WO1994005018A1 - Isolierband für eine wicklung einer elektrischen maschine - Google Patents

Isolierband für eine wicklung einer elektrischen maschine Download PDF

Info

Publication number
WO1994005018A1
WO1994005018A1 PCT/DE1993/000790 DE9300790W WO9405018A1 WO 1994005018 A1 WO1994005018 A1 WO 1994005018A1 DE 9300790 W DE9300790 W DE 9300790W WO 9405018 A1 WO9405018 A1 WO 9405018A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating tape
adhesive
winding
tape
accelerator
Prior art date
Application number
PCT/DE1993/000790
Other languages
English (en)
French (fr)
Inventor
Gernot Swiatkowski
Irene Olbrich
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to DE59310183T priority Critical patent/DE59310183D1/de
Priority to US08/387,939 priority patent/US5674340A/en
Priority to AT93918929T priority patent/ATE202654T1/de
Priority to EP93918929A priority patent/EP0657061B1/de
Priority to BR9306956A priority patent/BR9306956A/pt
Publication of WO1994005018A1 publication Critical patent/WO1994005018A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B19/00Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B19/00Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
    • B32B19/06Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/04Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances mica
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/08Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances quartz; glass; glass wool; slag wool; vitreous enamels
    • H01B3/084Glass or glass wool in binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/302Polyurethanes or polythiourethanes; Polyurea or polythiourea
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
    • B32B2315/08Glass
    • B32B2315/085Glass fiber cloth or fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
    • B32B2315/10Mica
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/10Casings or enclosures characterised by the shape, form or construction thereof with arrangements for protection from ingress, e.g. water or fingers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer

Definitions

  • Insulating tape for a winding of an electrical machine
  • the invention relates to the use of an insulating tape for the insulation of windings of electrical machines intended for a first heat class, the insulating tape consisting of a carrier material, an electrically penetration-resistant material and a thermoplastic adhesive being impregnated with a resin and then hardened .
  • Such an insulating tape is known for example from DE-AS 12 73 647.
  • DE-AS a vulcanizable adhesive
  • thermoplastic adhesive which consists of a polyether sulfone or a polyetherimide.
  • the disadvantage of these thermoplastic materials is that they either have to be strongly heated for application to the tape or have to be dissolved with special solvents for spraying onto the tape.
  • thermoplastic adhesive in the form of a film for an insulating tape, a film being used which contracts after being wound onto a conductor when heated, so that through openings for an impregnation resin are formed between the various layers of the insulating tape.
  • thermoplastics in film form as an insulating layer between the Known turns of an electrical machine.
  • the thermoplastic film itself forms the insulating medium there, therefore no additional mica layer is provided.
  • polyamides, polyimides and polyesters are proposed as materials.
  • thermoplastic film for an electrical machine, the heat resistance of the film material must be chosen according to the heat class of the machine to be insulated.
  • a silicone resin adhesive for an insulating tape for the thermal class H (> 180 ° C.) is known from Hitachi patent EP 0 012 566, page 2, lines 1 to 34. It is discussed there that the thermal resistance of the insulating tape is not sufficient when using a solvent-free silicone resin.
  • the required temperature resistance is only achieved there by using a silicone resin with hydroxyl groups as the adhesive, since the adhesive itself (cf. page 2, line 20 of EP 0 012 566) has the required temperature resistance due to the siloxane bonds.
  • a silicone resin with hydroxyl groups as the adhesive, since the adhesive itself (cf. page 2, line 20 of EP 0 012 566) has the required temperature resistance due to the siloxane bonds.
  • Such a special high-temperature-resistant silicone resin thus prevents the winding from being delaminated by mechanical changes in the adhesive or outgassing.
  • thermoplastic adhesives binder
  • Thermoplastic and non-thermoplastic adhesives for use in insulating tapes for the winding of electrical machines are thus known from the literature and it is also known that the adhesives should have sufficient thermal stability at the temperature at which the electrical machine is to be operated .
