動ピーク検出回路 1 2の動作を以下に説明 する。
図 3においては、 判り易いように、 3個の隣接周波数成分に関す る移動ピーク値の取り方を説明している。
先ず、 成分 s 1を中心とした移動ピーク値は、 当該成分 s 1 とそ の両隣の成分を含めた各成分 s 0 , s i , s 2の中の最大の大きさ を持つ成分の大きさで移動ピーク値が定義される。 次に、 成分 s 2 を中心とした移動ピーク値は、 当該成分 s 2とその両隣の成分を含 めた各成分 s l, s 2 , s 3の中の最大の大きさを持つ成分の大き さで移動ピーク値が定義される。 このようにして次々にピーク値を 求めて行く ことにより、 移動ピークカーブが得られる。
図 3では判り易いように、 周波数成分は全て同じ帯域幅を持ち、 且つ移動ピークを求めるときの周波数幅も等しく して図示してある が、 本実施例では、 図 4に示すように、 高域になるに従い、 周波数 成分の持つ帯域幅は広がり且つその周波数での臨界帯域幅の 1 0 % 若しくは 5 0 %幅の周波数幅での移動ピーク値が求められる。 なお、 図 4において、 図中 B E 1〜B E 4はそれぞれ帯域を示し、 図中曲 線 。は臨界帯域幅の 1 0 %幅の移動ピークカーブを、 曲線 P 5 0は 臨界帯域幅の 5 0 %幅の移動ピークカーブを示し、 曲線 S Dは周波 数成分分布を、 C Bは各周波数における臨界帯域幅を示している。 ここでもしもピーク値が重複して定義された周波数帯域ではピーク 値の大きいほうが選ばれる。
なお、 上記臨界帯域幅は、 協和性、 雑音の大きさの感覚、 マスキ ング特性など人間の聴覚特性を良く理解できる物理量であり、 本発 明に関しては協和性についての説明を図 5を用いて説明する。 図 5 は 2つの周波数成分の周波数差が、 横軸 (臨界帯域幅で正規化され た周波数を示す軸) に示された周波数だけあるとき、 この 2つの周 波数成分がどの程度の協和性もしくは不協和性を示すかを縦軸に表 している。 この結果によれば、 2つの周波数成分の周波数差が、 臨 界帯域幅の 1 0 %から 5 0 までの間 (不協和音帯域 NHB) では 不協和の感覚が生じ (不協和音レベル NHL) 、 0 %から 1 0 %及 び 5 0 %から 1 0 0 %の周波数差 (協和音帯域 HB) では協和の感 覚が生じる (協和音レベル HL) 。 なお、 この臨界帯域幅は、 前記 表 1のように高域ほど帯域幅が広くなつている。
次に不協和帯域を検出する具体的手段を図 6を用いて説明する。 図 1における各 MDCT回路 5 a, 5 b, 5 c, 5 dにて MDC T処理されて得られた周波数成分或いは MD CT係数データは、 絶 対値を取られた後、 図 6に示す不協和帯域検出手段としての不協和 周波数検出回路 1 1の入力端子 4 1に与えられる。 ここで、 より長 い時間幅を持つ低域側特性は、 各高域時間に共通に使用される。 上記入力端子 4 1に与えられた周波数成分から 2つの異なった周 波数幅を持った移動ピーク特性が得られる。 すなわち、 臨界帯域幅 の 1 0 %幅の移動ピーク値を与える臨界帯域幅の 1 0 %幅の移動ピ ーク検出回路 4 2と臨界帯域幅の 5 0 %幅の移動ピーク値を与える 臨界帯域幅の 5 0 %幅の移動ピーク検出回路 4 3によって 2つの異 なった周波数幅を持った移動ピーク特性が得られる。
これら臨界帯域幅の 1 0 %幅の移動ピーク値を与える臨界帯域幅 の 1 0 %幅の移動ピーク検出回路 4 2と臨界帯域幅の 5 0 %幅の移 動ピーク値を与える臨界帯域幅の 5 0 %幅の移動ピーク検出回路 4 3で得られた移動ピークカーブは、 その差を差検出回路 4 4によつ て求められ、 出力端子 4 5から取り出される。
このようにして求められた移動ピーク値の差が、 あるスレツショ ールドを越える周波数領域を不協和周波数領域と定義する。
しかしながら、 その他の聴覚的効果すなわちマスキング効果, 等 ラウ ドネス, 最小可聴限を考えるとき、 以上のようにして求められ た不協和周波数領域に含まれる周波数成分全てを操作の対象とする 必要はない。 すなわち、 マスキング効果、 等ラウ ドネス、 最小可聴 限を考慮したときに、 聴覚的に閬こえることがないと判断される周 波数成分は操作の対象から外してもほとんど影響がなく、 また、 等 ラウ ドネスを考えたときに、 効果的である帯域のみを操作の対象と することは演算量の減少に役立つ。
図 1におけるマスク機能を有するマスク回路 1 0、 マスキング力 ーブ算出機能を有するマスキングスレショールドカーブ検出回路 1 6、 最小可聴限情報を記憶する最小可聴カーブ発生回路 1 7は、 以 上説明した様に、 マスキング効果、 最小可聴限を考慮したときに、 聴覚的に聞こえることがないと判断される周波数成分を操作の対象 から外す為に用いられる。
以下、 より詳細に上記マスク回路 1 0でのマスク機能と、 マスキ ングスレシヨールドカーブ検出回路 1 6でのマスキングカーブ算出 機能と、 最小可聴カーブ発生回路 1 7での最小可聴限記憶機能につ き説明する。
図 7は上記マスキングスレシヨールドカーブ検出回路 1 6でのマ スキングカーブ算出機能の一具体例の概略構成を示すプロック回路 図である。
この図 7において、 入力端子 7 1には、 図 1における各 M D C T 回路 5 a, 5 b , 5 c , 5 dからの周波数成分デ一夕が供給されて いる。
