WO1994019714A1 - Polarized wave holding optical fiber, production method therefor, connection method therefor, optical amplifier, laser oscillator and polarized wave holding optical fiber coupler - Google Patents

Polarized wave holding optical fiber, production method therefor, connection method therefor, optical amplifier, laser oscillator and polarized wave holding optical fiber coupler Download PDF

Info

Publication number
WO1994019714A1
WO1994019714A1 PCT/JP1994/000300 JP9400300W WO9419714A1 WO 1994019714 A1 WO1994019714 A1 WO 1994019714A1 JP 9400300 W JP9400300 W JP 9400300W WO 9419714 A1 WO9419714 A1 WO 9419714A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
polarization
maintaining optical
core
refractive index
Prior art date
Application number
PCT/JP1994/000300
Other languages
English (en)
French (fr)
Inventor
Ryozo Yamauchi
Kuniharu Himeno
Minoru Sawada
Fumio Suzuki
Kazuhiko Aikawa
Tetsuo Nozawa
Shigefumi Yamasaki
Original Assignee
Fujikura Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd. filed Critical Fujikura Ltd.
Priority to EP94907683A priority Critical patent/EP0637762B1/en
Priority to DE69424606T priority patent/DE69424606T2/de
Priority to US08/318,848 priority patent/US5689578A/en
Publication of WO1994019714A1 publication Critical patent/WO1994019714A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/024Optical fibres with cladding with or without a coating with polarisation maintaining properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01217Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of polarisation-maintaining optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01222Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of multiple core optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2821Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
    • G02B6/2843Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals the couplers having polarisation maintaining or holding properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • C03B2201/36Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers doped with rare earth metals and aluminium, e.g. Er-Al co-doped
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/02External structure or shape details
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/12Non-circular or non-elliptical cross-section, e.g. planar core
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres
    • C03B2203/31Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres by use of stress-imparting rods, e.g. by insertion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/34Plural core other than bundles, e.g. double core
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2551Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2552Splicing of light guides, e.g. by fusion or bonding reshaping or reforming of light guides for coupling using thermal heating, e.g. tapering, forming of a lens on light guide ends