  • delaminating is understood to mean the deterioration of the mechanical and dielectric properties of the winding insulation, in particular as a result of mechanical changes and outgassing of substances and the formation of cavities within the insulation.
  • the adhesive should be soluble in conventional, physiologically acceptable solvents.
  • an insulating tape of the type mentioned is used, in which the adhesive consists essentially of a material whose maximum continuous use temperature is at least one thermal class below the upper limit temperature of the first thermal class. 4
  • the maximum continuous use temperature of a substance is understood to be the highest temperature at which a substance can be subjected to permanent load without fundamentally changing its mechanical and electrical properties.
  • the heat classes are understood to be the heat classes according to IEC standard 85.
  • Tape made of an electrically dielectric-proof material, for example mica, and a tape made of a carrier or reinforcing material, for example glass silk, are calendered at low temperatures.
  • the thermoplastic materials in question are relatively inexpensive since they are not subject to increased requirements with regard to the continuous use temperature.
  • the adhesives are durable and flexible over a long period, i. H. easy to process.
  • the winding insulation After applying the insulating tape to a winding, impregnating with a resin and curing, the winding insulation has the electrical and mechanical strength required for the machine, even above this temperature, despite the low continuous use temperature of the adhesive material.
  • the invention can advantageously be designed in that the adhesive essentially consists of a polyurethane, a saturated polyester, a polyacrylate, a polymethacrylate, a styrene polymer, a polyamide, a polyvinyl ether, a polyvinyl acetate or a mixture of several of these substances.
  • Another advantageous embodiment of the invention provides that the adhesive is mixed with an accelerator.
  • the accelerator ensures that an impregnation resin with which the insulating tape is impregnated after being applied to the winding is quickly cured in the area of the insulating tape itself. By applying the accelerator together with the adhesive, an additional process step for applying the accelerator is saved.
  • the invention can advantageously be designed in that an accelerator is applied to the insulating tape independently of the adhesive.
  • a further advantageous embodiment of the invention provides that the accelerator contains tertiary amines, imidazoles, quaternary ammonium salts, Lewis acids, Lewis bases, phosphonium salts, piperazines, organometallic compounds or a mixture of several of these substances. Furthermore, the invention relates to an electrical machine with a winding which is designed for a first heat class and which is insulated using an insulating tape according to the invention.
  • Electrical machines can be, for example, motors, generators or transformers.
  • Mica tapes are produced from mica, glass silk and a thermoplastic polyurethane glue (Desmocoll 176 from Bayer) using a laminating machine.
  • the glue is applied as a solution to the mica paper and then merged with the glass silk.
  • a solution with 13% by weight of the polyurethane adhesive in methyl ethyl ketone was used.
  • the adhesive application is approximately 12 g / m 2 .
  • a phlogopite mica with a basis weight of 90 g / m 2 was used for the partial conductor insulation and a muscovite mica with a basis weight of 160 g / m 2 was used for the main insulation.
  • the weight loss is determined on mica tape laminates that have been impregnated with an isocyanate / epoxy impregnating resin at 80 ° C using the vacuum impregnation technique.
  • 24 mm wide mica tape is coated with accelerator BCL ⁇ DMBA (concentration 0.5 g / m 2 ) and glued to a glass silk fabric using the Desmocoll 176 polyurethane adhesive from Bayer.
  • Test specimens are made from 12 layers of mica tape with a length of 16 cm.
  • the impregnated laminates are stored under nitrogen at 180, 200 and 220 ° C for 64 weeks.
  • weight loss was kept within reasonable limits. A higher weight loss would be a sign that the adhesive decomposes and outgasses at high temperatures. This decomposition would lead to the formation of bubbles and voids and, associated therewith, to a deterioration in the dielectric and mechanical properties (delamination) of a winding insulation produced with the adhesive.