この周波数軸上の入力データは、 臨界帯域毎のエネルギ算出回路 7 2に送られて、 ここで各臨界帯域のエネルギが、 各臨界帯域内の 周波数成分の各振幅値の総和を計算することにより求められる。 こ の各臨界地域毎のエネルギの代わりに、 振幅値のピーク値、 平均値 等が用いられることもある。 このエネルギ算出回路 7 2からの出力 として、 例えば各バンドの総和値のスぺク トルを図 8に図中 S Bと して示している。 ただし、 この図 8では、 図示を簡略化するため、 分割帯域数を 1 2バンド (B l 〜B 12) で表現している。
ここで、 上記スぺク トル S Bのいわゆるマスキングに於ける影響 を考慮するために、 該スぺク トル S Bに所定の重み付け関数を掛け て加算するような畳込み (コンボリューシヨン) 処理を施す。 この ため、 上記帯域毎のエネルギ算出回路 7 2の出力すなわち該スぺク トル S Bの各値は、 畳込みフィルタ回路 7 3に送られる。 該畳込み フィルタ回路 7 3は、 例えば、 入力データを順次遅延させる複数の 遅延素子と、 これら遅延素子からの出力にフィルタ係数 (重み付け 関数) を乗算する複数の乗算器 (例えば各バンドに対応する 2 5個 の乗算器) と、 各乗算器出力の総和をとる総和加算器とから構成さ れるものである。 この畳込み処理により、 例えば図 8の B 6で示さ れるバンドのスぺク トル S Bに対しては図 8の図中点線で示す部分 の総和がとられる。 なお、 上記マスキングとは、 人間の聴覚上の特 性により、 ある信号によつて他の信号がマスクされて閬こえなくな る現象をいうものであり、 このマスキング効果には、 時間軸上のォ —ディォ信号による継時マスキング効果と、 周波数軸上の信号によ る同時刻マスキング効果とがある。 これらのマスキング効果により、 マスキングされる部分に信号情報もしくはノイズがあつたとしても、 これらは聞こえないことになる。 このため、 実際のオーディオ信号 では、 このマスキングされる範囲内の信号情報及びノィズは操作対 象とする必要がない。
なお、 上記畳込みフィルタ回路 7 3の各乗算器の乗算係数 (フィ ル夕係数) の一具体例を示すと、 任意のバンドに対応する乗算器 M の係数を 1 とするとき、 乗算器 M— 1で係数 0 . 1 5を、 乗算器 M 一 2で係数 0 . 0 0 1 9を、 乗算器 M - 3で係数 0 . 0 0 0 0 0 8
6を、 乗算器 M + 1で係数 0 . 4を、 乗算器 M + 2で係数 0 . 0 6 を、 乗算器 M + 3で係数 0 . 0 0 7を各遅延素子の出力に乗算する ことにより、 上記スペク トル S Bの畳込み処理が行われる。 ただし、 Mは 1〜2 5の任意の整数である。
次に、 上記畳込みフィルタ回路 7 3の出力は引算器 7 4に送られ る。 該引算器 7 4は、 上記畳込んだ領域での後述する操作対象から 外すことが可能な信号情報もしくはノイズレベルに対応するレベル ひを求めるものである。 なお、 当該操作対象から外すことが可能な 信号情報もしくはノイズレベルに対応するレベルひは、 後述するよ うに、 逆コンボリューシヨン処理を行うことによって、 クリティカ ルバンド (臨界帯域幅) の各バンド毎の操作対象から外すことが可 能な信号情報もしくはノイズレベルとなるようなレベルである。 こ こで、 上記引算器 7 4には、 上記レベルひを求めるための許容関数
(マスキングレベルを表現する関数) が供給される。 この許容関数 を増減させることで上記レベルひの制御を行っている。 当該許容関 数は、 次に説明するような (n— a i ) 関数発生回路 7 5から供給 されているものである。
すなわち、 操作対象から外すことが可能な信号情報もしくはノィ ズレベルに対応するレベルひは、 臨界帯域の帯域の低域から順に与 えられる番号を i とすると、 次の ( 1 ) 式で求めることができる。
= S - ( n - a i ) · · · ( 1 )
この ( 1 ) 式において、 n , aは定数で a > 0、 Sは畳込み処理さ れたバークスぺク トルの強度であり、 ( 1 ) 式中(n-ai )が許容関数 となる。 本実施例では n = 3 8, a = l としている。
このようにして、 上記レベル αが求められ、 このデータは、 割算 器 7 6に伝送される。 当該割算器 7 6では、 上記畳込みされた領域 での上記レベルひを逆コンボリューシヨンするためのものである。 したがって、 この逆コンボリューシヨン処理を行うことにより、 上 記レベルひからマスキングスぺク トルが得られるようになる。 すな わち、 このマスキングスペク トルが、 操作対象から外すことが可能 な信号情報もしくはノイズスぺク トルとなる。
なお、 上記逆コンボリューシヨン処理は、 複雑な演算を必要とす るが、 本実施例では簡略化した割算器 7 6を用いて逆コンボリュー ションを行っている。
次に、 上記マスキングスぺク トルは、 合成回路 7 7を介して減算 器 7 8に伝送される。 ここで、 当該減算器 7 8には、 上記臨界帯域 毎のエネルギ検出回路 7 2からの出力、 すなわち前述したスぺク ト ル S Bが、 遅延回路 7 9を介して供給されている。 したがって、 こ の減算器 7 8で上記マスキングスぺク トルとスぺク トル S Bとの減 算演算が行われることで、 図 9に示すように、 上記スぺク トル S B は、 該マスキングスぺク トル M Sのレベルで示すレベル以下がマス キングされることになる。
