WO1994012920A1 - Hot water/cold water mixing apparatus and hot water/cold water mixing method - Google Patents

Hot water/cold water mixing apparatus and hot water/cold water mixing method Download PDF

Info

Publication number
WO1994012920A1
WO1994012920A1 PCT/JP1993/001712 JP9301712W WO9412920A1 WO 1994012920 A1 WO1994012920 A1 WO 1994012920A1 JP 9301712 W JP9301712 W JP 9301712W WO 9412920 A1 WO9412920 A1 WO 9412920A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
hot
preload
hot water
spring
Prior art date
Application number
PCT/JP1993/001712
Other languages
English (en)
French (fr)
Inventor
Toshio Eki
Toshiharu Ohtsuka
Original Assignee
Toto Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP33961992A external-priority patent/JP3261776B2/ja
Priority claimed from JP34536492A external-priority patent/JPH06168035A/ja
Priority claimed from JP1816993A external-priority patent/JPH06208420A/ja
Application filed by Toto Ltd. filed Critical Toto Ltd.
Priority to US08/256,768 priority Critical patent/US5511723A/en
Priority to EP94900995A priority patent/EP0624836A4/en
Publication of WO1994012920A1 publication Critical patent/WO1994012920A1/ja
Priority to KR1019940702547A priority patent/KR950700565A/ko

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/24Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/01Control of temperature without auxiliary power
    • G05D23/13Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures
    • G05D23/1393Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures characterised by the use of electric means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • Y10T137/2499Mixture condition maintaining or sensing