  • the laminate also remains mechanically stable and, in this temperature range, has the mechanical and electrical stability properties necessary for use as insulation. This means that the Desmocoll 176 polyurethane adhesive can be used for windings of thermal class H, even though it itself has a maximum continuous use temperature of only about 90 "C.
  • Tables 1 to 3 contain the values plotted in the diagrams of FIGS. 1 to 4 in tabular form, namely Table 1 the values of FIGS. 1 and 2, Table 2 the values of FIG. 3 and Table 3 the values of FIG. 4.
  • thermoplastic tape adhesive (1) namely a saturated polyester (top continuous use temperature about 100 ° C.)
  • the measurement of the dielectric loss factor tan ⁇ has turned out to be another reliable method for assessing the delamination of a winding insulation.
  • Different laminates are stored at different temperatures that are constant over time for each laminate over a certain period of time that is the same for all laminates (typically a few weeks).
  • the tan is then measured for each laminate in accordance with VDE standard 530 part I at different electrical voltages between 0.2 times and 1.4 times the nominal voltage of the winding insulation to be produced in steps whose step size is 0.2- times the nominal voltage.
  • the difference in tan values between two adjacent measurement points of a laminate obtained in this way is then determined.
  • the maximum difference in tan found for a laminate in this process. » -Value two Neighboring points are designated with itan " (max) of this laminate.
  • the values are plotted against the storage temperature of the corresponding laminates. There is typically a curve in which the ⁇ itan ⁇ " (max) values plotted on the ordinate initially increase slightly with increasing storage temperature, then increase more. Typically, a narrow temperature range can be determined in which a very large increase in the -4tanJ ⁇ (max) value takes place, and it has been found that this behavior of the tan - ⁇ (max) ⁇ fine is a sign of delamination of the laminate in the temperature range mentioned.
  • the first example relates to a laminate made from an insulating tape in which a saturated polyester (“thermoplastic tape adhesive”) was used as the adhesive and an epoxy-isocyanate system was used as the impregnating resin (cf. Appendix Fig. 4, table 3).
  • thermoplastic tape adhesive a saturated polyester
  • epoxy-isocyanate system was used as the impregnating resin
  • the second example relates to the silicone resin adhesive (DOW 994), which was processed as an adhesive in a laminate under the same conditions as the polyester mentioned.
  • This substance is stable up to around 220 ° C. Nevertheless, it follows that the ⁇ tan J (max) value already rises sharply at 150 ° C., which indicates delamination in this temperature range (see FIG. 4, Table 3).
  • the weight losses relate to the impregnating resin content in the resin
  • Laminate samples Storage was carried out under a nitrogen atmosphere.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Insulating Bodies (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Adhesive Tapes (AREA)

Abstract

Ein Isolierband für eine Wicklung einer elektrischen Maschine, insbesondere einer rotierenden Maschine, besteht aus einem elektrisch durchschlagfestem Material wie beispielsweise Glimmer, einem Trägermaterial wie beispielsweise Glasseide und einem thermoplastischem Kleber, der das Isolierband zusammenhält. Der Kleber besteht erfindugsgemäß aus einem Thermoplast, dessen Dauergebrauchstemperatur unterhalb derjenigen Wärmeklasse liegt, für die die Wicklung vorgesehen ist. Dennoch weist die Isolierung der Maschine nach dem Imprägnieren der Wicklungsisolierung mit einem härtbaren Harz die notwendige mechanische und elektrische Stabilität auf.

Description

Isolierband für eine Wicklung einer elektrischen Maschine
Die Erfindung bezieht sich auf die Verwendung eines Isolierbandes zur Isolierung von, für eine erste Wärme- klasse vorgesehenen Wicklungen elektrischer Maschinen, wobei das Isolierband, bestehend aus einem Trägermaterial, einem elektrisch durchschlagfesten Material und einem thermoplastischen Kleber, mit einem Harz imprägniert und anschließend gehärtet wird.