Definitions

  • Polarization-maintaining optical fiber its manufacturing method and connection method, optical amplifier, laser oscillator, and polarization-maintaining optical fiber
  • the present invention relates to a polarization maintaining optical fiber used for various optical fiber sensors and the like, a method of manufacturing and connecting the same, an optical amplifier, a laser oscillator, and a polarization maintaining optical fiber power bra.
  • Fig. 22 (a) to (d) show conventional typical polarization-maintaining optical fibers.
  • (A) is called an elliptical core type, in which the core is deformed from a circular shape to non-axisymmetric. The degeneration between two polarization modes is solved. The propagation constant between the modes is made different to maintain the polarization.
  • Fig. 22 (b) shows the elliptical cladding type, (c) shows the bowtie type, and (d) shows the PAN DA type, which is not symmetric (non-axisymmetric) with respect to the central axis of the optical fiber.
  • reference numeral 1 denotes a core
  • 2 denotes a clad
  • 3 denotes a jacket
  • 4 denotes a stress applying portion
  • the PANDA type polarization maintaining optical fiber which is currently used most frequently, is explained.
  • a core-type single-mode type load glass preform is manufactured by the VAD method or the like.
  • a glass rod to be the stress applying part is created by VAD method. Since this Garasuro head is to increase the thermal expansion coefficient, but 2 0 by weight per cent boron oxide (B 2O 3) is Dove, in such a large amount of beta 2 0 3 is de blanking quartz glass However, due to its thermal shrinkage, it is extremely fragile and requires careful attention to its processing. .
  • the rod is inserted into the tube, then the whole is heated to be co-plused and integrated, but this method is applied to the glass lock as the above-mentioned stress applying part. If applied to a glass rod, the glass rod will break during cooling.
  • an object of the present invention is to provide a polarization-maintaining optical fiber that can be easily manufactured and can be supplied at low cost, and a method for manufacturing the same.
  • a polarization-maintaining optical fiber power bra (hereinafter abbreviated as a power bra) that branches, merges, demultiplexes, and multiplexes light among a plurality of optical fibers while maintaining the polarization of propagating light.
  • polarization-maintaining optical fibers such as elliptical core type, elliptical clad type, and PANDA type.
  • two or more polarization-maintaining optical filters 5, 5 are in contact with each other so as to be in contact with each other. It is manufactured by a method of heating, fusing, and lightly stretching this portion to form a joint 6.
  • this manufacturing method is not limited to the polarization maintaining optical fiber, but is a general single mode. Is widely applied to optical fiber, etc., and is technically established as a known technology.
  • Such a power bra has the following problems. First, it is difficult to manufacture the polarization-maintaining optical fiber itself, which increases the manufacturing cost. Second, the degree of freedom of the power bra coupling style is restricted. Third, in order to obtain good performance such as excess loss, the structure, design, and manufacturing method of the polarization-maintaining optical fiber itself may need to be changed.
  • an object of the present invention is to obtain a power plug that is easy to manufacture, has a high degree of freedom in a coupling mode, and has good characteristics.
  • Another object of the present invention is to provide a method for fusion splicing the polarization maintaining optical fiber obtained by the above-mentioned present invention with low loss.
  • single-mode optical fibers in which rare earth elements such as neodymium (Nd), erbium (Er), and samarium (Sm) are added to the core have been known from the past, and have already been used in optical fiber amplifiers, It is used for laser oscillators and the like.
  • the core of a conventional polarization-maintaining optical fiber may be doped with a rare-earth element.
  • a polarization-maintaining optical fiber is used. It is difficult to fabricate the fiber itself, and a process of adding a rare earth element to the core is added, which requires a great deal of labor and increases the manufacturing cost.
  • another object of the present invention is to provide a rare earth-doped polarization maintaining optical fiber which can be easily manufactured and supplied at low cost, a method for manufacturing the same, and an optical amplifier and a laser oscillator.
  • a plurality of core portions of a high refractive index region are provided in parallel along one diameter direction of the optical fiber, and these core portions integrally propagate one basic mode. It is something to do.
  • one area is formed By dividing the formed core into a plurality of regions, that is, the core portion at a narrow interval, an extremely high flatness or ellipticity can be effectively generated, and good polarization maintaining characteristics can be obtained. it can. In addition, manufacturing becomes simple.
  • the method for manufacturing a polarization-maintaining optical fiber according to the present invention is a method for manufacturing the polarization-maintaining optical fiber, wherein the core glass port having a plurality of core bodies is provided with a Then, it is inserted into the hole of the glass rod for cladding that has one hole to be heated and integrated, and then melt-spun. Therefore, the above-mentioned polarization maintaining optical fiber can be easily and efficiently manufactured at low cost.
  • the polarization-maintaining optical fiber force bra of the present invention is obtained by heating, fusing and stretching two or more polarization-maintaining optical fibers.
  • the vicinity of the connection point is heated before or after the connection. For this reason, it is possible to eliminate the mismatch of the mode field shape in the connection between the polarization maintaining optical fibers having the elliptical electric field distribution shape of the present invention, and it is possible to reduce the connection loss.
  • the rare earth-doped polarization maintaining optical fiber of the present invention is provided with a plurality of high refractive index region cores arranged side by side in one diameter direction of the optical fiber, and these cores integrally propagate one fundamental mode. It has a polarization maintaining function, and has a rare-earth element added to one or both of the core portion and the cladding portion of the low refractive index region sandwiched between the core portions. For this reason, the polarization maintaining characteristics are good, the optical amplification function is excellent, and the polarization axis alignment at the time of fusion splicing becomes easy.
  • optical amplifier and the laser oscillator of the present invention use the rare earth-doped polarization maintaining optical filter, they output output light having good polarization characteristics.
  • FIG. 1A is a sectional view showing an example of the polarization maintaining optical fiber of the present invention.
  • FIG. 1B is a sectional view showing an example of the polarization maintaining optical fiber of the present invention.
  • 1) is a cross-sectional view showing an example of the polarization maintaining optical fiber of the present invention.
  • FIG. 1 (d) is a cross-sectional view showing an example of the polarization maintaining optical fiber of the present invention.
  • FIG. 1E is a cross-sectional view illustrating an example of the polarization maintaining optical fiber of the present invention.
  • FIG. 1 (f) is a sectional view showing an example of the polarization maintaining optical fiber of the present invention.
  • FIG. 2 (a) is a diagram showing a refractive index distribution in the X-axis direction of the polarization maintaining optical fiber of the present invention.
  • FIG. 2 (b) is a diagram showing a refractive index distribution in the y-axis direction of the polarization maintaining optical fiber of the present invention.
  • FIG. 2 (C) is a diagram showing the refractive index distribution in the y′-axis direction of the polarization maintaining optical fiber of the present invention.
  • FIG. 2D is a diagram showing a mode distribution in the X-axis direction of the polarization maintaining optical fiber of the present invention.
  • FIG. 2 (e) is a diagram showing a mode distribution in the y-axis direction of the polarization maintaining optical fiber of the present invention.
  • FIG. 3 (a) is a cross-sectional view showing an example of the polarization maintaining optical fiber of the present invention.
  • FIG. 3B is a cross-sectional view showing an example of the polarization maintaining optical fiber of the present invention.
  • FIG. 3C is a cross-sectional view illustrating an example of the polarization maintaining optical fiber of the present invention.
  • FIG. 3D is a cross-sectional view illustrating an example of the polarization maintaining optical fiber of the present invention.
  • FIG. 4 (a) is a diagram showing a refractive index distribution of another example of the polarization maintaining optical fiber of the present invention.
  • FIG. 4B is a diagram showing a refractive index distribution of another example of the polarization maintaining optical fiber of the present invention.
  • FIG. 5 is a diagram showing an intermediate base material in Example 1 of the present invention.
  • FIG. 6 is a cross-sectional view of the polarization-maintaining optical fiber obtained in Example 1 of the present invention.
  • FIG. 7 is a schematic perspective view showing an example of the production method of the present invention.
  • FIG. 8 is a schematic sectional view of a base material in one example of the production method of the present invention.
  • FIG. 9 is a schematic plan view showing another example of the production method of the present invention.
  • FIG. 10 (a) is a cross-sectional view showing an example of the polarization maintaining optical fiber power bra of the present invention.
  • FIG. 10 (b) is a cross-sectional view showing an example of the polarization maintaining optical fiber hood of the present invention.
  • FIG. 10 (c) is a cross-sectional view showing an example of the polarization maintaining optical fiber hood of the present invention.
  • FIG. 11A is a cross-sectional view showing another example of the polarization-maintaining optical fiber power bra of the present invention.
  • FIG. 11 (b) is a cross-sectional view showing another example of the polarization-maintaining optical fiber according to the present invention.
  • Fig. 12 is a graph showing the relationship between the coupling portion and the wavelength in an example of the force bra of the present invention.
  • FIG. 13 shows the propagation model of the polarization maintaining optical fiber in the polarization maintaining optical fiber connection method of the present invention.
  • FIG. 4 is a diagram showing an electric field intensity distribution of a gate.
  • Fig. 14 (a) is a diagram schematically showing the discontinuity of the electric field distribution in the mode of the two polarization-maintaining optical fibers.
  • FIG. 14 (b) is a diagram schematically showing the discontinuity of the electric field distribution in the mode of the two polarization-maintaining optical fibers.
  • FIG. 14 (c) is a diagram schematically showing the discontinuity of the electric field distribution in the mode of the two polarization maintaining optical fibers.
  • FIG. 14 (d) is a diagram schematically showing the discontinuity of the electric field distribution in the mode of the two polarization-maintaining optical fibers.
  • FIG. 15 is a graph showing a change in the cross-sectional shape of the propagation mode due to heating.
  • FIG 1 6 (a) is a c Figure 1 6 is a sectional view showing the rare-earth-doped polarization-maintaining optical fiber of the present invention
  • (b) is a sectional view showing the rare-earth-doped polarization-maintaining optical fiber of the present invention
  • Figure 1 6 is a sectional view showing the rare-earth-doped polarization-maintaining optical Fuaipa (d) of the present invention is a cross-sectional view showing the rare-earth-doped polarization-maintaining optical fiber of the present invention.
  • FIG. 16 (e) is a cross-sectional view showing a rare earth-doped polarization maintaining optical fiber of the present invention.
  • FIG. 16 (f) is a cross-sectional view showing the rare earth-doped polarization maintaining optical fiber of the present invention.
  • FIG. 17 (a) is a diagram showing a refractive index distribution in the X-axis direction of the rare earth-doped polarization maintaining optical fiber of the present invention.
  • FIG. 17 (b) is a diagram showing the refractive index distribution in the y-axis direction of the rare earth-doped polarization maintaining optical fiber of the present invention.
  • FIG. 17 (c) is a diagram showing a refractive index distribution in the y′-axis direction of the rare earth-doped polarization maintaining optical fiber of the present invention.
  • Fig. 17. (d) is a diagram showing a mode distribution in the X-axis direction of the rare earth-doped polarization maintaining optical fiber of the present invention. .
  • Fig. 17 (e) shows the mode distribution in the y-axis direction of the rare earth-doped polarization-maintaining optical fiber of the present invention.
  • FIG. 18 (a) is an if-plane view showing a rare-earth-doped polarization maintaining optical fiber of the present invention.
  • FIG. 18 (b) is a cross-sectional view showing a rare-earth-doped polarization maintaining optical fiber of the present invention.
  • FIG. 18 (c) is a cross-sectional view showing a rare earth-doped polarization maintaining optical fiber of the present invention, and
  • FIG. 18 (d) is a cross-sectional view showing a rare earth doped polarization maintaining optical fiber of the present invention.
  • FIG. 19 (a) is a cross-sectional view showing another example of the rare earth-doped polarization maintaining optical fiber of the present invention.
  • FIG. 19 (b) is a cross-sectional view showing another example of the rare earth-doped polarization maintaining optical fiber of the present invention.
  • FIG. 20 is a configuration diagram showing an example of the optical amplifier of the present invention.
  • FIG. 21 is a configuration diagram showing an example of the laser oscillator of the present invention.
  • FIG. 22 (a) is a cross-sectional view showing an example of a conventional polarization maintaining optical fiber.
  • FIG. 22 (b) is a cross-sectional view showing an example of a conventional polarization maintaining optical fiber.
  • FIG. 22 (c) is a cross-sectional view showing an example of a conventional polarization maintaining optical fiber.
  • FIG. 22 (d) is a cross-sectional view showing an example of a conventional polarization maintaining optical fiber.
  • FIG. 23 is a perspective view showing a conventional force bra.
  • the polarization-maintaining optical fiber 10 shown in FIG. 1 (a) has a clad 11 made of low-refractive-index glass having a circular cross-section and a cross-section made of high-refractive-index glass having a circular cross-section. It is composed of core sections 12a and 12b.
  • the core portions 12a and 12b pass through the central axis 0 of the optical fin 10 and are arranged opposite to each other in plane symmetry with respect to one surface along the axial direction. That is, two core portions 12 a and 12 b are arranged side by side in one diameter direction (X-axis direction) of the optical fiber 10.
  • the cores 12a and 12b have the same diameter and the same diameter.
  • the diameter is about 2 to 4 depending on the wavelength used and the relative refractive index difference between the cores 12a and 12b. It is about 10 m.
  • the distance between one core portion 12a and the other core portion 12b is determined by the dimension 1 between the centers of the core portions 12a and 12b shown in FIG. The selection is made in the range of about 0.5 to 3 times the radius of 2a and 12b.
  • the relative refractive index difference between the cores 12a and 12b and the clat '11 is 0.15 to 3.0%.
  • Fig. 1 (b) differs from the example shown in Fig. 1 in that both cores 12a and 12b have a rectangular cross-sectional shape.
  • the square may be a square or a rectangle.
  • the long sides of the core portions 12a and 12b are about 2 to 10 m, the short sides are 2 to 1 O xim, and the interval 1 is about 1 to 3 times the short side.
  • Fig. 1 (c) The one shown in Fig. 1 (c) consists of four rectangular cores 12a, 12b, 12c, and 12d, and these four cores as a whole have essentially one fundamental mode. Is propagated.
  • the cross-sectional shape of the cladding 11 is elliptical, and its major axis direction and the cores 12a, 12b ( 12 c, 12 d).
  • Figs. 2 (a) to 2 (e) schematically show the refractive index distribution of the polarization-maintaining optical fiber shown in Fig. 1 (b) and the mode distribution of the fundamental mode propagating through the cores 12a and 12b.
  • A) is the refractive index distribution in the X-axis direction
  • (b) is the refractive index distribution in the y-axis direction
  • (c) is the refractive index distribution in the y'-axis direction
  • (d) is the X-axis direction.
  • E) shows the mode distribution in the y-axis direction. From this figure, the mode distribution in the X-axis direction extends to the area between the cores 12a and 12b and extends to the area of 1.1. It is quite different from the refractive index distribution.
  • the mode distribution in the y-axis direction is almost the same as the mode distribution of a normal single mode fiber. '
  • the mode distributions in the X-axis direction and the y-axis direction are different from each other, indicating non-axial symmetry.
  • a waveguide structure birefringence B g is generated, and polarization retention is generated.
  • the polarization maintaining fiber of the present invention if a glass having a larger coefficient of thermal expansion than the gas forming the cladding 11 is used for the glass forming the cores 12 a.
  • the non-axisymmetric internal stress generated in the spinning ⁇ ⁇ is generated in the cores 12 a and 12 b themselves, and the internal stress expresses the stress-induced birefringence B s, which also indicates the polarization maintaining property. Appears. Since the stress-induced birefringence Bs is added to the waveguide structure birefringence Bg, the birefringence B as a whole becomes large.
  • 3 (a) to 3 (d) show other examples of the polarization maintaining optical fiber of the present invention.
  • the one shown in Fig. 3 (a) has an odd number (three) of cores 12a, 12b, and 12c, and the core 12a at the center is the center of the fiber. It is arranged so as to coincide with the central axis 0.
  • the distance between the cores 12a, 12b, and 12c and the relative refractive index difference from the clad 11 are the same as in the previous example.
  • the central core portion 12a does not necessarily have to coincide with the central axis 0 of the fiber.
  • the shape of each core portion may be rectangular as in the previous example, or the cross-sectional shape of the clad 11 may be elliptical. Further, as shown in FIG. 3 (b), it may have five core portions 12a, 12b, 12c, 12d, and 12e.
  • the cross-sectional shape of the cores 12a and 12b is a slightly curved cross-sectional shape.
  • a non-symmetrical shape such as a circle or a square can be employed.
  • each of the core portions 12 a and 12 b may have a different cross-sectional shape.
  • the refractive index distribution in one core part is uniform as shown in Fig. 2 (a). There is no necessity. For example, a distribution having a mountain shape as shown in FIG. 4 (a) may be used. .. The relative refractive index difference between cores is slightly different as shown in Fig. 4 (b).
  • Ge-added quartz and glass rod (glass rod for core, diameter 3 O mm, length 150 mm) were prepared by VAD method.
  • the amount of addition of this glass rod ⁇ Ge 02 was about 9% by weight, and the relative refractive index difference from quartz glass was about 0.6%.
  • the glass rod was heated and stretched in a heating furnace of about 100 * C to obtain a glass rod serving as a core having a diameter of about 5 mm.
  • a pure quartz glass port which is a cladding having an outer diameter of 40 mm and a length of 200 mm was separately prepared. Two insertion holes having a diameter of 5.3 mm were pierced at an interval of 2.5 mm symmetrically with respect to the central axis. Thereafter, the above-mentioned Ge 02 -added quartz glass rods were inserted into the inserts 6, respectively, and heated and cobrased to obtain an intermediate base material having the dimensions shown in FIG.
  • This intermediate base material is heated and stretched, and a quartz glass serving as a clad is formed on the outer peripheral surface of the intermediate base material by a well-known external method to form a base material, which is melt-spun, as shown in FIG. An optical fiber with a structure was created.
  • the obtained optical fiber has sufficient characteristics as a polarization-maintaining optical fiber, and it can be seen that its manufacture can be performed easily as described above.
  • a fluorine-added quartz glass rod (diameter of 5 O mm) was prepared as a clad.
  • the relative refractive index difference from quartz glass was 10.3%.
  • the core glass holes serving as the cores were inserted into these insertion holes, and heated and co-brushed to obtain an intermediate base material.
  • the intermediate base material is heated and stretched, and a clad having a sufficient thickness is formed on the outer periphery thereof by a rod-in-tube method to obtain a base material, which is melt-spun.
  • a clad was formed as a base material, which was melt-spun to obtain an optical fiber having a structure as shown in Fig. 3 (a).
  • the diameter of the core of each optical fiber is about 1.5 m, the center separation between the cores is about 2. l yum, the cladding diameter (fiber diameter) is 80 ⁇ m, and the core diameter is 80 ⁇ m.
  • the relative refractive index difference between the and the cladding was about 2.3%.
  • optical characteristics of the obtained optical filter are as shown in Table 2, and it can be seen that the optical filter has good polarization maintaining characteristics.
  • Table 2 The optical characteristics of the obtained optical filter is as shown in Table 2, and it can be seen that the optical filter has good polarization maintaining characteristics.
  • FIG. 7 shows an example of this manufacturing method.
  • a columnar glass port 21 serving as a clad is prepared.
  • One concentric insertion hole 22 is formed in the center of the glass rod 21.
  • the glass rod 21 is made of pure quartz, fluorine-doped quartz, or the like. Perforated ones are used.
  • the core glass rod 23 has a two-layer structure, the central part of which is composed of a core body part 24 having a high refractive index as a core part, and the outer peripheral part is an outer peripheral part having a low refractive index. It consists of two and five.
  • the outer peripheral portion 25 is made of pure quartz glass, fluorine-doped quartz glass, or the like, and has the same refractive index as the refractive index of the above-mentioned glass rod 21 for a cladding.
  • the core main body 24 is made of germanium-doped quartz glass, pure quartz glass, or the like, and has an outer peripheral portion 25 with a relative refractive index difference of about +0.15 to 3.0%. Part 2 It has a higher refractive index than 5.
  • the outer diameter ratio of the core body portion 24 to the outer peripheral portion 25 of the core glass rod '23 is such that the outer diameter of the outer peripheral portion 25 is at least 1. 5 times or more, preferably 3.times or more.
  • the glass rod 23 for the core can be manufactured in the same manner as in the manufacture of a single-mode optical fiber burr ohm by the well-known VAD method or the like.
  • the number of the glass rods 23 for the core is equal to the number of the cores.
  • a plurality of (two) core glass rods 23 are arranged in one direction and are inserted into the insertion holes 22 of the glass rods 21 for the core. Insert it and fix it to the glass rod 21 for the clad by appropriate means. At this time, a slight gap is generated in the insert 62, but this does not cause any problem.
  • the whole is heated to integrate (cobras) the plurality of glass rods 22 for core and the glass rod 21 for cladding into a base material, and then melt from the end. Spinning gives the desired polarization-maintaining optical fiber. Further, if necessary, a glass serving as a clad may be further formed on the outer peripheral surface of the base material by an external method or the like, and then melt-spun.
  • FIG. 8 shows a cross section of the base material after the above-mentioned integration, and the outer peripheral portion 25 of the core glass rod 23 has the same refractive index as that of the glass rod 21. Therefore, the core body portion 24 of the core glass rod 23 cannot be identified, and the cross-sectional shape of the core body portion 24 is circular to elliptical due to the melting movement of the glass generated to fill the above-mentioned void. It is deformed.