当該減算器 7 8からの出力は、 操作対象から外すことが可能な信 号情報若しくはノイズレベル補正回路 (図示は省略している) を介 し、 出力端子 8 1を介して取り出され、 上記マスク回路 1 0に送ら れて、 ここで不協和周波数領域のうちで操作対象から外すことが可 能な周波数領域を除外する。.
なお、 遅延回路 7 9は上記合成回路 7 7以前の各回路での遅延量 を考慮してエネルギ検出回路 7 2からのスぺク トル S Bを遅延させ るために設けられている。 ところで、 上述した合成.回路 7 7での 合成の際には、 最小可聴カーブ発生回路 1 7から供給される図 1 0 に示すような人間の聴覚特性であるいわゆる最小可聴限カーブ R C を示すデータと、 上記マスキングスぺク トル M Sとを合成すること ができる。 この最小可聴カーブにおいて、 信号もしくは雑音絶対レ ベルがこの最小可聴限力一ブ以下ならば該信号及び雑音は聞こえな いことになる。 この最小可聴限カーブは、 例えば再生時の再生ボリ ユームの違いで異なるものとなるが、 現実的なディジタルシステム では、 例えば 1 6 ビッ トダイナミ ックレンジへの音楽のはいり方に はさほど違いがないので、 例えば 4 k H z付近の最も耳に聞こえや すい周波数帯域の量子化雑音が聞こえないとすれば、 他の周波数帯 域ではこの最小可聴限カーブのレベル以下の量子化雑音は聞こえな いと考えられる。 したがって、 このように例えばシステムの持つヮ 一ドレングスの 4 k H z付近の雑音が閬こえない使い方をすると仮 定し、 この最小可聴限カーブ R Cとマスキングスペク トル M Sとを 共に合成することで、 操作対象から外すことが可能な信号情報もし くはノイズレベルを得るようにすると、 この場合の操作対象から外 すことが可能な信号情報もしくはノイズレベルは、 図 1 0中の斜線 で示す部分までとすることができるようになる。
なお、 本実施例では、 上記最小可聴限カーブの 4 k H zのレベル を、 例えば 2 0 ビッ ト相当の最低レベルに合わせている。 また、 こ の図 1 0は、 信号スぺク トル S Sも同時に示している。
また、 別の操作対象周波数成分の限定方法としては、 入力ディジ タル信号情報に含まれている量子化雑音のレベルにより、 限定する 場合がある。 量子化雑音レベルはスぺク トルがほぼ白色の場合、 語 長によりほぼ決定されるからこのレベル範囲の周波数成分を限定的 に操作対象とすることによって効果的に量子化雑音のうち、 不協和 を引き起こす成分を低減もしくは除去することができる。 図 1 にお いては、 量子化雑音レベル記憶機能に、 量子化雑音レベルを記憶さ せておく ことにより、 このレベルの範囲に操作対象とする周波数成 分を限定する。 もちろんこの量子化レベルは最適になるように調整 をしてもよい。
また、 上記操作対象から外すことが可能な信号情報もしくはノィ . ズレベル補正回路では、 図示を省略する補正情報出力回路から送ら れてくる例えば等ラウドネスカーブの情報に基づいて、 上記減算器 7 8からの出力における操作対象から外すことが可能な信号情報も しくはノイズレベルを補正している。 ここで、 等ラウ ドネスカーブ とは、 人間の聴覚特性に関する特性曲線であり、 例えば 1 . k H zの 純音と同じ大きさに聞こえる各周波数での音の音圧を求めて曲線で 結んだもので、 ラウ ドネスの等感度曲線とも呼ばれる。 またこの等 ラウ ドネス曲線は、 図 1 0に示した最小可聴カーブ R Cと略同じ曲 線を描く ものである。 この等ラウ ドネス曲線においては、 例えば 4 k H z付近では 1 k H zのところより音圧が 8〜 1 0 d B下がって も 1 k H zと同じ大きさに聞こえ、 逆に、 1 0 k H z付近では 1 k H zでの音圧よりも約 1 5 d B高くないと同じ大きさに聞こえない。 このため、 上記最小可聴カーブのレベルを越えた信号もしくは雑音 は、 該等ラウドネス曲線に応じたカーブで与えられる周波数特性で その大きさを評価されるのが良いことがわかる。 このようなことか ら、 上記等ラウドネス曲線を考慮して、 演算量を削減するために操 作対象から外すことが可能な信号情報もしくはノイズを選定するこ とは、 人間の聴覚特性に適合していることがわかる。
図 1に戻って、 上記マスク回路 1 0は、 以上に説明した聴覚的効 果を用いて、 不必要な周波数帯域での周波数成分の変更を行わない ようにする。 このマスク回路 1 0は出力としてローカルピーク成分 との間で不協和な関係を持つ周波数成分のうち聴覚的な音質向上に 効果的な操作が得られる成分情報を出す。 図 1の周波数成分変更回 路 6は、 この情報を基にして対象となる周波数成分の大きさを変更 する。
図 1 1には、 上記周波数成分変更回路 6において周波数成分の大 きさを変更する様子を示している。
この図 1 1において、 図中 Band l〜Band 4はマスク回路 1 0によ り指定された周波数成分の大きさを変更する周波数領域であり、 そ の変更の程度は各バンドの中央部ほど大きくなつている。 これは前 記図 5に示された不協和度が周波数差により異なることを利用した ものである。 また、 図中 S ρ 1〜S p 4は、 各ローカルピークスぺ ク トルの位置の利得を表しており、 不協和周波数帯域の周波数成分 が小さくなつたことにより、 全体のエネルギが減少することを補償 するためにこの周波数位置のスぺク トルの大きさを大きくすること を示している。