Ein derartiges Isolierband ist beispielsweise aus der DE-AS 12 73 647 bekannt. Demgegenüber soll gemäß der DE-AS allerdings durch Verwendung eines vulkanisierbaren Klebers eine größere mechanische Festigkeit und bessere elektri- sehe Durchschlagfestigkeit erreicht werden.
Aus der DE-U 89 05 612.4 ist ein Isolierband mit einem thermoplastischen Kleber bekannt, der aus einem Polyether- sulfon oder einem Polyetherimid besteht. Der Nachteil dieser thermoplastischen Stoffe besteht darin, daß sie entweder zum Aufbringen auf das Band stark erhitzt werden oder zum Aufsprühen auf das Band mit besonderen Lösungs¬ mitteln gelöst werden müssen.
Aus dem US-Patent 3,495,984 sowie dem US-Patent 3,586,557 ist es bereits bekannt, für ein Isolierband einen thermo¬ plastischen Kleber in Form einer Folie zu verwenden, wobei eine Folie verwendet wird, die sich nach dem Aufwickeln auf einen Leiter beim Erwärmen zusammenzieht, so daß Durch- trittsöffnungen für ein Imprägnierharz zwischen den ver¬ schiedenen Lagen des Isolierbandes gebildet werden.
Aus der DE-OS 31 21 725 ist die Verwendung verschiedener Thermoplaste in Folienform als Isolierschicht zwischen den Windungen einer elektrischen Maschine bekannt. Die Thermo¬ plastfolie bildet dort selbst das isolierende Medium, es ist daher keine zusätzliche Glimmerschicht vorgesehen. Als Materialien werden beispielsweise Polyamide, Polyimide sowie Polyester vorgeschlagen.
Es ist dort allerdings ausdrücklich betont, daß bei der Auswahl der entsprechenden Thermoplastfolie für eine elektrische Maschine die Wärmebeständigkeit des Folien¬ materials entsprechend der Wärmeklasse der zu isolierenden Maschine gewählt werden muß.
Aus den Hitachi-Patent EP 0 012 566, Seite 2, Zeilen 1 bis 34, ist ein Silikonharzkleber für ein Isolierband für die Wärmeklasse H (> 180 °C) bekannt. Es wird dort diskutiert, daß bei Verwendung eines lösungsmittelfreien Silikonharzes die thermische Widerstandsfähigkeit des Isolierbandes nicht ausreichend ist.
Erst durch Verwendung eines Silikonharzes mit Hydroxyl¬ gruppen als Kleber wird dort die erforderliche Tempera¬ turfestigkeit erreicht, da der Kleber selbst (vgl. Seite 2, Zeile 20 der EP 0 012 566) durch die Siloxan-Bindungen die erforderliche Temperaturfestigkeit hat. Somit wird durch ein solches spezielles hochtemperaturfestes Silikon¬ harz das Delaminieren der Wicklung durch mechanische Ver¬ änderungen des Klebers bzw. Ausgasen verhindert.
Aus der CH-493070 ist ferner bekannt (vgl. Beschreibungs¬ einleitung, Spalte 1 bis Spalte 2, Zeile 2), daß thermo¬ plastische Kleber (Bindemittel) sich beim Betrieb der elektrischen Maschine erwärmen und erweichen, was zu einem Aufgehen der Isolation und einer Verschlechterung der dielektrischen Eigenschaften führt. Aus der Literatur sind somit thermoplastische und nicht- thermoplastische Kleber zur Verwendung bei Isolierbändern für die Wicklung elektrischer Maschinen bekannt und es ist weiterhin bekannt, daß die Kleber für sich bei der Temperatur, bei der die elektrische Maschine betrieben werden soll, eine ausreichende Thermostabilität aufweisen sollten.