  • this new type of polarization-maintaining optical fiber has such characteristics that the power distribution in the propagation mode is hardly deformed even if the refractive index distribution of the cores is slightly deformed from the ideal shape.
  • the core is elliptical as shown in Fig. 8, it shows optical characteristics that are not different from those of a circular one.
  • FIG. 9 shows another example of the manufacturing method of the present invention, in which a plurality (two) of core glass rods 23 and a plurality of (five) dummy glass rods 26 are used.
  • the glass material for dummies 26 is also made of glass material for cladding 21 It is made to be the same as the glass material forming the same, so that the refractive index is the same.
  • the ratio of the voids in the insertion hole 22 is smaller than in the previous example, so that the deformation of the core body 24 of the core glass rod 23 is reduced, and the cross-sectional shape is circular. Is obtained.
  • a plurality of core glass rods serving as a core portion are arranged at predetermined intervals and fixed at both ends, and this is used as a starting base material by an external method.
  • a glass sheet that becomes a more clad is deposited, transparent vitrified to prepare a base material, and then the base material is melt-spun.
  • a polarization maintaining optical fiber having good polarization maintaining characteristics and a simple structure can be manufactured very easily. Also, there is no need to use a large amount of dopant as in the conventional NDA type, and the cost of raw materials can be reduced.
  • a glass rod for a core having a plurality of core bodies and a glass rod for a clad having one hole serving as a clad are provided. Since they are simultaneously inserted into the holes of the cable, heated and integrated, and then melt-spun, this new type of polarization-maintaining optical fiber can be easily, efficiently, and inexpensively manufactured.
  • a glass preform for core was prepared by the VAD method, and this was then drawn by heating. More, two core-glass rods were produced.
  • the outer diameter is 2 mm
  • the length is 20.0 mm
  • the outer diameter of the core body is 1 mm
  • the core body is Ge02-doped quartz glass
  • the outer periphery is stone and British glass
  • the relative refractive index difference is about 1 6%.
  • a commercially available high-purity quartz glass pive (inner diameter 5 mm, outer diameter 50 mm ⁇ ) is prepared as a glass for the glass.
  • Two ports were inserted and arranged side by side, and were heated and integrated at 1200 ° C. to obtain a base material.
  • the preform was melt spun from one end to obtain a polarization maintaining optical fiber.
  • Example 3 Two core glass rods were produced in the same manner as in Example 3. However, the outer diameter was 2.5 mm, the length was 200 mm, and the outer diameter of the core body was 1.25 mm.
  • dummy glass rods were manufactured by the VAD method.
  • the whole was made of quartz glass and had an outer diameter of 2.5 mm and a length of 200 mm.
  • the core glass rod and the dummy glass rod are arranged and bundled as shown in Fig. 7, and the insertion holes of the above-mentioned pipes are inserted, arranged, heated and integrated, and then melt-spun to maintain polarization.
  • An optical fiber was used.
  • the obtained polarization maintaining optical fiber had a core shape of about 2.0 ⁇ m and a short diameter of about 1.9 m, and was almost circular in shape.
  • the optical characteristics were almost the same as those in Example 3, and it was recognized that the cut-off wavelength was slightly longer.
  • the force bra of the present invention is made using the above-mentioned polarization maintaining optical fiber. 2.
  • Figures 10 (a)-(c) show two examples of the coupling part of the obtained force bra using two polarization maintaining optical fibers of the present invention. This shows three types with different degrees of bonding between core parts 52 k and 52 b with different degrees of fusion and different degrees of fusion. The degree of this fusion is appropriately determined in consideration of the wavelength characteristics of the coupling degree of the force bra and the like.
  • Figs. 11 (a) and (b) show the coupling mode of another example of the force bra according to the present invention, in which the degree of fusion is changed while maintaining the polarization planes orthogonal to each other. .
  • the polarization maintaining optical fibers used may have different refractive indices.
  • the wavelength of the coupling degree as shown in FIG. It is possible to obtain a power bra having a flat characteristic and a small wavelength dependence.
  • Such a power bra has low loss because it does not have a complicated refractive index distribution in the cladding of the polarization maintaining optical fiber used. Further, as shown in FIGS. 10 and 11, the cross-sectional shape of the coupling portion can be freely selected, so that the wavelength characteristic of the force bra can have a large degree of freedom.
  • the polarization maintaining optical fiber power bra of the present invention is made using the polarization maintaining optical fiber, it has low loss and high freedom in the coupling mode, coupling degree, and wavelength characteristics. A variety of varieties can be manufactured. In addition, since the polarization maintaining optical fiber itself can be easily manufactured, it is possible to obtain an effect that it can be supplied at low cost.
  • the distance between the cores was about 4, the degree of coupling was 10%, and the excess loss was 0.1 ldB (used wavelength: 1.27 to 1.34 m). .
  • the polarization-maintaining optical fiber of the present invention has features that its structure is particularly simple and extremely easy to manufacture as compared with conventional polarization-maintaining optical fibers such as PANDA type. You can do it.
  • the mode distribution of the propagation mode of this polarization-maintaining optical fiber is elliptical when viewed in a cross section orthogonal to the light propagation direction as shown in Fig. 13, and its ellipticity is not necessarily It does not take a specific value and has a high degree of freedom.
  • the connection point since the mode distribution of the polarization maintaining optical fiber itself is elliptical as described above and its ellipticity is not constant, the connection point , The mode distribution may be discontinuous.
  • Figure 14 (a)-(d) schematically show the discontinuity of the electric field distribution in the mode of the two fibers at such a connection point, where (a) is the polarization plane. Are identical and have discontinuities due to different modes of ellipticity, (b) is for polarization planes orthogonal to each other, and (c) is for polarization. The wavefronts cross each other at 45 degrees to the reference plane, and (d) the polarization plane is shifted in parallel.
  • connection loss Such discontinuity of the mode distribution at the connection point naturally appears as connection loss.
  • connections are made with a polarization plane inclined by 45 degrees. Such a connection further increases the connection loss.
  • a fiber whose germanium (Ge02) is added to the core to increase the refractive index is selected. This is because the germania quickly diffuses from the glass in the core to the glass in the clad by heating, and the shape of the refractive index distribution in the core, that is, the mode distribution, can be easily changed from elliptical to circular. is there.
  • the heating area for heating is about 5 to 1 Omm on both sides of the connection point.
  • the heating temperature is in the range of about 1500 to 1700 ° C, and the heating time is about 5 to 120 seconds.
  • a heating source an arc discharge, an oxyhydrogen flame, or the like is used, and is not particularly limited.
  • connection ends may be heated in accordance with the above conditions, and in the case of heating after fusion splicing, the heating may be performed under the same conditions with the connection point as the center.
  • the germania in the core of the heated part diffuses into the cladding, and as a result, the cross-sectional shape of the mode distribution changes from elliptical to almost circular, The discontinuity in the mode distribution between the two fibers at the point is resolved, and the connection loss is reduced.
  • connection method of the polarization maintaining optical fiber of the present invention it is possible to eliminate the mismatch of the mode field shape in the connection between the polarization maintaining optical fibers having the elliptical electric field distribution shape, and to reduce the connection loss. Can be reduced.
  • a polarization maintaining optical fiber having an outer diameter of 125 im having two cores was prepared.
  • the core is made of germania-added quartz gas
  • the cladding is made of pure quartz glass
  • the outer diameter of both cores is about 2.5 2m
  • the distance between the centers of the cores is about 3.8 ⁇ m
  • the core is about 3.8 ⁇ m.
  • the relative refractive index difference between the part and the cladding is about 0.7%, and the wavelength used is 1.55 ⁇ m.
  • the electric field intensity distribution of the propagation mode of this polarization-maintaining optical fiber is a perfect circle as shown in Fig. 13.
  • l Ze e is the base of the natural logarithm of the beak power (P o).
  • the cross-sectional shape was a long ellipse with a major axis of about 8 ⁇ m and a minor axis of about 4> ⁇ .
  • the polarization-maintaining optical fiber was cut off by about 5 m, and each cut end was heated at about 650 ° C. by high-frequency arc discharge over a length of about 7 mm. This heating was intermittently performed every 10 seconds, and the cross-sectional shape that was 1 / e of the above-mentioned beak power was measured, and the change in the cross-sectional shape due to the heating time was determined.
  • FIG. 15 is a graph showing the results.
  • the solid line shows the change in the major axis of the ellipse
  • the broken line shows the change in the minor axis. From this graph, it can be seen that the major axis and the minor axis were almost the same at a heating time of 60 seconds, and the ellipse changed to a circle with a diameter of about 15 m.
  • connection loss was 0.3 dB.
  • a similar polarization-maintaining optical fiber was fusion-spliced so that its polarization planes crossed at 45 degrees, and then 5 mm on each side of the joint at a point of 600 ° C at 160 ° C. After heating for a second, the splice loss was 0.3 dB.
  • the method of heating the vicinity of the connection point at the time of fusion splicing according to the present invention is also effective for connecting another polarization maintaining optical fiber having a core to which germania is added.
  • connection method of the polarization maintaining optical fiber of the present invention the elliptical electric field component
  • the mode field shape in the connection between the polarization maintaining optical fibers having the cloth shape can be eliminated, and the connection loss can be reduced.
  • the rare earth-doped preserving optical fiber is obtained by adding a rare earth element to the core portion or a portion sandwiched between the core portions of the polarization maintaining optical fiber of the present invention.
  • FIGS. 16 (a) to 16 (f) show examples of the rare earth-doped polarization maintaining optical fiber (hereinafter abbreviated as REDPMF) of the present invention.
  • REDPMF rare earth-doped polarization maintaining optical fiber
  • the REDPMF shown in Fig. 16 (a) has a clad 28 made of low refractive index glass with a circular cross section and two cores 29 made of high refractive index glass with a circular cross section. 9b.
  • the cores 29a and 29b pass through the central axis 0 of the optical fiber and are arranged opposite to each other in a plane symmetrical manner with respect to one plane along the axial direction.
  • the cores 29a and 29b have the same diameter and the same diameter.
  • the diameter is about 2 to 2 depending on the wavelength used and the relative refractive index difference between the cores 29a and 29b. It is about 10 m.
  • the distance between one core portion 29a and the other core portion 29b is determined by the dimension 1 between the central portions of the core portions 29a and 29b shown in FIG. 16 (a). Is selected in the range of about 0.5 to 2.5 times the diameter of the core 29.
  • the relative refractive index difference between the core portions 29a and 29b and the cladding 28 is 0.15 to 3.0%.
  • the glass forming the clad 28 pure quartz, fluorine-doped quartz or the like is used, and as the glass forming the core portions 29a, 29b,..., germanium oxide doped quartz, pure quartz, such as oxide Li Ndobu quartz, N d, E r, glass rare earth element and optionally a 1 2 03 such as S m is added is used.
  • the outer diameter of the clad 28 is usually 125 mm, but a value such as 80 mm may be selected as necessary.
  • the addition amount of the rare earth element is 300 to 200 ppm (weight), and the addition amount of A1203 is about 5 to 15 times the addition amount of the rare earth element.
  • the example shown in Fig. 16 (b) is different from the example shown in Fig. 16 (a) in that both core portions 29a and 29b have a rectangular cross-sectional shape. Square as a square It may be rectangular or rectangular. The long sides of the key sections 29a and 29b are about 2 to 10 ⁇ m, the short sides are 2 to lp ⁇ m, and the interval 1 is about 0.5 to 2 times the short side. '.
  • the one shown in Fig. 16 (c) consists of four rectangular cores 29a, 29b, 29c, and 29d, which propagate one basic mode as a whole of these four cores. It does. In the examples shown in FIGS.
  • the cross-sectional shape of the clad 28 is elliptical, and its longitudinal direction and the core portions 29 a, 2
  • the arrangement direction of 9 b (29 c, 29 d) is the same.
  • Figures 16 (b) to (f), but the cores 29a, 29b, 29c ... are similar to the addition of rare earth elements and, if necessary, AI2O3. is there.
  • Fig. 17 schematically shows the refractive index distribution of the polarization-maintaining optical fiber shown in Fig. 16 (b) and the mode distribution of the basic mode propagating through the cores 29a and 29b.
  • (A) is the refractive index distribution in the X-axis direction
  • (b) is the refractive index distribution in the y-axis direction
  • (c) is the refractive index distribution in the y'-axis direction
  • (d) is the mode distribution in the X-axis direction
  • (e ) Indicates the mode distribution in the y-axis direction.
  • the mode distribution in the X-axis direction extends to the part of the clad 28 between the cores 29a and 29b, which is quite different from the refractive index distribution.
  • the mode distribution in the y-axis direction is almost the same as that of a normal single-mode fiber.
  • the mode distribution in the X-axis direction and the mode distribution in the y-axis direction are different from each other, indicating non-axial symmetry.
  • a birefringence index B g of the waveguide structure is generated, and a polarization maintaining property is generated.
  • the melt spinning is performed.
  • the non-axially symmetric internal stress that occurs at the core portions 29a and 29b themselves causes the stress-induced birefringence Bs to appear due to the internal stress, which also indicates the polarization retention.
  • the stress-induced birefringence Bs is added to the birefringence Bg of the waveguide structure, the birefringence B as a whole becomes large.
  • FIGS. 18 (a) to 18 (d) show other examples of the REDPMF of the present invention.
  • three core portions 32a, 32b, 32c ... are provided.
  • the above-mentioned odd number is different from that shown in FIG.
  • the one at the center is located on the central axis 0 of the optical fiber, and the other cores are at the center.
  • rare earth elements are added to these core portions 3'2a, 32b, 32c ... together with A1203 as necessary.
  • the optical power is also transmitted to the part of the clad in the low g-fold rate region sandwiched between 29a and 29b. It is known that in a conventional optical amplifier using a rare-earth-doped optical fiber, it is better to limit the region to which the rare-earth element is added to a region having a high optical power. From this, in the REDPMF of the present invention, a mode in which a rare earth element is added together with AI02O3 to the portions of the clad in the plurality of cores as necessary is considered.
  • FIGS. 19 (a) and (b) show examples of the case where the region to which the rare earth element is added is a portion of the cladding sandwiched between the cores, and the hatched portions 33a, 3b 3 b,
  • FIG. 19 (a) The one shown in FIG. 19 (a) is obtained by adding a rare earth element to a substantially circular portion 33a sandwiched between two circular core portions 32a and 32b.
  • Fig. 19 (b) shows two substantially circular parts 33a, 33b sandwiched between three core parts 32a, 32b, 32c with rare earth elements added. It is.
  • the core portions 32a, 32b, 32c ... and the portions 33 of the cladding sandwiched between these core portions 32a, 32b, 32c ... Both a, 33b and so on may be added with a rare earth element and, if necessary, aluminum oxide.
  • FIG. 20 shows an example of an optical amplifier using the REDPMF of the present invention.
  • reference numeral 35 denotes an excitation light source
  • 36 denotes a first optical power bra
  • 37 denotes 11 £ 0 ⁇ 1 ⁇
  • 3 8 is the second power bra.
  • the signal light is input to the first port of the first force blur 36
  • the pump light from the pump light source 35 is input to the second port of the first force blur 36.
  • the signal light and the pump light are output from the third port of the first coupler 36 and input to the REDMPF.
  • the signal light and the pump light amplified by the REDPMF 37 are input to the first port of the second force blur 38, where the signal light and the pump light are split and amplified from the third port.
  • the signal light is output from the fourth port, and the remaining pump light is output.
  • FIG. 21 shows an example of a laser oscillator using the REDPMF of the present invention.
  • reference numeral 39 denotes a ring-type resonator formed by winding REDPMF
  • 40 denotes an isolator
  • 41 denotes a pump.
  • the light source, 42 is a wavelength-multiplexed first force bra
  • 43 is a small-coupling plastic second force bra.
  • Excitation light from the excitation light source 41 is coupled to the ring resonator 39 from the first force brass 42 and input, and oscillates here.
  • the oscillated light is output from the ring resonator 39 via the second force blur 43.
  • Oscillation light is not coupled in the first force blur 42, and about 1 to 10% of the oscillation light is coupled to the second force blur 43 and output to the outside.
  • a columnar glass rod serving as a clad is prepared.
  • This glass rod is made of pure quartz, fluorine-doped quartz, or the like, and is manufactured by a well-known VAD method or the like.
  • a plurality of holes into which the glass rod as the core is inserted are mechanically formed in the glass rod, and the inner surface of the hole is polished. The positions of the holes are determined so as to be similar to the obtained optical fiber.
  • a glass rod serving as a core is prepared.
  • This glass rod is first made of a soot made of germanium oxide dove quartz, pure quartz, etc. by the VAD method. After forming a foam, the soot foam is immersed in a rare earth element solution such as an aqueous solution of hydrochloric acid of ErC Is to impregnate the rare earth element, and then a transparent vitrified turf is used.
  • a rare earth element solution such as an aqueous solution of hydrochloric acid of ErC Is to impregnate the rare earth element, and then a transparent vitrified turf is used.
  • the outer diameter of this glass rod is naturally slightly smaller than the inner diameter of the above-mentioned six.
  • the above-mentioned lath rod serving as the core is inserted into the hole of the glass port serving as the clat, and the entire body is cobrased by heating> as the base material.
  • the desired REDPMF can be obtained.
  • a glass serving as a clad may be further formed on the outer peripheral surface of the base material by an external method or the like, and then melt-spun.
  • a plurality of glass rods serving as a core part are arranged at predetermined intervals and fixed at both ends thereof.
  • a glass sheet to be used as a head is deposited, and the glass material is made into a transparent glass to prepare a base material, and then the base material is melt-spun.
  • soot is deposited between a plurality of glass rods serving as the core when the glass soot serving as the clad is deposited, the soot is immersed in the rare earth element solution as described above and the soot is soaked.
  • the above-mentioned low refractive index region between the cores can be obtained.
  • REDPMF in which rare earth elements are added to the cladding can be obtained.
  • a glass rod serving as a core is made of a glass rod to which a rare earth element is added, REDPMF in which a rare earth element is added to the core and a portion of the cladding sandwiched between the core and the core is obtained.
  • the present invention it is possible to obtain a REDPMF having good polarization maintaining characteristics, an excellent optical amplification function, and easy polarization axis alignment at the time of fusion splicing. Also, since the structure is simple, it is easy to manufacture and can be supplied at low cost. Furthermore, an optical amplifier and a laser oscillator that output output light with good polarization characteristics can be obtained at low cost.
  • the VAD method to prepare the Sioux bets Purifu Omu of G e 0 2 doped quartz glass Amount of G e 0 2 of the Sue Topuri form is about 1 5 mole%, quartz glass And a relative refractive index difference of 1.5%.
  • This soot preform contains an aqueous solution of erbium chloride and an aluminum chloride solution, and is then dehydrated and turned into a transparent glass.
  • the amount of erbium added is 800 ppm, and the amount of aluminum added is 90%.
  • a 0 ppm glass rod was made.
  • a load of fluorine-doped quartz glass was prepared by the VAD method.
  • the difference in the relative refractive index between this rod and quartz glass was 10.4%.
  • This intermediate base material is heated and stretched, and a quartz glass serving as a clad is formed on the outer surface of the intermediate base material by a known external method to form a base material, which is melt-spun and shown in FIG. 16 (a).
  • a REDPMF with the structure shown was obtained.
  • the one of the core diameter of the REDPMF is 2.
  • the REDPMF Using this REDPMF, an optical amplifier as shown in FIG. 20 was produced.
  • the length of the REDPMF is 30 m
  • the wavelength of the pump light is 0.98 m
  • the output is 30 mW
  • a signal with a wavelength of 1.553 m is input.
  • An optical amplification operation of 5 dB and a noise figure of 3 dB was performed.
  • Ge02-doped quartz glass rods were prepared by the VAD method. G e 0 2 amount of this product Ri 1 5 mol% der, the relative refractive index difference between the quartz glass was 1. 5%. This glass rod was heated and stretched to obtain a glass rod serving as a core.
  • a pure silica glass preform was prepared by the VAD method, and erbium and aluminum were added to this preform in the same manner as in Example 1, and the amount of erbium added was about 100 O
  • a glass rod with a ppm and aluminum content of about 10,000 ppm was prepared.
  • one glass rod with erbium / aluminum is sandwiched between two glass rods to be the core part, arranged in a line, and fixed at both ends.
  • This mother material was melt spun and the core material was inserted into two core parts 32a and 32b as shown in Fig. 19 (a). REDPMF with erbium added to it.
  • the center-to-center distance of the core is 2.9 m
  • the cutoff wavelength of the secondary mode group is about 1.2 ⁇ m
  • a polarization maintaining fiber is produced at a wavelength of 1.5 / m.
  • the refractive index in the erbium-doped region increased slightly due to the addition of aluminum, but no effect on the polarization maintaining performance was observed. '
  • a laser oscillator as shown in Fig. 21 was created.
  • a wavelength multiplexing type power blur of 1.48> m and 1.55 / zm for the first power blur 42 a laser with a wavelength of 1.53 m was obtained at an excitation light input of about 5 OmW. The light was obtained at an output of about 5 mW c
  • the polarization maintaining optical fiber of the present invention can be used for an optical fiber sensor and the like. Then, by adding a rare earth element to the optical waveguide portion of the polarization maintaining optical fiber, it can be used for an optical amplifier and a laser oscillator. In addition, two or more of the above-mentioned polarization-maintaining optical fibers are attached to each other and heated, fused, and stretched to maintain the polarization of propagating light, thereby splitting and merging light among a plurality of optical fibers. It can be used for an optical fiber power bra that performs demultiplexing and multiplexing.