Definitions

  • the present invention relates to a hot and cold water mixing apparatus, and more particularly to a hot and cold water mixing apparatus that urges a movable valve body to mix hot and cold water using a spring made of a material whose spring constant changes with temperature.
  • An automatic temperature-adjustable hot-water mixer tap that controls the temperature of the hot-water mixture by controlling the temperature of the hot-water mixture by urging the movable valve body, which controls the mixing ratio of hot water and hot water, with a shape memory alloy whose shape changes with temperature. It has been proposed (June 61-44062). This is because, when a shape memory alloy is set in a certain shape at a specific temperature, it is set again by giving the initial set temperature even if the shape changes physically at other temperatures. It has the characteristic of restoring to the shape at the time of the heat, and utilizes the fact that it has a smaller heat capacity than conventional thermosensitive elements, for example, a wax thermometer, and operates more sensitively to temperature changes.
  • This mixer tap is configured so that one of the movable valve elements is urged by a coil-shaped memory alloy and the other is urged by a coil spring, and the coil-shaped memory alloy is directly applied to the hot and cold water mixture. It is arranged to be in contact.
  • the coil-shaped shape memory alloy is said to have a constant coil length at a constant temperature, and the coil-shaped shape memory alloy operates as follows due to a change in the temperature of the hot and cold water mixture.
  • the movable valve body When the temperature of the hot and cold water mixture is in a steady state at the set temperature, the movable valve body is stopped at a position where the coil-shaped shape memory alloy and the coil spring are balanced.
  • the coil-shaped shape memory alloy When the temperature of the hot and cold water mixture that was in the steady state changes to a certain temperature due to disturbance or the like, the coil-shaped shape memory alloy generates a shape restoring force in an attempt to restore the coil length set at that temperature. I do. This shape restoring force breaks the balance with the coil spring that was in a steady state, and moves the movable valve element to the coil spring side or the coil shape memory. Drive to the alloy side.
  • the movable valve body is displaced in accordance with the temperature change of the hot and cold water mixture and changes the ratio of hot and cold water, so that the temperature of the hot and cold water mixture can be maintained at the set temperature.
  • the setting temperature of the water / water mixture is changed by manually applying a preload to a spring that biases the valve body.
  • a desired tapping temperature could not be obtained by setting from the outside.
  • temperature control using a shape memory alloy alone when the shape restoring force of the ⁇ -shaped alloy and the elasticity of the coil spring are balanced at a temperature that deviates from the desired tapping temperature, a steady temperature deviation occurs and the desired tapping There was a problem that the temperature could not be set.
  • the temperature of the hot-water mixture can be controlled by energizing a movable valve element that controls the mixing ratio of hot water and water using a temperature-sensitive element (Wax Thermo).
  • a hot-water mixing device has been proposed that controls the temperature to be constant and eliminates the steady-state temperature deviation between the temperature of the hot-water mixture and the target temperature by feedback control (Japanese Patent Application Laid-Open No. 61-31878). Four ) .
  • This steady-state temperature deviation is caused when the temperature control by the wax thermometer operates around a temperature that deviates from the target temperature, the difference in volume change rate due to the aging of the wax thermostat, and the load generated by the volume change of the wax thermometer. It is caused by the secular change of each working member. Further, in this hot and cold water mixing apparatus, the driving speed of the movable valve body by the motor is set lower than the driving speed of the movable valve body by the box thermometer in order to prevent hunting due to feedback control.
  • the shape memory alloy is a material in which the temperature at which the shape memory effect is exhibited (the martensite transformation temperature) changes by as much as 10 if the composition differs only by 0.1%.
  • the target temperature could not be controlled due to the difference in the martensite transformation temperature due to the difference in the temperature. Similar problems occur with shape memory alloys manufactured from the same alloy ingot due to differences between the lots.
  • a first object of the hot water mixing apparatus of the present invention is to stably maintain the temperature of the hot water mixture at a target temperature. It is also a second object of the present invention to eliminate variations in temperature characteristics between products and to stably maintain the temperature of the hot and cold water mixture at a target temperature even with seasonal changes and aging. The third objective is to complete dead water spouting at an early stage and to maintain the target temperature stably.
  • a hot water mixing apparatus includes a hot water mixing valve MV 1 having a movable valve body that adjusts a hot water mixing ratio, as illustrated in FIG.
  • a first material that is made of a material whose spring constant changes according to the temperature in the temperature range, and that urges the movable valve body in a direction to decrease the proportion of hot water as the temperature of the hot water mixture flowing out of the mixing valve MV 1 increases.
  • a possible preload adjusting means M11, a temperature detecting means M12 for detecting the temperature of the hot and cold water mixture, and a preload reversing means M11 are controlled to adjust the preload to the target temperature of the hot and cold water mixture.
  • Initial preload setting means M 13 for setting to the initial value corresponding to, and after the setting, If there is a deviation between the temperature detected by the temperature detecting means M12 and the target temperature, electronic control means M14 for controlling the preload adjusting means Ml1 to cancel the deviation. It has.
  • the preload transfer means may be a means for changing an effective length of the first or second spring.
  • the preload adjusting means may be a means for urging the movable valve body by electromagnetic induction in the urging direction of the first or second spring.
  • the preload adjusting means may be configured as ripening means for controlling the temperature of the first spring separately from the temperature of the hot water.
  • the initial preload setting means M 13 controls the preload adjusting means M 11 to set the initial value corresponding to the target temperature of the hot water mixture.
  • the first spring SP 11 changes the spring constant in accordance with the temperature of the hot and cold water mixture, and energizes a movable valve element that controls the hot and cold water mixing ratio, thereby changing the temperature of the hot and cold water mixture to the target temperature.
  • the electronic control means M 14 corrects the deviation.
  • the preload adjusting means Ml1 is controlled on the side to cancel, and the temperature of the hot and cold water mixture is set as the target temperature.
  • the temperature of the hot and cold water mixture is controlled using a spring made of a material whose spring constant changes according to the temperature within a predetermined temperature range. Can be.
  • the preload adjusting means M11 Therefore, the temperature of the hot and cold water mixture can be set as the target temperature.
  • the preload adjusting means M 11 is controlled to cancel the deviation, so that the temperature of the hot and cold water mixture can be set as the target temperature.
  • the hot water mixing apparatus includes a hot water mixing valve MV2 having a movable valve body that adjusts the mixing ratio of hot water and a hot water mixing valve MV2 according to the temperature in a predetermined temperature range.
  • a first spring SP21 which is made of a material having a variable spring constant and biases the movable valve body in a direction to decrease the proportion of hot water with a rise in the temperature of the hot water mixture flowing out of the mixing valve MV2;
  • a second spring SP22 for urging the movable valve body in a direction opposite to the direction; and a preload adjusting means M2 capable of adjusting at least one of the first and second springs.
  • a temperature detecting means M22 for detecting the temperature of the hot and cold water mixture, and if there is a deviation between the temperature detected by the temperature detecting means M22 and the target temperature, the deviation is eliminated.
  • a preload control means for feedback controlling the preload adjusting means M 2 1 And M 2 3, and a control gain determining means M 2 for determining based on gain of the Fi one Dobakku control the hot and cold water mixing state.
  • the control gain determining means M24 may be configured to be means for determining the gain based on the temperature of the hot and cold water mixture. Further, the control gain determining means M24 may be configured to determine the gain based on a change rate of a spring constant of the first spring at a temperature of the hot and cold water mixture. Further, the control gain determining means M 24 sets the control gain to a first value when the detected temperature is in a region where the change rate of the spring constant of the first spring does not change, and When the detected temperature is in a region where the temperature changes, the control gain may be set to a second value smaller than the first value.
  • the first spring SP 21 changes the spring constant according to the temperature of the hot water mixture, and biases the movable valve element that adjusts the hot water mixing ratio,
  • the temperature of the hot water mixture is controlled to the target temperature. If only the temperature control by the first spring SP 21 causes a deviation between the temperature of the hot and cold water mixture detected by the temperature detecting means M 22 and the target temperature, the control gain determining means M 24 will mix the hot and cold water.
  • the gain of the feedback control is determined based on the state, and the preload control means M 23 controls the preload adjustment means M 21 to cancel the deviation, and the temperature of the hot and cold water mixture is determined. Is the target temperature.
  • the control gain of the feedback control is determined based on the mixing state of the hot and cold water, so that the target temperature can be maintained without hunting in a wide temperature range. Can be controlled.
  • the hot water mixing apparatus according to the second configuration uses a spring made of a material whose spring constant changes according to the temperature within a predetermined temperature range, thereby controlling the temperature of the hot water mixture.
  • the spring force of the first spring SP 21 and the spring force of the second spring SP 22 are approximately equal at a temperature deviating from the target temperature, a deviation occurs between the temperature of the hot and cold water mixture and the target temperature. Since the preload adjusting means M 21 is controlled to cancel the deviation, the temperature of the hot and cold water mixture can be set as the target temperature.
  • the hot water mixing apparatus includes a hot water mixing valve MV3 having a movable valve body that adjusts the mixing ratio of hot water and a hot water mixing valve MV3 according to the temperature in a predetermined temperature range.
  • a first spring SP31 made of a material having a variable spring constant, for urging the movable valve body in a direction to decrease the proportion of hot water with a rise in the temperature of the hot water mixture flowing out of the mixing valve MV3;
  • a second spring SP32 for urging the movable valve body in a direction opposite to the direction; and a preload adjusting means M31 capable of adjusting at least one of the first and second springs.
  • Preload setting means M33, and after the setting, temperature detection means M32 When there is a deviation between the output temperature and the target temperature, control execution determining means M34 for determining whether to perform feedback control based on the magnitude of the deviation, A preload control means M35 for controlling the preload adjustment means M31 on the side where the deviation is canceled when the control execution determination means M34 determines that the feedback control is to be performed. ing.
  • the control execution determining unit M34 may be configured to determine that the feedback control is performed when the deviation is within the predetermined range, and to determine not to perform the feedback control when the deviation is outside the predetermined range. Further, the control execution determining means determines that the feedback control is not performed when the deviation is within the first predetermined range, and when the deviation is out of the first predetermined range and the first predetermined range is not satisfied. Means for determining that the feedback control is to be performed when the deviation is outside the second predetermined range, and determining that the feedback control is not to be performed when the deviation is outside the second predetermined range. Some configuration may be used.
  • the initial preload setting means M33 controls the preload adjusting means M31 so that the initial value corresponding to the target temperature of the hot water mixture is obtained.
  • the first spring SP31 changes the spring constant according to the temperature of the hot and cold water mixture, and urges the movable valve element that changes the mixing ratio of the hot and cold water to bring the temperature of the hot and cold water mixture to the target temperature.
  • the preload control means M35 determines the deviation. By controlling the preload adjusting means M31 on the side to cancel, the temperature of the hot and cold water mixture is set as the target temperature.
  • a preload corresponding to the target temperature is set in advance, and the preload is set until the deviation between the temperature of the hot water mixture and the target temperature falls within a predetermined range. Since the flood control is not performed, hot water does not flow immediately after the dead water spouting is completed, and the temperature of the hot water mixture can be set to the target temperature early. Further, at the time of dead water spouting, the spring constant of the first spring SP31 changes, and the movable valve element is urged to increase the proportion of hot water, so that the dead water spouting can be completed early.
  • the hot water mixing apparatus uses a spring made of a material whose spring constant changes according to the temperature within a predetermined temperature range, thereby controlling the temperature of the hot water mixture. It is.
  • the spring force of the first spring SP31 and the spring force of the second spring SP32 are balanced at a temperature deviating from the target temperature, a deviation occurs between the temperature of the hot and cold water mixture and the target temperature. Since the preload adjusting means M31 is controlled on the side that cancels, the temperature of the hot and cold water mixture can be set as the target temperature.
  • the hot water mixing apparatus according to the fourth configuration of the present invention, as illustrated in FIG.
  • a water / water mixing valve MV4 having a movable valve body for adjusting the mixing ratio, and a material whose spring constant changes according to the temperature in a predetermined temperature range, and which is accompanied by a rise in the temperature of the water / water mixture flowing out of the mixing valve MV4.
  • the preload adjusting means M41 is controlled to cancel the deviation.
  • Preload control means M45 and the relationship between the target temperature and the preload when the deviation between the temperature of the hot water mixture detected by the temperature detection means M42 and the target temperature is in a predetermined state.
  • the updating means M 46 for updating the relationship indicated by the preload storage means M 43 is used.
  • the preload setting means M44 controls the preload adjusting means M41 to store the hot water mixture stored by the preload storage means M43.
  • the preload control means M45 sets the preload adjusting means M4 to cancel the deviation. 1 is controlled to set the temperature of the hot and cold water mixture as the target temperature.
  • the updating means M46 uses the relation between the target temperature and the preload when the deviation between the temperature detected by the temperature detecting means M42 and the target temperature reaches a predetermined state, and stores the preload storing means M 4 Update the relationship longed for by 3.
  • the preload storage means is provided by using the relationship between the target temperature and the preload when the deviation between the temperature of the hot water mixture and the target temperature is in a predetermined state. Update the relationship recorded by M43, according to the updated relationship Since the preload is set to the initial value corresponding to the target temperature by the preload setting means M44, even if the spring characteristics of the first spring SP41 vary depending on the product, the first spring SP41 is used. Can be set to an appropriate initial value with respect to the spring characteristic. In addition, when the water supply conditions such as the water supply temperature and hot water supply temperature change depending on the season, even if the spring constant of the first spring SP41 or the second spring SP42 changes over time, the seasonal or aging changes.
  • the hot water mixing apparatus uses a spring made of a material whose spring constant changes according to the temperature within a predetermined temperature range, thereby controlling the temperature of the hot water mixture.
  • a preload strike is performed on the side that cancels the deviation. Since the joint means M41 is controlled, the temperature of the hot and cold water mixture can be set as the target temperature.
  • a hot water mixing apparatus includes a hot water mixing valve MV5 having a movable valve body that adjusts a hot water mixing ratio, and a hot water mixing valve MV5 according to temperature in a predetermined temperature range.
  • a first spring SP51 made of a material having a variable spring constant, for urging the movable valve body in a direction to decrease the proportion of hot water with a rise in the temperature of the hot water mixture flowing out of the mixing valve MV5;
  • a second spring SP52 for urging the movable valve body in a direction opposite to the direction, and a preload adjusting means M51 capable of adjusting at least one of the first and second springs.
  • a plurality of preload storage means M52 for storing a plurality of relations between the target temperature of the hot and cold water mixture and the preload, and the plurality of preload storage means M52 based on input of predetermined data.
  • Select one of multiple target temperatures and preload relationships By controlling the load selecting means M53 and the preload adjusting means M51, the preload is set to an initial value corresponding to the target temperature in accordance with the relationship selected by the preload selecting means M53.
  • Preload setting means M54 Preload setting means M54.
  • the temperature detecting means for detecting the temperature of the hot water mixture, and after the initial value is set by the preload setting means M54, the temperature is detected by the temperature detecting means.
  • a configuration may be provided that includes a preload control unit that controls the preload adjusting unit M51 on the side that cancels the deviation. it can.
  • the preload setting means M54 controls the preload adjusting means M51
  • the preload setting means M51 stores the preload setting means M52.
  • the preload is set to an initial value corresponding to the target temperature according to one of the relationships between the plurality of target temperatures and the preload selected by the preload selecting means M53.
  • the first spring SP51 changes the spring constant according to the temperature of the hot and cold water mixture, and urges the movable valve element that adjusts the hot and cold water mixing ratio to bring the temperature of the hot and cold water mixture to the target temperature. To control.
  • the relationship between the target temperature and the preload used when the preload is set by the preload setting means M54 to the initial value corresponding to the target temperature is determined by a predetermined value. Enter the data and select one of the multiple relationships stored in the multiple preload storage means M52, and easily set the initial value according to the water supply temperature, hot water temperature, etc.
  • the temperature of the hot and cold water mixture can be set to the target temperature at an early stage.
  • the preload control means when the preload control means is provided, the temperature of the hot water mixture can be varied even when the preload set at the initial value causes a deviation between the temperature of the hot water mixture and the target temperature. Can be set as the target temperature.
  • the hot water mixing apparatus according to the fifth configuration uses a spring made of a material whose spring constant changes according to the temperature within a predetermined temperature range, thereby controlling the temperature of the hot water mixture.
  • the first hot and cold water mixing method of the present invention is a first spring made of a material whose spring constant changes according to the temperature in a predetermined temperature range, wherein the temperature of the hot and cold water mixture flowing out of the hot and cold water mixing valve having a movable valve element is controlled.
  • the movable valve body is urged in a direction to decrease the proportion of hot water with the rise, and the movable spring is urged by a second spring in a direction opposite to the direction.
  • a water / water mixing method for adjusting a mixing ratio of at least one of the first and second springs, and adjusting the preload to an initial value corresponding to a target temperature of the hot / water mixture.
  • the temperature of the hot and cold water mixture is detected, and if there is a deviation between the detected temperature and the target temperature, the first and second springs are set on the side for canceling the deviation.
  • the gist is to adjust at least one preload.
  • the preload of at least one of the first and second springs is adjusted to set the preload to an initial value corresponding to the target temperature of the hot and cold water mixture. After setting the preload to the initial value, the temperature of the hot and cold water mixture is detected. If there is a deviation between the detected temperature and the target temperature, at least one preload of the first and second springs is adjusted to cancel the deviation.
  • the temperature of the hot and cold water mixture can be controlled by using a spring made of a material whose spring constant changes according to the temperature within a predetermined temperature range.
  • a deviation occurs between the temperature of the hot and cold water mixture and the target temperature. Since at least one preload of the spring is adjusted so as to cancel the deviation, the temperature of the hot and cold water mixture can be set as the target temperature.
  • the temperature of the hot and cold water mixture may deviate from the target temperature due to the temperature hysteresis of the first spring, the difference in spring constant due to aging, and the characteristic error between the lots.
  • the preload of at least one of the first and second springs is adjusted to cancel the deviation, the temperature of the hot and cold water mixture can be set as the target temperature.
  • the second hot and cold water mixing method is characterized in that a first spring made of a material whose spring constant changes according to temperature in a predetermined temperature range, wherein the temperature of the hot and cold water mixture flowing out of the hot and cold water mixing valve having a movable valve body
  • the movable valve body is urged in a direction to decrease the proportion of hot water with the rise, and the movable valve body is urged by a second spring in a direction opposite to the direction.
  • a hot water mixing method for adjusting a hot water mixing ratio comprising detecting a temperature of the hot water mixture and, if there is a deviation between the detected temperature and a target temperature, providing feedback based on the hot water mixing state.
  • the gist of the present invention is to determine the gain of control and to perform feedback control of at least one preload of the first and second springs on the side that cancels the deviation using the gain.
  • the temperature of the hot and cold water mixture is detected. If there is a deviation between the detected temperature and the target temperature, the gain of the feedback control is determined based on the mixing state of the hot and cold water, and the gain is used to cancel the deviation using the gain. At least one preload of the first and second springs is feedback controlled.
  • the hunting is performed in a wide temperature range. It is possible to control to the target temperature without performing.
  • a spring made of a material whose spring constant changes according to the temperature within a predetermined temperature range is used, thereby controlling the temperature of the hot and cold water mixture.
  • the spring force of the first spring and the spring force of the second spring become equal at a temperature that deviates from the target temperature. If there is a deviation between the temperature of the hot and cold water mixture and the target temperature, the deviation is canceled. Since feedback control is performed on at least one of the preloads of the first and second springs, the temperature of the hot and cold water mixture can be set as the target temperature.
  • the third hot water mixing method of the present invention is a first spring made of a material whose spring constant changes according to temperature in a predetermined temperature range, wherein the temperature of the hot water mixture flowing out of the hot water mixing valve having a movable valve body is controlled by the first spring.
  • the movable valve body is urged in a direction to decrease the proportion of hot water with the rise, and the movable spring is urged by a second spring in a direction opposite to the direction.
  • a water / water mixing method for adjusting a mixing ratio of at least one of the first and second springs, and adjusting the preload to an initial value corresponding to a target temperature of the hot / water mixture.
  • the temperature of the hot and cold water mixture is detected, and if there is a deviation between the detected temperature and the target temperature, whether or not to perform feedback control based on the magnitude of the deviation
  • the feedback control is implemented. Occasionally, and summarized in that to control the at least one preload of said first and second spring on the side to cancel the deviation.
  • the preload of at least one of the first and second springs is adjusted to set the preload to an initial value corresponding to the target temperature of the hot and cold water mixture.
  • the temperature of the hot and cold water mixture is detected. If there is a deviation between the detected temperature and the target temperature, it is determined whether or not to execute the feedback control based on the magnitude of the deviation. When this determination is to perform the feedback control, the preload of at least one of the first and second springs is controlled to cancel this deviation.
  • a preload corresponding to the target temperature is set in advance, and the feedback is performed until the deviation between the temperature of the hot and cold water mixture and the target temperature falls within a predetermined range. Since the control is not performed, hot water does not flow immediately after the dead water spouting is completed, and the temperature of the hot and cold water mixture can be set to the target temperature early. Also, at the time of dead water spouting, the spring constant of the first spring changes, and the movable valve body is urged to increase the proportion of hot water, so that the dead water spouting can be completed early.
  • the third hot and cold water mixing method uses a spring made of a material whose spring constant changes according to the temperature within a predetermined temperature range, thereby controlling the temperature of the hot and cold water mixture.
  • a deviation occurs between the temperature of the hot and cold water mixture and the target temperature. Since the preload of at least one of the first and second springs is controlled, the temperature of the hot and cold water mixture can be set as the target temperature.
  • a fourth hot water mixing method is characterized in that, in a first spring made of a material whose spring constant changes according to temperature in a predetermined temperature range, the temperature of the hot water mixture flowing out of the hot water mixing valve having a movable valve body is adjusted.
  • the movable valve body is urged in a direction to decrease the proportion of hot water with the rise, and the movable spring is urged by a second spring in a direction opposite to the direction.
  • a method for adjusting the mixing ratio of the hot and cold water wherein a relationship between a target temperature of the hot and cold water mixture and the preload is recorded, and at least one of the first and second springs is adjusted to adjust the preload.
  • the preload is set to an initial value corresponding to the target temperature, and after the setting, the temperature of the hot and cold water mixture is detected, and there is a deviation between the detected temperature and the target temperature.
  • the stored relation is used. Is to be updated.
  • This fourth hot water mixing method stores the relationship between the target temperature of the hot water mixture and the preload.
  • the preload of at least one of the first and second springs is adjusted, and the preload is set to an initial value corresponding to the target temperature according to the stored relationship.
  • the temperature of the hot and cold water mixture is detected. If there is a deviation between the detected temperature and the target temperature, the preload of at least one of the first and second springs is controlled to cancel the deviation, and the detected temperature and the target temperature are controlled.
  • the stored relationship is updated using the relationship between the target temperature and the preload.
  • the temperature of the hot water The stored relationship is updated using the relationship between the target temperature and the preload when the deviation is in the predetermined state, and the preload is set to the initial value corresponding to the target temperature according to the updated relationship. Even if the spring characteristics of the first spring vary depending on the product, it is possible to set an appropriate initial value for the spring characteristics of the first spring. In addition, when the water supply conditions such as the water supply temperature and hot water supply temperature change depending on the season, even when the spring constant of the first spring or the second spring changes over time, it is always appropriate regardless of the seasonal change or the change over time. Initial value.
  • the fourth hot and cold water mixing method a spring made of a material whose spring constant changes according to the temperature within a predetermined temperature range is used, and the temperature of the hot and cold water mixture is controlled accordingly. Further, when the spring force of the first spring and the spring force of the second spring are balanced at a temperature deviating from the target temperature, if a deviation occurs between the temperature of the hot and cold water mixture and the target temperature, the first and the second sides cancel the deviation. Since at least one preload of the second spring is controlled, the temperature of the hot and cold water mixture can be set as the target temperature.
  • the fifth hot and cold water mixing method of the present invention is characterized in that a first spring made of a material whose spring constant changes according to the temperature in a predetermined temperature range, wherein the temperature of the hot and cold water mixture flowing out of the hot and cold water mixing valve having a movable valve element is adjusted.
  • the movable valve body is urged in a direction to decrease the proportion of hot water with the rise, and the movable spring is urged by a second spring in a direction opposite to the direction.
  • a water / water mixing stand method for adjusting a mixing ratio of a plurality of target temperatures of the hot / cold water mixture and the preload, based on a predetermined data input, and One of the relationships with the load is selected, and at least one of the first and second springs is adjusted in accordance with the selected relationship to adjust the preload to an initial value corresponding to the target temperature. It should be set to a value.
  • This fifth method of mixing hot and cold water stores a plurality of relationships between the target temperature and the preload of the hot and cold water mixture, and based on the input of predetermined data, among the relationships between the plurality of stored target temperatures and the preload, Select one relationship.
  • the preload of at least one of the first and second springs is adjusted according to the selected relationship, and the preload is set to an initial value corresponding to the target temperature.
  • the relationship between the target temperature and the preload used when the preload is set to the initial value corresponding to the target temperature is determined by inputting predetermined data, Since one relationship is selected from the stored relationships, the initial value can be easily set according to the water supply temperature and hot water supply temperature, etc., and the temperature of the hot and cold water mixture can be set to the target temperature early. Can be.
  • a spring made of a material whose spring constant changes according to the temperature within a predetermined temperature range is used, thereby controlling the temperature of the hot and cold water mixture.
  • FIG. 1 is a block diagram illustrating a basic structure of a hot water mixing apparatus according to a first configuration of the present invention
  • FIG. 2 is a block diagram illustrating a basic structure of a hot water mixing apparatus according to a second configuration of the present invention
  • FIG. 3 is a block diagram illustrating a basic structure of a hot water mixing apparatus according to a third configuration of the present invention
  • FIG. 4 is a block diagram illustrating a basic structure of a hot water mixing apparatus according to a fourth configuration of the present invention
  • FIG. 5 is a block diagram illustrating a basic structure of a hot water mixing apparatus according to a fifth configuration of the present invention
  • FIG. 6 is a schematic view illustrating a hot water mixing apparatus 10 according to one embodiment of the present invention.
  • FIG. 7 is a perspective view of the hot and cold water mixing device 10 shown in FIG. 6,
  • FIG. 8 is a cross-sectional view of a water supply leg fitting 11 that constitutes the hot water mixing device 10.
  • FIG. 9 is an enlarged cross-sectional view of a valve unit 15 constituting the hot-water mixing apparatus 10,
  • FIG. 10 shows the structure of the fixed disk 1 21 incorporated in the switching / water stop valve 120
  • Fig. 11 shows the structure of the rotating disk 1 25 incorporated in the switching / water stop valve 120
  • FIG. 12 is a block diagram illustrating an electrical configuration of a control system centering on the CPU 150a.
  • FIG. 13 is a flowchart illustrating an initial preload adjustment routine executed by the electronic control unit 150
  • FIG. 14 is a graph illustrating the relationship between the spring constant BK of the temperature-sensitive coil spring 80, the change rate of the spring constant ⁇ ⁇ K, the control gain K, and the temperature T
  • FIG. 15 is a flow chart showing a processing routine at the start of hot water supply executed by the electronic control unit 150,
  • FIG. 16 is a flowchart illustrating a target temperature change processing routine executed by the electronic control unit 150
  • FIG. 17 is a flowchart illustrating a feedback control routine performed by the electronic control unit 150
  • FIG. 18 is a flowchart showing a modified example of the feedback control routine executed by the electronic control unit 150.
  • FIG. 20 is a flowchart showing a modified example of the feedback control routine executed by the electronic control unit 150.
  • FIG. 20 is a flowchart illustrating an initial value selection routine executed by the electronic control unit 150 of the hot water mixing apparatus according to the second embodiment of the present invention.
  • FIG. 21 is a schematic diagram illustrating an outline of a preload adjusting mechanism 200 of a hot water mixing apparatus according to a third embodiment of the present invention.
  • FIG. 22 is a schematic view illustrating the outline of the preload adjusting mechanism 300 of the hot and cold water mixing apparatus according to the fourth embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a hot water mixing apparatus according to one embodiment of the present invention
  • FIG. 7 is a perspective view of the hot water mixing apparatus.
  • the hot water mixing device 10 includes a water supply leg fitting 11 for supplying water from a water pipe, a hot water supply leg fitting 12 for supplying hot water from a water heater (not shown), and a valve unit for mixing hot and cold water. And a control unit 18 for electrically controlling the mixing ratio of hot and cold water.
  • the valve unit 15 is functionally composed of a hot-water mixing valve 60 for mixing water supplied from the water supply leg fitting 11 and hot water supplied from the hot-water supply leg fitting 12, and a hot-water mixing valve 6
  • a preload adjusting mechanism 100 that adjusts the position of the movable valve element 70 incorporated in the cylinder 0, a temperature sensor 110 that detects the temperature of the hot and cold water mixture TC, and a shower 130 And a switching Z water shutoff valve 120 for selecting mixed hot water from water 140 and stopping water. Specific configurations of these will be described later.
  • the control unit 18 includes a liquid crystal display (LCD) 160 for displaying the target temperature TP, and a panel operation unit 17 for performing operations such as setting the target temperature TP and selecting water discharge.
  • LCD liquid crystal display
  • the temperature signal detected by the temperature sensor 110 and the signal from the panel operation section 170 are input to switch the preload adjusting mechanism 100 to the switching / water stop valve 120 and the LCD. And an electronic control unit 150 that outputs an output signal to the electronic control unit 160. Further, the hot and cold water mixing apparatus 10 is connected to a battery 180 so as to supply necessary power to each section.
  • the panel operation unit 170 constituting the control unit 18 includes a switch 171 for decrementing the target temperature TP displayed on the LCD 160, Switch 172 for incrementing target temperature TP, power selection switch 1775 for selecting water discharge from shower 130, and force for selecting water discharge from callan 140 It is composed of a water selection switch 176 and a water stop switch 177 for selecting water stoppage.
  • the water supply leg fitting 11 has a housing 20 formed with an inlet 21 connected to a water pipe and an outlet 29 connected to a hot and cold water mixing valve 60.
  • the water shutoff valve 22 and the pressure control valve 30 are incorporated in the housing 20.
  • the water stop valve 22 includes a cap 27 that is liquid-tightly fastened to the housing 20, a valve element 23 guided by the cap 27 and the housing 20, and a strainer 28.
  • the valve element 23 has a guide part 24 and an end part 26 with the housing 20, and the guide part 24 is provided with an opening part 25 serving as a water passage when water flows. is there.
  • the guide portion 24 is engaged with the housing 20 by screws, and has a structure in which the valve body 23 is displaced in the rotation axis direction by rotating the valve body 23. Therefore, by turning the valve body 23 and attaching / detaching the end portion 26 and the housing 20, water is stopped or water is passed. At the time of water flow, the water flowing from the gap between the end 26 and the housing 20 flows through the opening 25, removes dust by the strainer 28, and then flows into the pressure control valve 30.
  • the pressure control valve 30 is a valve that controls the water side pressure supplied to the valve unit 15, A valve seat 31 annularly formed inside the housing 20, a valve member 32 that cooperates with the valve seat 31 to control the flow of water, and a guide member for slidably housing the valve member 32. 35, a valve shaft 40 fixed to the valve member 32, a metal bellows 45 to which the end of the valve shaft 40 is assembled.
  • the valve member 32 has a main body 32 A to which the valve shaft 40 is fixed by a nut 34, and a cylindrical scar 33 extending in a direction opposite to the valve seat 31.
  • the cart 33 is housed with a slight clearance in the bore 36 of the guide member 35 which is liquid-tightly fastened to the housing 20. Therefore, the secondary pressure chamber 37 formed by the valve member 32, the scart 33, and the guide member 35 introduces the secondary pressure P2 of the water supply downstream of the valve seat 31.
  • the valve shaft 40 is provided with a spring receiver 41 at an end opposite to the valve member 32, and the housing 20 is provided with a cap 42 which is opposed to the spring receiver 41. Liquid-tight.
  • a metal bellows 45 is disposed between the spring receiver 41 and the cap 42 in a liquid-tight manner to form a back pressure chamber 46.
  • the metal bellows 45 is a spring having a constant spring constant, and the effective pressure receiving area is set so as to be equal to the effective area of the valve seat 31 c.
  • the hot water supply pressure P 3 from the water heater is introduced by the pressure introduction pipe 58 connected to the water supply port.
  • the pressure control valve 30 thus configured operates as follows.
  • the valve member 32 receives a force acting in the valve opening direction by the water supply primary pressure P 1 and a force acting in the valve closing direction by the water supply secondary pressure P 2 of the secondary pressure chamber 37.
  • the spring receiver 41 has a force acting in the valve closing direction due to the primary water supply pressure P 1, a spring force acting in the valve opening direction due to the metal bellows 45, and a hot water supply pressure P 3 in the back pressure chamber 46. And a force acting in the valve opening direction. Since the valve member 3 2 and the spring receiver 4 1 are connected by the valve shaft 40, the force acting in the valve opening direction by the primary water supply pressure P 1 of the valve member 32 and the primary water supply pressure P 1 of the spring receiver 4 1.
  • the force acting in the valve closing direction of the secondary pressure chamber 37 is almost equal to the force acting in the valve closing direction of the secondary pressure chamber 37. And the force acting in the valve opening direction due to the hot water supply pressure P3 in the back pressure chamber 46 is equalized. Therefore, the water supply secondary pressure P 2 is higher than the hot water supply pressure P 3 by the spring force of the metal bellows 45, and even if the primary water supply pressure P 1 from the water pipe and the hot water supply pressure P 3 from the water heater fluctuate, The pressure difference between the water supply secondary pressure P 2 and the hot water supply pressure P 3 is constant. Become.