Da aber einerseits Silikonharze teuer und andererseits Thermoplaste mit sehr hohen Dauergebrauchstemperaturen schwierig zu verarbeiten sind (hohe Verarbeitungstempe¬ raturen, physiologisch bedenkliche Dämpfe, Sprödigkeit) stellt sich die Aufgabe, Kleber bereitzustellen, die kostengünstig und einfach zu verarbeiten sind und dennoch eine hochtemperaturbelastbare und gegen Delaminierung geschützte Wicklungsisolation ergeben. Dabei ist eine gute Klebewirkung bei der späteren Betriebstemperatur der elektrischen Maschine nicht unbedingt erforderlich.
Unter "delaminieren" wird in diesem Zusammenhang die Verschlechterung der mechanischen und dielektrischen Eigenschaften der Wicklungsisolation insbesondere durch mechanische Veränderungen sowie Ausgasen von Stoffen und Hohlraumbildung innerhalb der Isolation verstanden.
Der Kleber sollte gegebenenfalls in konventionellen, physiologisch unbedenklichen Lösungsmitteln löslich sein.
Die Aufgabe wird erfindungsgemäß dadurch gelöst, daß ein Isolierband der eingangs genannten Art verwendet wird, bei dem der Kleber im wesentlichen aus einem Stoff besteht, dessen maximale Dauergebrauchstemperatur für sich minde¬ stens eine Wärmeklasse- unterhalb der oberen Grenztempera¬ tur der ersten Wärmeklasse liegt. 4
Unter der maximalen Dauergebrauchstemperatur eines Stoffes wird in diesem Zusammenhang die höchste Temperatur ver¬ standen, bei der ein Stoff dauerhaft belastet werden kann, ohne seine mechanischen und elektrischen Eigenschaften grundlegend zu verändern.
Unter den Wärmeklassen werden die Wärmeklassen gemäß der IEC-Norm 85 verstanden.
Ein solcher Kleber kann ohne größeren Aufwand mit einem
Band aus einem elektrisch durchschlagfestem Material, bei¬ spielsweise Glimmer sowie einem Band aus einem Träger¬ bzw. Verstärkungsmaterial, beispielsweise Glasseide, bei niedrigen Temperaturen kalandriert werden. Es ist aber auch denkbar, den Kleber in einem konventionellen Lö¬ sungsmittel zu lösen und entweder auf das Band aus einem durchschlagfestem Material oder auf das Band aus einem Trägermaterial oder auf beide Bänder aufzusprühen. Die in Frage kommenden thermoplastischen Materialien sind, da an sie bezüglich der Dauergebrauchstemperatur keine erhöhten Anforderungen gestellt werden, relativ preiswert. Außerdem sind die Kleber über einen großen Zeitraum halt¬ bar und flexibel, d. h. einfach verarbeitbar.
Nach dem Aufbringen des Isolierbandes auf eine Wicklung, dem Imprägnieren mit einem Harz und dem Aushärten hat die Wicklungsisolierung trotz der niedrigen Dauergebrauchs¬ temperatur des Klebermaterials auch oberhalb dieser Temperatur die für die Maschine geforderte elektrische und mechanische Festigkeit.
Die Erfindung kann vorteilhaft dadurch ausgestaltet werden, daß der Kleber- im wesentlichen aus einem Poly¬ urethan, einem gesättigten Polyester, einem Polyacrylat, einem Polymethacrylat , einem Styrolpolymerisat, einem Polyamid, einem Polyvinyläther, einem Polyvinylacetat bzw. aus einer Mischung mehrer dieser Stoffe besteht.
Die genannten Stoffe weisen allesamt außer den weiter oben angeführten Eigenschaften eine gute Klebefähigkeit auf.
Eine weitere vorteilhafte Ausgestaltung der Erfindung sieht vor, daß der Kleber mit einem Beschleuniger ver¬ mischt ist.
Der Beschleuniger sorgt dafür, daß ein Imprägnierharz, mit dem das Isolierband nach dem Aufbringen auf die Wicklung imprägniert wird, im Bereich des Isolierbandes selbst schnell ausgehärtet wird. Durch das gemeinsame Aufbringen des Beschleunigers mit dem Kleber wird ein zusätzlicher Verfahrensschritt zum Aufbringen des Beschleunigers einge¬ spart.