Description

明細書
偏波保持光フアイパとその製法とその接梡法並びに光増幅器、 レーザ発振器およ び偏波保持光ファイバ力ブラ
技術の分野
この発明は、 種々の光ファイバセンサなどに用いられる偏波保持光ファイバと その製法とその接続法並びに光増幅器、 レーザ発振器および偏波保持光フアイパ 力ブラに関する。
背景技術
従来よ り、 種々の偏波保持光ファイバが知られている。 図 2 2 ( a ) 〜 (d ) は、 従来の代表的な偏波保持光ファイバを示すもので、 ( a) は楕円コア型と呼 ばれ、 コアを円形状から非軸対称に変形させて 2つの偏波モード間の縮退を解き. モー ド間の伝搬定数を異なるようにし、 偏波を保持するようにしたものである。 また、 図 2 2 ( b ) は楕円クラヅ ド型、 ( c ) はボウタイ型、 (d ) は PAN D A型と呼ばれるもので、 光ファイバの中心軸に対して対称でない (非軸対称) 応力をファイバ中に導入して、 2つの偏波モー ド間の縮退を解く ようにしたもの である。 図中符号 1はコア、 2はクラッ ド、 3はジャケッ ト、 4は応力付与部で ある。
これらの偏波保持光フアイパの製造技術については、 いくつかの文献に記載さ れており、 その一例として、 J.Noda et al . "Polarization-Maintaining Fibers and Their Applications", Journal of Lightwave Technology, vol . LT-4, No. 8, August 1986, pp.1071〜 1089がある。
この文献の記載からも明らかなように、 従来の偏波保持光フアイバにあっては 、 その製造が容易ではなく、 非常に特殊なファイバとして幅広く使われるには至 つていない 0
例えば、 現在最も多用されている PANDA型偏波保持光フアイパについて説 明すれ.ば、 まず V A D法などによって、 コア ^ラヅ ド型シングルモードタイプ のロ ヅ ド状のガラス母材を製造する。 一方、 応力付与部となるガラスロッ ドを V A D法などで作成する。 このガラスロ ッ ドは熱膨張率を大きくするため、 2 0重 量%近くの酸化ホウ素 ( B 2O 3) がドーブされるが、 このような多量の Β 20 3が ド ブされた石英ガラスでは、 その熱収縮のために極めて割れやすく、 その加工 に細心の注意が必要となる。 .
ついで、 上記ガラス母材に 1対の穴を穿設し、 これらの穴に応力付与部となる ガラスロッ ドを揷入し、 そのままコブラス化することなく、 溶融紡糸することで、 P A N D Α型偏波保持光フアイパが得られる。
通常のロ ヅ ドィ ンチューブ法では、 ロ ヅ ドをチューブ内に挿入したのち全体を 加熱してコプラス化し、 一体化する方法が採られるが、 この方法を上述の応力付 与部となるガラスロッ ドについて適用すると、 ガラスロッ ドが冷却時に割れてし まう ことになる。
このように、 最も一般的な P A N D A型偏波保持光ファイバにおいても、 その 製造は容易ではなく、 かなりの手間を要しており、 高価なものとなっている。 また、 この製造方法にあっては、 クラッ ドとなるガラスロッ ドに複数の穴を穿 設する手間が面倒であり、 かつ専用の穿穴装置が必要とな り、 生産コス トの低減 のため、 より一層の製造の簡略化が必要となる。
よって、 本発明における課題は、 製造が容易で、 安価に供給できる偏波保持光 ファイバとその製法を得ることにある。
一方、 伝搬光の偏波を維持しながら複数の光ファイバ間での光の分岐、 合流、 分波、 合波を行う偏波保持光ファイバ力ブラ (以下、 力ブラと略記する。 ) とし ては、 楕円コア型、 楕円クラッ ド型、 P A N D A型などの偏波保持光ファイバを 用いたものが知られている。
このものは、 図 2 3に示すように、 2本もしくはそれ以上の偏波保持光フアイ パ 5, 5の一部を互いに接するように添接し、 この状態で添接部を酸水素炎等で 加熱し、 融着するとともにこの部分を軽く延伸して結合部 6を形成する方法によ つて製造されたものである。
なお、 この製法自体は、 偏波保持光ファイバに限られず、 一般のシングルモー ド光ファイバなどに.も広く応用され、 闳知技術として技術的にも確立されている ものである.。
しかしながら、 このような力ブラにあっては、 次のような問題点がある。 第 1に、 偏波.保持光ファイバ自体の製造が困難で、 製造コス トが高くなること 。 第 2に、 力ブラの結合様式の自由度が制 Kされること。 第 3に、 過剰損失など の性能の良いものを得よう とすると、 偏波保持光ファイバ自体の構造、 設計、 製 法等を変更せねばならないことがあるなどである。
よって、 この発明における課題は、 製造が容易で、 結合様式の自由度が高く、 かつ特性の良好な力プラを得ることにある。
また、 この発明における他の課題は、 上述の本発明で得られた偏波保持光ファ ィパを低損失で融着接続する方法を得ることにある。
—方、 ネオジム ( N d ) 、 エルビウム (E r ) 、 サマリ ウム ( S m ) などの希 土類元素をコアに添加したシングルモード光ファイバは、 従来よ り公知であり、 既に光ファイバ増幅器、 レーザ発振器等に利用されている。
これら光ファイバ増幅器やレーザ発振器においては、 しばしば出力光の偏光を 制御する必要が生じる。 この目的のためには、 従来の偏波保持光ファイバのコア に希土類元素を添加したものを使用すればよいが、 この希土類添加コア偏波保持 光ファイバの実際の製造においては、 偏波保持光ファイバ自身の作製が困難であ り、 その上にコアに希土類元素を添加する工程が加わり、 極めて多くの手間を必 要とし、 製造コス トの高いものとなる。
よって、 本発明における他の課題は、 製造が容易で、 安価に供給できる希土類 添加偏波保持光ファイバとその製法並びに光増幅器およびレーザ発振器を得るこ とにある。
発明の開示
本発明の偏波保持光ファイバは、 光ファイバの一直径方向に沿って、 複数個の 高屈折率領域のコア部が並列して設けられ、 これらコア部が一体として 1つの基 本モードを伝搬するようにしたものである。 このように、 従来、 1つの領域を形 成したコアを複数個の領域、 すなわちコア部を狭い間隔をおいて分割することに より、 実効的に非常に高い偏平度もしくは楕円度を生じさせて、 良好な偏波保持 特性を得ることができる。 また、 製造も簡便となる。
また、 本発明の偏波保持光ファイバの製造方法は、 上記偏波保持光ファイバを 製造する方法であって、 複数のコア部となるコア本体部を有するコア用ガラス口 ヅ ドを、 クラヅ ドとなる 1個の穴を有するクラヅ ド用ガラスロ ヅ ドの穴に挿入し, 加熱一体化したのち、 溶融紡糸する。 このため、 上記の偏波保持光ファイバを簡 単に効率よ く、 しかも安価に製造することができる。
本発明の偏波保持光ファイバ力ブラは、 上記偏波保持光ファィパを 2本以上添 接し、 加熱、 融着、 延伸したものである。
本発明の偏波光ファイバの接 法は、 本発明の偏波保持光ファイバを融着接続 するに際して、 接続点近傍をその接続前または接続後に加熱するものである。 こ のため、 楕円形電界分布形状を有する本発明の偏波保持光フアイパ間の接続にお けるモードフィール ド形状の不一致を解消でき、 接続損失を低減できる。
また、 本発明の希土類添加偏波保持光ファイバは、 光ファイバの一直径方向に 複数個の高屈折率領域のコア部が並んで設けられ、 これらコア部が一体として 1 つの基本モードを伝搬する偏波保持機能を有し、 かつ上記コア部またはコア部間 に挟まれた低屈折率領域のクラッ ド部分のいずれか一方も しくは両方に希土類元 素を添加したものである。 このため、 偏波保持特性が良好で、 かつ優れた光増幅 機能を有し、 しかも融着接続時の偏波軸合わせが容易になる。
また、 本発明の光増幅器、 レーザ発振器は、 上記希土類添加偏波保持光フアイ パを用いたので、 偏波特性の良好な出力光を出力する。
図面の簡単な説明
図 1 ( a ) は、 本発明の偏波保持光ファイバの一例を示す断面図である 図 1 ( b ) は、 本発明の偏波保持光ファイバの一例を示す断面図である 図 1 ( c ) は、 本発明の偏波保持光ファイバの一例を示す断面図である 図 1 ( d ) は、 本発明の偏波保持光ファイバの一例を示す断面図である 図 1 ( e ) は、 本発明の偏波保持光ファイバの一例を示す断面図である。
図 1 ( f ) は、 .本発明の偏波保持光ファイバの一例を示す断面図である。
図 2 ( a ) は、 本発明の偏波保持光ファイバの X軸方向の屈折率分布を示す図 である。
図 2 ( b ) は、 本発明の偏波保持光ファイバの y軸方向の屈折率分布を示す図 である。
図 2 ( C ) は、 本発明の偏波保持光ファイバの y ' 軸方向の屈折率分布を示す 図である。
図 2 ( d ) は、 本発明の偏波保持光ファイバの X軸方向のモー ド分布を示す図 である。
図 2 ( e ) は、 本発明の偏波保持光ファイバの y軸方向のモー ド分布を示す図 である。
図 3 ( a ) は、 本発明の偏波保持光ファイバの例を示す断面図である。
図 3 ( b ) は、 本発明の偏波保持光ファイバの例を示す断面図である。
図 3 ( c ) は、 本発明の偏波保持光ファイバの例を示す断面図である。
図 3 ( d ) は、 本発明の偏波保持光ファイバの例を示す断面図である。
図 4 ( a ) は、 本発明の偏波保持光ファイバの他の例の屈折率分布を示す図で ある。
図 4 ( b ) は、 本発明の偏波保持光ファイバの他の例の屈折率分布を示す図で ある。
図 5は、 本発明における実施例 1での中間母材を示す図である。
図 6は、 本発明における実施例 1で得られた偏波保持光ファイバの断面図であ る。
図 7は、 この発明の製法の一例を示す概略斜視図である。
図 8は、 この発明の製法の一例での母材の概略断面図である。
図 9は、 この発明の製法の他の一例を示す概略平面図である。
図 1 0 ( a ) は、 本発明の偏波保持光ファイバ力ブラの例を示す断面図である。 図 1 0 ( b ) は、 本発明の偏波保持光フアイパカブラの例を示す断面図である。 図 1 0 ( c ) は、 本発明の偏波保持光フアイパカブラの例を示す断面図である。 図 1 1 ( a) は、 本発明の偏波保持光ファイバ力ブラの他の例を示す断面図で ある。
図 l l .( b ) は、 本発明の偏波保持光ファイバ力 'ブラの他の例を示す断面図で ある。
図.1 2は、 本発明の力ブラの一例についての結合部と波長との関係を示すグラ フである。
図 1 3は、 本発明の偏波保持光フアイパ接続法の偏波保持光フアイパの伝搬モ
—ドの電界強度分布を示す図である。
図 1 4 ( a) は、 2本の偏波保持光ファ バのモー ドの電界分布の不連続性を 模式的に示す図である。
図 1 4 ( b ) は、 2本の偏波保持光ファイバのモー ドの電界分布の不連続性を 模式的に示す図である。
図 1 4 ( c ) は、 2本の偏波保持光ファイバのモー ドの電界分布の不連続性を 模式的に示す図である。
図 1 4 ( d ) は、 2本の偏波保持光ファイバのモードの電界分布の不連続性を 模式的に示す図である。
図 1 5は、 伝搬モードの断面形状の加熱による変化を表したグラフである。 図 1 6 ( a ) は、 本発明の希土類添加偏波保持光ファイバを示す断面図である c 図 1 6 ( b ) は、 本発明の希土類添加偏波保持光ファイバを示す断面図である c 図 1 6 ( c ) は、 本発明の希土類添加偏波保持光フアイパを示す断面図である c 図 1 6 ( d ) は、 本発明の希土類添加偏波保持光ファイバを示す断面図である。 図 1 6 ( e ) は、 本発明の希土類添加偏波保持光ファイバを示す断面図である。 図 1 6 ( f ) は、 本発明の希土類添加偏波保持光ファイバを示す断面図である。 図 1 7 ( a) は、 本発明の希土類添加偏波保持光ファイバの X軸方向の屈折率 分布を示す図である。
図 1 7 ( b ) は、 本発明の希土類添加偏波保持光ファイバの y軸方向の屈折率 分布を示す図である。
図 1 7 ( c ) は、 本発明の希土類添加偏波保持光フアイパの y '軸方向の屈折 率分布を示す図である。 図 1 7 .( d ) は、 本発明の希土類添加偏波保持光フアイパの X軸方向のモー ド 分布を示す図である。 .
.図 1 7 ( e ) :は、 本 ¾明の希土類添加偏波保持光ファイバの y軸方向のモード 分布を示す図である。. '
図 1 8 ( a) は、 本発明の希土類添加偏波保持光ファイバを示す if面図である 図 1 8 ( b) は、 本発明の希土類添加偏波保持光ファイバを示す断面図である 図 1 8 ( c ) は、 本発明の希土類添加偏波保持光フアイパを示す断面図である, 図 1 8 ( d ) は、 本発明の希土類添加偏波保持光フアイパを示す断面図である, 図 1 9 ( a) は、 本発明め希土類添加偏波保持光ファイバの他の例を示す断面 図である。
図 1 9 ( b ) は、 本発明の希土類添加偏波保持光フアイパの他の例を示す断面 図である。
図 2 0は、 本発明の光増幅器の例を示す構成図である。
図 2 1は、 本発明のレーザ発振器の例を示す構成図である。
図 2 2 ( a) は、 従来の偏波保持光ファイバの例を示す断面図である。
図 2 2 ( b ) は、 従来の偏波保持光フアイパの例を示す断面図である。
図 2 2 ( c ) は、 従来の偏波保持光フアイパの例を示す断面図である。
図 2 2 ( d ) は、 従来の偏波保持光ファイバの例を示す断面図である。
図 2 3は、 従来の力ブラを示す斜視図である。
発明を実施するための最良の形態
〔偏波保持光ファィパ〕
以下、 本発明の偏波保持光ファイバを詳しく説明する。
図 1 ( a ) 〜 ( f ) は、 いずれもこの発明の偏波保持光ファイバの例を示すも のである。
図 1 ( a ) に示した偏波保持光ファイバ 1 0は、 低屈折率のガラスからなる断 面形状が円形のクラヅ ド 1 1 と高屈折率のガラスからなる断面形状が円形の 2つ のコア部 1 2 a, 1 2 b とから構成されている。 コ'ァ部 1 2 a, 1 2 bは、 光ファイノ 1 0の中心軸 0を通り、 その軸方向に沿 う 1つの面に対して面対称に相対向して配置されている。 すなわち、 光ファイバ 1 0の一つの直径方向 (X軸方向) に ¾·つで 2つのコア部 1 2 a , 1 2 bが並ん で配設されている。
コア部 1 2 a , 1 2 bは、 またそれぞれの径が等しい同径となっており、 使用 波長とコア部 1 2 a , 1 2 bの比屈折单差に依存して直径は約 2 ~ 1 0 m程度 となっている。 さらに、 方のコア部 1 2 aと他方のコア部 1 2 bとの間隔は、 図 1 ( a) に示した各コア部 1 2 a, 1 2 bの中心間の寸法 1でコア部 1 2 a , 1 2 bの半径の 0. 5 ~ 3倍程度の範囲で選択される。 また、 コア部 1 2 a, 1 2 b とクラッ ト' 1 1 との比屈折率差は 0. 1 5 ~ 3. 0 %となっている。
クラヅ ド 1 1をなすガラスとしては、 純粋石英、 フッ素ドーブ石英などが用い られ、 コア部 1 2 a , 1 2 bをなすガラスとしては、 酸化ゲルマニウム ドーブ石 英、 純粋石英、 酸化リン ドープ石英などが用いられる。 クラヅ ド 1 1の外径は通 常 1 2 とされるが、 必要に応じて 8 0 /mなどの値をとることもできる。 図 1 ( b ) に示した例は、 コア部 1 2 a, 1 2 bがともに方形の断面形状であ る点が図 1 に示した例と異なるところである。 方形としては正方形であっても長 方形であってもよい。 コア部 1 2 a , 1 2 bの長辺は約 2 ~ 1 0 m、 短辺は 2 ~ 1 O ximであり、 間隔 1は短辺の 1 ~ 3倍程度の範囲となっている。
図 1 ( c ) に示したものは、 4つの方形のコア部 1 2 a , 1 2 b , 1 2 c , 1 2 dからな り、 これら 4つのコア部全体として実質的に 1つの基本モードを伝搬 するものである。
また、 図 1 ( d ) ないし図 1 ( f ) に示した例は、 クラッ ド 1 1の断面形状が 楕円状となったもので、 その長軸方向とコア部 1 2 a , 1 2 b ( 1 2 c , 1 2 d ) の配列方向とが一致しているものである。
図 2 ( a ) 〜 ( e ) は、 図 1 ( b ) に示した偏波保持光ファイバの屈折率分布 とコア部 1 2 a, 1 2 bを伝搬する基本モードのモー ド分布とを模式的に示すも ので、 ( a ) は X軸方向の屈折率分布、 ( b ) は y軸方向の屈折率分布、 ( c ) は y ' 軸方向の屈折率分布、 ( d ) は X軸方向のモー ド分布、 ( e ) は y軸方向 のモー ド分布を示す。 この図から、 X軸方向.のモ一.ド分布はコア部 1 2 a , 1 2 bの.間のク.ラッ ド · 1. .1の部分にまで延.び Tお..り..、.屈折率分布とはかなり異なったものとなっている。 また y軸方向のモー ド分布は通常のシングルモードファイバのモード分布とほぽ 同-様な.ものと って.いる。'
この め、 X軸方向と y軸方向とのモード分布が互いに異なり、 非軸対称性を 示し、 これによ?て導波構造復屈折率 B gが生じ、 偏波保持性が生ずる。
さらに、 本発明の偏波保持ファイバにおいては、 コア部 1 2 a., 1 2 bをなす ガラスに、 クラヅ ド 1 1 をなすガ スよ りも熱膨張率の大きいものを使用すれば 、 溶融紡糸诗に生ずる非軸対称性め内部応力がコア部 1 2 a, 1 2 b自体に生じ 、 この内部応力によって応力誘起複屈折率 B sが表われ、 これによつても偏波保 持性が表われる。 この応力誘起複屈折率 B sは、 上記導波構造複屈折率 B gに相 加されるため、 全体としての複屈折率 Bは大きなものとなる。
図 3 ( a ) 〜 ( d ) は、 いずれもこの発明の偏波保持光ファイバの他の例を示 すものである。
図 3 ( a ) に示したものは、 奇数個 ( 3個) のコア部 1 2 a, 1 2 b, 1 2 c を有するもので、 その中心のコア部 1 2 aはその中心がファイバの中心軸 0に一 致して配置されているものである。 コア部 1 2 a, 1 2 b , 1 2 cの間隔やクラ ッ ド 1 1 との比屈折率差は先の例と同様である。
また、 この例では中心のコア部 1 2 aとファイバの中心軸 0とは必ずしも合致 する必要はない。 さらに、 各コア部の形状は先の例と同様に方形であってもよい し、 クラッ ド 1 1の断面形状が楕円状となっていてもよい。 また、 図 3 ( b ) に 示すように、 5個のコア部 1 2 a, 1 2 b, 1 2 c, 1 2 d , 1 2 eを有するも のであってもよい。