  • a water stop valve 52 similar to the water stop valve 22 incorporated in the water supply leg fitting 11 is incorporated.
  • the valve cutout 15 has a housing 61, in which a hot and cold water mixing valve 60, a preload adjusting mechanism 100, a temperature sensor 110 and a switching / water shutoff valve are provided. One hundred twenty are built in.
  • a water inlet 85 and a hot water inlet 95 are formed in the housing 61, and the water inlet 85 is connected to an outlet 29 of the water supply leg fittings 11 and a hot water inlet 95 is used for hot water supply.
  • the outlet 59 of the leg fitting 1 2 is connected.
  • Hot water mixing valve 60 includes annular passages 86 and 96 communicating with water inlet 85 and hot water inlet 95, respectively, valve chamber 63 accommodating movable valve element 70 slidably in the axial direction, and hot and cold water. It has a mixing chamber 64.
  • the valve chamber 63 is defined by a water-side valve seat 87 and a hot-side valve seat 97 perpendicular to the axis of the hot-water mixing valve 60 and an axial bore 62.
  • the movable valve body 70 has a cylindrical portion 71 and a radial valve 72. A minute clearance is provided between the outer diameter of the cylindrical portion 71 and the inner diameter of the pore 62.
  • a plurality of openings 73 are provided in the valve 72 of the movable valve body 70, and the hot water flowing into the valve chamber 63 from the hot water inlet 95 flows through the opening 73 to the hot and cold water mixing chamber 6. Flow into 4 and mix with water.
  • the mixing ratio of water and hot water changes as the movable valve body 70 is displaced in the axial direction. If the movable valve body 70 is displaced to a position where it engages with the water-side valve seat 87 to shut off water, only hot water flows out, and the movable valve body 70 engages with the hot-water valve seat 97. If it is displaced to the position where it merges and the hot water is cut off, only water will flow out.
  • the movable valve element 70 is positioned by the balance of the forces of the temperature-sensitive coil spring 80 disposed in the hot and cold water mixing chamber 64 and the second coil spring 90 disposed in the valve chamber 63. It has a structure. For this reason, one end of the temperature-sensitive coil spring 80 is supported by a spring ring 75 fixed to the housing 61 by a retaining ring 74, and the other end is fixed to a spring ring 76 fixed to the movable valve body 70. It is supported. In addition, one end of the second coil spring 90 is supported by a spring receiver 77 linked to the movable valve element 70, and the other end is supported by a movable spring receiver 102 of the preload adjusting mechanism 100. .
  • the temperature-sensitive coil spring 80 is made of a metal whose spring constant changes according to the temperature
  • the second coil spring 90 is made of a normal spring material having a constant spring constant with respect to temperature.
  • a metal material whose spring constant changes according to the temperature an alloy belonging to the range of a shape memory alloy (SMA) made of a Huckel-titanium alloy is known.
  • SMA shape memory alloy
  • the elastic modulus changes according to the temperature
  • the spring constant of the temperature-sensitive coil spring 80 composed of the SMA changes according to the temperature.
  • Temperature-responsive thermosensitive coil springs 80 having desired temperature characteristics made of SMA can be obtained from various suppliers. For example, Kanto Special Steel Co., Ltd. has “KTS—SM Alloy”.
  • the spring constant and preload of the temperature-sensitive coil spring 80 must be large enough to reduce the energy of the battery 180 that is yellowed by the preload adjustment mechanism 100. It must be set to be smaller.
  • the temperature-sensitive coil spring 80 operates under the low-temperature condition in which only water is to be discharged (at this time, the preload applied to the second coil spring 90 can be made zero, and the movable valve element 70 is provided with the temperature-sensitive coil spring.
  • the spring 80 presses the movable valve element 70 against the hot-side valve seat 97 with sufficient force to block the inflow of hot water. Force must be generated.
  • the spring constant and preload of the temperature-sensitive coil spring 80 are such that the spring force generated at low temperatures (for example, when the water supply temperature Tw is 5'C) is 500 g or less, preferably 3 g. Set to 0 0 8 0 or less.
  • the preload adjusting mechanism 100 is configured so that the preload of the second coil spring 90 can be varied by rotating the preload adjusting motor 105 in either direction. For this reason, a movable spring receiver 102 is axially displaceable and non-rotatably spline-fitted to the end member 101 which is liquid-tightly fastened to the housing 61. A worm 104 formed on the output shaft 103 of the preload adjusting motor 105 mates with the inner screw of the receiver 102. In addition, the output shaft 103 of the preload attack motor 105 is sealed by a 0 ring 106.
  • the preload attack mechanism 100 configured as described above rotates the preload adjusting motor 105 in a predetermined direction to displace the movable spring receiver 102 to the right in FIG. 2 Increase the preload of coil spring 90 and turn the preload adjusting motor 105 in the opposite direction.
  • the preload of the second coil spring 90 is reduced by rotating the movable spring receiver 102 to the left by rotating the movable spring receiver 102 leftward.
  • the temperature sensor 110 is disposed downstream of the spring receiver 75, which is the outlet of the hot water mixing valve 60, so that the temperature sensing part thereof comes into direct contact with the mixed hot water flowing out of the hot water mixing valve 60. Liquid tight.
  • the switching / water stop valve 120 is disposed downstream of the temperature sensor 110, and rotates while being rubbed against the fixed disk 121 fixed to the housing 61 and the fixed disk 121. It has a rotating disk 125 and a switching Z water stop motor 127 for driving the rotating disk 125 to rotate.
  • the fixed disk 121 has two water discharge ports 122 and 123 as shown in FIG. 10, and one of the water discharge ports 122 is connected to the fitting 131 and the shower hose 132 (see FIG. 7).
  • the other water discharge port 123 is connected to the shower 130 and to the callan 140 via a connection fitting 141 and a switch joint (not shown).
  • the rotating disk 125 has only one water discharge port 126 communicating with the hot / water mixing chamber 64 of the hot / water mixing valve 60 as shown in FIG. Switching When the water stop motor 127 is rotated to align the water discharge port 126 of the rotating disk 125 with the water discharge port 122 of the fixed disk 121, the mixed hot water is supplied to the shower 130 and the water discharge port is discharged. When 126 is aligned with the water discharge port 123 of the fixed disk 121, the mixed hot water is supplied to the column 140, and the water discharge port 126 is offset from any of the water discharge ports 122 and 123 of the fixed disk 121. Water is stopped when you let it.
  • the electronic control unit 150 constituting the control unit 18 is configured as a logical operation circuit centered on a micro computer as shown in FIG.
  • CPU 150a that executes various arithmetic processes to control hot water in accordance with a preset control program, control program necessary to execute various arithmetic processes in CPU 150a, and control data ROM 150b pre-stored, etc., as well as RAM 150c where various data necessary to execute various arithmetic processing with the CPU 150a are temporarily read and damaged, even when the power is turned off.
  • the electronic control device 150 includes a constant voltage circuit 150 j connected to the battery 180.
  • the operation of the hot water mixing apparatus 10 thus configured will be described below.
  • the initial preload adjustment routine of FIG. 13 will be described. This routine is executed when newly installing the hot water mixing apparatus 10 or when restarting the use of the hot water mixing apparatus 10 that has not been used for a long time.
  • the user inputs characteristic values T1 and T0 representing the spring characteristics of the temperature-sensitive coil spring 80 (step S100).
  • the characteristic value T 1 is the temperature at which the spring constant BK of the temperature-sensitive coil spring 80 starts to change due to the temperature rise
  • the characteristic value 0 is in the region where the spring constant changes in proportion to the temperature rise. This is the slope when the change in spring constant BK is almost constant.
  • the spring constant BK of the temperature-sensitive coil spring 80 is determined by setting the constant value BK2 in the region where the temperature T is less than T1 (section U1) and the region above T4 (section U1).
  • U 5) shows a constant value BK 1, and in the range from T 1 to T 4 (sections U 2, U 3, U 4), it changes according to the hot and cold water mixture temperature TC.
  • the rate of change B K is constant, and a proportional relationship with a zero slope is established.
  • the spring characteristics of the temperature-sensitive coil spring 80 can be represented by the temperature Tl, ⁇ 2, ⁇ 3, ⁇ 4, and the slope 0 as parameters.
  • the spring characteristics of the temperature-sensitive coil spring 80 can be distinguished by using the temperature T1 and the slope 0, and when the classified temperature-sensitive coil spring 80 is used as the hot-water mixing device 10. Then, by inputting the temperature T1 and the slope 0 (characteristic values ⁇ 1, ⁇ ), the spring characteristics can be determined.
  • the pattern of the control gain K in the feedback control for maintaining the hot and cold water mixture temperature TC at the target temperature TP is shown in the diagram showing the relationship between the characteristic values T 1, ⁇ and the pattern of the control gain K. It is determined by a map not to be used (step S110).
  • the control gain K is controlled according to the target temperature TP by changing the rate of change ⁇ ⁇ K of the spring constant of the temperature-sensitive coil spring 80 with the hot and cold water mixture temperature TC. In some cases, the control gain K is determined based on the change rate of the spring constant ⁇ K.
  • Figure 14 (b) and (c) show an example of the relationship between the rate of change ⁇ K and the control gain K and temperature.
  • the control gain K is set based on the rate of change ⁇ ⁇ ⁇ K of the spring constant as follows.
  • a predetermined value K1 is set, and in the section U2 where the spring constant BK and the temperature T are not in a proportional relationship and the rate of change ⁇ K changes.
  • the predetermined value K2 is smaller than the predetermined value K1.
  • the same set value K 1 as in section U 3 is used.
  • the hot and cold mixture temperature TC can be controlled at the target temperature TP without hunting. This is for the following reasons. Since the rate of change ⁇ K of the spring constant in section U 2 or U 4 is smaller than the rate of change ⁇ ⁇ K in section U 3, the effect of the change in spring constant BK for the same temperature change Is smaller in section U2 or U4 than in section U3.
  • the same driving amount of the preload adjusting motor 105 actual preload adjusting amount AF
  • the temperature change of the hot and cold water mixture temperature TC is reduced in the section U 3 by an amount corresponding to the small effect of the change of the spring constant BK.
  • Section U2 or U4 is larger than section U2 or U4. Therefore, when the predetermined value K1 of the control gain K, which was able to perform appropriate control in the section U3, is used in the section U2 or U4, the actual preload adjustment amount calculated based on the control gain K is calculated. AF becomes larger than the appropriate value, which may cause hunting around the target temperature TP. As a result, in order to perform appropriate control also in the section U2 or U4, it is preferable to reduce the control gain K and the actual preload adjustment amount AF with respect to the temperature deviation ⁇ .
  • control gain K in the sections U 1 and U 5 is set to the same predetermined value K 1 as the section U 3, but may not be the same predetermined value K 1 as the section U 3. But a small value is fine.
  • control gain K is set to the predetermined value K 1 K 2 based on the rate of change ⁇ ⁇ ⁇ K of the spring constant.
  • control gain K is calculated by multiplying the rate of change ⁇ K by a proportional constant.
  • a configuration in which the gain K is obtained from the ternary map of the control gain K, the rate of change of the spring constant ⁇ K, and the hot and cold water mixture temperature TC is also suitable.
  • Step S120 After determining the pattern of the control gain K in this way, read the pre-set value FM of the pre-load saving amount FS stored in the ROM 150b in advance, and adjust the pre-load so that the pre-load becomes the specified value FM.
  • the motor 105 is driven (Step S120).
  • This predetermined value FM is a preload at which the hot-water opening and the water-side opening are almost the same even if the temperature-sensitive coil spring 80 has product variations.
  • the switching / water stop valve 120 is driven to the callan side (step S130), and water is discharged until the hot and cold water mixture temperature TC becomes constant (step S140). By this processing (steps S130 and S140), dead water that has accumulated in the water supply pipe and the hot water supply pipe is discharged.
  • the preload is set to the value 0 (step S150). In other words, the hot water side is fully closed to discharge only water.
  • a process of reading the feed water temperature Tw measured by the temperature sensor 110 is executed (step S160), and the target temperature TP is calculated as a value obtained by adding the value 1 to the feed water temperature Tw (step S160). S 170).
  • the calculated target temperature TP is displayed on the LCD 160 (step S180), and a process of reading the hot and cold mixture temperature TC measured by the temperature sensor 110 is executed (step S190).
  • the temperature difference ⁇ is calculated by subtracting the hot and cold mixture temperature TC read from the target temperature TP (step S 200), and the temperature difference ⁇ is compared with a 3 ⁇ 4 value T ref corresponding to a predetermined deviation (step S 210).
  • the K value Tr e f is the maximum value (permissible temperature deviation) of the temperature deviation at which the hot and cold water mixture temperature TC is punched from the target temperature TP.
  • This 3 ⁇ 4 value Tr e f is determined by the minimum value at which the preload section motor 105 can be driven and controlled, the characteristics of the temperature-sensitive coil spring 80, and the like.
  • the actual preload adjustment amount AF is obtained by multiplying the temperature gain ⁇ by the control gain ⁇ obtained from the control gain K pattern (the relationship between the rate of change of the spring constant ⁇ ⁇ and the control gain ⁇ ) determined by
  • the current preload adjustment amount FD which is the current preload adjustment amount, is increased by the actual preload attack amount ⁇ F (step S230), and the process returns to step S190. .
  • This closed loop is performed (steps S 190 to S 230) until the absolute value of the temperature deviation ⁇ T falls below the minimum value T ref.
  • the values of the target temperature TP and the current preload adjustment amount FD are stored in the backup RAM I 50d (step S240).
  • a region is previously secured in the backup RAM 150d as a map representing the relationship between the hot and cold water mixture temperature TC and the preload adjustment amount FS, and the values of the target temperature TP and the current preload amount FD are stored.
  • the target temperature TP I link Li ment (step S 250)
  • the target temperature TP is compared to the value 60 (step S 260) o the target temperature when TP has a value 60 following steps S 1 80 Return and loop through the loop from step S180 to S260.
  • the routine is terminated assuming that the adjustment of the initial preload has been completed.
  • the adjustment of the initial preload is completed at 6 O'C, but the end point of the adjustment may be determined by the operating temperature, and may be any number of times.
  • the target temperature TP is incremented from the feedwater temperature Tw to adjust the initial preload.
  • the initial preload may be adjusted by decrementing the target temperature TP from, and the target temperature TP is incremented only in a predetermined temperature range, for example, only in the temperature range from 35 to 45.
  • the initial preload may be adjusted by decrement.
  • a configuration that increases by two or the like is also suitable.
  • the hot and cold water mixture temperature TC and the preload adjustment amount FS are set by actually mixing the hot and cold water after the hot and cold mixing device 10 is installed, so that a highly compatible map can be obtained.
  • the hot-water mixture temperature TC can be set to the target temperature TP early.
  • This routine is executed when the shutter selection switch 175 or the call selection switch 176 of the panel operation section 170 is pressed and a switch signal is input via the switch input circuit 150f. .
  • a map (not shown) representing the relationship between the hot and cold water mixture temperature TC stored in the backup RAM I 50 d and the preload adjustment amount FS by the initial preload adjustment routine shown in FIG.
  • the preload adjustment amount FS corresponding to the value TD is obtained (step S330).
  • step S340 The difference between the obtained preload adjustment amount FS and the current preload adjustment amount FD is set to the actual preload adjustment amount F (step S340), and the current preload adjustment amount FD is set to the actual preload adjustment amount ⁇ F. Only increase (step S350).
  • the default value TD may be set to any number of times.However, in order to prevent hot or cold water from flowing out of the chamber at the start of tapping, the default value of the hot / cold water mixture temperature TC is used. It is desirable to do. Further, a configuration without the default value TD may be used, but a configuration in which the movable valve body 70 is adjusted so that the temperature of the hot and cold water mixture TC when the tapping is finished is preferably used. In this case, steps S300 to S350 are unnecessary.
  • step S360 it is determined which one of the switch 175 and the switch 176 has been pressed.
  • the switching Z water stop motor 127 is driven to align the water discharge port 126 of the rotating disk 125 with the water discharge port on the side of the pressed switch (steps S370 and S370).
  • step S370 and S370 0 Water discharge port 1 22 or 123 matches rotating water disk 1 25 water discharge port 1 26
  • tapping is started from shower 130 or curtain 140, and this routine ends.
  • a process of reading the set target temperature TP and the current preload adjustment amount FD is executed (steps S400 and S410), and the above-described relationship between the hot and cold water mixture temperature TC and the preload interlocking amount FS is described.
  • the preload squatting amount FS corresponding to the target temperature TP is obtained (step S420).
  • the difference between the obtained preload adjustment amount FS and the current preload adjustment amount FD is set to the actual preload adjustment amount AF (step S430), and the current preload adjustment amount FD is set to the actual preload adjustment amount FD. Increase by F (step S440) and end this routine.
  • the movable valve body 70 When the temperature of the hot and cold water mixture TC reaches the target temperature TP and the conditions such as the hot water supply temperature Th and the water temperature or the flow rate of the water heater are in a steady state, the movable valve body 70 The position is determined by the approximation of the spring force generated in the temperature-sensitive coil spring 80 due to hot and cold water and the spring force (preload) of the second coil spring 90, and the position is stationary. From this state, if conditions such as the hot water supply temperature Th from the water heater, tap water temperature or flow rate fluctuate due to disturbance, the temperature TC of the hot water mixture in the hot water mixing chamber 64 deviates from the target temperature TP in accordance with the fluctuation. A temperature deviation ⁇ occurs.
  • the temperature-sensitive coil spring 80 changes the spring constant according to the temperature change, and as a result, the spring force of the temperature-sensitive coil spring 80 changes.
  • the spring force of the temperature-sensitive coil spring 80 increases, and the movable valve body 70 is moved to the left in FIG. 9 while increasing the preload of the second coil spring 90.
  • the proportion of hot water decreases, and the temperature TC of the hot and cold water mixture decreases.
  • the spring force of the temperature-sensitive coil spring 80 The second valve spring 90 allows the movable valve element 70 to shift to the right in FIG. 9, so that the proportion of water decreases and the temperature TC of the hot and cold water mixture increases.
  • the hot-water mixture temperature TC is maintained at the target temperature TP.
  • the hot water mixture temperature TC is controlled by the feedback control routine shown in Fig. 17. Is done. This routine is executed every predetermined time, for example, every 1 Oms.
  • step S500 a process of reading the target temperature TP and the hot / cold water mixture temperature TC detected by the temperature sensor 110 is executed (step S500), and the difference between the target temperature TP and the hot / cold water mixture temperature TC is calculated as the temperature.
  • step S510 a process of reading the target temperature TP and the hot / cold water mixture temperature TC detected by the temperature sensor 110 is executed (step S500), and the difference between the target temperature TP and the hot / cold water mixture temperature TC is calculated as the temperature.
  • Step S510 c.
  • Step S520 Compare the calculated absolute value of temperature deviation ⁇ ⁇ with S value TR1 (Step S520), and calculate the absolute value of temperature deviation ⁇ from 83 value TR1. If it is larger, this routine is terminated because it is not in the area where feedback control is performed.
  • the S value TR 1 is a value for judging the start of the feedback control, and the movable valve element 70 is set at the position initially set by the hot water start processing routine or the target temperature change processing routine. It is set as a value larger than the deviation between the target temperature TP and the hot and cold water mixture temperature TC at the time of steady state. This deviation is determined by variations in the temperature-sensitive coil spring 80 and the second coil spring 90 for each product, changes in the spring constant of the temperature-sensitive coil spring 80 due to aging, and the like. Therefore, it is preferable that the 19-value TR 1 be a value obtained by adding a margin to this deviation.
  • the absolute value of the temperature deviation ⁇ is larger than the S value TR1, it means that the dead water of the hot water supply pipe or the like is still being discharged or the preload adjusting motor 105 is operating. If the feedback control is performed at this time, if the dead water spouting etc. is completed, the appropriate preload adjustment amount FS will be changed to the inappropriate preload adjustment amount FS due to the transition water temperature TC. On the contrary, setting the temperature TC of the hot and cold water mixture to the target temperature TP is delayed. Therefore, in this case, no feedback control is performed.
  • the absolute value of the temperature deviation ⁇ is equal to or less than the K value TR1 (step S520)
  • the absolute value of the temperature deviation ⁇ is compared with the 19-value T ref (step S530).
  • T ref the pattern of the control gain K determined by inputting the characteristic values T 1 and 0 (the relationship between the rate of change of the spring constant ⁇ K and the control gain K) Is multiplied by the temperature gain ⁇ ⁇ to calculate the actual preload adjustment amount AF (step S540), and increases the current preload adjustment amount FD by the actual preload adjustment amount AF (step S540).
  • the value of the target temperature TP and the current preload Ay-node amount FD are replaced with the relationship between the conventional hot-water mixture temperature TC and the preload displacement amount FS.
  • the relationship between the new water / water mixture temperature TC and the preload adjustment amount FS is stored in the backup RAM 150d (step S560). Therefore, the relationship between the hot and cold mixture temperature TC and the preload adjustment amount FS recorded in the backup RAM 150d is partially updated each time the hot and cold mixing device 10 is used.
  • the hot and cold water mixing device 10 operates as follows.
  • the initial load is set until the temperature deviation ⁇ between the hot and cold water mixture temperature TC and the target temperature TP becomes smaller than the K value TR1 (hot and cold water temperature TC temperature and preload saving FS (Preload obtained by the map showing the relationship with the preload).
  • TR1 hot and cold water temperature TC temperature and preload saving FS (Preload obtained by the map showing the relationship with the preload).
  • the temperature-sensitive coil spring 80 changes the spring constant according to the low temperature, displaces the movable valve body 70, and increases the proportion of hot water. Therefore, the dead water spouting can be completed quickly due to the large proportion of hot water.
  • the hot-water mixture temperature TC rapidly rises.
  • the temperature-sensitive coil spring 80 rapidly changes the spring constant in response to this temperature change, and displaces the movable valve body 70 to reduce the proportion of hot water. Since the temperature-sensitive coil spring 80 is in direct contact with the mixed hot and cold water and is made of SMA having a small heat capacity, there is almost no response delay and there is no overshoot.
  • the temperature deviation ⁇ T becomes smaller than the threshold value TR1
  • the feedback control is started to eliminate the temperature deviation ⁇ ⁇ ⁇ that cannot be eliminated by the temperature control using the temperature-sensitive coil spring 80, and to reduce the hot and cold water mixture temperature TC to the target temperature TP. To hold.
  • the hot water mixing temperature TC changes due to disturbance or the like.
  • the spring constant of the temperature-sensitive coil spring 80 changes according to the temperature, so that the movable valve body 70 is displaced to the side where the temperature change is canceled out, and the hot and cold water mixture temperature TC is set to the target temperature TP. be able to.
  • the temperature-sensitive coil spring 80 is made of SMA having a small heat capacity and is configured to be in direct contact with the mixed hot and cold water, it can quickly respond to a change in the hot and cold water mixture temperature TC. Therefore, the temperature TC of the hot and cold water mixture can be maintained at the target temperature TP.
  • the preload adjustment amount FS corresponding to the default value TD or the target temperature TP is determined, and the position of the movable valve body 70 is determined.
  • the temperature TC of the hot and cold water mixture can be set to the default value TD or the target temperature TP immediately after the change of the temperature TP.
  • the preload adjusting mechanism 100 detects the hot-water mixture temperature TC at the time of dead water spouting so that the pre-load adjusting mechanism 100 performs the second coil spring 9. The preload of 0 is not changed, and hot water does not flow when the dead water spouting is completed.
  • the spring constant BK of the temperature-sensitive coil spring 80 changes, and the movable valve element 70 is urged to increase the proportion of hot water, so that the dead water spouting can be completed early.
  • the characteristic value T 1, 0 is input to determine the pattern of the control gain K, and the pattern is determined.
  • Product feedback is controlled by temperature-sensitive coil spring 80 because of feedback control. Even when sticking occurs, the temperature can be properly controlled.
  • the hot water mixture temperature TC can be set to the target temperature TP at the start of tapping and at the time of changing the target temperature. Further, when the hot / water mixture temperature TC is stabilized at the target temperature TP during the feedback control, the target temperature TP and the current preload adjustment amount FD at that time are compared with the new hot / water mixture temperature TC and the preload adjustment.
  • the relationship between the hot and cold water mixture temperature TC and the preload adjustment amount FS can be updated by the seasonal change of the water supply temperature Tw. Further, the relationship between the hot and cold water mixture temperature TC and the preload displacement amount FS can be updated based on the secular change of the spring constant of the temperature-sensitive coil spring 80, and the like. Therefore, even if a change in the supply water temperature Tw due to the season or a change in the spring constant over time occurs, the appropriate initial value is obtained, so that the water-water mixture temperature TC can be set to the target temperature TP at an early stage.
  • step S530 of the feedback control routine shown in FIG. The values of the target temperature TP and the current preload nodal amount FD were stored in the backup RAMI 50d as the relationship between the new hot / cold water mixture temperature TC and the preload adjustment amount FS.
  • a configuration in which the routine is terminated without being stored in the backup RAM 150d as in the backup control routine may be used.
  • steps that perform the same processing as those in the feedback control routine shown in FIG. 17 are given the same step numbers.
  • the feedback control routine shown in Fig. 17 and the feedback control routine shown in Fig. 18 feedback is performed during the time when the dead water from the water supply pipe etc.
  • the feedback control is not performed when the absolute value of the temperature deviation ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ is greater than the national value TR1, but as in the feedback control routine shown in Fig. 19, It is also preferable that the feedback control is not performed until a predetermined time has elapsed from the start of tapping or the change of the target temperature.
  • the hot water mixing device 10 executes the water control routine, the hot water mixing device 10 operates as follows.
  • Step S600 and S610 it is determined whether 5 seconds have elapsed since the start of tapping and whether or not 3 seconds have elapsed since the change of the target temperature TP. If not, or if 3 seconds have not elapsed since the change of target temperature TP, this routine ends.
  • the reason why the feedback control is performed only after the lapse of 5 seconds from the start of tapping is that the temperature TC of the tap water mixture immediately after tapping is not stable. In other words, the hot water in the pipe has not reached the predetermined temperature due to the lapse of time since the last stop of hot water supply. This is because the temperature rises rapidly.
  • the time from the start of tapping, which is 5 seconds in the present embodiment, to the start of feedback control is a value determined by the ffi separation between the hot water supply device, which is the hot water supply source, and the hot water mixing device 10, and the like. Therefore, it may be determined according to the condition of piping from the water heater. Also, the reason why the feedback control is executed only after 3 seconds from the change of the target temperature TP is that the temperature TC of the hot and cold water mixture immediately after the change of the target temperature TP is in a transitional period, and a certain period of time is required for stabilization. That's why. Therefore, in the present embodiment, the time is set to 3 seconds. However, since the value of 3 seconds is determined by the capacity of the hot water mixing device 10, the position of the temperature sensor 110, and the like, the value may be determined by the characteristics of the hot water mixing device 10.
  • a process of reading the target temperature TP and the hot and cold water mixture temperature TC detected by the temperature sensor 110 is executed (step S620), and the difference between the target temperature TP and the hot and cold water temperature TC is set to the temperature deviation ⁇ . (Step S630).
  • the absolute value of the set temperature deviation ⁇ is compared with the 3 ⁇ 4 value Tref (step S640). If the absolute value of the temperature deviation ⁇ is smaller than the 3 ⁇ 4 value Tref, this routine ends.
  • the control gain K is obtained from the relationship between the spring constant change rate ⁇ BK and the control gain K (step S650), and the temperature deviation ⁇ is obtained.
  • the actual preload adjustment amount AF is calculated by multiplying the control gain K (step S660), and the current preload adjustment amount FD is increased by the actual preload adjustment amount AF (step S670). End the routine.
  • the hot and cold water mixing device of the second embodiment is It has the same hardware configuration as the first embodiment, and the processing routine at the time of tapping in FIG. 15, the processing routine at the time of target temperature change in FIG. 16, and the feedback control routine in FIG. 17 are also the same.
  • an initial value arrest routine shown in FIG. 20 is executed instead of the initial preload adjustment routine (FIG. 13) of the first embodiment.
  • the user inputs characteristic values T1 and 0 representing the spring characteristics of the temperature-sensitive coil spring 80 (step S700), thereby determining the pattern of the control gain K (step S710). Since this processing has been described in detail above, it is omitted here.
  • the user inputs the water supply temperature Tw and the hot water supply temperature Th (step S720).
  • the user inputs the feed water temperature Tw by selecting from three types of “high”, “medium”, and “low” displayed on the LCD 160. If “High” is selected, 25'C is set as the summer water supply temperature Tw, and if “Medium” is selected, 15'C is set as the spring or autumn water supply temperature Tw, and “Low” is set. When selected, the winter water supply temperature Tw 5. C is set. “High”, “Medium”, and “Low” can be changed using switches 171 and 172 of the panel operation unit 170, and the display on the LCD 160 is changed every time the switch 171 is operated.
  • the display changes from “High” to “Medium” and “Medium” to “Low”, and every time the switch 172 is operated, the display on the LCD 160 changes from “Low” to “Medium” and from “Medium” to “ High ”.
  • switch 177 is operated to determine feedwater temperature Tw.
  • the hot water supply temperature Th is also input by “High”, “Medium” and “Low”, but when “High” is selected, the hot water supply temperature Th is set to 9 O'C and “Medium” is selected. Then, the hot water supply temperature Th is set to 75 ° C, and when “Low J is selected, the hot water supply temperature Th is set to 6 O'C.
  • a map (not shown) that represents the relationship between the hot and cold water mixture temperature TC and the preload adjustment amount FS is selected based on the combination of the input water supply temperature Tw and the hot water supply temperature Th (step S730).
  • This map stores the feedwater temperature Tw in ROM 150b in advance. As many as the number of hot water supply temperature Th combinations are stored.
  • the selected map is copied to a predetermined location in the backup RAM I 50d (step S740).
  • the water supply temperature Tw and the hot water supply temperature Th are respectively classified into three types of “high”, “medium”, and “low”, and the number of combinations of the water-water mixture temperature TC and the preload adjustment amount FS
  • a map showing the relationship between the water supply temperature Tw and the hot water supply temperature Th has been prepared.
  • the temperature may be directly input.
  • Water supply temperature Tw and hot water supply temperature Th high, medium, and low, 25 for water supply temperature Tw, 1 5 to 5, and 90 for water supply temperature Th, 90 * 75 * C
  • this combination is set as the predetermined data.
  • the combination may be a designation of the type of the water heater.
  • a plurality of mats representing the relationship between the hot and cold water mixture temperature TC and the preload adjustment amount FS are prepared in advance in the ROM 150b, and the water supply temperature Tw and the hot water supply Since the map to be used is determined by inputting the temperature Th, the initial value can be set easily and quickly, and the seasonal water supply temperature Tw with the hot and cold water mixing device 10 installed and the actual hot and cold water mixing device can be set. It can be set to an initial value according to the hot water temperature Th supplied to 10.
  • the hot and cold mixture temperature TC is changed to the target temperature TP. It can be.
  • Other effects are the same as those of the first embodiment.
  • the hot and cold water mixing apparatus of the third embodiment has a configuration in which a preload adjustment mechanism 200 described below is provided instead of the preload adjustment mechanism 100 in the valve unit 15 of the first embodiment shown in FIG. .
  • the operation of the third embodiment is the same as the processing routine at the time of tapping of the first embodiment (Fig. 15), the processing routine at the time of changing the target temperature (Fig. 16), and the feedback control routine (Fig. 17). It is.
  • the configuration and operation of the preload adjusting mechanism 200 according to the third embodiment will be described below with reference to FIG.
  • FIG. 21 is a schematic diagram showing an outline of the preload attack mechanism 200 of the third embodiment.
  • Forecast The load adjusting mechanism 200 is composed of a movable valve body 70 made of ferrite and a coil 210.
  • the movable valve element 70 has a contact surface with the bore 62 coated with a fluororesin in order to reduce the contact friction force with the bore 62 of the housing 61.
  • the coil 210 has an axis in the axial direction of the movable valve body 70 and is arranged so that the movable valve body 70 is at the core.
  • the coil 210 is connected to the electronic control unit 150, and by flowing an electric current, the movable valve body 70 is sucked into the coil 210, that is, a rightward force as shown in FIG. 21 is generated.
  • the movable valve element 70 moves from the position of the spring force balance between the temperature-sensitive coil spring 80 and the second coil spring 90 to a new contract including the force by the magnetic field. To the position of. Therefore, by changing the current flowing through the coil 210, the movable valve body 70 can be controlled to a desired position. According to the hot water mixing apparatus of the third embodiment described above, the movable valve body 70 is driven by electromagnetic induction, so that the water tightness of the valve unit 15 can be kept high. In addition, since a motor is not used to adjust the preload, the structure is simple and the reliability can be improved.
  • the temperature of the movable valve body 70 before tapping is changed so that the position of the movable valve element 70 is stopped at the position of the hot water / water mixing ratio at which the temperature is normally used (for example, 40 ° C).
  • a configuration for adjusting the coil spring 80 and the second coil spring 90 is also suitable.
  • the steps S100 to S150 for adjusting the preload so that the mixed hot and cold water temperature TC becomes the default value TD in the processing routine at the start of tapping in FIG. 9 become unnecessary.
  • a plurality of coils can be operated without disposing the coil 210 so that the movable valve element 70 is at the core.
  • a configuration in which the body 70 is arranged parallel to the axial direction is also possible.
  • the entire movable valve element 70 is not made of a material such as a light
  • a part of the movable valve element 70 for example, only the spring receivers 76 and 77 are made of a light or the like. Are also suitable.
  • the hot water mixing apparatus of the fourth embodiment is different from the valve unit 15 of the first embodiment shown in FIG. 9 in that the preload adjusting mechanism 100 described below is used instead of the preload adjusting mechanism 100. 0 is provided.
  • the operation of the fourth embodiment is described in the processing routine at the time of tapping of the first embodiment (Fig. 15), the processing routine for changing the target temperature (Fig. 16), and the feedback control routine (Fig. 1). 7) Is the same as The configuration and operation of the preload adjusting mechanism 300 of the fourth embodiment will be described below with reference to FIG.
  • FIG. 22 is a schematic diagram showing an outline of the preload adjusting mechanism 300 of the fourth embodiment.
  • the preload adjusting mechanism 300 includes a heating element 3 near the temperature-sensitive coil spring 80 that urges the movable valve element 70 in one direction, the temperature of which can be controlled by a signal from the electronic control unit 150. 0 2 is provided. Since the heating element 302 increases the temperature TC of the mixed hot and cold water near the temperature sensitive coil spring 80, the spring constant of the temperature sensitive coil spring 80 is changed according to the temperature rise of the temperature TC of the mixed hot water. . As the spring constant changes, the spring force balance between the temperature-sensitive coil spring 80 and the second coil spring 90 breaks, and the movable valve element 70 reaches a new contraction position. Displace.
  • the spring constant of the temperature-sensitive coil spring 80 is determined by the temperature near the temperature-sensitive coil spring 80.
  • the temperature near the temperature-sensitive coil spring 80 is determined by the amount of heat generated by the heating element 302 and the heating element 3 It is determined by the mixed hot and cold water temperature TC before contact with the heat generated by O2 and the flow rate of the mixed hot and cold water. Therefore, when the flow rate of the mixed hot and cold water is constant, the movable valve element 70 can be driven by controlling the amount of heat generated by the heating element 302 to control the mixed hot and cold water temperature TC.
  • the preload adjusting mechanism 300 since the preload adjusting mechanism 300 has no movable portion, the water tightness of the valve unit 15 can be maintained high. In addition, since a motor is not used to adjust the preload, a thimble structure is provided, and reliability can be improved.
  • the heating element 302 is installed near the temperature-sensitive coil spring 80.
  • the heating element 302 is in contact with the temperature-sensitive coil spring 80, and the temperature-sensitive coil spring 8 A configuration in which the temperature of the temperature-sensitive coil spring 80 is changed by directly energizing 0 may be used.
  • the second coil spring 90 is made of the same SMA as the temperature-sensitive coil spring 80, and the heating element 302 controls the temperature of the second coil spring 90 independently of the mixed hot and cold water temperature TC. is there.
  • the present invention is not limited to such an embodiment.
  • the feedback control is not performed using the temperature of the hot and cold water mixture. Predict the deviation between the temperature of the hot and cold water mixture and the target temperature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Temperature-Responsive Valves (AREA)
  • Control Of Temperature (AREA)