このようにして周波数成分の大きさを変更した周波数成分変更回 路 6の出力は、 前記 MDCTの逆変換を行う I MDCT回路 9 a, 9 b, 9 c, 9 dによって、 周波数軸上から時間軸上へと変換され る。 これら I MD CT回路 9 a, 9 b, 9 c, 9 dからの I MDC T出力信号は、 前記 CQFとは逆の周波数合成 ( I C QF) 機能を 有する帯域合成フィルタ 1 3, 1 4, 1 5により周波数合成され全 帯域時間信号となる。
これら帯域合成フィルタ 1 3, 1 4, 1 5による全帯域信号は、 周波数成分の変更によってダイナミ ックレンジが、 元の入力信号情 報に比較して大きくなつていることがあるので、 コンパク トデイス クに記録する場合には、 1 6 ビッ トへの再量子化が必要となること がある。 なお、 本件出願人は、 先に、 入力されたディジタルオーデ ィォ信号をオーディオ帯域内でのノイズシエイビングによって等ラ ゥ ドネス特性に近いノイズ周波数特性を与える再量子化を行いコン パク トディスクに 1 6 ビッ ト再量子化信号を記録するような技術を、 例えば前述の特開平 2 - 2 0 8 1 2号公報、 特開平 2 - 1 8 5 5 5 2号公報、 特開平 2 - 1 8 5 5 5 6号公報にて開示している。
本発明ではこのような場合、 本発明によって処理された信号を更 に上記ノィズシヱイビングすることによって 1 6 ビッ トを越える特 性をもつコンパク トディスク記録信号を得ることができる。
以下、 図 1において上記ノイズシヱイビングを行うノイズシエイ パの動作を説明する。 上記帯域合成フィルタ 1 5から加算回路 1 8 に供給された信号は、 帰還フィルタ 2 1の出力信号との差をとられ る。 加算回路 1 8の出力は再量子化器 1 9及び第 2の加算回路 2 0 に供給される。 再量子化器 1 9は、 入力信号語長よりも少ない語長 で出力されることで少ない情報量で信号を伝送記録等を行おうとす るものである。 この再量子化器 1 9の出力は当該ノイズシヱイパの 出力端子 2 2及び第 2の加算回路 2 0に供給される。 第 2の加算回 路 2 0は再量子化器 1 9の入力及び出力の信号の差を得るものであ り、 出力として量子化誤差が抽出される。 第 2の加算回路 2 0の出 力は帰還フィルタ 2 1 に供給される。
ここで、 当該帰還フィルタ 2 1 について図 1 2にて詳細に説明す る
この図 1 2において、 端子 5 0を介して帰還フィル夕 2 1に供給 された信号は、 遅延素子 5 2, 5 3 , 5 4, 5 5の直列回路に順次 シフ トしてゆく。 各遅延素子 5 2, 5 3 , 5 4 , 5 5の出力は、 乗 算素子 5 6 , 5 7, 5 8, 5 9と接続されており、 これら乗算素子 5 6 , 5 7, 5 8 , 5 9において各対応する係数入力端子 6 2 , 6 3, 6 4 , 6 5から供給されるフィルタ係数との積がとられる。 こ れらの乗算素子 5 6 , 5 7 , 5 8 , 5 9の出力は、 加算素子 6 0で 加算されて帰還フィル夕の出力端子 6 1に導かれる。
以上の加算回路 1 8、 再量子化器 1 9、 第 2の加算回路 2 0、 及 び帰還フィル夕 2 1 より構成されるノイズシヱイパによって等ラウ ドネス特性に近いノイズ周波数特性が与えられたディジタルオーデ ィォ信号は、 出力端子 2 2より出力される。 この出力信号は、 所定 の誤り訂正処理等がなされ、 記録媒体 (光磁気ディスク、 光デイス ク、 半導体メモリ、 I cメモリーカード、 光ディスク) に記録され る なお、 本発明実施例により形成された変換データは記録媒体への 記録の他に、 伝送路を介して伝送することも可能である。
さらに、 本発明は上記実施例のみに限定されるものではなく、 画 像信号情報などにも適用できる。 産業上の利用可能性 本発明によれば、 上述したようなことから、 音響時間信号情報を 聴覚的な原理を用いて瞬時瞬時に人間にとって音質的に高品質に心 地好く聞こえる音を作り出すことができる。 また、 既にディジタル 化されて量子化雑音が付加した音響時間信号情報から量子化雑音の 聴覚的な影響を減ずることにより、 品質の向上を図ることができ、 既にディジタル化されて量子化雑音が付加されたオーディオ信号情 報から量子化雑音の聴覚的な影響を減じた後、 コンパク トディスク のようなオーディオ機器の音質を向上させる技術として例えば等ラ ゥ ドネス特性やマスキング特性に合うように量子化雑音のスぺク ト ルを変更することによって聴感上の雑音レベルを低減させる技術を 用いて、 1 6 ビッ トの語長を持つコンパク トディスクに記録すると きに、 聴覚的な処理によって音質を向上させたデータを作ることが できる。 これにより、 1 6 ビッ トを越える語長を有するディジタル 信号を 1 6 ビッ ト長を有するコンパク トディスクの為に再量子化す る場合、 音質向上を図ることができる。 さらに、 本発明によれば、 既に量子化雑音が付加されたオーディォ信号情報について、 聴覚的 に音質を等価的に 1 6 ビッ ト以上に一度向上させ、 再び 1 6 ビッ ト に再量子化する際、 聴覚的に重要な周波数帯域の S ZNを 1 6 ビッ ト以上に保ったまま 1 6 ビッ トとすることで、 音質の向上を図るこ とが可能となる。