図 3 ( c ) に示した例は、 コア部 1 2 a, 1 2 bの断面形状が軽く湾曲した勾 玉形のものである。 この発明では、 このようにコア部の断面形状としては、 円形 、 方形などの対称性を有しないものでも採用することができる。 また、 図 3 ( d ) に示すように、 各コア部 1 2 a , 1 2 bがそれぞれ異なる断面形状を有してい てもよい。
また、 1つのコア部における屈折率分布も図 2 ( a ) に示すように均一である 必要.はな く 、 例えば図 4 ( a ) に示すように山形の分布を示すものであってもよ い。 ..ざら 、 各コア部間において図 4 ( b ).に示すように比屈折率差が若干異な
• つていてもよ.い .《>
(実施例 1 )
VAD法によって、 G e.02 添加石英,ガラス棒 (コア用ガラスロッ ド, 直径 3 O mm, 長さ 1 5 0 mm) を作製した。 このガラス棒 © G e 02 の添加量は約 9 重量 ·%であ り、 石英ガラス との比屈折率差は約 0. 6 %であった。
ついで、 このガラス棒を約 1 Ί 0 0 *Cの加熱炉で加熱して延伸し、 直径約 5 m mのコア部となるガラス棒とした。
—方、 別途外径 4 0 mm、 長さ 2 0 0 mmのクラッ ドとなる純粋石英ガラス口 ヅ ドを準備した。 このものの中心軸に対して対称に直径 5 . 3 mmの挿入穴を 2 個 2 . 5 mmの間隔を置いて穿穴した。 この後、 この揷入六に前記 G e 02 添加 石英ガラス棒をそれぞれ挿入し、 加熱、 コブラスして図 5 に示す寸法の中間母材 を得た。
この中間母材を加熱、 延伸し、 さ らにその外周面にクラ ッ ドとなる石英ガラス を周知の外付け法で形成して、 母材とし、 これを溶融紡糸して、 図 6に示す構造 の光ファイバを作成した。
得られた光ファイバは、 短い伝送钜離では若干の 2次モー ドの伝播が認められ たが、 実効的には基本モー ドのみの伝搬が行われるこ とが確認された。 この光フ アイパのデ—タを表 iに示す。 さ らに、 不要な 2次モー ドを除去する必要がある 場合には、 ごく短いシングルモー ドファイバをモードフィルタ と して挿入するこ ともできる。
表 1 力ットオフ波長 1.5 m
使用光波長 丄 .5 5 μ m モー ドフィールド径 長径 約 7 m
短径 5.5 μ m モード複屈折 B 約 1 x 1 (Γ4 _ IBX - J5y{
x : x軸方向の伝搬定数
~ Ko y: y軸方向の伝搬定数
o= 2ir/ λ λ : 波長
.このように、 得られた光フアイパは、 十分偏波保持光ファィパとしての特性を 有しており、 その製造も'上述のよう t至って簡便に行えることがわかる。
(実施例 2 )
VAD法によ り、 コア部.となる G e 02 添加石英ガラス棒 (直径 7 mm) を作 成した。 G e 02 の添加量は約 3 0重量%で、 石英ガラスとの比屈折率差は約 2 %であった。
また、 クラッ ド となるフ ッ素添加石英ガラス棒 (直径 5 O mm) を作成した。 石英ガラス との比屈折率差は一 0. 3 %であった。
ついで、 クラ ッ ド となるガラス棒に直径約 7 . 3 mmの挿入穴を 3個穿設した < 穴の中心間間隔は 1 O mmとし、 1個の挿入穴の中心がコア用ガラスロ ッ ドの中 心軸に一致するよう にした。
これらの挿入穴に上記コア部となるコア用ガラス口 ヅ ドを挿入し、 加熱、 コブ ラス して中間母材と した。
ついで、 この中間母材を加熱、 延伸し、 さらにロッ ド · イ ン · チューブ法によ りその外周部に十分な厚さのクラ ッ ドを形成して母材と し、 これを溶融紡糸して クラ ッ ドを形成して母材と し、 これを溶融紡糸して図 3 ( a) に示すような構造 の光ファイバを得た。
この光フ ァイバのコア部の直径はいずれも約 1 . 5 m、 コア部間の中心鉅離 はいずれも約 2. l yumであり、 クラヅ ド径 (ファイバ径) は 8 0 um、 コア部 とクラッ ド との比屈折率差は約 2 . 3 %であった。
得られたこの光フ アイパの光学特性は表 2に示す通りであり、 良好な偏波保持 特性を有している こ とがわかる。 表 2
Figure imgf000014_0001
〔偏波保持光ファイバの製法〕
次に、 本発明の偏波保持光フ ァイバを製造する方法について説明する。
図 7は、 この製法の一例を示すもので、 まず、 クラ ッ ド となる柱状のガラス口 ヅ ド 2 1 を用意する。 このガラス ロ ヅ ド 2 1 には、 その中心に 1 つの同心円状の 挿入穴 2 2が形成されている。 このガラスロッ ド 2 1 は、 純粋石英、 フ ッ素 ドー ブ石英などからなるもので、 市販の高純度石英ガラスパイ ブをそのまま使用した り、 周知の V A D法などの C V D法で合成した石英ガラスロッ ドに穿穴加工を施 したものなどが用い られる。
これとは別に、 コア用ガラス ロ ッ ド 2 3 を作成する。 このコア用ガラス ロッ ド 2 3 は、 二層構造となっており、 その中心部分は、 コア部となる高屈折率のコア 本体部 2 4からな り 、 外周部分は、 低屈折率の外周部 2 5からなつている。
外周部 2 5は、 純粋石英ガラス、 フッ素添加石英ガラスなどからな り、 その屈 折率は上述のクラ ヅ ド用ガラス ロ ッ ド 2 1 の屈折率と同一となっている。 また、 コア本体部 2 4は、 ゲルマニウム添加石英ガラス、 純粋石英ガラスなどからな り 、 外周部 2 5 との比屈折率差が、 + 0 . 1 5 - 3 . 0 %程度となるように外周部 2 5 よ り高屈折率となっている。
このコア用ガラス ロッ ド' 2 3のコァ本体部 2 4 と外周部 2 5 との外径比は、 外 周部 2 5の外径がコア本体部 2 4の外径の少な く とも 1 . 5倍以上、 好ま しく は 3.倍以上とされる。
また、 このコア用ガラスロヅ ド 2 3は、 ^えば周知の V A D法などによるシン グルモー ド光ファィパ用のブリ ブオームの製造と同様に行う こ とができる。 このコア用ガラスロヅ ド 2 3は、 コア部の個数と等しい個数だけ用意される。 ついで、 複数本 ( 2本) のコア用ガラスロッ ド 2 3…を図 5 に示すよう に、 一 方向に並べた状態を保持したまま、 クラ ヅ ド用ガラスロッ ド 2 1 の挿入穴 2 2 内 に挿入し、 適宜の手段によ り、 これをクラ ッ ド用ガラスロ ッ ド 2 1 に固定する。 この際、 挿入六 2 2 には若干の空隙が生ずるが、 特に問題とはな らない。
このものを次にその全体を加熱して複数のコア用ガラスロヅ ド 2 2…とクラ ヅ ド用ガラスロッ ド 2 1 とを一体化 (コブラス) して母材と したのち、 その端部よ り溶融紡糸する と、 目的とする偏波保持光ファイバが得られる。 また、 必要に応 じて上記母材の外周面にクラッ ド となるガラスを外付け法などによってさ らに形 成したのち溶融紡糸する こ ともできる。
図 8は、 上述の一体化後の母材の断面を示すもので、 コア用ガラスロ ッ ド 2 3 の外周部 2 5 とクラ ヅ ド用ガラスロヅ ド 2 1のガラスとは屈折率が同一であるの で、 識別ができず、 またコア用ガラスロ ッ ド 2 3のコア本体部 2 4は、 上述の空 隙を埋めるために生じたガラスの溶融移動によ り、 その断面形状が円形から楕円 形に変形している。
しかし、 このよう なコア本体部 2 4の変形は、 得られる偏波保持光ファイバの 偏波保持特性にわずかの変化を与えるが、 その光学的特性への影響はほとんど表 われない。
すなわち、 この新しいタイプの偏波保持光ファイバでは、 複数のコア部の屈折 率分布が多少理想形から変形しても伝搬モー ドのパワー分布がほとんど変形しな い特性を有しているためであって、 コア部が図 8のような楕円形であっても円形 のものと差のない光学的特性を示すのである。
このような製法にあっては、 コア用ガラスロ ッ ド 2 3の製造は、 通常のシング ルモー ド光ファイバ用母材の製造と同様であり、 またクラ ッ ド用ガラスロ ッ ド 2 Γには挿入穴 2 2が 1 あればよいので、 加工が容易であ り、 市販の高純度石英 :ガラス'パイ.ブをそのまま転用することが可能と.なる.ので、 技術的な困難がなく、 'その製造が非常に容易に行う ことができ、 製造コス トを安価とするこ とができる , 図 9は、 この発明の製法の他の例を示すもので、 複数本 ( 2本) のコア用ガラ スロ ッ ド 2 3…と複数本 ( 5本) のダミー用ガラスロ ッ ド 2 6 ···とを図示のよう に束ねて配置したう え、 クラヅ ド用ガラスロッ ド 2 1 の挿入穴 2 2に揷入し、 全 体'を加熱して一体化 ( ブラス》 し、. さ らに溶融紡糸を行うものである。 上記ダ ミー用ガラスロ ヅ ド 2 6…もなすガラス材料はクラッ ド用ガラスロッ ド 2 1をな すガラス材料と同じ くされ、 屈折率が同一となるよう になつている。
この方法では、 挿入穴 2 2内の空隙の割合が先の例に比べて小さ く なるので、 コア用ガラスロ ッ ド 2 3のコア本体部 2 4の変形が少な く な り、 断面形状が円形 に近いコア部が得られる。
また、 他の製造方法と して、 コア部となる複数本のコア用ガラスロ ッ ドを所定 の間隔を配して、 その両端部分で固定し、 これを出発基材と して外付け法によ り クラ ッ ドとなるガラスス一 トを堆積し、 透明ガラス化して母材を作成したのち、 この母材を溶融紡糸する方法もある。
以上説明したよう に、 本発明によれば偏波保持特性が良好でしかも構造が簡単 な偏波保持光ファイバを非常に簡単に製造するこ とができる。 また、 従来の Ρ Α N D A型のもののように多量の ドーパン トを用いる必要がなく、 原料費も少な く て済む。
また、 この発明の偏波保持光ファイバの製法は、 複数のコア部となるコア本体 部を有するコ ア用ガラスロ ッ ドを、 クラ ヅ ドとなる 1個の穴の有するクラ ヅ ド用 ガラスロ ッ ドの穴に同時に揷入し、 加熱一体化したのち、 溶融紡糸するものであ るので、 この新しいタイ プの偏波保持光ファイバを簡単に効率よ く、 しかも安価 に製造することができる。
以下、 具体例を示す。
(実施例 3 )
V A D法によ り コア用ガラス母材を作製し、 さ らにこれを加熱延伸することに よ り.、 2本のコア庙ガラスロッ ド.を作製した.。 その外径 2 m m、 長さ 2 0.0 m m コア本体部の外径 1 m mとし、 コア本体部は G e 02 添加石英ガラス、 外周部 は石.英ガラスとし、 その比屈折率差は.約 1 . 6 %とした。
これとは別に、 巿販の高純度石英ガラス製の:パイブ (内径 5 mm, 外径 5 0 m m ·) をクラ ド用ガラス.口ヅ }«として用意し、 この挿入穴に上記コア用ガラス口 ヅ ドを 2本並べて揷入、'配置し、 1 2 0 0 °Cで加熱して一体化して母材を得た。 この母材をその一端から溶融紡糸し、 偏波保持光ファイバを得た。
この偏波保持光フアイパの光学的特性を以下に示す。
コア部 · クラッ ド比屈折率差 約 1 . 6 %
コァ部形状 短径 約 1 . 7 z m
長径 約 2 . 2 m
コア部中心間距離 約 2 ιη
モード複屈折 Β 約 1 X 1 0一 4
使用波長 1 . 3 m
カッ トオフ波長 約 l m
(実施例 4 )
実施例 3 と同様にして 2本のコア用ガラスロ ヅ ドを作製した。 ただし、 外径 2 . 5 mm, 長さ 2 0 0 mm、 コア本体部外径 1 . 2 5 m mとした。
これとは別に、 V AD法によ り、 5本のダミー用ガラスロッ ドを作製した。 全 体が石英ガラスからなり、 外径 2 . 5 mm、 長さ 2 0 0 mmとした。
また、 市販の高純度石英ガラス製のパイプ (内径 8 mm , 外径 6 O mm) をク ラ ヅ ド用ガラスロッ ドとして用意した。
上記コア用ガラスロッ ドとダミー用ガラスロッ ドとを図 7に示すように配置し て束ね、 上記パイ ブの挿入穴を挿入、 配置して加熱し一体化したのち、 溶融紡糸 して、 偏波保持光ファイバとした。
得られた偏波保持光ファイバは、 そのコア部の長径が約 2 . 0〃m、 短径が約 1 . 9 mであり、 ほぼ円形に近い形状であった。 光学的特性は具体例 3のもの とほぼ同様であり、 カツ トオフ波長が若干長くなることが認められた。 〔偏波保持光ファイバ ブラ〕
この'発明の力ブラは、 上記偏波保持光ファィ 'バを用いて作られ ものであり、 2.本以上の偏波保持光ファ バを添接し、 加熱、 融着、 延伸する上述の周知製造 方法によって作成される。: .
図 1 0 ( a ) - ( c ) は、 いずれも本発明の偏波保持光ファイバを 2本用いて. 得ちれた力ブラの結合部の例を示すもので、 それぞれの偏波面を平行に保ち、 コ ァ部 5 2 k , 5 2 b間の. 離が異なり融着の度合が異なる 3種の結合度の異なる ものを示したものである。 この融着の度合は、 力ブラの結合度の波長特性等を考 慮して適宜決められる。
図 1 1 ( a ) , ( b ) は、 この発明の力ブラの他の例の結合様式を示すもので、 偏波面が互いに直交するように保って、 融着の度合を変えたものである。
この結合様式は、 従来の P A N D A型やボウタイ型などの偏波保持光ファイバ では、 応力付与部があるため、 実現できなかったものである。
また、 本発明の力ブラにあっては、 用いる偏波保持光ファイバの屈折率が互い に異なるものであってもよ く、 このような組み合せでは、 図 1 2に示すような結 合度の波長特性が平坦な波長依存性の少ない力ブラを得ることができる。
このような力ブラにあっては、 使用する偏波保持光ファイバのクラヅ ド中に複 雑な屈折率分布を有していないので、 低損失なものとなる。 また、 図 1 0や図 1 1に示すように、 結合部の断面形状が自由に選択できるので、 力ブラの波長特性 に大きな自由度を持たせることができる。
このように、 この発明の偏波保持光ファイバ力ブラは、 偏波保持光ファイバを 用いて作られたものであるので、 低損失であり、 結合様式、 結合度、 波長特性に おいて高い自由度のものが得られ、 多様な品種を製造することができる。 また、 偏波保持光ファィパ自体の製造が容易であるので、 安価に供給することができる などの効果が得られる。
以下、 具体例を示す。
(実施例 5 )
偏波保持光フアイパとして以下の仕様のものを使用した。
コア部 · クラッ ド間比屈折率差 約 1 . 6 % コァ部の数 . 2個
コァ部形状 円形, 直径約 2 . 0 j
コア部中心間距離 約 2 . 2 / m
モード複屈折 約 1 X 1 0 -4
使用波長 1 . 3 / m
カツ トオフ波長 約 1 . 2 j m
クラッ 'ド径 8 0 rn
このものを 2本偏波面が互いに平行となるように添接し、 酸水素炎で加熱、 融 着し、 延伸して、 力ブラとした。
得られた力ブラは、 コア部間の距離が約 4 であり、 結合度が 1 0 %で、 過剰損失が 0 . l d B (使用波長 1 . 2 7〜 1 . 3 4 m ) であった。
また、 融着度合を大き く して、 コア部間の距離を 2 5〃 mとしたところ、 結合 度 5 0 %、 過剰損失 0 . 1 5 d B (使用波長 1 . 2 7〜: I . 3 4 ^ m ) に変化し た。
〔偏波保持光ファイバの接続法〕
次に、 本発明の偏波保持光ファイバの接続法を説明する。 この偏波保持光ファ ィパの接続法は、 本発明の偏波保持光ファイバを融着接続するに際して、 接続点 近傍をその接続前または接続後に加熱するものである。
本発明の偏波保持光ファイバは、 従来の P ANDA型などの偏波保持光フアイ パに比較して、 特にその構造が簡単で製造が極めて容易である特長を有しており . 安価に供給できるものである。
この偏波保持光ファイバの伝搬モードのモー ド分布は、 図 1 3に示すように光 の伝搬方向に直交する断面で見た場合に、 楕円形をしており、 その楕円度は必ず しも特定の値をとらず、 自由度の大きなものとなっている。
ところで、 この偏波保持光ファイバにおいても、 伝送路やファイバ型光部品な どとして使用する場合には、 ファイバの接続は避けられない。
この偏波保持光フアイパの接続においては、 偏波保持光ファイバ自体のモ一 ド 分布が上述のように楕円形であり、 かつその楕円度が一定でないために、 接続点 でモード分布が不連続となることがある。
図 1 4 . ( a ) - ( d ) は、 このような接続点における 2本の該ファィパのモ一 ドの電界分布の不連続状態を模式的に示すもので、 ( a ) は偏波面は一致してい .る.'がモ.ード分布の楕円度が異なって不連続.となっているもの、 ( b ) は偏波面が .互いに直交しているもの、' ( c ) は'偏波面が基準面に対してそれぞれ 4 5度で交 わっているもの、 ( d ) は偏波面が平行にずれているものである。
このような接続点でのモード分布の不連続は当然接続損失として表われる。 ま た、 特殊な用途、 例えばデポラライザでは偏波面 ¾ 4 5度傾けて接続することが 行われており、 このような接統でばさらに接続損失が増加する。
この発明の接続法の対象となる偏波保持光ファイバとしては、 そのコア部に添 加され、 屈折率を高める ドーパン トがゲルマニア (G e 0 2 ) であるものが選ば れる。 これは、 ゲルマニアが加熱により、 コア部のガラスから速やかにクラヅ ド のガラスに拡散し、 コア部の屈折率分布、 すなわちモード分布の形状を容易に楕 円形から円形に変化させることができるからである。
加熱に際しての加熱領域は、 接続点を中心として両側に約 5〜 1 O m m程度と される。 加熱温度は約 1 5 0 0〜 1 7 0 0 °Cの範囲とされ、 加熱時間は 5 〜 1 2 0秒程度とされる。 加熱源にはアーク放電によるもの、 酸水素炎などが用いられ、 特に限定されない。
融着接続前に加熱する場合には、 接続端部をそれぞれ上記条件に従って加熱す ればよく、 融着接続後に加熱する場合には接続点を中心として同様に上記条件に よって加熱すればよい。
このような接続点近傍の加熱により、 被加熱部分のコア部のゲルマニアがクラ ッ ドに拡散し、 この結果、 モー ド分布の断面形状が楕円形からほぼ円形に近い形 状に変化し、 接続点での 2本のファイバ間のモード分布の不連続性が解決し、 接 続損失が低減する。
このように、 この発明の偏波保持光ファイバの接続法によれば、 楕円形電界分 布形状を有する偏波保持光フアイパ間の接統におけるモードフィールド形状の不 —致を解消でき、 接続損失を低減できる。
以下、 具体例を示す。 (実施例 6 )
2個のコァ部.を有する外径 1 2 5 imの偏波保持光ファ.ィパを用意した。 コア 部はゲルマニア添加石英ガ スからなり、 クラヅ ドは純粋石英ガラスからなり、 コア部の外径はともに約 2 . 5〃m、 コア'部中心間距離ば;約 3. 8〃m、 コア部 とクラッ ドとの比屈折率差は約 0. 7 %で、 使用波長が 1 . 5 5〃mのものであ る。