Außerdem kann die Erfindung vorteilhaft dadurch ausge¬ staltet werden, daß ein Beschleuniger unabhängig vom Kleber auf das Isolierband aufgebracht ist.
Dies kann insbesondere dann wichtig sein, wenn der Be- schleuniger für sich unabhängig vom Kleber dosierbar sein soll.
Eine weitere vorteilhafte Ausgestaltung der Erfindung sieht vor, daß der Beschleuniger tertiäre Amine, Imid- azole, quartäre Amoniumsalze, Lewissäuren, Lewisbasen, Phosphoniumsalze, Piperazine, metallorganische Ver¬ bindungen oder eine Mischung von mehreren dieser Stoffe enthält. Weiterhin bezieht sich die Erfindung auf eine elektrische Maschine mit einer Wicklung, die für eine erste Wärme¬ klasse ausgelegt ist und die unter Verwendung eines er¬ findungsgemäßen Isolierbandes isoliert ist.
Elektrische Maschinen können dabei beispielsweise Motoren, Generatoren oder Transformatoren sein.
Die Erfindung wird anschließend anhand eines Ausführungs- beispieles ausführlicher erläutert:
Aus Glimmer, Glasseide und einem thermoplastischen Poly¬ urethankleber (Desmocoll 176 der Firma Bayer) werden mittels einer Kaschiermaschine Glimmerbänder hergestellt. Dabei wird der Kleber als Lösung auf das Glimmerpapier aufgebracht und dieses anschließend mit der Glasseide zusammengeführt. Eingesetzt wurde eine Lösung mit 13 Gew% des Polyurethanklebers in Methylethylketon. Der Klebeauf¬ trag beträgt ca. 12 g/m2. Für die Teilleiterisolierung wurde ein Phlogopit-Glimmer mit einem Flächengewicht von 90 g/m2 für die Hauptisolierung ein Muskovitglimmer mit einem Flächengewicht von 160 g/m2 verwendet.
Ermittlung des Gewichtsverlustes von imprägnierten Glimmerbandlaminaten
Der Gewichtsverlust wird an Glimmerbandlaminaten ermittelt, die nach Vakuumimprägnierungstechnik mit einem Isocyanat/ Epoxid-Tränkharz bei 80 °C imprägniert wurden. Dazu wird 24 mm breites Glimmerband mit Beschleuniger BCL^DMBA (Konzentration 0,5 g/m2) beschichtet und mittels des Polyurethanklebers Desmocoll 176 der Firma Bayer mit einem Glasseidengewebe verklebt. Es werden Probekörper aus 12 Lagen Glimmerband mit einer Länge von 16 cm hergestellt. Die imprägnierten Laminate werden über 64 Wochen unter Stickstoff bei 180, 200 und 220 °C gelagert.
Es wurden folgende Gewichtsverluste, bezogen auf den Tränkharz/Klebharzanteil ermittelt (in Gewichtsprozent)
Laqerungstemp, 1 Wo. 4 Wo. 16 Wo 32 Wo. 180 °C
200 °C 220 °C
Figure imgf000009_0001
Bei Lagertemperaturen von 180 bzw. 200 °C hielt sich der Gewichtsverlust in vertretbaren Grenzen. Ein höherer Ge¬ wichtsverlust wäre ein Zeichen dafür, daß sich der Kleber bei hohen Temperaturen zersetzt und ausgast. Diese Zer¬ setzung würde zu Blasen- und Hohlraumbildung und damit verbunden zu einer Verschlechterung der dielektrischen und mechanischen Eigenschaften (Delaminieren) einer mit dem Kleber hergestellten Wicklungsisolation führen.