Description

明細書 湯水混合装置および湯水混合方法
【技術分野】
本発明は、 湯水混合装置に関し、 詳し くは、 温度によってばね定数が変化する 素材からなるばねを用いて、 可動弁体を付勢して湯水の混合を行なう湯水混合装 置に関する。
【背景技術】
湯と水の混合比を左右する可動弁体を、 温度によって形状が変化する形状記億 合金を用いて付勢することにより、 湯水混合物の温度を一定に制御する自動温度 調節式湯水混合栓が提案されている (実公昭 6 1— 4 4 0 6 2 ) 。 これは、 形状 記憶合金が、 特定の温度下で一定の形状にセッ ト しておく と、 その他の温度下で 物理的に形状を変化させても当初のセッ ト温度を与えることにより、 再びセッ ト 時の形状に復元するという特徴を有し、 従来の感温素子、 例えば、 ワ ッ クスサー モ等より熱容量が小さ く、 温度変化に対して敏感に作動することを利用したもの である。
この混合栓では、 可動弁体の一方を、 コイル状形状記憧合金で付勢し、 他方を、 コイルスプリ ングで付勢するように構成されており、 コイル状形状記憶合金は、 湯水混合物に直接接触するよう配置されている。 また、 コイル状形状記憶合金は、 一定温度で一定コイル長になるとされており、 このコイル状形状記憶合金は、 湯 水混合物の温度の変化により、 次のように作動するとされている。
湯水混合物の温度が設定温度で定常状態にあるとき、 可動弁体は、 コイル状形 状記憶合金とコイルスプリ ングとの釣り合いの位置で停止している。 定常状態に あった湯水混合物の温度が外乱等により変化して一定の温度になると、 コィル状 形状記憶合金は、 その温度でセッ ト された一定のコイル長に復元しょう として、 形状復元力を発生する。 この形状復元力は、 定常状態にあったコイルスプリ ング との釣り合いを崩して、 可動弁体をコイルスプリ ング側またはコイル状形状記憶 合金側へ駆動する。 こ こで、 コイ ル状形状記憶合金に対して、 設定温度近傍で連 続的にコイル長をセッ トすれば、 湯水混合物が設定温度近傍で変化すると、 コィ ル状形状記憶合金は、 温度変化に伴ってコイル長を変化させ、 連蜣的な形状復元 力を発生する。 従って、 可動弁体が湯水混合物の温度変化に対応して変位し、 湯 水の割合を変化させるので、 湯水混合物の温度を設定温度に保持することができ る。
しかしながら、 従来の形状記憶合金を用いた湯水混合装置では、 湯水混合物の 設定温度の変更は、 弁体を付勢するばねに手動で予荷重を加えることにより行な われるため、 リ モコン装置などを用いて外部からの設定により所望の出湯温度を 得ることができないという問題があった。 また、 形状記憶合金による温度制御の みでは、 所望の出湯温度からずれた温度で形状 β憧合金の形状復元力とコイルス プリ ングの弾力が釣り合ったときは、 定常温度偏差を生じて所望の出湯温度とす ることができないという問題があつた。
こう した形状記憧合金を用いた混合水栓以外に、 湯と水の混合比を左右する可 動弁体を、 感温素子 (ワ ックスサーモ) を用いて付勢することにより湯水混合物 の温度を一定に制御すると共に、 湯水混合物の温度と目標温度とに生じた定常温 度偏差をフ ィ一ドバッ ク制御により解消する湯水混合装置が提案されている (特 開昭 6 1— 3 1 7 8 4 ) 。 この定常温度偏差は、 ワ ッ クスサーモによる温度制御 が目標温度からずれた温度を中心として作動したときや、 ヮッ クスサ一モの経年 変化による体積変化率の差、 ヮッ クスサーモの体積変化によって生じる荷重が作 用する各部材の経年変化等により生じる。 また、 この湯水混合装置では、 フ ィー ドバッ ク制御によるハンチングを防止するために、 モータによる可動弁体の駆動 速度をヮッ クスサーモによる可動弁体の駆動速度より遅く設定している。
しかし、 このヮ ッ クスサーモを用いた湯水混合装置に適用したフ ィー ドバッ ク 制御を形状記憶合金を用いた湯水混合装置に適用した場合には、 形状記憶合金の 温度特性とヮ ッ クスサーモの温度特性とが異なることにより、 目標温度によって はハンチングを起こして制御できない場合があるという問題があった。 特に、 形 状記憶合金は、 その組成が 0 . 1 %異なるだけで、 形状記憧効果を示す温度 (マ ルテンサイ ト変態温度) が 1 0て程度も変化する素材であるので、 合金ィ ンゴッ トが異なることによるマルテンサイ ト変態温度の相違により、 目標温度に制御で きない場合があった。 同一の合金ィ ンゴッ トから製造された形状記憶合金でも、 ロ ッ ト間による相違により同様の問題が生じる。
更に、 季節が変わることによって給水温度や給水圧力等が変化する場合、 経年 変化によって形状記憶合金のばね定数が変化する場合等には、 前述のフ ィードバ ッ ク制御では目標温度に制御できない場合があるという問題もあった。
湯水混合装置は、 出湯開始時には、 給湯機から水栓までの配管に停滞した水を 排水する、 いわゆる死水吐水を行なう必要がある。 従って、 死水吐水時には、 所 望の温度の湯水混合物を出湯することはできない。 この死水吐水時にフ ィードバ ッ ク制御等の温度制御を行なうと、 湯側の開度が大き くなり、 死水吐水が完了し た直後には、 熱湯が出湯するというおそれがあった。 これを防止するために、 供 給湯温度が一定値以上に達するまで混合弁の駆動を強制的に禁止する湯水混合制 御装置 (特開昭 6 1— 1 2 5 5 3 2 ) 、 出湯開始時から一定時間混合弁の駆動を 強制的に禁止する湯水混合制御装置 (特開昭 6 1— 1 2 5 5 3 3 ) が提案されて いる。
しかしながら、 従来の湯水混合装置では、 出湯開始時の死水吐水のために供給 湯温度が一定値以上に達するまで可動弁体の駆動を強制的に禁止するには、 供給 湯管路に温度センサが必要であるという問題があった。 加えて、 出湯開始時から 所定時間混合弁の駆動を禁止する場^には、 湯水の混合比および湯水混合物の流 量により死水吐水時間が異なるので、 熱水が出湯するのを防止するため、 混合弁 の駆動禁止時間を長めに設定しなければならず、 目標温度への制御が遅れるとい う問題があつた。
本発明の湯水混合装置は、 湯水混合物の温度を目標温度で安定して保持するこ とを第 1 の目的とする。 また、 製品間の温度特性のばらつきをなく し、 季節変化 および経年変化に対しても、 湯水混合物の温度を目標温度で安定して保持するこ とを第 2の目的とする。 さらに、 早期に死水吐水を完了し、 目標温度で安定して 保持することを第 3の目的とする。
[発明の開示】 上述の課題を解決するため、 本発明の第 1の構成による湯水混合装置は、 図 1 に例示するように、 湯水の混合比を調節する可動弁体を有する湯水混合弁 M V 1 と、 所定の温度範囲において温度に応じてばね定数が変化する材料からなり、 前 記混合弁 M V 1 から流出する湯水混合物の温度上昇に伴い湯の割合を減少させる 方向に前記可動弁体を付勢する第 1のばね S P 1 1 と、 前記可動弁体を前記方向 とは反対方向に付勢する第 2のばね S P 1 2と、 前記第 1 および第 2のばねの少 なく とも一方の予荷重を讕節可能な予荷重調節手段 M 1 1 と、 前記湯水混合物の 温度を検出する温度検出手段 M 1 2と、 前記予荷重翻節手段 M 1 1 を制御して、 前記予荷重を湯水混合物の目標温度に対応した初期値に設定する初期予荷重設定 手段 M 1 3と、 該設定の後に、 前記温度検出手段 M 1 2により検出された温度と 目標温度とに偏差が存在する場合には、 該偏差を打ち消す側に前記予荷重調節手 段 M l 1 を制御する電子制御手段 M 1 4とを備えている。
ここで、 前記第 1 の構成による湯水混合装置において、 予荷重翻節手段は、 第 1 もし くは第 2のばねの有効長を変更する手段である構成とすることもできる。 また、 予荷重調節手段は、 可動弁体を、 第 1 もし くは第 2のばねの付勢方向に電 磁誘導により付勢する手段である構成とすることもできる。 さらに、 予荷重調節 手段は、 第 1 のばねの温度を湯の温度とは別に制御する発熟手段である構成とす ることもできる。
この第 1 の構成による湯水混合装置は、 出湯が開始されると、 初期予荷重設定 手段 M 1 3は、 予荷重調整手段 M 1 1 を制御して、 湯水混合物の目標温度に対応 した初期値に可動弁体の位置を設定する。 また、 第 1のばね S P 1 1 は、 湯水混 合物の温度に応じてばね定数を変化させ、 湯水の混合比を讕節する可動弁体を付 勢して、 湯水混合物の温度を目標温度へと制御する。 第 1 のばね S P 1 1による 温度制御のみでは、 温度検出手段 M 1 2により検出された湯水混合物の温度と目 標温度との間に偏差を生じる場合、 電子制御手段 M 1 4は該偏差を打ち消す側に 予荷重調節手段 M l 1 を制御して、 湯水混合物の温度を目標温度とする。
したがって、 本発明の第 1 の構成による湯水混合装匱によれば、 所定の温度範 囲内において温度に応じてばね定数が変化する材料からなるばねを用いて湯水混 合物の温度を制御することができる。 また、 目標温度からずれた温度で第 1 のば ね S P 1 1 と第 2のばね S P 1 2のばね力が約り合うことにより、 湯水混合物の 温度と目標温度に偏差を生じた場合には、 偏差を打ち消す側に予荷重調節手段 M 1 1 を制御するので、 湯水混合物の温度を目標温度とすることができる。 更に、 第 1 のばね S P 1 1 に温度ヒステ リ シス, 経年変化によるばね定数の差, 口 ッ ト 間の特性誤差がある場合にも、 これらに起因して湯水混合物の温度と目標温度に 偏差を生じる場合があるが、 この場合にも偏差を打ち消す側に予荷重調節手段 M 1 1 を制御するので、 湯水混合物の温度を目標温度とすることができる。
本発明の第 2の構成による湯水混合装置は、 図 2に例示するように、 湯水の混 合比を調節する可動弁体を有する湯水混合弁 M V 2と、 所定の温度範囲において 温度に応じてばね定数が変化する材料からなり、 前記混合弁 M V 2から流出する 湯水混合物の温度上昇に伴い湯の割合を滅少させる方向に前記可動弁体を付勢す る第 1 のばね S P 2 1 と、 前記可動弁体を前記方向とは反対方向に付勢する第 2 のばね S P 2 2と、 前記第 1 および第 2のばねの少なく とも一方の予荷重を調節 可能な予荷重調節手段 M 2 1 と、 前記湯水混合物の温度を検出する温度検出手段 M 2 2と、 前記温度検出手段 M 2 2により検出された温度と目標温度とに偏差が 存在する場合には、 該偏差を打ち消す側に前記予荷重調節手段 M 2 1 をフィード バック制御する予荷重制御手段 M 2 3と、 該フィ一ドバック制御のゲイ ンを湯水 の混合状態に基づいて決定する制御ゲイ ン決定手段 M 2 とを備えている。
ここで、 前記第 2の構成による湯水混合装置において、 前記制御ゲイ ン決定手 段 M 2 4は、 前記ゲイ ンを湯水混合物の温度に基づいて決定する手段である構成 とすることもできる。 また、 前記制御ゲイ ン決定手段 M 2 4は、 前記ゲインを湯 水混合物の温度における前記第 1 のばねのばね定数の変化率に基づいて決定する 手段である構成とすることもできる。 さらに、 前記制御ゲイ ン決定手段 M 2 4は、 前記第 1 のばねのばね定数の変化率が変化しない頟域に該検出温度があるときは 制御ゲイ ンを第 1の値とし、 該変化率が変化する領域に該検出温度があるときは 制御ゲイ ンを該第 1 の値より小さな第 2の値とする手段である構成とすることも できる。
この第 2の構成による湯水混合装置では、 第 1 のばね S P 2 1 が湯水混合物の 温度に応じてばね定数を変化させ、 湯水の混合比を調節する可動弁体を付勢して、 湯水混合物の温度を目標温度へと制御する。 第 1のばね S P 2 1 による温度制御 のみでは温度検出手段 M 2 2により検出された湯水混合物の温度と目標温度との 間に偏差を生じる場合、 制御ゲイ ン決定手段 M 2 4が湯水の混合状態に基づいて フ ィー ドバッ ク制御のゲイ ンを決定し、 予荷重制御手段 M 2 3が該偏差を打ち消 す側に予荷重讕節手段 M 2 1 を制御して、 湯水混合物の温度を目標温度とする。
したがって、 本発明の第 2の構成による湯水混合装置によれば、 フ ィードバッ ク制御の制御ゲイ ンを湯水の混合状態に基づいて決定するするので、 広い温度範 囲でハンチングすることなく 目標温度に制御することができる。 もとより、 第 2 の構成による湯水混合装置では、 所定の温度範囲内において温度に応じてばね定 数が変化する材料からなるばねを用いており、 これによる湯水混合物の温度の制 御も行なわれる。 また、 目標温度からずれた温度で第 1のばね S P 2 1 と第 2の ばね S P 2 2のばね力が約り合うことにより、 湯水混合物の温度と目標温度に偏 差を生じた場合には、 偏差を打ち消す側に予荷重調節手段 M 2 1 を制御するので、 湯水混合物の温度を目標温度とすることができる。
本発明の第 3の構成による湯水混合装置は、 図 3に例示するように、 湯水の混 合比を調節する可動弁体を有する湯水混合弁 M V 3と、 所定の温度範囲において 温度に応じてばね定数が変化する材料からなり、 前記混合弁 M V 3から流出する 湯水混合物の温度上昇に伴い湯の割合を減少させる方向に前記可動弁体を付勢す る第 1 のばね S P 3 1 と、 前記可動弁体を前記方向とは反対方向に付勢する第 2 のばね S P 3 2と、 前記第 1 および第 2のばねの少なく とも一方の予荷重を調節 可能な予荷重調節手段 M 3 1 と、 前記湯水混合物の温度を検出する温度検出手段 M 3 2と、 前記予荷重調節手段 M 3 1を制御して、 前記予荷重を湯水混合物の目 標温度に対応した初期値に設定する初期予荷重設定手段 M 3 3と、 該設定の後、 前記温度検出手段 M 3 2により検出された温度と目標温度とに偏差が存在する場 合に、 該偏差の大きさに基づいてフ ィー ドバック制御を実施するか否かを判定す る制御実施判定手段 M 3 4と、 前記制御実施判定手段 M 3 4によりフ ィー ドバッ ク制御の実施と判定されたときに、 該偏差を打ち消す側に前記予荷重調節手段 M 3 1 を制御する予荷重制御手段 M 3 5とを備えている。
ここで、 前記第 3の構成による湯水混合装置において、 前記制御実施判定手段 M 3 4は、 該偏差が所定範囲内にあるときにはフ ィードバック制御を実施すると 判定し、 該偏差が所定範囲外にあるときにはフィードバッ ク制御を実施しないと 判定する構成とすることもできる。 また、 前記制御実施判定手段は、 該偏差が第 1 の所定範囲内にあるときにはフ ィードバッ ク制御を実施しないと判定し、 該偏 差が前記第 1 の所定範囲外にあり前記第 1 の所定範囲より大きな第 2の所定範囲 内にあるときにはフ ィードバ ック制御を実施すると判定し、 該偏差が前記第 2の 所定範囲外にあるときにはフ ィ一ドバッ ク制御を実施しないと判定する手段であ る構成とすることもできる。
この第 3の構成による湯水混合装置は、 出湯が開始されると、 初期予荷重設定 手段 M 3 3は、 予荷重調節手段 M 3 1を制御して、 湯水混合物の目標温度に対応 した初期値に可動弁体の位置を設定する。 また、 第 1のばね S P 3 1 は、 湯水混 合物の温度に応じてばね定数を変化させ、 湯水の混合比を翻節する可動弁体を付 勢して、 湯水混合物の温度を目標温度へと制御する。 温度検出手段 M 3 2により 検出された湯水混合物の温度と目標温度とに偏差が存在する場合で、 該偏差が所 定範囲内にあるときは、 予荷重制御手段 M 3 5は、 該偏差を打ち消す側に予荷重 調節手段 M 3 1 を制御して、 湯水混合物の温度を目標温度とする。
したがって、 第 3の構成による湯水混合装置によれば、 出湯開始時には、 予め 目標温度に対応した予荷重を設定し、 湯水混合物の温度と目標温度との偏差が所 定範囲内になるまでフ ィー ドバヅ ク制御を実施しないので、 死水吐水が完了した 直後に熱湯が出湯することがなく、 早期に湯水混合物の温度を目標温度とするこ とができる。 また、 死水吐水時には、 第 1のばね S P 3 1のばね定数が変化し、 可動弁体を付勢して湯の割合を増加するので、 早期に死水吐水を完了することが できる。 もとより、 第 3の構成による湯水混合装置では、 所定の温度範囲内にお いて温度に応じてばね定数が変化する材料からなるばねを用いており、 これによ る湯水混合物の温度の制御も行なわれる。 また、 目標温度からずれた温度で第 1 のばね S P 3 1 と第 2のばね S P 3 2のばね力が釣り合うことにより、 湯水混合 物の温度と目標温度に偏差を生じた場合には、 偏差を打ち消す側に予荷重調節手 段 M 3 1 を制御するので、 湯水混合物の温度を目標温度とすることができる。 本発明の第 4の構成による湯水混合装置は、 図 4に例示するように、 湯水の混 合比を調節する可動弁体を有する湯水混合弁 M V 4と、 所定の温度範囲において 温度に応じてばね定数が変化する材料からなり、 前記混合弁 M V 4から流出する 湯水混合物の温度上昇に伴い湯の割合を減少させる方向に前記可動弁体を付勢す る第 1 のばね S P 1 と、 前記可動弁体を前記方向とは反対方向に付勢する第 2 のばね S P 4 2と、 前記第 1 および第 2のばねの少なく とも一方の予荷重を調節 可能な予荷重調節手段 M 4 1 と、 前記湯水混合物の温度を検出する温度検出手段 M 4 2と、 湯水混合物の目標温度と前記予荷重との関係を記億する予荷重記憶手 段 M 4 3と、 前記予荷重調節手段 M 4 1 を制御して、 前記予荷重記億手段 M 4 3 により記憶された関係に従って、 予荷重を目標温度に対応した初期値に設定する 予荷重設定手段 M 4 4と、 該設定の後に、 前記温度検出手段 M 4 2により検出さ れた湯水混合物の温度と目標温度とに偏差が存在する場合には、 該偏差を打ち消 す側に前記予荷重調節手段 M 4 1 を制御する予荷重制御手段 M 4 5と、 前記温度 検出手段 M 4 2により検出された湯水混合物の温度と目標温度との偏差が所定の 状態となったときの該目標温度と前記予荷重との関係を用いて、 前記予荷重記憶 手段 M 4 3により記僮された関係を更新する更新手段 M 4 6とを俯えている。 この第 4の構成による湯水混合装置は、 出湯開始時に、 予荷重設定手段 M 4 4 が、 予荷重調節手段 M 4 1 を制御して、 予荷重記億手段 M 4 3により記憶された 湯水混合物の目標温度と予荷重との関係に従って、 予荷重を目標温度に対応した 初期値に設定する。 出湯中は、 第 1のばね S P 4 1 が、 湯水混合物の温度に応じ てばね定数を変化させ、 湯水の混合比を調節する可動弁体を付勢して、 湯水混合 物の温度を目標温度へと制御する。 温度検出手段 M 4 2により検出された湯水混 合物の温度と目標温度とに偏差が存在する場合には、 予荷重制御手段 M 4 5が、 該偏差を打ち消す側に予荷重調節手段 M 4 1 を制御して、 湯水混合物の温度を目 標温度とする。 更新手段 M 4 6は、 温度検出手段 M 4 2により検出された温度と 目標温度との偏差が所定の状態となったときの目標温度と予荷重との関係を用い て、 予荷重記憶手段 M 4 3により記憧された関係を更新する。
したがって、 第 4の構成による湯水混合装置によれば、 湯水混合物の温度と目 標温度との偏差が所定の状態となったときの目標温度と予荷重との関係を用いて、 予荷重記憶手段 M 4 3により記億された関係を更新し、 更新された関係に従って 予荷重設定手段 M 4 4により予荷重を目標温度に対応した初期値に設定するので, 第 1 のばね S P 4 1 のばね特性に製品によるばらつきが生じる場合でも、 その第 1 のばね S P 4 1のばね特性に対して適正な初期値とすることができる。 また、 季節により給水温度 ·給湯温度等の給水状態が変化する場合、 第 1のばね S P 4 1 または第 2のばね S P 4 2のばね定数が経年変化した場合でも、 季節変化また は経年変化にかかわらず、 常に適正な初期値とすることができる。 もとより、 第 4の構成による湯水混合装置では、 所定の温度範囲内において温度に応じてばね 定数が変化する材料からなるばねを用いており、 これによる湯水混合物の温度の 制御も行なわれる。 また、 目標温度からずれた温度で第 1のばねと第 2のばねの ばね力が釣り合うことにより、 湯水混合物の温度と目標温度に偏差を生じた場合 には、 偏差を打ち消す側に予荷重襲節手段 M 4 1 を制御するので、 湯水混合物の 温度を目標温度とすることができる。
本発明の第 5の構成による湯水混合装置は、 図 5に例示するように、 湯水の混 合比を調節する可動弁体を有する湯水混合弁 M V 5と、 所定の温度範囲において 温度に応じてばね定数が変化する材料からなり、 前記混合弁 M V 5から流出する 湯水混合物の温度上昇に伴い湯の割合を減少させる方向に前記可動弁体を付勢す る第 1 のばね S P 5 1 と、 前記可動弁体を前記方向とは反対方向に付勢する第 2 のばね S P 5 2と、 前記第 1 および第 2のばねの少なく とも一方の予荷重を調節 可能な予荷重調節手段 M 5 1 と、 湯水混合物の目標温度と前記予荷重との関係を 複数記憶する複数予荷重記億手段 M 5 2と、 所定データの入力に基づいて、 前記 複数予荷重記億手段 M 5 2により記憧された複数の目標温度と予荷重との関係の うち、 一つの関係を選択する予荷重選択手段 M 5 3と、 前記予荷重調節手段 M 5 1 を制御して、 前記予荷重選択手段 M 5 3により選択された関係に従って、 予荷 重を目標温度に対応した初期値に設定する予荷重設定手段 M 5 4とを備えている。 こ こで、 前記第 5の構成による湯水混合装置において、 湯水混合物の温度を検出 する温度検出手段と、 前記予荷重設定手段 M 5 4により初期値が設定された後に、 前記温度検出手段により検出された湯水混合物の温度と目標温度とに偏差が存在 する場合には、 該偏差を打ち消す側に前記予荷重調節手段 M 5 1 を制御する予荷 重制御手段とを備えた構成とすることもできる。 この第 5の構成による湯水混合装置は、 出湯開始時に、 予荷重設定手段 M 5 4 が、 予荷重調節手段 M 5 1 を制御して、 複数予荷重記僮手段 M 5 2により記億さ れた複数の目標温度と予荷重との関係のうち、 予荷重選択手段 M 5 3により選択 された一つの関係に従って、 予荷重を目標温度に対応した初期値に設定する。 出 湯中は、 第 1 のばね S P 5 1が、 湯水混合物の温度に応じてばね定数を変化させ, 湯水の混合比を調節する可動弁体を付勢して、 湯水混合物の温度を目標温度へと 制御する。