こ.の偏波保持光フアイパの伝搬モードの電界強度分布は図 1 3に示すように精 円形であり、 この電界強度分布におけるビークパワー (P o ) の l Ze ( eは自 然対数の底) となる断面形状は、 長径約 8〃m、 短径約 4 > ιηの長楕円形であつ た。
この偏波保持光フアイパを約 5 mずつ切り取り、 それぞれの切断端部を長さ約 7 mmにわたつて高周波アーク放電によ り約 1 6 5 0 °Cで加熱した。 この加熱 を 1 0秒毎に断続し、 上記ビークパワーの 1 /e となる断面形状を計測し、 その 加熱時間による断面形状の変化を求めた。
図 1 5は、 その結果を示すグラフであり、 グラフ中実線は楕円の長径の、 破線 は短径のそれぞれ変化を示すものである。 このグラフから、 加熱時間が 6 0秒で 長径と短径とがほぼ一致し、 楕円形が直径約 1 5 mの円形に変化したことがわ かる。
ついで、 加熱時間を 6 0秒と したものをその偏波面が 4 5度で交わるようにし て周知の融着接続法によって接続したところ、 その接続損失は 0 . 3 d Bであつ た。
比較のため、 同様の偏波保持光ファイバを加熱することなく、 同様に融着接続 したところ、 1 . 5 d Bの損失が認められた。
また、 同様の偏波保持光ファイバをその偏波面が 4 5度で交わるように融着接 続したのち、 その接続点を中心にその両側それぞれ 5 mmずつを 1 6 0 0 °Cで 6 0秒間加熱したところ、 接続損失は 0. 3 d Bとなった。
なお、 この発明の融着接続に際して接続点近傍を加熱する方法は、 ゲルマニア を添加したコアを有する他の偏波保持光フアイパの接続にも有効である。
このように、 この発明の偏波保持光ファイバの接続法によれば、 楕円形電界分 布形状を有する偏波保持光ファィパ間の接続におけるモー ドフィ一ルド形状の不 致を解消でき、 接続損失を低減で.きる。
〔希土類添加偏波保持光ファイバ〕
次に.、 本発明の希土類添加偏波保持光ファイバについて説明する。 この希土類 添加偏被保持光フアイパは、 本発明の偏波保持光フアイパのコア部またはコア部 に挟まれた部分に希土類元素を添加したものである。
図 1 6 ( a) 〜 ( f ) はいずれもこの発明の希土類添加偏波保持光ファイバ ( 以下、 R E D P M F と略記する。 ) の例を示すものである。
図 1 6 ( a) に示した R E D P M Fは、 低屈折率のガラスからなる断面形状が 円形のクラッ ド 2 8 と高屈折率のガラスからなる断面形状が円形の 2つのコア部 2 9 a , 2 9 bとから構成されている。
コア部 2 9 a, 2 9 bは、 光ファイバの中心軸 0を通り、 その軸方向に沿う 1 つの面に対して面対称に相対向して配置されている。
コア部 2 9 a , 2 9 bは、 またそれぞれの径が等しい同径となっており、 使用 波長とコア部 2 9 a , 2 9 bの比屈折率差に依存して直径は約 2 ~ 1 0 m程度 となっている。 さらに、 一方のコア部 2 9 aと他方のコア部 2 9 bとの間隔は、 図 1 6 ( a ) に示した各コア部 2 9 a , 2 9 bの中心部分の間での寸法 1でコア 部 2 9の径の 0. 5 ~ 2 . 5倍程度の範囲で選択される。 また、 コア部 2 9 a, 2 9 bとクラヅ ド 2 8との比屈折率差は 0. 1 5〜 3. 0 %となっている。
クラッ ド 2 8をなすガラスとしては、 純粋石英、 フッ素ド一ブ石英などが用い られ、 コア部 2 9 a , 2 9 b , …をなすガラスとしては、 酸化ゲルマニウム ド一 プ石英、 純粋石英、 酸化リ ンドーブ石英などに、 N d, E r , S mなどの希土類 元素および必要に応じて A 1203などが添加されたガラスが用いられる。 クラヅ ド 2 8の外径は通常 1 2 5〃mとされるが、 必要に応じて 8 0〃mなどの値が選 ばれることもある。 希土類元素の添加量は 3 0 0 ~ 2 0 0 0 p p m (重量) 、 A 1203の添加量は希土類元素の添加量の 5 ~ 1 5倍量程度とされる。
図 1 6 ( b ) に示した例は、 コア部 2 9 a, 2 9 bがともに方形の断面形状で ある点が図 1 6 ( a ) に示した例と異なるところである。 方形としては正方形で あっても長方形であつてもよい。 ァ部 2 9 a, 2 9 bの長辺は約 2 ~ 1 0〃 m、 短辺は 2〜 l p〃mであり、 間隔 1は短辺め 0 . 5〜 2倍程度の範囲となってい る'。 図 1 6 ( c ) に示したものは、 4つの方形のコア部 2 9 a , 2 9 b , 2 9 c , 2 9 dからなり、 これら 4つのコア部全体として 1つの基本モー ドを伝搬するも のである。 また、 図 1 6 ( d ) ないし図 1 6 ( f ) に示レた例は、 クラッ ド 2 8 の断面形状が楕円状となったもので、 その長軸方向とコア部 2 9 a, 2 9 b ( 2 9 c , 2 9 d ) の配列方向とが一致しているものである。 図 1 6 ( b ) 〜 (f ) の例.でも、 そのコア部 2 9 a, 2 9 b , 2 9 c…には、 希土類元素と必要に応じ て A I 2O3が添加されていることば同様である。
図 1 7は、 図 1 6 (b ) に示した偏波保持光ファイバの屈折率分布とコア部 2 9 a , 2 9 bを伝搬する基本モー ドのモード分布とを模式的に示すもので、 ( a ) は X軸方向の屈折率分布、 (b ) は y軸方向の屈折率分布 ( c ) は y ' 軸方向の 屈折率分布、 ( d ) は X軸方向のモード分布、 ( e ) は y軸方向のモー ド分布を 示す。 この図から、 X軸方向のモード分布はコア部 2 9 a, 2 9 bの間のクラヅ ド 2 8の部分にまで延びており、 屈折率分布とはかなり異なったものとなってい る。 また y軸方向のモ一 ド分布は通常のシングルモー ドファイバのモー ド分布と ほぼ同様なものとなっている。
このため、 X軸方向と y軸方向とのモード分布が互いに異なり、 非軸対称性を 示し、 これによつて導波構造複屈折率 B gが生じ、 偏波保持性が生ずる。
さ らに、 本発明の R E D P M Fにおいては、 コア部 2 9 a , 2 9 bをなすガラ スに、 クラッ ド 2 8をなすガラスよ りも熱膨張率の大きいものを使用すれば、 溶 融紡糸時に生ずる非軸対称性の内部応力がコア部 2 9 a , 2 9 b自体に生じ、 こ の内部応力によって応力誘起複屈折率 B sが表われ、 これによつても偏波保持性 が表われる。 この応力誘起複屈折率 B sは、 上記導波構造複屈折率 B gに相加さ れるため、 全体と しての複屈折率 Bは大きなものとなる。
図 1 8 ( a) 〜 ( d) は、 いずれも本発明の R E D P M Fの他の例を示すもの で、 この例のものは、 コア部 3 2 a , 3 2 b , 3 2 c…が 3個以上の奇数個設け られた点が図 1に示したものと異なるところである。 奇数個のコア部のうち、 そ の中心にあるものは、 光ファイバの中心軸 0上に位置し、 その他のコア部は中心 軸 Oに対して対'称的に配されでいる'。 これらコア部 3 '2 a, 3 2 b , 3 2 c…に は.、 .希土類元素が必要に応じて A 1203とともに添加されているこどは言うまで もない。
ところで、 本発明の R E D P M.Fでは、 図 1 ·7 ·( d ) に示したように、 コア部
2 9 a , 2 9 bの間に挟まれた低 g折率領域のクラヅ ドの部分にも光パワーが伝 搬される。 また、 従来の希土類添加光ファイバを用いた光増幅器においては、 希 土類元素の添加領域を光パワーの強い領域に限定した方が良いことが知られてい る。 .このことから、 本発明の R E D P M Fでは、 複数個のコア部に抉まれたクラ ヅ ドの部分に希土類元素を必要に応じて A I2O3とともに添加する態様が考えら れる。
図 1 9 ( a ) , ( b ) は、 この希土類元素の添加領域をコア部に挟まれたクラ ヅ ドの部分としたものの例を示すものであり、 斜線を付した部分 3 3 a, 3 3 b ,
3 3 c…が、 希土類元素添加領域を示す。 希土類元素添加量および A 1203添加 量は先のものと同様である。
図 1 9 ( a ) に示すものは、 円形の 2個のコア部 3 2 a , 3 2 bの間に挟まれ たほぼ円形の部分 3 3 aに希土類元素を添加したものである。 図 1 9 ( b ) は、 3個のコア部 3 2 a, 3 2 b , 3 2 cの間に挟まれた 2つのほぼ円形の部分 3 3 a , 3 3 bに希土類元素を添加したものである。
また、 本発明の R E D P M Fでは、 コア部 3 2 a, 3 2 b , 3 2 c…およびこ れらコア部 3 2 a, 3 2 b , 3 2 c…に挟まれたクラッ ドの部分 3 3 a , 3 3 b …の両方に希土類元素および必要に応じて酸化アルミニゥムを添加したものであ つてもよい。 この態様のものでは、 すべてのコア部 3 2 a , 3 2 b , 3 2 c…お よびクラッ ドの部分 3 3 a , 近いコア部とクラッ ドの部分とに集中的添加した方 が効果的である。
このような R E D P M Fでは、 構造が簡単で応力付与部がないので、 製造が容 易であり、 安価に供給できる。. また、 屈折率分布が複数のコア部の並列方向 ( X 方向) とこれに直交する方向 ( Y方向) とで大きく異なるので、 偏波保持光ファ ィパの融着接続時のフアイパ側面視像を画像処理して行う偏波軸合せが極めて容 易に行うことができる。 これに対して、 従来の応力付与部を有する P A N D A型 偏波保持光フアイパのコアに希土類元素を添加したものでは、. クラッ ド.の屈折率 を低めてコア.とクラッ ド.との比屈折率差を約 2 程度と非常に矢きく しているた め、 力付与部とクラッ ドとの比 S折率差が 0. 0 5〜 0. 3 %以下になること が'多く、. 像による偏波軸合せが困難になる不都合がある。
図 2 0は、 本発明の R E D P M Fを用いた光増幅器の一例を示すもので、 図中 符号 3 5は励起光源、 3 6は第 1 の光力ブラ、 3 7は 11 £ 0 ^1^ 、 3 8は第 2 の力ブラである。 信号光は、 第 1の力ブラ 3 6の第 1ポー トへ入力され、 励起光 源 3 5からの励起光は第 1の力ブラ 3 6の第 2ポートへ入力される。 第 1 のカブ ラ 3 6の第 3ポー トからは信号光と励起光とが出力され、 R E D PM Fへ入力さ れる。 R E D P M F 3 7 において光增幅された信号光と励起光とは第 2の力ブラ 3 8の第 1ポートに入力され、 ここで信号光と励起光とが分波され、 第 3ポート から増幅された信号光が、 第 4ポートから残余の励起光が出力される。
図 2 1は、 本発明の R E D P M Fを用いたレーザ発振器の一例を示すもので、 図中符号 3 9は R E D P M Fを卷回してなるリ ング型共振器、 4 0はアイ ソレー タ、 4 1は励起光源、 4 2は波長多重型の第 1の力ブラ、 4 3は小結合度塑の第 2の力ブラである。 励起光源 4 1からの励起光は、 第 1の力ブラ 4 2から リング 型共振器 3 9に結合されて入力され、 ここで発振する。 発振光はリング型共振器 3 9から第 2の力ブラ 4 3を経て出力される。 第 1の力ブラ 4 2 においては発振 光は結合されず、 第 2の力ブラ 4 3においては発振光の 1 ~ 1 0 %程度が結合さ れて外部に出力される。
次に、 本発明の R E D P MFを製造する方法について説明する。
この製法には、 種々のものがあるが、 第 1の例としてまず、 クラヅ ドとなる柱 状のガラスロッ ドを用意する。 このガラスロッ ドは純粋石英、 フッ素 ド一ブ石英 などからな り、 周知の VAD法などで製造されたものが用いられる。 ついで、 こ のガラスロッ ドにコア部となるガラス棒が挿入される複数個の穴を機械的に穿設 し、 その穴の内面を研磨する。 穴の穿設位置は、 得られる光ファイバと相似関係 になるように定められる。
これとは別にコア部となるガラス棒を作成する。 このガラス棒は、 VAD法な どによってまず酸化ゲルマニウム ドーブ石英、 純粋石英などからなるスー トプリ フオームを作成し、 このスート ブリ フォームを E r C Is の塩酸水溶液などの希 土類元素镕液に浸漬して希土類元素を含浸させたのち、 .透明ガラス化したもめな どが.用いられる。 このガラス棒の外径は、 当然上記六の内径よ りわずかに小さい ものとなる。
ついで、 上記コア部となる ラス棒をクラヅ ト' となるガラス口 ヅ ドの穴に挿入 し、 全体を加熱してコブラス化し > 母材とする。 この母材をこののち溶融紡糸す るごとで目的とする R E D P M Fが得られ.る。 また、 必要に応じて上記母材の外 周面にクラ ヅ ドとなるガラスを外付け法などによってさ らに形成したのち溶融紡 糸することもできる。
また、 他の製造方法と して、 コア部となる複数本のガラス棒を所定の間隔を配 して、 その両端部分で固定し、 これを出発基材と して外付け法によ り クラ ッ ド と なるガラスス一 トを堆積し、 透明ガラス化して母材を作成したのち、 この母材を 溶融紡糸する方法がある。 この際、 クラ ッ ドとなるガラスス一 トの堆積時に、 コ ァ部となる複数のガラス棒の間にスートが堆積した時点で、 このものを上述のよ うに希土類元素溶液に浸潰して該スー ト に希土類元素を含浸させたのち、 一旦透 明ガラス化し、 この上にさ らにクラ ッ ド となるガラススー トを堆積する方法を採 用すれば、 上述のコア部間の低屈折率領域のクラ ヅ ドの部分に希土類元素を添加 した R E D P M Fが得られる。 また、 コア部となるガラス棒に希土類元素を添加 したものを用いれば、 コア部とこれに挟まれたクラッ ドの部分に希土類元素が添 加された R E D P M Fが得られる。
以上説明したよう に、 本発明によれば偏波保持特性が良好で、 かつ優れた光増 幅機能を有し、 しかも融着接続時の偏波軸合せが容易な R E D P M Fが得られる 。 また、 構造が簡単であるので、 製作が容易とな り、 安価に供給するこ とができ る。 さ らに、 偏波特性の良好な出力光を出力する光増幅器、 レーザ発振器が安価 に得るこ とができる。
以下、 具体例を示す。
(実施例 Ί )
V A D法によって、 G e 02 添加石英ガラスのスー ト プリフ ォームを作製した 。 このスー トプリ フォームの G e 02 の添加量は約 1 5モル%であり、 石英ガラ ス との比屈折率差は 1 . 5 %であった。 このスー トプリ フォームに塩化エルビゥ ム塩酸水溶液および塩化アルミニウム溶液'を含寖したのち、 脱水処理し、 透明ガ ラス化して,、 コァ都となるエルビ ム添加量 8 0 0 p p m、 アルミニウム添加量 9 0 0 0 p p mのガラス棒を作成した。
別に、 V A D法によ り クラッ ド となるフ ヅ素添加石英ガラスのロヅ ドを作成し :た。 このロ ッ ドの石英ガラスとの比屈折率差は一 0. 4 %であった。 このロッ ド の中心軸に対称に 2個の揷入孔を穿孔し、 光学研磨したのち、 これら揷入孔に上 記コア部となるガラス棒をそれぞれ挿入して加熱し、 一体化して中間母材を得た 。 この中間母材を加熱、 延伸し、 さ らにその外面にクラヅ ドとなる石英ガラスを 周知の外付け法で形成して母材と し、 これを溶融紡糸して図 1 6 ( a ) に示す構 造の R E D P M Fを得た。 この R E D P M Fの 1 つのコア部の直径は 2 . 0 ju 比屈折率差 1. 9 %、 コア部の中心間の距離 2 . 8 / m、 複屈折率約 1 . 0 X 1 0一4、 2次モー ド群のカ ッ トオフ波長約 1 . であ り、 波長 1 . 3 z mにお いて、 偏波保持ファイバと しての動作を行わせることができた。
この R E D P M Fを用いて、 図 2 0に示すような光増幅器を作成した。 R E D P M Fの条長を 3 0 mと し、 励起光の波長を 0 . 9 8 mと し、 その出力を 3 0 mWと し、 波長 1 . 5 5 3 mの信号を入力したところ、 利得が 2 5 d B、 ノィ スフ ィギュアが 3 d Bの光増幅動作が行われた。
(実施例 8 )
V AD法によ り、 G e 02 添加石英ガラス棒を作成した。 このものの G e 02 添加量は 1 5モル%であ り、 石英ガラスとの比屈折率差は 1 . 5 %であった。 こ のガラス棒を加熱、 延伸して、 コア部となるガラス棒と した。
これとは別に、 V AD法によ り純粋石英ガラスのプリ フォームを作成し、 この プリ フォームに実施例 1 と同様に してエルビウムとアルミニウムを添加して、 ェ ルビゥム添加量約 1 0 0 O p p m、 アルミニウム添加量約 1万 p p mのガラス棒 を作成した。
ついで、 コア部となるガラス棒 2本の間にエルビウム · アルミニウム添加ガラ ス棒 1本を挟んで一列に並べて、 これらの両端部分で固定し、 これを出発基材と して、 純粋石英からなるクラッ ド となるガラススートを堆積し、 透明ガラス化し て母 #と し、 この母材を溶融紡糸して、 図 1 9. ( a) に示すよう な 2つのコア部 3 2 a , 3 2 bに浃まれ.たクラ ヅ ド 3 3 aの部分にエルビウムを添加した R E D P M Fを作製した。
この R E D P M Fのコア部の直径は約 2..0 ΠΚ 比屈折率差は 1 . 5 %、 ェ ルビウム添加.領域.の直径約 2. 0 m、 複屈折率約 1 . 0 X 1 0 -4、 コア部の中 心間距離 2 . 9 m, 2次モー ド群のカ ッ トオフ波長約 1 . 2〃mであ り、 波長 1 . 5. / mで偏波保持ファイバの勳作を行った。 なお、 エルビウム添加領域の屈 折率はアルミニゥムの添加によ り若干上昇したが、 偏波保持性能への影響は認め られなかった。 '
この E E D P M Fを用い、 図 2 1に示すようなレーザ発振器を作成した。 第 1 の力ブラ 4 2に波長 1. 4 8 > mと 1. 5 5 /z mの波長多重型力ブラを用い、 励 起光入力約 5 O mWにて波長 1 . 5 3 mのレ一ザ光が出力約 5 mWで得られた c
産業上の利用可能性
以上のように、 本発明の偏波保持光ファイバは、 光ファイバセンサなどに用い るこ とができる。 そ して、 この偏波保持光ファイバの光導波部分に希土類元素を 添加するこ とによ り、 これを光増幅器、 レーザ発振器に用いるこ とができ る。 ま た、 上記偏波保持光ファイバを 2本以上添接し、 加熱、 融着、 延伸する こ とによ り、 伝搬光の偏波を維持しながら複数の光ファイバ間での光の分岐、 合流、 分波 合波を行う光ファイバ力ブラに用いるこ とができる。