Claims

請求の範囲
1 . 時間信号情報から得られた周波数成分について、 少なく とも 一つの近接周波数成分との間で属性の大きさの違いを変更すること を特徴とする信号変換方法。
2 . 上記時間信号情報は音響時間信号情報であることを特徵とす る請求の範囲第 1項記載の信号変換方法。
3 . 音響時間信号情報から得られた周波数成分について、 聴覚特 性に基づく略臨界帯域内の他の周波数成分との間で属性の大きさの 違いを変えることを特徴とする信号変換方法。
4 . 音響時間信号情報から得られた複数の周波数成分の少なく と も一つの口一カルピークについて、 聴覚特性に基づく略臨界帯域内 の他の周波数成分との間で属性の大きさの違いを変えることを特徴 とする信号変換方法。
5 . 音響時間信号情報から得られた周波数成分について、 略臨界 帯域内の他の周波数成分の内、 最小可聴限レベル又はマスキングス レツショールドレベルを越える周波数成分との間で属性の大きさの 違いを変えることで上記音響時間信号情報の特性を変換することを 特徴とする信号変換方法。
6 . 音響時間信号情報から得られた周波数成分について、 略臨界 帯域内の他の周波数成分の内、 最小可聴限レベルとマスキングスレ ッショールドレベルの大きいほうのレベルを越える周波数成分との 間で属性の大きさの違いを変えることで上記音響時間信号情報の特 性を変換することを特徴とする信号変換方法。
7 . 音響時間信号情報から得られた周波数成分について、 略臨界 帯域内の他の周波数成分の内、 限定されたレベル範囲内の周波数成 分との間で属性の大きさの違いを変えることで上記音響時間信号情 報の特性を変換することを特徴とする信号変換方法。
8 . 少なく とも 2箇の周波数成分が異なる周波数分解能と時間分 解能を持つ音響時間信号情報から得られた周波数成分について、 略 臨界帯域内の他の周波数成分との間で属性の大きさの違いを変える ことにより、 上記音響時間信号情報の特性を変換することを特徵と する信号変換方法。
9 . 前記音響時間信号情報を複数の帯域に分割した後、 それぞれ の帯域信号を直交変換して複数の周波数成分を得ることを特徵とす る請求の範囲第 8項記載の信号変換方法。
1 0 . 前記複数の周波数成分の周波数分解能が低域ほど高いこと を特徴とする請求の範囲第 9項記載の信号変換方法。
1 1 . 音響時間信号情報から得られた周波数成分について、 略臨 界帯域内の他の周波数成分の内、 最小可聴限レベル又はマスキング スレツショールドレベルを越える周波数成分との間で属性の大きさ の違いを変えることを特徵とする請求の範囲第 8項から第 1 0項の うちのいずれか 1項に記載の信号変換方法。
1 2 . 音響時間信号情報から得られた周波数成分について、 略臨 界帯域内の他の周波数成分の内、 最小可聴限レベルとマスキングス レツショールドレベルの大きいほうのレベルを越える周波数成分と の間で属性の大きさの違いを変えることを特徴とする請求の範囲第 8項から第 1 0項のうちのいずれか 1項に記載の信号変換方法。
1 3 . 音響時間信号情報から得られた周波数成分について、 略臨 界帯域内の他の周波数成分の内、 限定されたレベル範囲内の周波数 成分との間で属性の大きさの違いを変えることを特徴とする請求の 範囲第 8項から第 1 0項のうちのいずれか 1項に記載の信号変換方 法。
1 4 . 量子化雑音レベルにより限定されたレベル範囲内の周波数 成分との間で属性の大きさの違いを変えることを特徴とする請求の 範囲第 7項又は第 1 3項記載の信号変換方法。
1 5 . 上記音響時間信号情報から得られた複数の周波数成分の少な く とも一つのローカルピークについて、 略臨界帯域内の他の周波数 成分との間で属性の大きさの違いを変えることを特徴とする請求の 範囲第 5項から第 1 4項のうちのいずれか 1項に記載の信号変換方 法。
1 6 . 略臨界帯域幅の 1 0 %から 5 0 %の周波数差を持つ周波数 領域の他の周波数成分との間で属性の大きさの違いを大きくするこ とを特徴とする請求の範囲第 3項から第 1 5項のうちのいずれか 1 項に記載の信号変換方法。
1 7 . 上記周波数成分から得られる 2つの移動ピーク値の差によ り、 上記周波数成分の属性の大きさの違いを変える周波数領域を決 定することを特徴とする請求の範囲第 3項から第 1 6項のうちのい ずれか 1項に記載の信号変換方法。
1 8 . 上記時間信号情報の短時間エネルギを保存するように周波 数成分の大きさを調整することを特徴とする請求の範囲第 1項から 第 1 7項のうちのいずれか 1項に記載の信号変換方法。
1 9 . 上記時間信号情報の短時間エネルギを保存するように少な く とも一つのローカルピークの周波数成分の大きさを調整すること を特徴とする請求の範囲第 1 8項記載の信号変換方法。
2 0 . 略臨界帯域幅の 5 0 %幅の移動ピーク値から、 略臨界帯域 幅の 1 0 %幅の移動ピーク値を引いた値が負の周波数領域の周波数 成分を小さくするか、 又は削除することを特徴とする請求の範囲第
3項から第 1 9項のうちのいずれか 1項に記載の信号変換方法.。
2 1 . 時間軸上に再合成された時間信号情報をノイズシエイプ特 性を有する再量子化処理することを特徴とする請求の範囲第 5項か ら第 2 0項のうちのいずれか 1項に記載の信号変換方法。
2 2 . ノィズシエイプ特性が最小可聴限、 等ラウ ドネスもしくは マスキング特性の少なく ともひとつに依存していることを特徵とす る請求の範囲第 2 1項記載の信号変換方法。
2 3 . 前記属性が周波数成分の大きさであることを特徴とする請 求の範囲第 1項から第 2 2項のうちのいずれか 1項に記載の信号変 換方法。
2 4 . 時間信号情報を周波数成分に変換する変換手段と、 上記変換手段から得られた周波数成分について、 少なく とも一つ の近接周波数成分との間で属性の大きさの違いを変更する属性変更 手段と
を有することを特徴とする信号変換装置。
2 5 . 上記時間信号情報が音響時間信号情報であることを特徴と する請求の範囲第 2 4項記載の信号変換装置。
2 6 . 音響時間信号情報を周波数成分に変換する変換手段と、 上記変換手段から得られた周波数成分について、 聴覚特性に基づ く略臨界帯域内の他の周波数成分との間で属性の大きさの違いを変 える属性変更手段と
を有することを特徴とする信号変換装置。
2 7 . 音響時間信号情報を複数の周波数成分に変換する変換手段 . と、
上記変換手段から得られた複数の周波数成分の少なく とも一つの ローカルピークについて、 聴覚特性に基づく略臨界帯域内の他の周 波数成分との間で属性の大きさの違いを変える属性変更手段と を有することを特徵とする信号変換装置。
2 8 . 音響時間信号情報を周波数成分に変換する変換手段と、 上記変換手段から得られた周波数成分について、 略臨界帯域内の 他の周波数成分の内、 最小可聴限レベル又はマスキングスレツショ ールドレベルを越える周波数成分との間で属性の大きさの違いを変 える属性変更手段とを有し、
上記音響時間信号情報の特性を変換することを特徴とする信号変
2 9 . 音響時間信号情報を周波数成分に変換する変換手段と、 上記変換手段から得られた周波数成分について、 略臨界帯域内の 他の周波数成分の内、 最小可聴限レベルとマスキングスレツショー ルドレベルの大きいほうのレベルを越える周波数成分との間で属性 の大きさの違いを変える属性変更手段とを有し、
上記音響時間信号情報の特性を変換することを特徵とする信号変