したがって、 第 5の構成による湯水混合装置によれば、 予荷重設定手段 M 5 4 により予荷重を目標温度に対応した初期値に設定する際に用いられる目標温度と 予荷重との関係を、 所定データを入力し、 複数予荷重記憧手段 M 5 2に記億され た複数の関係のうちから、 一つの関係を選択するので、 容易に給水温度および給 湯温度等に応じた初期値とすることができ、 湯水混合物の温度を早期に目標温度 とすることができる。 また、 第 5の構成による湯水混合装置において、 予荷重制 御手段を備えたときには、 初期値で設定した予荷重では湯水混合物の温度と目標 温度とに偏差を生じる場合にも、 湯水混合物の温度を目標温度とすることができ る。 もとより、 第 5の構成による湯水混合装置では、 所定の温度範囲内において 温度に応じてばね定数が変化する材料からなるばねを用いており、 これによる湯 水混合物の温度の制御も行なわれる。
本発明の第 1 の湯水混合方法は、 所定の温度範囲において温度に応じてばね定 数が変化する材料からなる第 1のばねで、 可動弁体を有する湯水混合弁から流出 する湯水混合物の温度上昇に伴い湯の割合を減少させる方向に該可動弁体を付勢 し、 第 2のばねで、 前記可動弁体を前記方向とは反対方向に付勢し、 該可動弁体 の位置により湯水の混合比を調節する湯水混合方法であって、 前記第 1 および第 2のばねの少なく とも一方の予荷重を調節して、 該予荷重を湯水混合物の目標温 度に対応した初期値に設定し、 該設定の後に、 湯水混合物の温度を検出し、 該検 出された温度と目標温度とに偏差が存在する場合には、 該偏差を打ち消す側に前 記第 1 および第 2のばねの少なく とも一方の予荷重を調節することを要旨とする。
この第 1 の湯水混合方法は、 まず、 第 1 および第 2のばねの少なく とも一方の 予荷重を調節して、 '予荷重を湯水混合物の目標温度に対応した初期値に設定する。 予荷重を初期値に設定した後に、 湯水混合物の温度を検出する。 この検出された 温度と目標温度とに偏差が存在する場合には、 第 1 および第 2のばねの少なく と も一方の予荷重を偏差を打ち消す側に調節する。
したがって、 第 1 の湯水混合方法によれば、 所定の温度範囲内において温度に 応じてばね定数が変化する材料からなるばねを用いて湯水混合物の温度を制御す ることができる。 また、 目標温度からずれた温度で第 1のばねと第 2のばねのば ね力が約り合う ことにより、 湯水混合物の温度と目標温度に偏差を生じた場合に は、 第 1 および第 2のばねの少なく とも一方の予荷重を偏差を打ち消す側に調節 するので、 湯水混合物の温度を目標温度とすることができる。 更に、 第 1のばね の温度ヒステリ シス, 経年変化によるばね定数の差, ロ ッ ト間の特性誤差等に起 因して湯水混合物の温度と目標温度に偏差を生じる場合があるが、 この場合にも 第 1 および第 2のばねの少なく とも一方の予荷重を偏差を打ち消す側に調節する ので、 湯水混合物の温度を目標温度とすることができる。
本発明の第 2の湯水混合方法は、 所定の温度範囲において温度に応じてばね定 数が変化する材料からなる第 1のばねで、 可動弁体を有する湯水混合弁から流出 する湯水混合物の温度上昇に伴い湯の割合を滅少させる方向に該可動弁体を付勢 し、 第 2のばねで、 前記可動弁体を前記方向とは反対方向に付勢し、 該可動弁体 の位置により湯水の混合比を調節する湯水混合方法であつて、 前記湯水混合物の 温度を検出し、 該検出された温度と目標温度とに偏差が存在する場合には、 湯水 の混合状態に基づいてフィー ドバック制御のゲイ ンを決定し、 該ゲイ ンを用いて 前記偏差を打ち消す側に前記第 1 および第 2のばねの少なく とも一方の予荷重を フ ィー ドバッ ク制御することを要旨とする。
この第 2の湯水混合方法では、 出湯を開始した後に、 まず、 湯水混合物の温度 を検出する。 この検出された温度と目標温度とに偏差が存在する場合には、 湯水 の混合状態に基づいてフ ィー ドバッ ク制御のゲイ ンを決定し、 このゲイ ンを用い て偏差を打ち消す側に第 1 および第 2のばねの少なく とも一方の予荷重をフ ィ一 ドバッ ク制御する。
したがって、 本発明の第 2の湯水混合方法によれば、 フ ィー ドバッ ク制御のゲ ィ ンを湯水の混合状態に基づいて決定するするので、 広い温度範¾で-ハンチング することなく 目標温度に制御することができる。 もとより、 第 2の湯水混合方法 では、 所定の温度範囲内において温度に応じてばね定数が変化する材料からなる ばねを用いており、 これによる湯水混合物の温度の制御も行なわれる。 また、 目 標温度からずれた温度で第 1 のばねと第 2のばねのばね力が約り合うことにより. 湯水混合物の温度と目標温度に偏差を生じた場合には、 偏差を打ち消す側に第 1 および第 2のばねの少なく とも一方の予荷重をフ ィ一ドバック制御するので、 湯 水混合物の温度を目標温度とすることができる。
本発明の第 3の湯水混合方法は、 所定の温度範囲において温度に応じてばね定 数が変化する材料からなる第 1のばねで、 可動弁体を有する湯水混合弁から流出 する湯水混合物の温度上昇に伴い湯の割合を減少させる方向に該可動弁体を付勢 し、 第 2のばねで、 前記可動弁体を前記方向とは反対方向に付勢し、 該可動弁体 の位置により湯水の混合比を調節する湯水混合方法であって、 前記第 1 および第 2のばねの少なく とも一方の予荷重を調節して、 該予荷重を湯水混合物の目標温 度に対応した初期値に設定し、 該設定の後、 前記湯水混合物の温度を検出し、 該 検出された温度と目標温度とに偏差が存在する場合に、 該偏差の大きさに基づい てフ ィードバッ ク制御を実施するか否かを判定し、 該判定がフ ィードバック制御 の実施のときに、 該偏差を打ち消す側に前記第 1 および第 2のばねの少なく とも 一方の予荷重を制御することを要旨とする。
この第 3の湯水混合方法では、 第 1 および第 2のばねの少なく とも一方の予荷 重を調節して、 予荷重を湯水混合物の目標温度に対応した初期値に設定する。 予 荷重を初期値に設定した後、 湯水混合物の温度を検出する。 この検出された温度 と目標温度とに偏差が存在する場合には、 偏差の大きさに基づいてフ ィードバッ ク制御を実施するか否かを判定する。 この判定がフ ィードバッ ク制御の実施のと きには、 この偏差を打ち消す側に第 1 および第 2のばねの少なく とも一方の予荷 重を制御する。
したがって、 第 3の湯水混合方法によれば、 出湯開始時には、 予め目標温度に 対応した予荷重を設定し、 湯水混合物の温度と目標温度との偏差が所定範囲内に なるまでフ ィー ドバッ ク制御を実施しないので、 死水吐水が完了した直後に熱湯 が出湯することがなく、 早期に湯水混合物の温度を目標温度とすることができる。 また、 死水吐水時には、 第 1 のばねのばね定数が変化し、 可動弁体を付勢して湯 の割合を増加するので、 早期に死水吐水を完了することができる。 もとより、 第 3の湯水混合方法では、 所定の温度範囲内において温度に応じてばね定数が変化 する材料からなるばねを用いており、 これによる湯水混合物の温度の制御も行な われる。 また、 目標温度からずれた温度で第 1のばねと第 2のばねのばね力が釣 り合う ことにより、 湯水混合物の温度と目標温度に偏差を生じた場合には、 偏差 を打ち消す側に第 1 および第 2のばねの少なく とも一方の予荷重を制御するので, 湯水混合物の温度を目標温度とすることができる。
本発明の第 4の湯水混合方法は、 所定の温度範囲において温度に応じてばね定 数が変化する材料からなる第 1のばねで、 可動弁体を有する湯水混合弁から流出 する湯水混合物の温度上昇に伴い湯の割合を減少させる方向に該可動弁体を付勢 し、 第 2のばねで、 前記可動弁体を前記方向とは反対方向に付勢し、 該可動弁体 の位置により湯水の混合比を調節する湯水混合方法であって、 湯水混合物の目標 温度と前記予荷重との関係を記億し、 前記第 1および第 2のばねの少なく とも一 方の予荷重を調節して、 前記記億した関係に従って、 予荷重を目標温度に対応し た初期値に設定し、 該設定の後に、 前記湯水混合物の温度を検出し、 該検出され た温度と目標温度とに偏差が存在する場合には、 該偏差を打ち消す側に前記第 1 および第 2のばねの少なく とも一方の予荷重を制御し、 前記検出された温度と目 標温度との偏差が所定の状態のときには、 該目標温度と前記予荷重との関係を用 いて、 前記記憶した関係を更新することを要旨とする。
この第 4の湯水混合方法は、 湯水混合物の目標温度と予荷重との関係を記憶す る。 出湯開始時には、 第 1 および第 2のばねの少なく とも一方の予荷重を調節し て、 記憶した関係に従って、 予荷重を目標温度に対応した初期値に設定する。 予 荷重を初期値に設定した後には、 まず、 湯水混合物の温度を検出する。 この検出 された温度と目標温度とに偏差が存在する場合には、 この偏差を打ち消す側に第 1 および第 2のばねの少なく とも一方の予荷重を制御し、 前記検出された温度と 目標温度との偏差が所定の状態のときには、 この目標温度と予荷重との関係を用 いて、 記憶した関係を更新する。
したがって、 第 4の湯水混合方法によれば、 湯水混合物の温度と目標温度との 偏差が所定の状態となったときの目標温度と予荷重との関係を用いて、 記憶され た関係を更新し、 更新された関係に従って予荷重を目標温度に対応した初期値に 設定するので、 第 1 のばねのばね特性に製品によるばらつきが生じる場合でも、 その第 1 のばねのばね特性に対して適正な初期値とすることができる。 また、 季 節により給水温度 ·給湯温度等の給水状態が変化する場合、 第 1 のばねまたは第 2のばねのばね定数が経年変化した場合でも、 季節変化または経年変化にかかわ らず、 常に適正な初期値とすることができる。 もとより、 第 4の湯水混合方法で は、 所定の温度範囲内において温度に応じてばね定数が変化する材料からなるば ねを用いており、 これによる湯水混合物の温度の制御も行なわれる。 更に、 目標 温度からずれた温度で第 1 のばねと第 2のばねのばね力が釣り合うことにより、 湯水混合物の温度と目標温度に偏差を生じた場合には、 偏差を打ち消す側に第 1 および第 2のばねの少なく とも一方の予荷重を制御するので、 湯水混合物の温度 を目標温度とすることができる。
本発明の第 5の湯水混合方法は、 所定の温度範囲において温度に応じてばね定 数が変化する材料からなる第 1のばねで、 可動弁体を有する湯水混合弁から流出 する湯水混合物の温度上昇に伴い湯の割合を減少させる方向に該可動弁体を付勢 し、 第 2のばねで、 前記可動弁体を前記方向とは反対方向に付勢し、 該可動弁体 の位置により湯水の混合比を調節する湯水混台方法であって、 湯水混合物の目標 温度と前記予荷重との関係を複数記億し、 所定データの入力に基づいて、 前記記 憶した複数の目標温度と予荷重との関係のうち、 一つの関係を選択し、 該選択し た関係に従って、 前記第 1 および第 2のばねの少なく とも一方の予荷重を調節し て、 予荷重を目標温度に対応した初期値に設定することを要旨とする。
この第 5の湯水混合方法は、 湯水混合物の目標温度と予荷重との関係を複数記 憶し、 所定データの入力に基づいて、 記億した複数の目標温度と予荷重との関係 のうち、 一つの関係を選択する。 出湯開始時には、 この選択した関係に従って、 第 1 および第 2のばねの少なく とも一方の予荷重を調節して、 予荷重を目標温度 に対応した初期値に設定する。
したがって、 第 5の湯水混合方法によれば、 予荷重を目標温度に対応した初期 値に設定する際に用いられる目標温度と予荷重との関係を、 所定データを入力し、 記憶した複数の関係のうちから、 一つの関係を選択するので、 容易に給水温度お よび給湯温度等に応じた初期値とすることができ、 湯水混合物の温度を早期に目 標温度とすることができる。 もとより、 第 5の湯水混合方法では、 所定の温度範 囲内において温度に応じてばね定数が変化する材料からなるばねを用いており、 これによる湯水混合物の温度の制御も行なわれる。
【図面の簡単な説明】
図 1 は、 本発明の第 1の構成による湯水混合装置の基本的構造を例示するプロ ッ ク図、
図 2は、 本発明の第 2の構成による湯水混合装置の基本的構造を例示するプロ ッ ク図、
図 3は、 本発明の第 3の構成による湯水混合装置の基本的構造を例示するプロ ッ ク図、
図 4は、 本発明の第 4の構成による湯水混合装置の基本的構造を例示するプロ ッ ク図、
図 5は、 本発明の第 5の構成による湯水混合装置の基本的構造を例示するプロ ッ ク図、
図 6は、 本発明の一実施例の湯水混合装置 1 0を例示する模式図、
図 7は、 図 6に示した湯水混合装置 1 0の斜視図、
図 8は、 湯水混合装置 1 0を構成する給水用脚金具 1 1の断面図、
図 9は、 湯水混合装置 1 0を構成する弁ュニッ ト 1 5の拡大断面図、
図 1 0は、 切換え/止水弁 1 2 0に組み込まれた固定ディスク 1 2 1の構造図、 図 1 1 は、 切換え/止水弁 1 2 0に組み込まれた回転ディスク 1 2 5の構造図、 図 1 2は、 C P U 1 5 0 aを中心とした制御系の電気的な構成を例示するプロ ッ ク図、
図 1 3は、 電子制御装置 1 5 0により実行される初期予荷重調整ルーチンを例 示するフローチ ャー ト、
図 1 4は、 感温コィルスプリ ング 8 0のばね定数 B K ·ばね定数の変化率 Δ Β K ·制御ゲイ ン Kと温度 Tとの関係を例示するグラフ、 図 1 5は、 電子制御装置 1 5 0により実行される出湯開始時処理ルーチ ンを例 示するフ ローチ ヤ一ト、
図 1 6は、 電子制御装置 1 5 0により実行される目標温度変更時処理ルーチ ン を例示するフ ローチ ャー ト、
図 1 7は、 電子制御装置 1 5 0により実行されるフィ一ドバック制御ルーチ ン を例示するフ ローチ ャ ー ト、
図 1 8は、 電子制御装置 1 5 0により実行されるフィー ドバック制御ルーチン の変形例を示すフ ローチ ャー ト、
図 2 0は、 電子制御装置 1 5 0により実行されるフィー ドバック制御ルーチン を変形例を示すフ ローチ ヤ一ト、
図 2 0は、 本発明の第 2実施例の湯水混合装置の電子制御装置 1 5 0により実 行される初期値選定ルーチンを例示するフローチャー ト、
図 2 1 は、 本発明の第 3実旌例の湯水混合装置の予荷重調節機構 2 0 0の概略 を例示する模式図、
図 2 2は、 本発明の第 4実施例の湯水混合装置の予荷重調節機構 3 0 0の概略 を例示する模式図である。
【発明を実施するための最良の形態】
以上説明した本発明の構成 ·作用を一層明らかにするために、 以下本発明の好 適な実施例について説明する。
図 6は本発明の一実施例である湯水混合装置の模式図であり、 図 7はこの湯水 混合装置の斜視図である。
湯水混合装置 1 0は、 水道管から水が給水される給水用脚金具 1 1 と、 図示し ない給湯機から湯が給湯される給湯用脚金具 1 2と、 湯水の混合を行なう弁ュニ ッ ト 1 5と、 湯水の混合比を電気的に制御する制御ュ-ッ ト 1 8 とから構成され ている。 弁ュニッ ト 1 5は、 機能的には、 給水用脚金具 1 1から給水される水お よび給湯用脚金具 1 2から給水される湯を混合する湯水混合弁 6 0と、 湯水混合 弁 6 0に組み込まれた可動弁体 7 0の位置を賙節する予荷重調節機構 1 0 0と、 湯水混合物温度 T Cを検出する温度センサ 1 1 0と、 シ ャ ワー 1 3 0またはカ ラ ン 1 4 0からの混合湯水の選択および止水をする切換え Z止水弁 1 2 0 とを有す る。 これらの具体的な構成については後述する。 また、 制御ュ-ッ ト 1 8は、 目 標温度 T Pを表示する液晶表示部 (L C D ) 1 6 0と、 目標温度 T Pの設定およ び吐水の選択等の操作を行なうパネル操作部 1 7 0と、 温度センサ 1 1 0によつ て検出される温度信号とパネル操作部 1 7 0からの信号を入力して予荷重調節機 構 1 0 0と切換え/止水弁 1 2 0と L C D 1 6 0へ出力信号を出力する電子制御 装置 1 5 0とを有する。 更に、 湯水混合装置 1 0は電池 1 8 0に接続されており, 各部に必要な電源を供給する構成となっている。
制御ュ-ッ ト 1 8を構成するパネル操作部 1 7 0は、 図 7に示すように、 L C D 1 6 0に表示される目標温度 T Pをデク リ メン トするスィ ッチ 1 7 1 と、 目標 温度 T Pをィ ンク リ メン トするスィ ッチ 1 7 2と、 シャ ワー 1 3 0からの吐水を 選択するシャヮー選択スィ ツチ 1 7 5と、 カラン 1 4 0からの吐水を選択する力 ラ ン選択スィ ツチ 1 7 6と、 止水を選択する止水スィ ツチ 1 7 7から構成されて いる。
次に、 給水用脚金具 1 1 の拡大断面図である図 8を用いて給水用脚金具 1 1の 構造について説明する。 給水用脚金具 1 1 は、 同図に示すように、 水道管に接続 される入口 2 1 と湯水混合弁 6 0に接続される出口 2 9とが形成されたハウジン グ 2 0を有し、 ハウジング 2 0には、 止水弁 2 2と圧力制御弁 3 0が組み込まれ ている。
止水弁 2 2は、 ハウジング 2 0に液密に締結されたキャ ップ 2 7と、 キャ ップ 2 7とハウジング 2 0にガイ ドされた弁体 2 3と、 ス トレーナ 2 8とを有する。 弁体 2 3は、 ハウジング 2 0とのガイ ド部 2 4と端部 2 6とを有しており、 ガイ ド部 2 4には通水時に水の通路となる開口部 2 5が設けてある。 ガイ ド部 2 4は ハウジング 2 0とねじで喻み合っており、 弁体 2 3を回転させることにより弁体 2 3が回転軸方向に変位する構造になっている。 従って、 弁体 2 3を回転させて、 端部 2 6とハウジング 2 0を着脱させることにより、 止水または通水する。 通水 時には、 端部 2 6とハウジング 2 0との隙間から流入した水が開口部 2 5を通り、 ス トレーナ 2 8によりゴミを除去した後に圧力制御弁 3 0に流れ込む。
圧力制御弁 3 0は、 弁ュニッ ト 1 5に供給する水側圧力を制御する弁であり、 ハウジング 2 0内部に環状に形成された弁座 3 1、 この弁座 3 1 と協動して水の 流れを制御する弁部材 3 2、 弁部材 3 2を摺動可能に収納するガイ ド部材 3 5、 弁部材 3 2に固定された弁軸 4 0、 弁軸 4 0の末端が組み付けられる金属べロー ズ 4 5等から構成されている。 弁部材 3 2は、 ナツ ト 3 4により弁軸 4 0が固定 される本体部 3 2 Aと、 弁座 3 1 と反対方向に延長する円筒形のスカー ト 3 3と を有し、 このス カー ト 3 3はハウジング 2 0に液密に締結されたガイ ド部材 3 5 のボア 3 6内に若干のク リ アランスをもって収納されている。 従って、 弁部材 3 2とス カー ト 3 3とガイ ド部材 3 5とで形成された二次圧力室 3 7内には弁座 3 1 下流の給水二次圧力 P 2が導入される。
弁軸 4 0には、 弁部材 3 2と反対側の端にばね受け 4 1が設けられており、 ハ ウ ジング 2 0には、 ばね受け 4 1 に対畤してキヤ ップ 4 2が液密に締結されてい る。 ばね受け 4 1 とキャ ップ 4 2との間には金属べローズ 4 5が液密に配置して あり、 背圧室 4 6を形成している。 金属べローズ 4 5は一定のばね定数を有する ばねで、 有効受圧面積は弁座 3 1 の有効面積に等しくなるように設定されている c 背圧室 4 6には、 給湯用脚金具 1 2に接铰されている圧力導入管 5 8により給湯 機からの給湯圧力 P 3が導入されている。
こう して構成された圧力制御弁 3 0は次のように作動する。 弁部材 3 2は、 給 水一次圧力 P 1 により開弁方向に作用する力と二次圧力室 3 7の給水二次圧力 P 2により閉弁方向に作用する力とを受ける。 ばね受け 4 1 は、 給水一次圧力 P 1 により閉弁方向に作用する力と、 金属べローズ 4 5により開弁方向に作用するば ね力と、 背圧室 4 6内の給湯圧力 P 3により開弁方向に作用する力とを受ける。 弁部材 3 2とばね受け 4 1 は弁軸 4 0によって結合しているので、 弁部材 3 2の 給水一次圧力 P 1 による開弁方向に作用する力とばね受け 4 1 の給水一次圧力 P 1 による閉弁方向に作用する力とはほぼ約り合い、 二次圧力室 3 7の給水二次圧 力 P 2による閉弁方向に作用する力に対して、 金属べローズ 4 5による開弁方向 に作用するばね力と背圧室 4 6内の給湯圧力 P 3による開弁方向に作用する力と の合力が約り合う。 従って、 給水二次圧力 P 2は金属べローズ 4 5のばね力だけ 給湯圧力 P 3より高くなり、 水道管からの給水一次圧力 P 1 および給湯機からの 給湯圧力 P 3が変動しても、 給水二次圧力 P 2と給湯圧力 P 3 との差圧は一定と なる。
尚、 給湯用脚金具 1 2の構成は特に図示しないが、 給水用脚金具 1 1 に組み込 まれた止水弁 2 2と同様の止水弁 5 2が組み込まれている。
次に、 弁ュュッ ト 1 5の拡大断面図である図 9を用いて、 弁ュュッ ト 1 5の構 造について説明する。 弁ュ-ッ ト 1 5は同図に示すように、 ハウジング 6 1 を有 し、 これに、 湯水混合弁 6 0, 予荷重調節機構 1 0 0, 温度センサ 1 1 0および 切換え/止水弁 1 2 0が組み込まれている。 ハウジング 6 1 には、 水入口 8 5と 湯入口 9 5が形成されており、 水入口 8 5には給水用脚金具 1 1 の出口 2 9が接 続され、 湯入口 9 5には給湯用脚金具 1 2の出口 5 9が接接される。
湯水混合弁 6 0は、 水入口 8 5および湯入口 9 5に夫々連通する環状通路 8 6 および 9 6と、 可動弁体 7 0を軸方向摺動自在に収容する弁室 6 3と、 湯水混合 室 6 4を有する。 弁室 6 3は、 湯水混合弁 6 0の軸線に垂直な水側弁座 8 7およ び湯側弁座 9 7と、 軸方向のボア 6 2によって画定されている。 可動弁体 7 0は、 円筒部 7 1 と半径方向のゥ -ブ 7 2とを有する。 円筒部 7 1の外径とポア 6 2の 内径との間には微小なク リ アランスが設けてある。 可動弁体 7 0のゥ -ブ 7 2に は複数の開口 7 3が設けてあり、 湯入口 9 5から弁室 6 3内に流入した湯は、 開 口 7 3を通って湯水混合室 6 4に流れ込み、 水と混合される。 水と湯との混合の 割合は、 可動弁体 7 0が軸方向に変位することによって変化する。 尚、 可動弁体 7 0が水側弁座 8 7と係合する位置まで変位して水を遮断すれば湯のみが流れ出 ることになり、 可動弁体 7 0が湯側弁座 9 7と係合する位置まで変位して湯を遮 断すれば水のみが流れ出るこ とになる。