Claims

.請求の範-囲
1 . 光フアイパ Φ—直径方向に沿って複数個の高屈折率領域のコア部が並列レて 設けられ、 これらコア部が一体.として 1つの基^:モー ドを伝 する偏波保持光フ アイパ。
2 . コア部の比屈折率差が 0 . . 1 5 〜 3 . 0 %である請求項 1記載の偏波保持光 ファイバ。.
3 . クラッ ドとなる低屈折率のガラスロッ ドの一直径方向に沿って複数個の六を 並列して形成し、 これら.穴にコァ部となる高屈折率のコア用ガラス口ッ ドを挿入 したのち、 加熱して一体化して母材とし、 ついで溶融紡糸することを特徴とする 偏波保持光ファィパの製法。
4 . 上記コア用ガラスロ ッ ドが、 コア部となる高屈折率のコア本体部と、 このコ ァ本体部の外側に形成された低屈折率の外周部とからなり、 この外周部の屈折率 がクラッ ド用ガラスロッ ドの屈折率と同一とされた請求項 3記載の偏波保持光フ アイパの製法。
5 . 上記コア本体部がゲルマニウム添加石英ガラスからなる請求項 3または 4記 載の偏波保持光ファイバの製法。
6 . 光ファイバの一直径方向に沿って複数個の高屈折率領域のコア部が並列して 設けられ、 これらコア部が一体として 1つの基本モードを伝搬する偏波保持光フ アイパを 2本以上添接し、 加熱、 融着、 延伸してなる偏波保持光ファイバ力ブラ。
7 . 光ファイバの一直径方向に沿って複数個の高屈折率領域のコア部が並列して 設けられ、 これらコア部が一体として 1つの基本モードを伝搬する偏波保持光フ アイパを融着接続するに際して、 接続点近傍をその接続前または接続後に加熱す ることを特徴とする偏波保持光ファイバの接続法。
8 . 光ファイバの一直径方向に複数個の高屈折率領域のコア部が並んで設けられ、 これらコア部が一体として 1つの基本モードを伝搬する偏波保持機能を有し、 か つ上記コア部またはコア部間に挟まれた低屈折率領域のクラッ ド部分のいずれか 一方もしく は両方に希土類元素が添加された希土類添加偏波保持光ファイバ。
9 . コア部の比屈折率差が 0 . 1 5 ~ 3 . 0 %である請求項 8記載の希土類添加 偏波保持光ファイバ。
. 1 0·. 請求項.8記載の希土領添加偏波保持光ファイバを用いた^ 6増幅器。
1 1 . 請求項 8記載の希土類添加偏波保持光ファイバを用いたレーザ発 S器。
PCT/JP1994/000300 1993-02-25 1994-02-24 Polarized wave holding optical fiber, production method therefor, connection method therefor, optical amplifier, laser oscillator and polarized wave holding optical fiber coupler WO1994019714A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP94907683A EP0637762B1 (en) 1993-02-25 1994-02-24 Polarized wave holding optical fiber, production method therefor, connection method therefor, optical amplifier, laser oscillator and polarized wave holding optical fiber coupler
DE69424606T DE69424606T2 (de) 1993-02-25 1994-02-24 Polarisationserhaltende optische faser, herstellungsverfahren dafür, verbindungsverfahren dafür, optischer verstärker, laseroszillator und polarisationserhalter optischer faserkoppler
US08/318,848 US5689578A (en) 1993-02-25 1994-02-24 Polarized wave holding optical fiber, production method therefor, connection method therefor, optical amplifier, laser oscillator and polarized wave holding optical fiber coupler