3 0 . 音響時間信号情報を周波数成分に変換する変換手段と、 上記変換手段から得られた周波数成分について、 略臨界帯域内の 他の周波数成分の内、 限定されたレベル範囲内の周波数成分との間 で属性の大きさの違いを変える属性変更手段とを有し、
上記音響時間信号情報の特性を変換することを特徴とする信号変 換装置。
3 1 . 音響時間信号情報を周波数成分に変換する変換手段と、 上記変換手段から得られた周波数成分のうち、 少なく とも 2箇の 周波数成分が異なる周波数分解能と時間分解能を持つ音響時間信号 情報から得られた周波数成分について、 略臨界帯域 の他の周波数 成分との間で属性の大きさの違いを変える属性変更手段とを有し、 上記音響時間信号情報の特性を変換することを特徴とする信号変
3 2 . 前記変換手段は、 前記音響時間信号情報を複数の帯域に分 割した後、 それぞれの帯域信号を直交変換して複数の周波数成分を 得ることを特徴とする請求の範囲第 3 1項記載の信号変換装置。
3 3 . 上記変換手段では、 前記複数の周波数成分の周波数分解能 が低域ほど高いことを特徴とする請求の範囲第 3 2項記載の信号変
3 4 . 上記属性変更手段は、 音響時間信号情報から得られた周波 数成分について、 略臨界帯域内の他の周波数成分の内、 最小可聴限 レベル又はマスキングスレッシヨールドレベルを越える周波数成分 との間で属性の大きさの違いを変えることを特徴とする請求の範囲 第 3 1項から第 3 3項のうちのいずれか 1項に記載の信号変換装置。
3 5 . 音響時間信号情報を周波数成分に変換する変換手段と、 上記変換手段により音響時間信号情報から得られた周波数成分に ついて、 略臨界帯域内の他の周波数成分の内、 最小可聴限レベルと マスキングスレッシヨールドレベルの大きいほうのレベルを越える 周波数成分との間で属性の大きさの違いを変える属性変更手段とを 有し、
上記音響時間信号情報の特性を変換することを特徵とする信号変
3 6 . 上記属性変更手段は、 音響時間信号情報から得られた周波 数成分について、 略臨界帯域内の他の周波数成分の内、 限定された レベル範囲内の周波数成分との間で属性の大きさの違いを変えるこ とを特徴とする請求の範囲第 3 1項から第 3 5項のうちのいずれか 1項に記載の信号変換装置。
3 7 . 上記属性変更手段では、 量子化雑音レベルにより限定され たレベル範囲内の周波数成分との間で属性の大きさの違いを変える ことを特徴とする請求の範囲第 3 0項又は第 3 6項記載の信号変換
3 8 . 上記属性変更手段では、 音響時間信号情報から得られた複数 の周波数成分の少なく とも一つのローカルピークについて、 略臨界 帯域内の他の周波数成分との間で属性の大きさの違いを変えること を特徴とする請求の範囲第 2 8項から第 3 7項のうちのいずれか 1 項に記載の信号変換装置。
3 9 . 上記属性変更手段は、 略臨界帯域幅の 1 0 %から 5 0 %の 周波数差を持つ周波数領域の他の周波数成分との間で属性の大きさ の違いを大きくすることを特徴とする請求の範囲第 2 6項から第 3 8項のうちのいずれか 1項に記載の信号変換装置。
4 0 . 上記属性変更手段では、 周波数成分サンプル数の異なる周 波数成分の属性の大きさの 2つの移動ピーク値の差により、 周波数 成分の属性の大きさの違いを変える周波数領域を決定することを特 徴とする請求の範囲第 2 6項から第 3 9項のうちのいずれか 1項に 記載の信号変換装置。
4 1 . 上記属性変更手段では、 時間信号情報の短時間エネルギを 保存するように周波数成分の大きさを調整することを特徴とする請 求の範囲第 2 4項から第 4 0項のうちのいずれか 1項に記載の信号
4 2 . 上記属性変更手段では、 時間信号情報の短時間エネルギを 保存するように少なく とも一つのローカルピークの周波数成分の大 きさを調整することを特徴とする請求の範囲第 4 1項記載の信号変
4 3 . 上記属性変更手段では、 略臨界帯域幅の 5 0 %幅の移動ピ ーク値から、 略臨界帯域幅の 1 0 %幅の移動ピーク値を引いた値が 負の周波数領域の周波数成分を小さくするか、 又は削除することを 特徵とする請求の範囲第 2 6項から第 4 2項のうちのいずれか 1項 に記載の信号変換装置。
4 4 . 時間軸上に再合成された時間信号情報をノイズシユイプ特 性を有する再量子化処理手段を有することを特徴とする請求の範囲 第 2 8項から第 4 3項のうちのいずれか 1項に記載の信号変換装置。
4 5 . 上記再量子化処理手段でのノイズシエイプ特性が最小可聴 限、 等ラウドネスもしくはマスキング特性の少なく ともひとつに依 存していることを特徴とする請求の範囲第 4 4項記載の信号変換装
4 6 . 前記属性が周波数成分の大きさであることを特徴とする請 求の範囲第 2 4項から第 4 5項のうちのいずれか 1項に記載の信号 変換装置。
4 7 . 請求の範囲第 2 3項記載の信号変換方法によって変換され た変換デ一夕を記録してなることを特徴とする記録媒体。
4 8 . 上記記録媒体は、 光磁気ディスク、 又は光ディスク、 又は 半導体メモリ、 又は I Cメモリーカードであることを特徴とする請 求の範囲第 4 7項記載の記録媒体。
PCT/JP1994/000627 1993-04-14 1994-04-14 Method and apparatus for transforming signals, and recording medium WO1994024666A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1019940704551A KR100310547B1 (ko) 1993-04-14 1994-04-14 신호변환방법및장치와,기록매체
EP94912684A EP0649137A4 (en) 1993-04-14 1994-04-14 SIGNAL TRANSFORMATION METHOD AND APPARATUS AND RECORDING MEDIUM.
US08/351,386 US5737717A (en) 1993-04-14 1994-04-14 Method and apparatus for altering frequency components of a transformed signal, and a recording medium therefor
KR1019947004551A KR950702059A (ko) 1993-04-14 1994-12-14 신호 변환 방법 및 장치와 기록 매체(Signal transforming method, signal transforming apparatus, and recording medium)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP8759293A JP3225680B2 (ja) 1993-04-14 1993-04-14 信号変換方法及び装置、並びに記録媒体
JP5/87592 1993-04-14
JP12786793A JPH06318876A (ja) 1993-04-30 1993-04-30 信号変換方法及び装置、並びに記録媒体
JP5/127867 1993-04-30
JP12291893A JP3186331B2 (ja) 1993-05-25 1993-05-25 信号変換方法又は装置、並びに記録媒体
JP5/122918 1993-05-25