可動弁体 7 0は、 湯水混合室 6 4内に配置された感温コイルスプリ ング 8 0と 弁室 6 3内に配置された第 2コイルスプリ ング 9 0の力の約り合いによって位置 決めされる構造となっている。 このため、 感温コイルスプリ ング 8 0の一端は止 め輪 7 4によりハウ ジング 6 1 に固定されたばね受け 7 5に支承され、 他端は可 動弁体 7 0に固定されたばね受け 7 6に支承されている。 また、 第 2コイルスプ リ ング 9 0の一端は可動弁体 7 0 と連動するばね受け 7 7に支承され、 他端は予 荷重調節機構 1 0 0の可動ばね受け 1 0 2に支承されている。 組立の便宜のため、 ばね受け 7 6はゥ -ブ7 2を貫通し、 ばね受け 7 7と螺合する構造になつている。 感温コィルスプリ ング 8 0は温度に応じてばね定数が変化する金属によって形 成されており、 第 2 コイルスプリ ング 9 0は温度に関して一定のばね定数を有す る通常のばね材料によって形成されている。 温度に応じてばね定数が変化する金 属材料としては、 ュッケル · チタン合金からなる形状記憧合金 ( S M A ) の範噠 に属する合金が知られている。 この種の S M Aは温度に応じて弾性係数が変化し、 その結果、 S M Aからなる感温コィルスプリ ング 8 0のばね定数が温度 応じて 変化する。 S M Aからなる所望の温度特性を有する温度応答性の感温コィルスプ リ ング 8 0は、 種々の供給者から入手するこ とができる。 例えば、 関東特殊製鋼 株式会社の 「K T S— S Mァロイ」 がある。
また、 予荷重調節機構 1 0 0に消黄される電池 1 8 0のエネルギを節減するた めに、 感温コイルスプリ ング 8 0のばね定数と予荷重は、 そのばね力 (発生荷重) が充分小さ くなるように設定する必要がある。 一方、 感温コイルスプリ ング 8 0 は、 水のみを吐出すべき低温条件下 (この時には、 第 2 コイルスプリ ング 9 0に 加える予荷重はゼロにすることができ、 可動弁体 7 0は感温コィルスプリ ング 8 0のばね力のみによって湯側弁座 9 7に押圧される) においては、 湯の流入を遮 断するに充分な力で可動弁体 7 0を湯側弁座 9 7に押圧するばね力を発生する必 要がある。 このため、 感温コイルスプリ ング 8 0のばね定数と予荷重は、 低温時 (例えば、 給水温度 T wが 5 'Cの時) に発生するばね力が 5 0 0 g以下、 好まし くは 3 0 0 8Γ以下になるように設定する。
予荷重調節機構 1 0 0は、 予荷重調節モータ 1 0 5をいずれかの方向に回転さ せるこ とにより、 第 2 コイルスプリ ング 9 0の予荷重を可変可能に構成されてい る。 このため、 ハウジング 6 1 に液密に締結された端部部材 1 0 1には、 可動ば ね受け 1 0 2が軸方向変位自在、 かつ回転不能にスプライ ン嵌合してあり、 この 可動ばね受け 1 0 2の内ねじには予荷重調節モータ 1 0 5の出力軸 1 0 3に形成 されたウ ォーム 1 0 4が *み合っている。 また、 予荷重襲節モータ 1 0 5の出力 軸 1 0 3は 0 リ ング 1 0 6によって軸封されている。
こ う して構成された予荷重襲節機構 1 0 0は、 予荷重調節モータ 1 0 5を所定 方向に回転させて、 可動ばね受け 1 0 2を図 9右方に変位させることにより、 第 2 コイ ルスプリ ング 9 0の予荷重を増大させ、 予荷重調節モータ 1 0 5を反対方 向に回転させて、 可動ばね受け 1 02を左方に変位させることにより、 第 2コィ ルスプリ ング 90の予荷重を減少させる。
温度センサ 1 1 0は、 その感温部が湯水混合弁 60から流出する混合湯水が直 接接触するように、 湯水混合弁 60の出口であるばね受け 75の下流側に配置さ れ、 ハウジング 61に液密に締結されている。
切換え/止水弁 1 20は温度センサ 1 1 0の下流側に配置されており、 ハウジ ング 6 1に固定された固定ディスク 12 1 と、 この固定ディスク 121に擦り合 わさつた状態で回転する回転ディスク 1 25と、 この回転ディスク 125を回転 駆動する切換え Z止水モータ 127とを有する。 固定ディスク 121は、 図 1 0 に示すように 2つの吐水ポー ト 1 22および 123を有し、 一方の吐水ポー ト 1 22は接続金具 13 1とシャ ワーホース 1 32 (図 7参照) を介してシャ ワー 1 30に接続され、 他方の吐水ポー ト 123は接蜣金具 141と図示しないスィべ ル継手を介してカラン 140に接続されている。 回転ディスク 125は、 図 1 1 に示すように湯水混合弁 60の湯水混合室 64に連通する唯一の吐水ポート 12 6を有する。 切換え Z止水モータ 1 27を回転させて回転ディスク 125の吐水 ポー ト 126を固定ディスク 12 1の吐水ポー ト 122に整合させると、 混合湯 水はシ ャ ワー 1 30に供給され、 吐水ポー ト 126を固定ディ スク 1 21の吐水 ポー ト 123に整合させると混合湯水はカラ ン 140に供給され、 吐水ポー ト 1 26を固定デイスク 121のいずれの吐水ポー ト 122および 123からもオフ セ ッ ト させると止水される。
制御ュニッ ト 1 8を構成する電子制御装置 150は、 図 12に示すようにマイ クロコ ンピュータを中心とする論理演算回路として構成される。 詳し くは、 予め 設定された制御プログラムに従って出湯を制御するための各種演算処理を実行す る CPU 1 50 a、 C P U 1 50 aで各種演算処理を実行するのに必要な制御プ ログラムゃ制御データ等が予め格納された ROM 150 b、 同じ く C PU 1 50 aで各種演算処理を実行するのに必要な各種データが一時的に読み害きされる R AM 1 50 c、 電源オフ時においてもデータを保持可能なバックアッ プ RAM 1 50 d > 温度センサ 1 10からの信号を入力する温度センサ入力回路 1 50 e、 パネル操作部 1 70からのスィ ッチ信号を入力するスイ ッチ入力回路 1 50 f 、 C P U 1 5 0 aでの演算結果に応じて予荷重調節モータ 1 05に駆動信号を出力 するモータ駆動回路 1 50 gr、 パネル操作部 1 70の吐水選択スィ ツチ 1 7 5, 1 76または止水スィ ツチ 1 77の入力に応じて切換え 止水モータ 1 27に駆 動信号を出力するモータ駆動回路 1 50 hおよび L C D 1 60に表示信号を出力 する L C D駆動回路 1 50 i 等を備えている。 また、 電子制御装置 1 50は、 電 池 1 8 0に接続された定電圧回路 1 50 j を備えている。
こ う して構成された湯水混合装置 1 0の作動を以下に説明する。 まず、 図 1 3 の初期予荷重調整ルーチンについて説明する。 このルーチンは、 新たに湯水混合 装置 1 0を設置した時または長期間使用しなかった湯水混合装置 1 0の使用を再 開する時に実行される。
まず、 感温コィルスプリ ング 80のばね特性を表わす特性値 T 1 および 0 を使 用者が入力する (ステ ッ プ S 1 00 ) 。 ここで、 特性値 T 1 は、 温度上昇により 感温コイルスプリ ング 80のばね定数 B Kが変化し始めるときの温度であり、 特 性値 0 は、 温度上昇に比例してばね定数が変化する領域においてばね定数 B Kの 変化が略一定であるときの傾きである。
感温コイルスプリ ング 80のばね定数 B Kは、 図 1 4 ( a ) に示すように、 温 度 Tが T 1以下の領域 (区間 U 1 ) では一定値 B K 2を、 T 4以上の領域 (区間 U 5 ) では一定値 B K 1 を示し、 T 1から T 4の領域 (区間 U 2, U 3 , U 4 ) では湯水混合物温度 T Cに応じて変化する。 特に T 2から T 3の頟域 (区間 U 3 ) では変化率厶 B Kが一定となり、 傾き 0の比例関係が成立する。 丁 1から丁 2の 領域 (区間 U 2 ) または T 3から T 4の領域 (区間 U 4) では、 湯水混合物温度 T Cに応じてばね定数 B Kは変化するが、 その変化率 ΔΒ Kは一定でなく、 区間 U 3の変化率 ΔΒ Kに比べて小さい。
従って、 こう した感温コイルスプリ ング 80のばね特性は、 温度 T l , Τ 2 , Τ 3 , Τ 4および傾き 0 をパラメータとして表わすことができる。 このパラメ一 タのうち温度 T 1 と傾き 0 を用いて感温コイ ルスプリ ング 80のばね特性を区分 することができ、 区分された感温コイルスプリ ング 80を湯水混合装置 1 0とし て使用する際に、 温度 T 1 と傾き 0 (特性値 Τ 1 , Θ ) を入力することによりそ のばね特性を決定する こ とができる。 次に、 湯水混合物温度 T Cを目標温度 T Pに保持するフ ィー ドバッ ク制御にお ける制御ゲイ ン Kのパターンを、 特性値 T 1 , Θ と制御ゲイ ン Kのパターンとの 関係を示す図示しないマッ プにより決定する (ステップ S 1 1 0 ) 。 制御ゲイ ン Kは、 実施例の湯水混合装置 1 0では、 感温コィルスプリ ング 80のばね定数の 変化率 ΔΒ Kが湯水混合物温度 T Cに伴って変化することにより、 目標温度 T P によっては所望する制御ができない場合を生じることがあるため、 ばね定数の変 化率 ΔΒ Kに基づいて制御ゲイ ン Kを決定する構成とした。 変化率 ΔΒ K ·制御 ゲイ ン Kと温度との関係の一例を図 1 4 ( b ) および ( c ) に示す。
実施例では、 制御ゲイ ン Kを以下のようにばね定数の変化率 ΔΒ Kに基づいて 設定する。 ばね定数 B Kと温度 Tが比例関係にある傾域である区間 U 3では所定 値 K 1 とし、 ばね定数 B Kと温度 Tが比例関係になく変化率 ΔΒ Kが変化する頟 域である区間 U 2および U 4では所定値 K 1 より小さい所定値 K 2とする。 また, ばね定数 B Kが変化しない領域である区間 U 1および U 5では区間 U 3と同じ所 定値 K 1 とする。
このように制御ゲイ ン Kを設定することにより、 目標温度 T Pが区間 U 2また は U 4にある場合にもハンチングすることなく湯水混合物温度 T Cを目標温度 T Pで制御することができる。 これは、 次の理由による。 区間 U 2または U 4のば ね定数の変化率 ΔΒ Kは区間 U 3の変化率 ΔΒ Kに比べて小さいので、 同一の温 度変化に対してばね定数 B Kの変化による作用 (温度変化に抗する作用) は、 区 間 U 3より区間 U 2または U 4の方が小さい。 ここで、 同一の予荷重調節モータ 1 05の駆動量 (実予荷重調節量 A F ) を作用させると、 湯水混合物温度 T Cの 温度変化は、 ばね定数 B Kの変化による作用が小さい分だけ区間 U 3より区間 U 2または U 4の方が大き くなる。 従って、 区間 U 3で適正な制御が可能であった 制御ゲイ ン Kの所定値 K 1 を区間 U 2または U 4で用いると、 制御ゲイ ン Kに基 づいて算出される実予荷重調節量 A Fが適正な値より大き くなり、 目標温度 T P 付近を中心と してハンチングする場合を生じる。 この結果、 区間 U 2または U 4 においても適正な制御をするためには、 制御ゲイ ン Kを小さ く して温度偏差 ΔΤ に対する実予荷重調節量 AFを小さ くすることが好ましい。
また、 区間 U 1 または U 5では、 ばね定数 B Kが変化しない領域なので、 感温 コイルスプリ ン グ 80による温度制御はなく、 フ ィードバック制御のみによって 温度制御される。 従って、 本実施例では区間 U 1および U 5での制御ゲイ ン Kを 区間 U 3と同じ所定値 K 1 としたが、 区間 U 3と同じ所定値 K 1でなくてもよく. より大きな値でも小さな値でも構わない。
本実施例では、 制御ゲイ ン Kをばね定数の変化率 ΔΒ Kに基づいて所定値 K 1 K 2としたが、 制御ゲイ ン Kを変化率 ΔΒ Kに比例定数を乗じて算出する構成、 制御ゲイ ン Kを制御ゲイ ン Kとばね定数の変化率 ΔΒ Kと湯水混合物温度 T Cと の三元マツ プから求める構成等も好適である。
こ う して制御ゲイ ン Kのパターンを決定した後、 ROM 150 bに予め格納さ れている予荷重讕節量 F Sの所定値 FMを読み込み、 予荷重が所定値 FMとなる よう予荷重調節モータ 105を駆動する (ステッ プ S 120) 。 この所定値 FM は、 感温コイルスプリ ング 80に製品ばらつきがあつたとしても、 湯側開度と水 側開度がほぼ同一となる予荷重である。 次に、 切換え/止水弁 120をカラン側 に駆動し (ステ ッ プ S 130) 、 湯水混合物温度 TCが一定になるまで吐水する (ステ ッ プ S 1 40) 。 この処理 (ステップ S 1 30, S 140) により、 給水 管および給湯管に滞水した死水を吐水する。 死水吐水が終了すると予荷重を値 0 とする (ステッ プ S 1 50) 。 すなわち、 湯側全閉として水のみの吐水とする。 次に、 温度センサ 1 1 0によって測定された給水温度 Twを読み込む処理を実行 し (ステ ッ プ S 160) 、 給水温度 Twに値 1を加えた値として目標温度 TPを 算出する (ステ ッ プ S 170 ) 。
次に、 算出した目標温度 TPを L CD 160に表示し (ステップ S 180) 、 温度センサ 1 1 0によって測定された湯水混合物温度 TCの読み込む処理を実行 する (ステ ッ プ S 1 90) 。 目標温度 T Pから読み込んだ湯水混合物温度 T Cを 減じて温度偏差 ΔΤを計算し (ステ ッ プ S 200) 、 温度偏差 ΔΤを所定の偏差 に相当する ¾値 T r e f と比較する (ステ ッ プ S 210) 。 ここで、 K値 T r e f は、 湯水混合物温度 TCが目標温度 TPから杵容される温度偏差の最大値 (許 容温度偏差) である。 この ¾値 T r e f は、 予荷重讕節モータ 1 05を駆動制御 できる最小値および感温コィルスプリ ング 80の特性等により定められる。
温度偏差 ΔΤが閻値 T r e f より大きいときは、 特性値 T 1 , 0を入力するこ とにより決定された制御ゲイ ン Kのパターン (ばね定数の変化率 ΔΒ Κと制御ゲ イ ン Κとの関係) から求めた制御ゲイ ン Κを温度偏差 ΔΤに乗じて実予荷重調節 量 AFを算出し (ステ ッ プ S 220 ) 、 現在の予荷重調節量である現予荷重調節 量 F Dを実予荷重襲節量 Δ Fだけ増加して (ステッ プ S 230) 、 ステップ S 1 90に戻る。 この閉ループは (ステップ S 190ないし S 230) 、 温度偏差 Δ Tの絶対値が ¾値 T r e f 以下になるまで螃けられる。
温度偏差 ΔΤが K値 T r e f以下になると、 目標温度 T Pと現予荷重調節量 F Dの値をバッ クアッ プ RAM I 50 dに格納する (ステップ S 240) 。 バッ ク アップ RAM 1 50 dには湯水混合物温度 T Cと予荷重調節量 F Sとの関係を表 わすマップとして予め領域が確保されており、 目標温度 TPと現予荷重讕節量 F Dとの値を湯水混合物温度 T Cと予荷重讕節量 F Sとの関係を表わすデータとし て格納する。
次に、 目標温度 T Pをィ ンク リ メン ト し (ステップ S 250) 、 目標温度 T P を値 60と比較する (ステップ S 260) o 目標温度 TPが値 60以下のときは ステッ プ S 1 80に戻り、 ステップ S 1 80ないし S 260のループを線り返す。 目標温度 TPが値 6 1になると、 初期予荷重の調整が終了したとして本ルーチン を終了する。 ここで、 初期予荷重の調整を 6 O'Cで終了したが、 調整の終点は使 用温度によって定めればよ く、 何度であっても構わない。
実施例では、 目標温度 TPを給水温度 Twからィ ンク リ メン ト して初期予荷重 を調整したが、 湯水混合物温度 TCと予荷重調節量 F Sの関係を表わせばよいの で、 給湯温度 T hから目標温度 T Pをデク リ メン ト して初期予荷重を調整する構 成でもよく、 所定の温度範囲のみ、 例えば 35てから 45ての温度範囲のみ、 目 標温度 TPをイ ンク リ メ ン トまたはデク リ メ ン ト して初期予荷重を調整する構成 でもよい。 また、 目標温度 T Pの増加量を目標温度 TPに基づいて決定する構成、 例えば、 35°Cから 45'Cの温度範囲は目標温度 TPを値 1ずつ増加し、 それ以 外の温度範囲では値 2ずつ増加する構成等も好適である。
このルーチンを実行することにより、 感温コィルスプリ ング 80のばね特性が 若干相違していても、 ばね特性に適合した制御ゲイ ン Kのパターンを選択するの で、 適正なフ ィードバック制御をすることができる。 また、 湯水混合物温度 TC と予荷重調節量 F Sとの関係を表わすマップを、 湯水混合装置 10が設置された 後、 実際に湯水を混合することにより設定するので、 きわめて適合性を有するマ ッ プとするこ とができ、 本ルーチン終了後は早期に湯水混合物温度 T Cを目標温 度 TPとすることができる。
次に、 出湯を開始するときに実行される出湯開始時処理ルーチン図 1 5に基づ いて説明する。 このルーチンは、 パネル操作部 1 70のシャヮー選択スィ ッチ 1 75またはカラン選択スィ ツチ 1 76が押され、 スィ ツチ信号がスィ ツチ入力回 路 150 f を介して入力されることにより実行される。
先ず、 混合湯水の目標温度 TPとして ROM 150 bに格納されたデフ ォル ト 値 TD (例えば、 40て) と、 バッ クアップ RAM 150 dに格納された現予荷 重調節量 F Dとを読み込む処理を実行し (ステッ プ S 300, S 310) 、 デフ オル ト値 TDを LCD 160に表示する (ステッ プ S 320 ) 。 次いで、 図 1 3 に示した初期予荷重調整ルーチンによりバッ クアップ RAM I 50 dに格納され た湯水混合物温度 T Cと予荷重調節量 F Sとの関係を表わす図示しないマツ ブに より、 デフ ォル ト値 TDに対応した予荷重調節量 F Sを求める (ステッ プ S 33 0) 。 求めた予荷重調節量 F Sと現予荷重調節量 F Dとの差を実予荷重調節量厶 Fにセ ッ ト し (ステップ S 340 ) 、 現予荷重調節量 F Dを実予荷重調節量 Δ F だけ増加させる (ステ ップ S 350) 。
ここで、 デフ ォル ト値 TDは何度に設定されていてもよいが、 出湯開始時に熱 水または冷水がシャヮ一等から出湯するのを防止するために、 通常使用する湯水 混合物温度 T Cとすることが望ましい。 また、 デフ ォル ト値 TDがない構成でも よいが、 出湯を終了する時に通常使用する湯水混合物温度 T Cとなるよう可動弁 体 70を調節する構成も望ましい。 この場合は、 ステップ S 300ないし S 35 0は不要である。
次に、 シ ャ ヮ一選択スィ ツチ 1 75とカラン選択スィ ツチ 1 76とのどちらの スイ ツチが押されたかを判定する (ステップ S 360) 。 スィ ッチの判定に従い、 切換え Z止水モータ 1 27を駆動して、 押されたスイ ツチの側の吐水ポー トに回 転ディ スク 125の吐水ポー ト 126を整合する (ステップ S 370, S 380 ) 0 吐水ポー ト 1 22または 1 23と回転ディス ク 1 25の吐水ポー ト 1 26が整合 されるこ とによ り、 シ ャ ワー 130またはカ ラ ン 140から出湯が開始され、 本 ルーチンを終了する。
次に、 目標温度の設定が変更されたときの処理を、 図 16に示す目標温度変更 時処理ルーチンにより説明する。 このルーチンは、 混合湯水の目標温度 TPを設 定するためのスィ ツチ 17 1または 172が押されたときに実行される。
先ず、 設定された目標温度 TPと現予荷重調節量 FDとを読み込む処理を実行 し (ステッ プ S 400, S 410) 、 湯水混合物温度 T Cと予荷重藹節量 F Sと の関係を表わす前記のマッ プにより目標温度 TPに対応した予荷重譏節量 F Sを 求める (ステ ッ プ S 420) 。 次いで、 求めた予荷重調節量 F Sと現予荷重調節 量 FDとの差を実予荷重調節量 AFにセッ ト し (ステッ プ S 430) 、 現予荷重 調節量 FDを実予荷重調節量厶 Fだけ増加させて (ステ ッ プ S 440) 、 本ルー チンを終了する。
以上、 説明した図 1 5および図 16の処理により、 目標温度 TPを設定するた めのスィ ッチ 1 71, 172によって、 設定された温度で混合湯水が吐水される c このときの出湯温度の覉整は SM Aを用いた感温コイルスプリ ング 80により行 なわれる。 次に、 この動作について説明する。
湯水混合物温度 T Cが目標温度 TPとなって、 耠湯機からの給湯温度 T h、 水 道水温または流量等の条件が定常状態にある時には、 可動弁体 70は、 湯水混合 室 64内の混合湯水により感温コィルスプリ ング 80に発生するばね力と第 2コ ィルスプリ ング 90のばね力 (予荷重) との約り合いにより位置が決定され、 静 止している。 この状態から、 給湯機からの給湯温度 T h、 水道水温または流量等 の条件が外乱により変動すると、 この変動に応じて潙水混合室 64内の湯水混合 物温度 TCが目標温度 TPからずれて温度偏差 ΔΤを生じる。 感温コイルスプリ ング 80は、 この温度変化に応じてばね定数を変化させ、 その結果、 感温コイ ル スプリ ング 80のばね力が変化する。 得られる湯水混合物温度 T Cが目標温度 T Pより高い場合には、 感温コイルスプリ ング 80のばね力が増大し、 第 2コイル スプリ ング 90の予荷重を增加させながら可動弁体 70を図 9左方に変位させる ので、 湯の割合が減少し、 湯水混合物温度 T Cが低下する。 反対に、 湯水混合物 温度 T Cが目標温度 T Pより低い場合には、 感温コイルスプリ ング 80のばね力 が減少し、 第 2コイ ルスプリ ング 90の作用により可動弁体 70が図 9右方に変 位するのを許容するので、 水の割合が減少し、 湯水混合物温度 T Cが上昇する。 こう した感温コイルスプリ ング 80の作用により湯水混合物温度 TCは目標温度 TPに保持される。
出湯開始時処理ルーチンにより出湯が開始された後または目標温度変更時処理 ルーチンにより目標温度 T Pが変更された後は、 図 17に示すブ イ一ドバック制 御処理ルーチンにより、 湯水混合物温度 T Cが制御される。 本ルーチンは所定時 間毎、 例えば 1 O Om s毎に実行される。