Das Laminat bleibt außerdem mechanisch stabil und weist in diesem Temperaturbereich die für den Einsatz als Iso¬ lierung notwendigen mechanischen und elektrischen Stabili¬ tätseigenschaften auf. Damit ist der Polyurethankleber Desmocoll 176 für Wicklungen der Wärmeklasse H einsetzbar, obwohl er selbst eine maximale Dauergebrauchstemperatur von nur etwa 90 "C aufweist.
In einer weiteren Versuchsreihe wurde das Temperaturver- verhalten von Laminatproben, die mit einem Thermoplast¬ bandkleber (einem gesättigten Polyester) hergestellt wurden, mit dem Temperaturverhalten solcher Lamiatproben verglichen, die mit einem Silikoπbandkleber hergestellt wurden. In den Figuren 1 bis 4 sind entsprechende Versuchser¬ gebnisse dargestellt, die nachfolgend erläutert werden. Die Tabellen 1 bis 3 enthalten die in den Diagrammen der Figuren 1 bis 4 aufgetragenen Werte in tabellarischer Form und zwar die Tabelle 1 die Werte der Figuren 1 und 2, die Tabelle 2 die Werte der Figur 3 und Tabelle 3 die Werte der Figur 4.
In Figur 1 ist für einen Thermoplastbandkleber (1), und zwar einen gesättigten Polyester (oberste Dauergebrauchs¬ temperatur etwa 100 °C) der Gewichtsverlust der ent¬ sprechenden Laminatproben in Prozent auf der Ordinate gegen die Lagerzeit bei Lagerung von 1 bis 64 Wochen in einer Stickstoff-Atmosphäre für drei verschiedene Temperaturen, 180 "C, 200 °C und 220 °C aufgetragen. Es zeigt sich, daß der Gewichtsverlust bei einer Lagerung bei 200 °C auch nach 64 Wochen noch vertretbar ist.
Dagegen tritt bei einer Lagerung bei 220 "C ein zu hoher Gewichtsverlust auf, der eine Delaminierung der Laminat¬ proben anzeigt.
Im Vergleich dazu ergibt ein Silikonbandkleber (2) (DOW 994 der Firma DOW Chemical) in den entsprechenden La- minaten jeweils höhere Gewichtsverluste (Tabelle 1,
Figur 2) und bereits bei 200 °C werden die Gewichtsver¬ luste so groß, daß eine Delaminierung der entsprechenden Laminate angenommen wird (vgl. Fig. 2, Tabelle 1).
Entsprechend ist in Tabelle 2 und Figur 3 eingetragen, über wieviele Wochen die unter Verwendung des Thermo¬ plastbandklebers (1) hergestellten Laminate bei den ver¬ schiedenen Temperaturen stabil sind. In Figur 3 ist auf der Ordinate die Zeit in Wochen aufgetragen. Es ergibt sich, daß bei einer Versuchszeit von 64 Wochen die bei 180 °C und 200 °C gelagerten Proben bis über das Ende der Ver¬ suchszeit hinaus stabil sind.
Bei den mit dem Silikonbandkleber (2) hergestellten La¬ minaten sind gemäß Figur 3 lediglich die bei 180 °C ge¬ lagerten Laminate über 64 Wochen stabil. Die bei 200 °C gelagerten Laminate genügen schon nach 16 Wochen nicht mehr den an sie gestellten Anforderungen.
Die in den Tabellen des Anhangs dargestellten Meßwerte entsprechen den in den entsprechenden Figuren in Form von Diagrammen dargestellten Werten.
Als ein weiteres verläßliches Verfahren zur Beurteilung der Delaminierung einer Wicklungsisolation hat sich die Messung des dielektrischen Verlustfaktors tan < heraus¬ gestellt.