Publications (1)

Publication Number Publication Date
WO1994024666A1 true WO1994024666A1 (en) 1994-10-27

Family

ID=27305550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/000627 WO1994024666A1 (en) 1993-04-14 1994-04-14 Method and apparatus for transforming signals, and recording medium

Country Status (4)

Country Link
US (1) US5737717A (ja)
KR (2) KR100310547B1 (ja)
TW (1) TW232116B (ja)
WO (1) WO1994024666A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995034956A1 (fr) * 1994-06-13 1995-12-21 Sony Corporation Procede et dispositif de codage de signal, procede et dispositif de decodage de signal, support d'enregistrement et dispositif de transmission de signaux
KR100860805B1 (ko) * 2000-08-14 2008-09-30 클리어 오디오 리미티드 음성 강화 시스템

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3082625B2 (ja) * 1995-07-15 2000-08-28 日本電気株式会社 音声信号処理回路
JP3266819B2 (ja) * 1996-07-30 2002-03-18 株式会社エイ・ティ・アール人間情報通信研究所 周期信号変換方法、音変換方法および信号分析方法
KR100488537B1 (ko) * 1996-11-20 2005-09-30 삼성전자주식회사 듀얼모드오디오디코더의재현방법및필터
US6134518A (en) * 1997-03-04 2000-10-17 International Business Machines Corporation Digital audio signal coding using a CELP coder and a transform coder
US6868377B1 (en) * 1999-11-23 2005-03-15 Creative Technology Ltd. Multiband phase-vocoder for the modification of audio or speech signals
TW516682U (en) * 2002-04-11 2003-01-01 Li-Chuan Huang Improved structure of brainpower development learning machine
KR20080053739A (ko) * 2006-12-11 2008-06-16 삼성전자주식회사 적응적으로 윈도우 크기를 적용하는 부호화 장치 및 방법
CN102332266B (zh) * 2010-07-13 2013-04-24 炬力集成电路设计有限公司 一种音频数据的编码方法及装置
US9093120B2 (en) * 2011-02-10 2015-07-28 Yahoo! Inc. Audio fingerprint extraction by scaling in time and resampling
KR101253136B1 (ko) * 2011-05-31 2013-04-10 전자부품연구원 오디오 ld 자동제어방법 및 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62271000A (ja) * 1986-05-20 1987-11-25 株式会社日立国際電気 音声の符号化方法
JPS63117527A (ja) * 1986-10-30 1988-05-21 インタ−ナショナル・ビジネス・マシ−ンズ・コ−ポレ−ション 信号のディジタル・ブロック・コ−ド化方法
JPH0472908A (ja) * 1990-07-13 1992-03-06 Sony Corp オーディオ信号の量子化誤差低減装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5128963A (en) * 1985-01-31 1992-07-07 Sony Corporation 3-mode PCM/DPCM/APCM maximizing dynamic range
JP2844695B2 (ja) * 1989-07-19 1999-01-06 ソニー株式会社 信号符号化装置
US5115240A (en) * 1989-09-26 1992-05-19 Sony Corporation Method and apparatus for encoding voice signals divided into a plurality of frequency bands
JPH03117919A (ja) * 1989-09-30 1991-05-20 Sony Corp ディジタル信号符号化装置
CA2032765C (en) * 1989-12-21 1995-12-12 Hidetaka Yoshikawa Variable rate encoding and communicating apparatus
JP3013373B2 (ja) * 1990-01-31 2000-02-28 ソニー株式会社 ノイズシェーピング回路
JP2913731B2 (ja) * 1990-03-07 1999-06-28 ソニー株式会社 ディジタルデータの高能率符号化方法
US5502789A (en) * 1990-03-07 1996-03-26 Sony Corporation Apparatus for encoding digital data with reduction of perceptible noise
JP2861238B2 (ja) * 1990-04-20 1999-02-24 ソニー株式会社 ディジタル信号符号化方法
JP2751564B2 (ja) * 1990-05-25 1998-05-18 ソニー株式会社 ディジタル信号符号化装置
JP3089476B2 (ja) * 1990-07-13 2000-09-18 ソニー株式会社 オーディオ信号の量子化誤差低減装置
JPH0472909A (ja) * 1990-07-13 1992-03-06 Sony Corp オーディオ信号の量子化誤差低減装置
JP3033156B2 (ja) * 1990-08-24 2000-04-17 ソニー株式会社 ディジタル信号符号化装置
EP0506394A2 (en) * 1991-03-29 1992-09-30 Sony Corporation Coding apparatus for digital signals
KR100312664B1 (ko) * 1991-03-29 2002-12-26 소니 가부시끼 가이샤 디지탈신호부호화방법
ZA921988B (en) * 1991-03-29 1993-02-24 Sony Corp High efficiency digital data encoding and decoding apparatus
JP3134338B2 (ja) * 1991-03-30 2001-02-13 ソニー株式会社 ディジタル音声信号符号化方法
JP3134337B2 (ja) * 1991-03-30 2001-02-13 ソニー株式会社 ディジタル信号符号化方法
GB2257606B (en) * 1991-06-28 1995-01-18 Sony Corp Recording and/or reproducing apparatuses and signal processing methods for compressed data
GB2258372B (en) * 1991-08-02 1995-05-31 Sony Corp Apparatus for and methods of recording and/or reproducing digital data
ES2164640T3 (es) * 1991-08-02 2002-03-01 Sony Corp Codificador digital con asignacion dinamica de bits de cuantificacion.
JP3178026B2 (ja) * 1991-08-23 2001-06-18 ソニー株式会社 ディジタル信号符号化装置及び復号化装置
JP3508146B2 (ja) * 1992-09-11 2004-03-22 ソニー株式会社 ディジタル信号符号化復号化装置、ディジタル信号符号化装置及びディジタル信号復号化装置
JP3127600B2 (ja) * 1992-09-11 2001-01-29 ソニー株式会社 ディジタル信号復号化装置及び方法
JP3185413B2 (ja) * 1992-11-25 2001-07-09 ソニー株式会社 直交変換演算並びに逆直交変換演算方法及びその装置、ディジタル信号符号化及び/又は復号化装置
JP3185415B2 (ja) * 1992-11-26 2001-07-09 ソニー株式会社 圧縮データ再生記録装置及び方法
JPH06180948A (ja) * 1992-12-11 1994-06-28 Sony Corp ディジタル信号処理装置又は方法、及び記録媒体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62271000A (ja) * 1986-05-20 1987-11-25 株式会社日立国際電気 音声の符号化方法
JPS63117527A (ja) * 1986-10-30 1988-05-21 インタ−ナショナル・ビジネス・マシ−ンズ・コ−ポレ−ション 信号のディジタル・ブロック・コ−ド化方法
JPH0472908A (ja) * 1990-07-13 1992-03-06 Sony Corp オーディオ信号の量子化誤差低減装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995034956A1 (fr) * 1994-06-13 1995-12-21 Sony Corporation Procede et dispositif de codage de signal, procede et dispositif de decodage de signal, support d'enregistrement et dispositif de transmission de signaux
US6061649A (en) * 1994-06-13 2000-05-09 Sony Corporation Signal encoding method and apparatus, signal decoding method and apparatus and signal transmission apparatus
CN1101087C (zh) * 1994-06-13 2003-02-05 索尼公司 信号编码方法及装置、信号解码方法及装置和信号传送方法
KR100860805B1 (ko) * 2000-08-14 2008-09-30 클리어 오디오 리미티드 음성 강화 시스템