本ルーチンでは、 先ず、 目標温度 TPと温度センサ 1 1 0により検出される湯 水混合物温度 T Cを読み込む処理を実行し (ステ ッ プ S 500) 、 目標温度 T P と湯水混合物温度 T Cの差を温度偏差 ΔΤとして算出する (ステ ッ プ S 51 0) c 算出された温度偏差 ΔΤの絶対値を S値 TR 1と比較し (ステッ プ S 520) 、 温度偏差 ΔΤの絶対値が 83値 TR 1より大きいときは、 フ ィードバッ ク制御を行 なう領域にないとして本ルーチンを終了する。
ここで、 S値 TR 1は、 フ ィー ドバッ ク制御の開始を判定する値であって、 出 湯開始時処理ルーチンまたは目標温度変更時処理ルーチンにより初期設定された 位置で可動弁体 70が定常状態になったときの目標温度 TPと湯水混合物温度 T Cとの偏差よりは大きい値として定められている。 この偏差は、 感温コイルスプ リ ング 80および第 2コイルスプリ ング 90の製品毎のバラツキや、 経年変化に よる感温コイ ルスプリ ング 80のばね定数の変化等により定まる。 従って、 19値 TR 1は、 この偏差に若干の余裕を加えた値とするのが好ましい。
温度偏差 ΔΤの絶対値が S値 TR 1より大きいときは、 まだ給湯管等の死水の 吐水中か予荷重調節モータ 1 05の作動中である。 このときにフ ィードバッ ク制 御を行なう と、 死水吐水等が完了すれば適正な予荷重調節量 F Sであるものを、 過渡期の湯水混合物温度 T Cにより不適正な予荷重調節量 F Sとしてしまい、 か えって、 湯水混合物温度 TCを目標温度 TPとするのが遅れることになる。 従つ て、 この場合にはフ イードバッ ク制御を行なわないのである。
一方、 温度偏差 ΔΤの絶対値が K値 TR 1以下のときは (ステ ッ プ S 520) 、 温度偏差 ΔΤの絶対値と 19値 T r e f とを比較する (ステ ッ プ S 530) 。 温度 偏差 ΔΤの絶対値が國値 T r e f より大きいときは、 特性値 T 1, 0を入力する ことにより決定された制御ゲイン Kのパターン (ばね定数の変化率 ΔΒ Kと制御 ゲイ ン Kとの関係) から求めた制御ゲイ ン Kを温度偏差 ΔΤに乗じて実予荷重調 節量 AFを算出し (ステッ プ S 540) 、 現予荷重調節量 FDを実予荷重調節量 AFだけ増加する (ステップ S 550) 。 温度偏差 ΔΤの絶対値が ¾値 T r e f 以下のときは、 従来の湯水混合物温度 TCと予荷重翻節量 F Sとの関係に代えて, 目標温度 T Pと現予荷重靉節量 F Dの値を新たな湯水混合物温度 TCと予荷重調 節量 F Sとの関係としてバツクアップ RAM 150 dに格納する (ステップ S 5 60) 。 従って、 バッ クアップ RAM 1 50 dに記億された湯水混合物温度 T C と予荷重調節量 F Sとの関係は、 湯水混合装置 1 0を使用する毎に、 その一部が 更新されることになる。
このフ ィー ドバッ ク制御ルーチ ンを実行することにより、 出湯開始時には、 湯 水混合装置 1 0は次のように作動する。 出湯が開始されると、 湯水混合物温度 T Cと目標温度 TPとに生じる温度偏差 ΔΤが K値 T R 1より小さ くなるまで、 初 期設定による予荷重 (湯水混合物温度 T C温度と予荷重 節量 F Sとの関係を表 わすマップにより求めた予荷重) を保持する。 出湯開始直後は給湯機から湯水混 合装置 10までの配管に停滞した水が流出するので、 湯水混合物温度 T Cは目標 温度 T Pよりかなり低い値となる。 このとき感温コイルスプリ ング 80は、 この 低い温度に応じてばね定数を変化させ、 可動弁体 70を変位させて湯の割合を增 加する。 従って、 湯の割合が大きいことにより死水吐水を早く完了させることが できる。
給湯機からの湯が湯水混合装置 1 0に到達すると、 湯水混合物温度 TCは急激 に上昇する。 この温度変化に対して感温コイルスプリング 80は俊敏にばね定数 を変化させ、 可動弁体 70を変位して湯の割合を減じる。 感温コイルスプリ ング 80は混合湯水に直接接触しており、 熱容量の小さい SMAを材料としているの で、 応答遅れはほとんどなく、 オーバーシュー トすることはない。 温度偏差 Δ T が閾値 T R 1より小さ くなると、 フ ィー ドバック制御が開始され、 感温コイルス プリ ング 80による温度制御では解消できない温度偏差 ΔΤを解消し、 湯水混合 物温度 T Cを目標温度 TPに保持する。 以上、 説明した実施例の湯水混合装置 1 0によれば、 ばね定数が温度によって 変化する S M Aを材料とした感温コイルスプリング 8 0を用いたので、 外乱等に より湯水混合物温度 T Cが変化しても、 感温コイ ルスプリ ング 8 0のばね定数が 温度に応じて変化するこ とにより可動弁体 7 0を温度変化を打ち消す側に変位さ せて、 湯水混合物温度 T Cを目標温度 T Pとすることができる。 また、 感温コィ ルスプリ ング 8 0は熱容量の小さい S M Aを材料とし、 混合湯水に直接接触する 構成と したので、 湯水混合物温度 T Cの変化に素早く応じることができる。 従つ て、 湯水混合物温度 T Cを目標温度 T Pに保持することができる。
出力湯中に、 外乱等により湯水混合物温度 T Cと目標温度 T Pとに温度偏差 Δ Tが生じ、 感温コィルスプリ ング 8 0による温度制御だけでは温度偏差 Δ Τを解 消することができないときには、 フ ィー ドバック制御を行なうことにより温度偏 差 Δ Τを解消するので、 湯水混合物温度 T Cを常に目標温度 T Pに制御すること ができる。 ばね定数の変化率 Δ Β Kに応じて制御ゲイン Kを変更してフ ィードバ ッ ク制御を行なうので、 ばね定数の変化率 Δ Β Kが一定でない温度範囲に目標温 度 T Pを設定してもハ ンチ ングすることがなく、 制御範囲を広くすることができ る。
出湯開始時または目標温度 T Pの変更時には、 デフォル ト値 T Dまたは目標温 度 T Pに対応した予荷重調節量 F Sを求めて、 可動弁体 7 0の位置を決定するの で、 出湯開始時または目標温度 T Pの変更時から早期に湯水混合物温度 T Cをデ フ ォル ト値 T Dまたは目標温度 T Pとすることができる。 また、 温度偏差 丁が 閾値 T R 1 より小さ くなるまでフ ィードバッ ク制御を実施しないので、 死水吐水 時の湯水混合物温度 T Cを検出することにより予荷重調節機構 1 0 0が第 2コィ ルスプリ ング 9 0の予荷重を変更することがなく、 死水吐水が完了したときに熱 湯が出湯することもない。 更に、 死水吐水時は、 感温コイルスプリ ング 8 0のば ね定数 B Kが変化し、 可動弁体 7 0を付勢して湯の割合を増加するので、 早期に 死水吐水を完了することができる。
また、 感温コイルスプリ ング 8 0のばね特性を区分し、 湯水混合装置 1 0とし て使用する際に、 特性値 T 1 , 0 を入力することにより制御ゲイ ン Kのパターン を決定してフ ィー ドバッ ク制御するので、 感温コイルスプリ ング 8 0に製品ばら つきが生じる場合でも適正に温度制御することができる。
湯水混合物温度 T C と予荷重調節量 F Sの関係を表わすマツ プを湯水混合装置 1 0を設置してから作成するので、 設置条件に応じた湯水混合物温度 T Cと予荷 重調節量 F S との関係を求めるこ とができ、 出湯開始時および目標温度変更時に 早期に湯水混合物温度 T Cを目標温度 T Pとすることができる。 更に、 フ ィード バック制御中に湯水混合物温度 T Cが目標温度 T P となって安定したときに、 そ のときの目標温度 T Pと現予荷重調節量 F Dとを新たな湯水混合物温度 T Cと予 荷重調節量 F Sの関係と してバッ クア ッ プ R A M I 5 0 dに格納するので、 季節 による給水温度 T wの変化により湯水混合物温度 T Cと予荷重調節量 F S との関 係を更新することができる。 また、 感温コイルスプリ ング 8 0のばね定数の経年 変化等により湯水混合物温度 T C と予荷重翻節量 F Sとの関係を更新することが できる。 従って、 季節による給水温度 T wの変化やばね定数の経年変化等などが 生じても、 適正な初期値となるため、 早期に湯水混合物温度 T Cを目標温度 T P とすることができる。
なお、 実施例の湯水混合装置 1 0では、 図 1 7に示したフィードバッ ク制御ル 一チンのステ ッ プ S 5 3 0で温度偏差 Δ Τの絶対値が閾値 T r e f 以下のときに は、 目標温度 T Pと現予荷重讕節量 F Dの値を新たな湯水混合物温度 T Cと予荷 重調節量 F S との関係としてバッ クアップ R A M I 5 0 dに格納したが、 図 1 8 に示すフ ィー ドバッ ク制御ルーチンのようにバッ クアッ プ R A M 1 5 0 dに格納 せずにルーチンを終了する構成でも差し支えない。 図 1 8に示したフ ィードバッ ク制御ルーチンでは、 図 1 7に示したフ ィー ドバッ ク制御ルーチンと同じ処理を するステッ プには同じステツブ番号を付した。
また、 図 1 7に示したフ ィードバック制御ルーチンや図 1 8に示したフィード バック制御ルーチンでは、 給水管等の死水の吐水ゃ予荷重調節モータ 1 0 5の差 動中等におけるフ ィー ドバッ ク制御を回避するため、 温度偏差 Δ Τの絶対値が國 値 T R 1 より大きいときにはフ ィー ドバッ ク制御しない構成としたが、 図 1 9に 示したフ ィー ドバッ ク制御ルーチンのように、 出湯開始または目標温度の変更か ら所定時間経過するまでフ ィードバック制御しない構成も好適である。
図 1 7のフ ィードバッ ク制御ルーチンに代えて、 図 1 9に示したフ ィードバッ ク制御ルーチンを湯水混合装置 1 0が実行すると、 湯水混合装置 10は、 以下の ように動作する。
先ず、 出湯開始から 5秒間経過したか否か、 および、 目標温度 TPの変更から 3秒間経過したか否かを判定し (ステッ プ S 600, S 6 10) 、 出湯開始から 5秒間経過していないとき、 または、 目標温度 T Pの変更から 3秒間経過してい ないときは本ルーチンを終了する。 ここで、 出湯開始から 5秒間経過した後にの みフ ィードバッ ク制御を実行するのは、 出湯直後の湯水混合物温度 T Cが安定し ていないことによる。 すなわち、 前回の出湯停止からの時間経過により、 配管内 の湯が所定の温度となっていないため、 出湯直後は目標温度 T Pよりかなり低い 温度の混合湯水となり、 給湯機からの湯が出始めると急激に温度上昇するからで ある。 従って、 本実施例の 5秒間である出湯開始からフ ィードバック制御を開始 するまでの時間は、 湯の供給源である給湯機と湯水混合装置 1 0との ffi離等によ り定まる値であるので、 給湯機からの配管状況等により定めればよい。 また、 目 標温度 TPの変更から 3秒間経過した後にのみフ ィードバック制御を実行するの は、 目標温度 T Pの変更直後の湯水混合物温度 T Cは過渡期にあり、 安定するの に一定の時間が必要だからである。 従って、 本実施例では 3秒間としたが、 この 3秒間は湯水混合装置 10の容量, 温度センサ 1 10の位置等により決まる値で あるので、 湯水混合装置 1 0の特性により定めればよい。
次に、 目標温度 TPと温度センサ 1 1 0により検出される湯水混合物温度 TC を読み込む処理を実行し (ステッ プ S 620) 、 目標温度 TPと湯水混合物温度 T Cの差を温度偏差 ΔΤにセッ トする (ステ ッ プ S 630) 。 セッ トされた温度 偏差 ΔΤの絶対値を ¾値 T r e f と比較し (ステッ プ S 640) 、 温度偏差 ΔΤ の絶対値が ¾値 T r e f より小さいときは本ルーチンを終了する。
温度偏差 ΔΤの絶対値が K値 T r e f より大きいときは、 ばね定数の変化率 Δ B Kと制御ゲイ ン Kとの関係より制御ゲイ ン Kを求め (ステッ プ S 650) 、 温 度偏差 ΔΤに制御ゲイ ン Kを乗じて実予荷重調節量 AFを算出し (ステ ッ プ S 6 60) 、 現予荷重調節量 F Dを実予荷重調節量 AFだけ増加させて (ステッ プ S 670 ) 、 本ルーチンを終了する。
次に、 本発明の第 2の実施例について説明する。 第 2実施例の湯水混合装置は、 第 1実施例と同一のハードウエア構成を備え、 図 1 5の出湯開始時処理ルーチン, 図 1 6の目標温度変更時処理ルーチンおよび図 1 7のフ ィー ドバック制御ルーチ ンも同一である。 第 2実施例では第 1実施例の初期予荷重調整ルーチン (図 1 3) に代えて、 図 20の初期値逮定ルーチンが実行される。 以下に、 初期値選定ルー チンについて説明する。 なお、 本ルーチンは、 新たに湯水混合装置 1 0を設置し た時または長期間使用しなかった湯水混合装置 1 0の使用を再開する時に実行さ れる。
まず、 感温コイルスプリ ング 80のばね特性を表わす特性値 T 1および 0を使 用者が入力することにより (ステッ プ S 700) 、 制御ゲイ ン Kのパターンが決 定される (ステップ S 71 0) 。 この処理については詳細に前述したので、 ここ では省略する。
次に給水温度 Twと給湯温度 T hを使用者が入力する (ステ ッ プ S 720) 。 使用者は、 L C D 160に表示される 「高」 · 「中」 · 「低」 の 3種類から選択 することにより給水温度 Twを入力する。 「高」 を選択すると夏期の給水温度 T wとして 25'Cが設定され、 「中」 が逮択されると春期または秋期の給水温度 T wとして 1 5 'Cが設定され、 「低」 が選択されると冬期の給水温度 Twとして 5 。Cが設定される。 「高」 · 「中」 · 「低」 の変更は、 パネル操作部 1 70のスィ ツチ 1 71, 1 72等により行なうことができ、 スィ ッチ 171を操作する毎に、 LCD 160の表示が 「高」 から Γ中」 へ、 「中」 から 「低」 へと変化し、 スィ ツチ 1 72を操作する毎に、 LCD 160の表示が 「低」 から 「中」 へ、 「中」 から 「高」 へと変化する。 L CD 160の表示が所望の表示のときに、 スィ ッチ 1 77を操作することにより給水温度 Twを決定する。
給湯温度 T hも同様に 「高」 · 「中」 · 「低」 により入力するが、 「高」 が選 択されると給湯温度 T hが 9 O'Cに設定され、 「中」 が選択されると給湯温度 T hが 75 °Cに設定され、 「低 J が選択されると給湯温度 T hが 6 O'Cに設定され る。
次に、 入力された給水温度 Twおよび給湯温度 T hの組み合わせにより、 湯水 混合物温度 T Cと予荷重調節量 F Sとの関係を表わす図示しないマツ プを選定す る (ステ ッ プ S 730) 。 このマッ プは、 予め ROM 1 50 bに給水温度 Twと 給湯温度 T hの組み合わせの数だけ格納されている。 選定されたマッ ブはバッ ク アップ RAM I 50 dの所定の場所に複写される (ステップ S 740) 。
第 2実施例では、 給水温度 Twおよび給湯温度 T hを、 それぞれ 「高」 · 「中」 • 「低」 の 3種類に区分し、 その組み合わせの数の湯水混合物温度 T Cと予荷重 調節量 F Sとの関係を表わすマップを用意したが、 給水温度 Twおよび給湯温度 T hの区分数はいくつでも構わない。 また、 直接、 温度を入力する構成でもよい。 給水温度 Twおよび給湯温度 T hの 「高」 · 「中」 · 「低」 を、 給水温度 Twで は 25て · 1 5て · 5て、 給湯温度 T hでは 90 * 75 *C · 60てとしたが、 使用される場所および給湯機の性能等により決定すればよく、 その数値はいくつ であっても構わない。 実施例では、 この組み合わせを所定データとしたが、 給湯 機の種類の指定等であっても構わない。
以上、 説明した第 2実施例の湯水混合装置 10によれば、 予め ROM 150 b に湯水混合物温度 T Cと予荷重調節量 F Sとの関係を表わすマツブを複数用意し ておき、 給水温度 Twと給湯温度 T hを入力することによって使用するマッ プを 決定するので、 初期値の設定を簡易 ·迅速に行なうことができ、 湯水混合装置 1 0を設置した季節の給水温度 Twおよび実際に湯水混合装置 1 0に給湯される給 湯温度 Thに応じた初期値とすることができる。
また、 フ ィー ドバッ ク制御を行なうので、 初期値で設定した予荷重では湯水混 合物温度 T Cと目標温度 T Pとに温度偏差 ΔΤを生じる場合にも、 湯水混合物温 度 TCを目標温度 TPとすることができる。 なお、 その他の効果については第 1 実施例と同一である。
次に、 本発明の第 3の実施例について説明する。 第 3実施例の湯水混合装置は、 図 9に示す第 1実施例の弁ュニッ ト 15において、 その予荷重調節機構 100に 代えて、 以下に説明する予荷重調節機構 200を備えた構成である。 また、 第 3 実施例の作動については第 1実施例の出湯開始時処理ルーチン (図 1 5) , 目標 温度変更時処理ルーチン (図 16) およびフ ィー ドバッ ク制御ルーチン (図 17) と同一である。 以下に図 21を用いて第 3実施例の予荷重調節機構 200の構成 および作動を説明する。
図 2 1は第 3実施例の予荷重襲節機構 200の概略を示した模式図である。 予 荷重調節機構 2 0 0は、 フ ェ ラ イ トを材料とした可動弁体 7 0とコイル 2 1 0と から構成されている。 可動弁体 7 0は、 ハウジング 6 1 のボア 6 2との接触摩擦 力を小さ くするため、 ボア 6 2との接触面をフッ素樹脂で被覆されている。 コィ ル 2 1 0は、 可動弁体 7 0の軸方向に軸を持ち、 可動弁体 7 0を芯とするように 配置されている。 コイル 2 1 0は電子制御装置 1 5 0に接続されており、 電流を 流すことにより、 可動弁体 7 0をコイル 2 1 0内に吸い込む方向、 即ち、 図 2 1 右方の力を生じさせる。 これによつて、 可動弁体 7 0は、 感温コイルスプリ ング 8 0と第 2 コイ ルスプリ ング 9 0によるばね力の约り合いの位置から、 磁界によ る力を含めた新たな約り合いの位置に変位する。 従って、 コイ ル 2 1 0に流す電 流を変化させることにより、 可動弁体 7 0を所望の位置に制御することができる。 以上説明した第 3実施例の湯水混合装置によれば、 電磁誘導により可動弁体 7 0を駆動するので、 弁ユニッ ト 1 5の水密性を高く保持することができる。 また、 予荷重量の調節にモータを使用しないので、 シ ンブルな構造となり、 信頼性を高 めるこ とができる。
第 3実施例では、 電力の節減のため、 出湯前の可動弁体 7 0の位置が通常使用 される温度 (例えば 4 0 'C ) となる湯水混合比の位置で停止するように、 感温コ ィルスプリ ング 8 0および第 2 コイルスプリ ング 9 0を調整する構成も好適であ る。 この場合、 図 9の出湯開始時処理ルーチ ンにおいて、 混合湯水温度 T Cをデ フ ォ ル ト値 T Dになるように予荷重を調節するステツブ S 1 0 0ないし S 1 5 0 は不要となる。 また、 可動弁体 7 0の軸方向に磁界を発生させればよいから、 可 動弁体 7 0を芯とするようにコイル 2 1 0を配置しなくても、 複数のコイルを可 動弁体 7 0の軸方向に平行に配置する構成も可能である。 更に、 可動弁体 7 0の 全体をフ ライ ト等の材料としなくても、 可動弁体 7 0の一部、 例えば、 ばね受 け 7 6 , 7 7のみをフ ユ ライ ト等とする構成も好適である。
次に、 本発明の第 4の実施例について説明する。 第 4実施例の湯水混合装置は、 図 9に示す第 1実施例の弁ュ- V ト 1 5において、 その予荷重調節機構 1 0 0に 代えて、 以下に説明する予荷重調節機構 3 0 0を備えた構成である。 また、 第 4 実施例の作動については第 1実施例の出湯開始時処理ルーチン (図 1 5 ) , 目標 温度変更時処理ルーチ ン (図 1 6 ) およびフ ィー ドバッ ク制御ルーチ ン (図 1 7 ) と同一である。 以下に図 2 2を用いて第 4実施例の予荷重調節機構 3 0 0の構成 および作動を説明する。
図 2 2は第 4実施例の予荷重調節機構 3 0 0の概略を示す模式図である。 この 予荷重調節機構 3 0 0では、 可動弁体 7 0を一方向に付勢する感温コイルスプリ ング 8 0の近傍に、 電子制御装置 1 5 0からの信号により温度制御が可能な発熱 体 3 0 2を設けている。 この発熱体 3 0 2は、 感温コイ ルスプリ ング 8 0の近傍 の混合湯水温度 T Cを上昇させるので、 混合湯水温度 T Cの温度上昇に応じて感 温コイ ルスプリ ング 8 0のばね定数を変化させる。 ばね定数が変化することによ り、 感温コイ ルスプリ ング 8 0 と第 2コイ ルスプリ ング 9 0 とのばね力の釣り合 いが崩れ、 可動弁体 7 0は新たな約り合いの位置まで変位する。 感温コイルスブ リ ング 8 0のばね定数は、 感温コィルスプリ ング 8 0の近傍の温度により決まり、 感温コイルスプリ ング 8 0の近傍の温度は、 発熱体 3 0 2が発する熱量と, 発熱 体 3 0 2が発する熱量に接触する前の混合湯水温度 T Cと, 混合湯水の流量とに より決まる。 従って、 混合湯水の流量が一定の場合、 発熱体 3 0 2が発する熱量 を変化することにより、 可動弁体 7 0を駆動し、 混合湯水温度 T Cを制御するこ とができる。
以上説明した第 4実施例の湯水混合装置によれば、 予荷重調節機構 3 0 0に可 動部分がないので、 弁ュニッ ト 1 5の水密性を高く保持することができる。 また、 予荷重量の調節にモータを使用しないので、 シンブルな構造となり、 信頼性を高 めるこ とができる。
第 4実施例では、 発熱体 3 0 2を感温コィルスプリング 8 0の近傍に設置した が、 発熱体 3 0 2が感温コイ ルスプリ ング 8 0に接触する構成、 感温コイルスプ リ ング 8 0に直接通電して感温コィルスプリ ング 8 0の温度を変化させる構成で もよい。 また、 第 2 コイルスプリ ング 9 0が感温コイルスプリ ング 8 0と同一の S M Aからなり、 発熱体 3 0 2が第 2 コイルスプリ ング 9 0を混合湯水温度 T C とは無関係に温度制御する構成も好適である。
以上本発明の実施例について説明したが、 本発明はこ う した実施例に何等限定 されるものではなく、 例えば、 第 2実施例において湯水混合物の温度を用いてフ ィー ドバッ ク制御しない構成、 湯水混合物の温度と目標温度との偏差を予測して 更新する構成等、 本発明の要旨を逸脱しない範囲内において、 種々なる態様で実 施し得ることは勿論である。