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP3710293 1993-02-25
JP5/37102 1993-02-25
JP5/162934 1993-06-30
JP16293493 1993-06-30
JP5/163583 1993-07-01
JP16358393 1993-07-01
JP5/183082 1993-07-23
JP18308193 1993-07-23
JP5/183083 1993-07-23
JP18308393 1993-07-23
JP18308293 1993-07-23
JP5/183081 1993-07-23

Publications (1)

Publication Number Publication Date
WO1994019714A1 true WO1994019714A1 (en) 1994-09-01

Family

ID=27549846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/000300 WO1994019714A1 (en) 1993-02-25 1994-02-24 Polarized wave holding optical fiber, production method therefor, connection method therefor, optical amplifier, laser oscillator and polarized wave holding optical fiber coupler

Country Status (4)

Country Link
US (1) US5689578A (ja)
EP (1) EP0637762B1 (ja)
DE (1) DE69424606T2 (ja)
WO (1) WO1994019714A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016529549A (ja) * 2013-08-06 2016-09-23 レオニ カーベル ホールディング ゲーエムベーハー マルチコアファイバ用光カプラ
WO2016190228A1 (ja) * 2015-05-27 2016-12-01 株式会社フジクラ マルチコアファイバ
US20200400877A1 (en) * 2019-06-20 2020-12-24 Yangtze Optical Fibre And Cable Joint Stock Limited Copmany Array-type polarization-maintaining multi-core fiber

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5822436A (en) 1996-04-25 1998-10-13 Digimarc Corporation Photographic products and methods employing embedded information
US20090281531A1 (en) * 1995-08-31 2009-11-12 Rizoiu Ioana M Interventional and therapeutic electromagnetic energy systems
US5790773A (en) * 1995-12-29 1998-08-04 Symbios, Inc. Method and apparatus for generating snapshot copies for data backup in a raid subsystem
DE19641577A1 (de) * 1996-09-30 1998-04-02 Deutsche Telekom Ag Dispersionskompensationsfaser
FR2766583B1 (fr) * 1997-07-24 1999-09-24 Alsthom Cge Alcatel Fibre optique multicoeurs
US5949941A (en) * 1997-11-21 1999-09-07 Lucent Technologies Inc. Cladding-pumped fiber structures
US6208776B1 (en) * 1998-04-08 2001-03-27 Physical Optics Corporation Birefringent fiber grating sensor and detection system
AU5316699A (en) * 1998-08-25 2000-03-14 Corning Incorporated Methods and apparatus for producing optical fiber
US6795635B1 (en) 1998-09-15 2004-09-21 Corning Incorporated Waveguides having axially varying structure
AU5772699A (en) * 1998-09-15 2000-04-03 Corning Incorporated Waveguides having axially varying structure
US6483973B1 (en) * 1999-04-09 2002-11-19 Fitel Usa Corp. Cladding member for optical fibers and optical fibers formed with the cladding member
US6463195B1 (en) * 1999-05-31 2002-10-08 Fujikura Ltd. Method of manufacturing polarization-maintaining optical fiber coupler
JP2001056416A (ja) * 1999-08-20 2001-02-27 Fujikura Ltd 偏波保持光ファイバおよび偏波保持光ファイバ部品
US6427491B1 (en) * 1999-08-20 2002-08-06 Corning Incorporated Method for making fibers having cores with non-circular cross-sections
FR2811437A1 (fr) * 2000-07-06 2002-01-11 Cit Alcatel Fibre optique a pompage par la gaine et procede de fabrication d'une telle fibre
US6621954B1 (en) 2000-11-14 2003-09-16 Finisar Corporation Precision optical filter with a ball-end joint
US6891999B1 (en) 2000-07-17 2005-05-10 Finisar Corporation Method and apparatus for precision tuning an optical filter using a ball-end joint
US6813414B1 (en) * 2000-07-17 2004-11-02 Finisar Corporation Fiber optical pigtail geometry for improved extinction ratio of polarization maintaining fibers
TW536640B (en) * 2001-04-13 2003-06-11 Furukawa Electric Co Ltd Coated optical fiber
US7085461B2 (en) 2001-04-30 2006-08-01 Verrillon, Inc. Optical fiber with visualization features
US6611648B2 (en) 2001-05-09 2003-08-26 Corning Incorporated Optical fibers having cores with different propagation constants, and methods of manufacturing same
JP3833621B2 (ja) * 2002-03-15 2006-10-18 株式会社フジクラ 偏波保持光ファイバ
FR2838200B1 (fr) * 2002-04-08 2004-08-06 Optogone Sa Collimateur optique pour fibre monomode presentant une section de fibre a gradient d'indice, fibre monomode a coeur etendu et procede de fabrication correspondants
EP1556718B1 (en) * 2002-10-30 2009-04-29 Massachusetts Insitute of Technology Wavelength insensitive integrated optic polarization splitter
CN100356213C (zh) * 2002-10-30 2007-12-19 麻省理工学院 波长不敏感的集成偏振光学分束器
EP1611650A1 (en) * 2003-04-01 2006-01-04 Corning Incorporated Reduced clad diameter rare earth doped fiber coils and optical amplifiers utiliying such coils
US6978078B2 (en) 2004-01-08 2005-12-20 Corning Incorporated Reduced clad diameter rare earth doped fiber coils and optical amplifiers utilizing such coils
KR20050051118A (ko) * 2003-11-27 2005-06-01 삼성전자주식회사 플라스틱 광섬유, 플라스틱 광섬유용 모재 및 그제조방법
US7066668B2 (en) * 2003-12-10 2006-06-27 Ncr Corporation Method of creating an image replacement document for use in a check truncation environment and an apparatus therefor
US7066669B2 (en) * 2004-08-30 2006-06-27 Ncr Corporation Method of creating an image replacement document for use in a check truncation environment and an apparatus therefor
JP4244998B2 (ja) * 2006-02-08 2009-03-25 日本電気硝子株式会社 光ファイバ固定用毛細管の製造方法
US20070201793A1 (en) * 2006-02-17 2007-08-30 Charles Askins Multi-core optical fiber and method of making and using same
CN101764340B (zh) * 2009-12-25 2011-11-30 北京交通大学 强耦合多模掺稀土环芯超亮度单模光纤激光器
CN101764344B (zh) * 2010-01-13 2011-11-30 北京交通大学 单模有源纤芯外腔耦合多模有源纤芯超亮度单模激光器
JP5347989B2 (ja) * 2010-01-21 2013-11-20 住友電気工業株式会社 マルチコア光ファイバ
US9535211B2 (en) 2011-12-01 2017-01-03 Raytheon Company Method and apparatus for fiber delivery of high power laser beams
US9664869B2 (en) 2011-12-01 2017-05-30 Raytheon Company Method and apparatus for implementing a rectangular-core laser beam-delivery fiber that provides two orthogonal transverse bending degrees of freedom
US8983259B2 (en) * 2012-05-04 2015-03-17 Raytheon Company Multi-function beam delivery fibers and related system and method
JP6545617B2 (ja) * 2012-06-22 2019-07-17 アイピージー フォトニクス コーポレーション レーザー掘削方法及び形状化された孔を生成するシステム
CA2902240C (en) * 2013-02-24 2019-06-18 Esmaeil Banaei Method of thermally drawing structured sheets
US20150085352A1 (en) * 2013-09-20 2015-03-26 Alcatel-Lucent Usa Inc. Optical amplifier for space-division multiplexing
JP6010519B2 (ja) * 2013-11-18 2016-10-19 株式会社フジクラ マルチコアファイバ
CN103728689B (zh) * 2013-12-16 2016-08-17 国家电网公司 一种高双折射光纤
CN103698843B (zh) * 2013-12-18 2016-09-14 江苏大学 一种低简并度少模光纤
CN103698842B (zh) * 2013-12-18 2016-01-13 江苏大学 一种光纤模式插分复用器
CN104345380B (zh) * 2014-08-07 2017-10-20 江苏大学 一种双模光纤
US10254198B2 (en) * 2015-01-20 2019-04-09 Weatherford Technology Holdings, Llc Birefringent multi-peak optical reference element and birefringent sensor system
JP6692128B2 (ja) * 2015-07-02 2020-05-13 株式会社フジクラ マルチコア偏波保持ファイバ
DE102019112926A1 (de) * 2019-05-16 2020-11-19 Friedrich-Alexander-Universität Erlangen-Nürnberg Multikabel aus Mehrzahl von dielektrischen Wellenleitern
JP7400585B2 (ja) * 2020-03-30 2023-12-19 住友電気工業株式会社 マルチコアファイバの母材の製造方法及びマルチコアファイバの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154903U (ja) * 1982-04-05 1983-10-17 古河電気工業株式会社 定偏波光フアイバ
JPS607406A (ja) * 1983-06-27 1985-01-16 Fujikura Ltd 単偏波デユアルコア単一モ−ド光フアイバ
JPS6291438A (ja) * 1986-10-20 1987-04-25 Furukawa Electric Co Ltd:The 単一偏波光フアイバの製造方法
JPS62184403A (ja) * 1986-02-10 1987-08-12 Nippon Telegr & Teleph Corp <Ntt> 光フアイバの融着接続方法
JPS62249114A (ja) * 1986-04-22 1987-10-30 Sumitomo Electric Ind Ltd 定偏波フアイバカプラ及びその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4134642A (en) * 1976-04-16 1979-01-16 Northern Telecom Limited Optical fibre with increased security
DE2930759A1 (de) * 1979-07-28 1981-03-26 Licentia Patent-Verwaltungs-Gmbh, 60596 Frankfurt Lichtleitfaser
US4295739A (en) * 1979-08-30 1981-10-20 United Technologies Corporation Fiber optic temperature sensor
US4950318A (en) * 1982-08-02 1990-08-21 Andrew Corporation Method of joining self-aligning optical fibers
US4549781A (en) * 1983-06-01 1985-10-29 Corning Glass Works Polarization-retaining single-mode optical waveguide
US4606605A (en) * 1984-06-29 1986-08-19 At&T Bell Laboratories Optical fiber having in-line polarization filter
US4748687A (en) * 1984-09-25 1988-05-31 Siemens Aktiengesellschaft Narrow band laser transmitter
JPS6461076A (en) * 1987-09-01 1989-03-08 Fujikura Ltd Optical fiber laser
JPH01237507A (ja) * 1987-12-04 1989-09-22 Nippon Telegr & Teleph Corp <Ntt> 絶対単一偏波光ファイバ
JPH0225806A (ja) * 1988-07-15 1990-01-29 Sumitomo Electric Ind Ltd 偏波保持光ファイバおよびその製造方法
DE3930029A1 (de) * 1989-09-08 1991-03-21 Standard Elektrik Lorenz Ag Verfahren zum herstellen eines optischen verschmelzkopplers
JPH03239231A (ja) * 1990-02-16 1991-10-24 Sumitomo Electric Ind Ltd 光スイッチ
CA2051943A1 (en) * 1991-09-20 1993-03-21 Tomas Valis Fibre optic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154903U (ja) * 1982-04-05 1983-10-17 古河電気工業株式会社 定偏波光フアイバ
JPS607406A (ja) * 1983-06-27 1985-01-16 Fujikura Ltd 単偏波デユアルコア単一モ−ド光フアイバ
JPS62184403A (ja) * 1986-02-10 1987-08-12 Nippon Telegr & Teleph Corp <Ntt> 光フアイバの融着接続方法
JPS62249114A (ja) * 1986-04-22 1987-10-30 Sumitomo Electric Ind Ltd 定偏波フアイバカプラ及びその製造方法
JPS6291438A (ja) * 1986-10-20 1987-04-25 Furukawa Electric Co Ltd:The 単一偏波光フアイバの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0637762A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016529549A (ja) * 2013-08-06 2016-09-23 レオニ カーベル ホールディング ゲーエムベーハー マルチコアファイバ用光カプラ
US9753221B2 (en) 2013-08-06 2017-09-05 Leoni Kabel Holding Gmbh Optical coupler for a multicore fiber
WO2016190228A1 (ja) * 2015-05-27 2016-12-01 株式会社フジクラ マルチコアファイバ
JP2016224134A (ja) * 2015-05-27 2016-12-28 株式会社フジクラ マルチコアファイバ
US10310176B2 (en) 2015-05-27 2019-06-04 Fujikura Ltd. Multi-core fiber
US20200400877A1 (en) * 2019-06-20 2020-12-24 Yangtze Optical Fibre And Cable Joint Stock Limited Copmany Array-type polarization-maintaining multi-core fiber
US11550097B2 (en) * 2019-06-20 2023-01-10 Yangtze Optical Fibre And Cable Joint Stock Limited Company Array-type polarization-maintaining multi-core fiber

Also Published As

Publication number Publication date
EP0637762A1 (en) 1995-02-08
US5689578A (en) 1997-11-18
DE69424606D1 (de) 2000-06-29
DE69424606T2 (de) 2001-01-25
EP0637762A4 (en) 1995-07-05
EP0637762B1 (en) 2000-05-24

Similar Documents

Publication Publication Date Title
WO1994019714A1 (en) Polarized wave holding optical fiber, production method therefor, connection method therefor, optical amplifier, laser oscillator and polarized wave holding optical fiber coupler
EP0118192B1 (en) Single-mode single-polarization optical fiber
CN101160539B (zh) 光学纤维簇加工方法
CN101164000B (zh) 光学纤维制造
US9014522B2 (en) Optical couplers and methods for making same
US7406236B2 (en) Optical fiber and optical fiber coupler, erbium-doped optical fiber amplifier, and optical waveguide using the same
JP5565088B2 (ja) 光ファイバ結合器、ファイバレーザ、および、光ファイバ結合器の製造方法
JP2008277582A (ja) 光ポンピングデバイス用マルチコアファイバとその製造方法、光ポンピングデバイス、ファイバレーザ及びファイバ増幅器
JP2003337238A (ja) 偏波保持光ファイバ
US7559706B2 (en) Light amplifying fiber arrangement
WO1999030391A1 (en) Double-clad rare earth doped optical fibers
US6445855B1 (en) Method of fabricating fused and tapered couplers from optical fibers having photosensitive cladding regions
JPH10200175A (ja) 光ファイバアセンブリ及び光増幅カプラ
EP1533634A1 (en) Optical fiber, optical fiber coupler including the same, erbium loaded optical fiber amplifier and light guide
JPH0352042B2 (ja)
JP3586248B2 (ja) ダブルクラッドファイバの製造方法
RU2155166C2 (ru) Способ получения одномодового волоконного световода, сохраняющего поляризацию излучения
JP3130363B2 (ja) 光ファイバカプラの製造方法
JP2827231B2 (ja) 偏波保持型光ファイバ結合子の製造方法
JPH0221563B2 (ja)
RU2164698C2 (ru) Способ получения одномодового волоконного световода
JP2005115103A (ja) 楕円コア光ファイバ
JPS6235307A (ja) 光結合器
JPH01287603A (ja) 絶対単一偏波光ファイバ
JPS5924096B2 (ja) 「へん」波保存光フアイバ用プリフオ−ムロツド製造法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1994907683

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08318848

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994907683

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994907683

Country of ref document: EP