Also Published As

Publication number Publication date
KR100310547B1 (ko) 2002-08-08
US5737717A (en) 1998-04-07
KR950702059A (ko) 1995-05-17
TW232116B (en) 1994-10-11

Similar Documents

Publication Publication Date Title
JP3278900B2 (ja) データ符号化装置及び方法
JP3153933B2 (ja) データ符号化装置及び方法並びにデータ復号化装置及び方法
JP2001142498A (ja) ディジタル信号処理装置および処理方法、ディジタル信号記録装置および記録方法、並びに記録媒体
US5754127A (en) Information encoding method and apparatus, and information decoding method and apparatus
KR19980018797A (ko) 디지탈 신호 처리 방법, 디지탈 신호 처리 장치, 디지탈 신호 기록 방법, 디지탈 신호 기록 장치, 기록 매체, 디지탈 신호 전송 방법, 및 디지탈 신호 전송 장치(Digital Signal Processing Method, Digital Signal Processing Apparatus, Digital Signal Recording Method, Digital Signal Recording Apparatus, Recording Medium, Digital Signal Tran smission Method and Digital Signal Transmission Apparatus)
WO1994024666A1 (en) Method and apparatus for transforming signals, and recording medium
KR100556505B1 (ko) 재생 및 기록 장치, 디코딩 장치, 기록 장치, 재생 및 기록 방법, 디코딩 방법, 및 기록 방법
US5642383A (en) Audio data coding method and audio data coding apparatus
JP3557674B2 (ja) 高能率符号化方法及び装置
JPH0846517A (ja) 高能率符号化及び復号化システム
JP3186331B2 (ja) 信号変換方法又は装置、並びに記録媒体
JP3879250B2 (ja) エンコード方法、デコード方法、エンコード装置、デコード装置、ディジタル信号記録方法、ディジタル信号記録装置、記録媒体、ディジタル信号送信方法及びディジタル信号送信装置
JP3291948B2 (ja) 高能率符号化方法及び装置、並びに伝送媒体
JP3225680B2 (ja) 信号変換方法及び装置、並びに記録媒体
JP3879249B2 (ja) エンコード方法、デコード方法、エンコード装置、デコード装置、ディジタル信号記録方法、ディジタル信号記録装置、記録媒体、ディジタル信号送信方法及びディジタル信号送信装置
JP3318824B2 (ja) デジタル信号符号化処理方法、デジタル信号符号化処理装置、デジタル信号記録方法、デジタル信号記録装置、記録媒体、デジタル信号伝送方法及びデジタル信号伝送装置
JPH06318876A (ja) 信号変換方法及び装置、並びに記録媒体
EP0649137A1 (en) Method and apparatus for transforming signals, and recording medium
JP3010663B2 (ja) ノイズシェーピング回路
JP3227945B2 (ja) 符号化装置
JP3227948B2 (ja) 復号化装置
JPH07221649A (ja) 情報符号化方法及び装置、情報復号化方法及び装置並びに情報記録媒体及び情報伝送方法
JP3132031B2 (ja) ディジタル信号の高能率符号化方法
JPH08237130A (ja) 信号符号化方法及び装置、並びに記録媒体
JPH08167247A (ja) 高能率符号化方法及び装置、並びに伝送媒体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT DE FR GB IT

WWE Wipo information: entry into national phase

Ref document number: 1994912684

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08351386

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1994912684

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1994912684

Country of ref document: EP