Claims

請求の範囲
1 . 湯水の混合比を調節する可動弁体を有する湯水混合弁と、
所定の温度範囲において温度に応じてばね定数が変化する材料からなり、 前記 混合弁から流出する湯水混合物の温度上昇に伴い湯の割合を減少させる方向に前 記可動弁体を付勢する第 1 のばねと、
前記可動弁体を前記方向とは反対方向に付勢する第 2のばねと、
前記第 1 および第 2のばねの少なく とも一方の予荷重を調節可能な予荷重調節 手段と、
前記湯水混合物の温度を検出する温度検出手段と、
前記予荷重調節手段を制御して、 前記予荷重を湯水混合物の目標温度に対応し た初期値に設定する初期予荷重設定手段と、
該設定の後に、 前 3己温度検出手段により検出された温度と目標温度とに偏差が 存在する場合には、 該偏差を打ち消す側に前記予荷重調節手段を制御する電子制 御手段と
を備えた湯水混合装置。
2 . 予荷重調節手段は、 第 1 もし くは第 2のばねの有効長を変更する手段である 請求項 1記載の湯水混合装置。
3 . 予荷重調節手段は、 可動弁体を、 第 1 もしくは第 2のばねの付勢方向に電磁 誘導により付勢する手段である請求項 1記載の湯水混合装置。
4 . 予荷重調節手段は、 第 1 のばねの温度を湯の温度とは別に制御する発熱手段 である請求項 1記載の湯水混合装置。
5 . 湯水の混合比を調節する可動弁体を有する湯水混合弁と、
所定の温度範囲において温度に応じてばね定数が変化する材料からなり、 前記 混合弁から流出する湯水混合物の温度上昇に伴い湯の割合を減少させる方向に前 記可動弁体を付勢する第 1 のばねと、
前記可動弁体を前記方向とは反対方向に付勢する第 2のばねと、
前記第 1 および第 2のばねの少なく とも一方の予荷重を調節可能な予荷重調節 手段と、
前記湯水混合物の温度を検出する温度検出手段と、
前記温度検出手段により検出された温度と目標温度とに偏差が存在する場合に は、 該偏差を打ち消す側に前記予荷重調節手段をフ ィー ドパッ ク制御する予荷重 制御手段と、
該フ ィー ドバック制御のゲイ ンを湯水の混合状態に基づいて決定する制御ゲイ ン決定手段と
を備えた湯水混合装置。
6 . 前記制御ゲイ ン決定手段は、 前記ゲイ ンを湯水混合物の温度に基づいて決定 する手段である請求項 5記載の湯水混合装置。
7 . 前記制御ゲイ ン決定手段は、 前記ゲイ ンを湯水混合物の温度における前記第 1 のばねのばね定数の変化率に基づいて決定する手段である請求項 5記載の湯水 混合装置。
8 . 請求項 5記載の湯水混合装置であって、
制御ゲイ ン決定手段は、 前記第 1 のばねのばね定数の変化率が変化しない領域 に該検出温度があるときは制御ゲイ ンを第 1 の値とし、 該変化率が変化する領域 に該検出温度があるときは制御ゲイ ンを該第 1の値より小さな第 2の値とする手 段である湯水混合装置。
9 . 湯水の混合比を調節する可動弁体を有する湯水混合弁と、
所定の温度範囲において温度に応じてばね定数が変化する材料からなり、 前記 混合弁から流出する湯水混合物の温度上昇に伴い湯の割台を減少させる方向に前 記可動弁体を付勢する第 1 のばねと、 前記可動弁体を前記方向とは反対方向に付勢する第 2のばねと、
前記第 1 および第 2のばねの少なく とも一方の予荷重を調節可能な予荷重調節 手段と、
前記湯水混合物の温度を検出する温度検出手段と、
前記予荷重調節手段を制御して、 前記予荷重を湯水混合物の目標温度に対応し た初期値に設定する初期予荷重設定手段と、
該設定の後、 前記温度検出手段により検出された温度と目標温度とに偏差が存 在する場合に、 該偏差の大きさに基づいてフ ィー ドバッ ク制御を実施するか否か を判定する制御実施判定手段と、
前記制御実施判定手段によりフ ィードバッ ク制御の実施と判定されたときに、 該偏差を打ち消す側に前記予荷重調節手段を制御する予荷重制御手段と
を備えた湯水混合装置。
1 0 . 請求項 9記載の湯水混合装置であって、
制御実施判定手段は、 該偏差が所定範囲内にあるときにはフ ィードバック制御 を実施すると判定し、 該偏差が所定範囲外にあるときにはフ ィードバツ ク制御を 実施しないと判定する手段である湯水混合装置。
1 1 . 請求項 9記載の湯水混合装置であって、
制御実施判定手段は、 該偏差が第 1の所定範囲内にあるときにはフ ィードバッ ク制御を実施しないと判定し、 該偏差が前記第 1 の所定範囲外にあり前記第 1 の 所定範囲より大きな第 2の所定範囲内にあるときにはフ ィードバツク制御を実施 すると判定し、 該偏差が前記第 2の所定範囲外にあるときにはフ ィー ドバッ ク制 御を実施しないと判定する手段である湯水混合装置。
1 2 . 湯水の混合比を調節する可動弁体を有する湯水混合弁と、
所定の温度範囲において温度に応じてばね定数が変化する材料からなり、 前記 混合弁から流出する湯水混合物の温度上昇に伴い湯の割合を減少させる方向に前 記可動弁体を付勢する第 1 のばねと、 前記可動弁体を前記方向とは反対方向に付勢する第 2のばねと、
前記第 1 および第 2のばねの少な く とも一方の予荷重を調節可能な予荷重調節 手段と、
前記湯水混合物の温度を検出する温度検出手段と、
湯水混合物の目標温度と前記予荷重との関係を記億する予荷重記憶手段と、 前記予荷重調節手段を制御して、 前記予荷重 3己億手段により記憧された閲係に 従って、 予荷重を目標温度に対応した初期値に設定する予荷重設定手段と、 該設定の後に、 前記温度検出手段により検出された湯水混合物の温度と目標温 度とに偏差が存在する場合には、 該偏差を打ち消す側に前記予荷重調節手段を制 御する予荷重制御手段と、
前記温度検出手段により検出された湯水混合物の温度と目標温度との偏差が所 定の状態となったときの該目標温度と前記予荷重との関係を用いて、 前記予荷重 記憶手段により目己億された関係を更新する更新手段と
を備えた湯水混合装置。
1 3 . 湯水の混合比を襲節する可動弁体を有する湯水混合弁と、
所定の温度範囲において温度に応じてばね定数が変化する材料からなり、 前記 混合弁から流出する湯水混合物の温度上昇に伴い湯の割合を減少させる方向に前 記可動弁体を付勢する第 1のばねと、
前記可動弁体を前記方向とは反対方向に付勢する第 2のばねと、
前記第 1 および第 2のばねの少なく とも一方の予荷重を調節可能な予荷重調節 手段と、
湯水混合物の目標温度と前記予荷重との関係を複数記憧する複数予荷重記憶手 段と、
所定データの入力に基づいて、 前記複数予荷重記憶手段により記憶された複数 の目標温度と予荷重との関係のうち、 一つの関係を選択する予荷重選択手段と、 前記予荷重調節手段を制御して、 前記予荷重選択手段により選択された関係に 従って、 予荷重を目標温度に対応した初期値に設定する予荷重設定手段と を備えた湯水混合装置。
1 4 . 前記請求項 1 3記載の湯水混合装置であって、
前記湯水混合物の温度を検出する温度検出手段と、
前記予荷重設定手段により初期値が設定された後に、 前記温度検出手段により 検出された湯水混合物の温度と目標温度とに偏差が存在する場合には、 該偏差を 打ち消す側に前記予荷重調節手段を制御する予荷重制御手段と
を備えた湯水混合装置。
1 5 . 所定の温度範囲において温度に応じてばね定数が変化する材料からなる第 1 のばねで、 可動弁体を有する湯水混合弁から流出する湯水混合物の温度上昇に 伴い湯の割合を減少させる方向に該可動弁体を付勢し、
第 2のばねで、 前記可動弁体を前記方向とは反対方向に付勢し、
該可動弁体の位置により湯水の混合比を調節する湯水混合方法であつて、 前記第 1 および第 2のばねの少なく とも一方の予荷重を調節して、 該予荷重を 湯水混合物の目標温度に対応した初期値に設定し、
該設定の後に、 湯水混合物の温度を検出し、
該検出された温度と目標温度とに偏差が存在する場合には、 該偏差を打ち消す 側に第 1 および第 2のばねの少なく とも一方の予荷重を調節する
湯水の混合方法。
1 6 . 所定の温度範囲において温度に応じてばね定数が変化する材料からなる第 1 のばねで、 可動弁体を有する湯水混合弁から流出する湯水混合物の温度上昇に 伴い湯の割合を減少させる方向に該可動弁体を付勢し、
第 2のばねで、 前記可動弁体を前記方向とは反対方向に付勢し、
該可動弁体の位置により湯水の混合比を讕節する湯水混合方法であって、 前記湯水混合物の温度を検出し、
該検出された温度と目標温度とに偏差が存在する場合には、 湯水の混合状態に 基づいてフ ィ一ドバッ ク制御のゲイ ンを決定し、
該ゲイ ンを用いて前 己偏差を打ち消す側に前記第 1 および第 2のばねの少な く とも一方の予荷重をフ ィ一ドバッ ク制御する
湯水の混合方法。
1 7 . 所定の温度範囲において温度に応じてばね定数が変化する材料からなる第 1 のばねで、 可動弁体を有する湯水混合弁から流出する湯水混合物の温度上昇に 伴い湯の割合を減少させる方向に該可動弁体を付勢し、
第 2のばねで、 前記可動弁体を前記方向とは反対方向に付勢し、
該可動弁体の位置により湯水の混合比を調節する湯水混合方法であつて、 前記第 1 および第 2のばねの少なく とも一方の予荷重を調節して、 該予荷重を 湯水混合物の目標温度に対応した初期値に設定し、
該設定の後、 前記湯水混合物の温度を検出し、
該検出された温度と目標温度とに偏差が存在する場合に、 該偏差の大きさに基 づいてフ ィ一ドバッ ク制御を実施するか否かを判定し、
該判定がフ ィー ドバック制御の実施のときに、 該偏差を打ち消す側に前記第 1 および第 2のばねの少なく とも一方の予荷重を制御する
湯水の混合方法。
1 8 . 所定の温度範囲において温度に応じてばね定数が変化する材料からなる第 1 のばねで、 可動弁体を有する湯水混合弁から流出する湯水混合物の温度上昇に 伴い湯の割合を減少させる方向に該可動弁体を付勢し、
第 2のばねで、 前 3己可動弁体を前記方向とは反対方向に付勢し、
該可動弁体の位置により湯水の混合比を調節する湯水混合方法であって、 湯水混合物の目標温度と前記予荷重との関係を記憶し、
前記第 1 および第 2のばねの少なく とも一方の予荷重を調節して、 前記記億し た関係に従って、 予荷重を目標温度に対応した初期値に設定し、
該設定の後に、 前記湯水混合物の温度を検出し、
該検出された温度と目標温度とに偏差が存在する場合には、 該偏差を打ち消す 側に前記第 1 および第 2のばねの少なく とも一方の予荷重を制御し、
前記検出された温度と目標温度との偏差が所定の状態のときには、 該目標温度 と前記予荷重との関係を用いて、 前記記億した関係を更新する
湯水の混合方法。
1 9 . 所定の温度範囲において温度に応じてばね定数が変化する材料からなる第
1 のばねで、 可動弁体を有する湯水混合弁から流出する湯水混合物の温度上昇に 伴い湯の割合を減少させる方向に該可動弁体を付勢し、
第 2のばねで、 前記可動弁体を前記方向とは反対方向に付勢し、
該可動弁体の位置により湯水の混合比を調節する湯水混合方法であって、 湯水混合物の目標温度と前記予荷重との関係を複数記億し、
所定データの入力に基づいて、 前記記憶した複数の目標温度と予荷重との関係 のうち、 一つの関係を選択し、
該選択した関係に従って、 前記第 1 および第 2のばねの少なく とも一方の予荷 重を調節して、 予荷重を目標温度に対応した初期値に設定する
湯水の混合方法。
PCT/JP1993/001712 1992-11-25 1993-11-22 Hot water/cold water mixing apparatus and hot water/cold water mixing method WO1994012920A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US08/256,768 US5511723A (en) 1992-11-25 1993-11-22 Combination faucet and method of mixing hot water with cold water
EP94900995A EP0624836A4 (en) 1992-11-25 1993-11-22 MIXING DEVICE AND METHOD FOR COLD AND HOT WATER.
KR1019940702547A KR950700565A (ko) 1992-11-25 1994-07-25 온수혼합장치 및 온수혼합방법

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP4/339619 1992-11-25
JP33961992A JP3261776B2 (ja) 1992-11-25 1992-11-25 湯水混合装置
JP4/345364 1992-11-30
JP34536492A JPH06168035A (ja) 1992-11-30 1992-11-30 湯水混合装置
JP5/18169 1993-01-08
JP1816993A JPH06208420A (ja) 1993-01-08 1993-01-08 湯水混合装置

Publications (1)

Publication Number Publication Date
WO1994012920A1 true WO1994012920A1 (en) 1994-06-09

Family

ID=27282116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/001712 WO1994012920A1 (en) 1992-11-25 1993-11-22 Hot water/cold water mixing apparatus and hot water/cold water mixing method

Country Status (6)

Country Link
US (1) US5511723A (ja)
EP (1) EP0624836A4 (ja)
KR (1) KR950700565A (ja)
CA (1) CA2128725A1 (ja)
TW (1) TW237395B (ja)
WO (1) WO1994012920A1 (ja)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2162802A1 (en) * 1995-11-13 1997-05-14 Peter Zosimadis Wireless temperature monitoring system
US6059192A (en) 1996-04-04 2000-05-09 Zosimadis; Peter Wireless temperature monitoring system
IT1290356B1 (it) * 1997-02-18 1998-10-22 Prealpina Tecnoplastica Valvola per il controllo della temperatura dell'acqua in una macchina lavatrice o lavastoviglie procedimento di trattamento dell'acqua in
DE19710782C2 (de) * 1997-03-17 2002-08-01 Ideal Standard Sanitärarmatur
DE19848443A1 (de) * 1998-10-21 2000-04-27 Mann & Hummel Filter Steuerung einer Verbrennungslufttemperatur
IL149639A0 (en) * 2002-05-14 2002-11-10 Water faucet with automatic temperature adjustment according to the user's request
US6676024B1 (en) 2002-09-05 2004-01-13 Masco Corporation Thermostatic valve with electronic control
US7690395B2 (en) 2004-01-12 2010-04-06 Masco Corporation Of Indiana Multi-mode hands free automatic faucet
US7475827B2 (en) * 2005-04-19 2009-01-13 Masco Corporation Of Indiana Fluid mixer
US7448553B2 (en) * 2005-04-19 2008-11-11 Masco Corporation Of Indiana Fluid mixer
US7458520B2 (en) * 2005-04-19 2008-12-02 Masco Corporation Of Indiana Electronic proportioning valve
ES2308384T3 (es) * 2005-07-01 2008-12-01 Saab Ab Dispositivo y sistema antihielo para aeronaves que comprenden dicho dispositivo.
US9243756B2 (en) 2006-04-20 2016-01-26 Delta Faucet Company Capacitive user interface for a faucet and method of forming
US8118240B2 (en) 2006-04-20 2012-02-21 Masco Corporation Of Indiana Pull-out wand
US8162236B2 (en) 2006-04-20 2012-04-24 Masco Corporation Of Indiana Electronic user interface for electronic mixing of water for residential faucets
US8365767B2 (en) 2006-04-20 2013-02-05 Masco Corporation Of Indiana User interface for a faucet
US8089473B2 (en) 2006-04-20 2012-01-03 Masco Corporation Of Indiana Touch sensor
US9243392B2 (en) 2006-12-19 2016-01-26 Delta Faucet Company Resistive coupling for an automatic faucet
US7806141B2 (en) 2007-01-31 2010-10-05 Masco Corporation Of Indiana Mixing valve including a molded waterway assembly
US8944105B2 (en) 2007-01-31 2015-02-03 Masco Corporation Of Indiana Capacitive sensing apparatus and method for faucets
US8376313B2 (en) 2007-03-28 2013-02-19 Masco Corporation Of Indiana Capacitive touch sensor
EP2574701A1 (en) 2007-12-11 2013-04-03 Masco Corporation Of Indiana Electrically controlled Faucet
US8561626B2 (en) 2010-04-20 2013-10-22 Masco Corporation Of Indiana Capacitive sensing system and method for operating a faucet
US8776817B2 (en) 2010-04-20 2014-07-15 Masco Corporation Of Indiana Electronic faucet with a capacitive sensing system and a method therefor
US10481622B2 (en) 2010-11-04 2019-11-19 Magarl, Llc Electrohydraulic thermostatic control valve
ITMI20112121A1 (it) * 2011-11-22 2013-05-23 Getters Spa Sistema per la produzione di acqua calda e distributore automatico di bevande che lo utilizza
BR112014026013A2 (pt) 2012-04-20 2017-06-27 Masco Corp torneira que inclui uma barra destacável com uma detecção capacitiva
US9389000B2 (en) * 2013-03-13 2016-07-12 Rheem Manufacturing Company Apparatus and methods for pre-heating water with air conditioning unit or heat pump
US20170350103A1 (en) * 2016-06-07 2017-12-07 Livin Life Inc. Intelligent shower system and methods for providing automatically-updated shower recipe
US10459463B2 (en) * 2017-03-23 2019-10-29 Hain Yo Enterprises Co., Ltd. Water flow control valve
GB2571560B (en) * 2018-03-01 2020-06-03 Kohler Mira Ltd Bar valve
WO2020081878A1 (en) 2018-10-17 2020-04-23 Moen Incorporated Electronic plumbing fixture fitting including demonstration and preset features
US11747044B2 (en) * 2021-12-08 2023-09-05 Guangzhou Seagull Kitchen And Bath Products Co., Ltd. Instant water boiling device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59105660U (ja) * 1982-12-31 1984-07-16 株式会社京浜精機製作所 混合弁
JPS60121377A (ja) * 1983-12-01 1985-06-28 Nippon Thermostat Kk 可変感温特性サ−モスタツト
JPS6121215U (ja) * 1984-07-10 1986-02-07 東陶機器株式会社 定温,給湯装置
JPS61150585U (ja) * 1985-03-12 1986-09-17
JPH0280879A (ja) * 1988-09-14 1990-03-20 Daikin Ind Ltd 温度差動弁

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3091393A (en) * 1961-07-05 1963-05-28 Honeywell Regulator Co Fluid amplifier mixing control system
US4640457A (en) * 1982-03-03 1987-02-03 Masco Corporation Thermostatic valve assembly
CA1214494A (en) * 1982-11-24 1986-11-25 Robert P. St.John Color electrographic recording apparatus
JPS6121482A (ja) * 1984-07-06 1986-01-30 Matsushita Refrig Co 自動切換弁
JPS6121215A (ja) * 1984-07-09 1986-01-29 Mitsubishi Heavy Ind Ltd 取水口設備用バ−スクリ−ン装置
JPH0718508B2 (ja) * 1984-07-23 1995-03-06 松下電器産業株式会社 湯水混合装置
JPS61150585A (ja) * 1984-12-25 1986-07-09 Toshiba Corp 音声多重復調器の複合信号検出回路
JP2548111B2 (ja) * 1984-12-27 1996-10-30 松下電器産業株式会社 湯水混合装置
DE3814519A1 (de) * 1988-04-29 1989-11-09 Danfoss As Temperaturabhaengiges ventil
JPH0668174B2 (ja) * 1989-03-29 1994-08-31 株式会社イナックス シャワーバス水栓及びその切換弁
TW226429B (ja) * 1992-07-20 1994-07-11 Toto Ltd

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59105660U (ja) * 1982-12-31 1984-07-16 株式会社京浜精機製作所 混合弁
JPS60121377A (ja) * 1983-12-01 1985-06-28 Nippon Thermostat Kk 可変感温特性サ−モスタツト
JPS6121215U (ja) * 1984-07-10 1986-02-07 東陶機器株式会社 定温,給湯装置
JPS61150585U (ja) * 1985-03-12 1986-09-17
JPH0280879A (ja) * 1988-09-14 1990-03-20 Daikin Ind Ltd 温度差動弁

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0624836A4 *

Also Published As

Publication number Publication date
TW237395B (ja) 1995-01-01
US5511723A (en) 1996-04-30
KR950700565A (ko) 1995-01-16
EP0624836A4 (en) 1995-07-26
EP0624836A1 (en) 1994-11-17
CA2128725A1 (en) 1994-06-09

Similar Documents

Publication Publication Date Title
WO1994012920A1 (en) Hot water/cold water mixing apparatus and hot water/cold water mixing method
US8165726B2 (en) Water heater energy savings algorithm for reducing cold water complaints
JP6326236B2 (ja) 燃料電池コージェネレーションシステム、その制御プログラムおよび制御方法
JPH0718508B2 (ja) 湯水混合装置
JP3261776B2 (ja) 湯水混合装置
JP3295988B2 (ja) 湯水混合装置
JPS60249783A (ja) 湯水混合装置
JPH06208420A (ja) 湯水混合装置
JPH06168035A (ja) 湯水混合装置
JPH04254164A (ja) 吸収式冷凍機の自動温度制御装置
JP3039727B2 (ja) 乾電池駆動式の電子制御湯水混合装置
JPH06250745A (ja) 湯水混合装置
JP3077425B2 (ja) 定圧型湯水混合装置
JP2001124356A (ja) 即時出湯装置の即時出湯制御方法
JPH06213370A (ja) 湯水混合装置
JP2762529B2 (ja) 湯水混合制御装置
JPH06187053A (ja) 湯水混合装置
JPH04341675A (ja) 湯水混合装置
JPH0642674A (ja) 電子制御湯水混合装置
JPH04228988A (ja) 湯水混合装置
JP3380047B2 (ja) 給湯器
JP3073090B2 (ja) 瞬間式給湯器における再出湯直前の混合比制御方法
JP2890878B2 (ja) 凍結判定装置
JP3271830B2 (ja) 給湯器およびその水量制御弁の初期流水量設定方法
JP2002195508A (ja) 蒸気ボイラの給水制御装置及び給水制御方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2128725

Country of ref document: CA

Ref document number: 08256768

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1994900995

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994900995

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1994900995

Country of ref document: EP