Besonders aussagekräftige Ergebnisse liefert dabei folgende Vorgehensweise:
Verschiedene Laminate werden bei unterschiedlichen, für jedes Laminat zeitlich konstanten Temperaturen über einen bestimmten, für alle Laminate gleichen Zeitraum (typisch einige Wochen) gelagert. Daraufhin wird für jedes Laminat der tan gemäß VDE-Norm 530 Teil I bei verschiedenen elektrischen Spannungen zwischen dem 0,2-fachen und dem 1,4-fachen der Nennspannung der herzustellenden Wicklungs¬ isolation in Schritten gemessen, deren Schrittweite dem 0,2-facheπ der Nennspannung entspricht. Danach wird die Differenz der tan -Werte jeweils zwischen zwei be¬ nachbarten, auf diese Weise gewonnenen Meßpunkteπ eines Laminats bestimmt. Die maximale, bei diesem Verfahren für ein Laminat aufgefundene Differenz des tan.» -Wertes zweier Nachbarpunkte wird mit itan " (max) dieses Laminates be¬ zeichnet.
Für jedes der bei unterschiedlichen Temperaturen ge- lagerten Laminate wird auf diese Weise ein ^tan ^ (max)-Wert bestimmt.
Die Werte werden in einem Diagramm gegen die Lager¬ temperatur der entsprechenden Laminate aufgetragen. Es ergibt sich typischerweise eine Kurve, bei der die ^itan^" (max)-Werte, die auf der Ordinate abgetragen sind, mit steigender Lagertemperatur zuerst schwach, dann stärker ansteigen. Typischerweise läßt sich ein enger Temperatur¬ bereich bestimmen, in dem ein sehr starker Anstieg des -4tanJ~ (max)-Wertes stattfindet. Es hat sich herausge¬ stellt, daß dieses Verhalten des tan -α(max)<fein Zeichen für eine Delaminierung des Laminats in dem genannten Temperaturbereich darstellt.
Im folgenden werden zwei Beispiele für das Verhalten von Laminaten angegeben, wobei das erste Beispiel ein Laminat aus einem Isolierband betrifft, bei dem als Kleber ein gesättigter Polyester ("Thermoplastbandkleber") und als Tränkharz ein Epoxid-Isocyanat-System verwendet wurde (vgl. Anlage Fig. 4, Tabelle 3).
Es ergibt sich, daß der starke Anstieg des Δtanf (max)-Wertes erst oberhalb einer Temperatur von 200 °C einsetzt. In Figur 4 ist der Wert in Promille auf der Ordinate gegen die Temperatur in °C auf der Abszisse aufgetragen. Dabei wurde der Wert für eine Nennspannung der Isolierung von UN = 11 kV bei einer Isolierdicke von 1,95 mm bestimmt. Dies bedeutet, daß das mit dem gesättigten Polyester als Kleber hergestellte Isolierband dauernd Temperaturen bis zu 200 "C ausgesetzt werden kann, ohne daß die Wicklung delaminiert. Dieses Isolierband ist somit für elektrische Maschinen der Wärmeklasse H (> 180 °C) einsetzbar, obwohl der Kleber sich aller Erwartung nach oberhalb von ca. 100 °C zersetzen sollte.
Das zweite Beispiel bezieht sich auf den Silikonharzkleber (DOW 994), der unter gleichen Bedingungen wie der genannte Polyester in einem Laminat als Kleber verarbeitet wurde. Dieser Stoff ist für sich bis etwa 220 °C stabil. Dennoch ergibt sich, daß der^ tan J (max)-Wert bereits bei 150 βC stark ansteigt, was eine Delaminierung bereits in diesem Temperaturbereich anzeigt (vgl. Figur 4, Tabelle 3).
4/05018
12
Gewichtsverlust von Laminatproben in % Tabelle 1
Thermoplastbandkleber Silikonbandkleber
180eC 200 °C 220°C 180°C 200°C 220°C
Figure imgf000014_0001
Figure imgf000014_0002
Die Gewichtsverluste beziehen sich auf den Tränkharz Klebharz-Anteil in den
Laminatproben. Die Lagerung erfolgte unter Stickstoff-Atmosphäre.
Aufqehverhalten von Laminatproben Tabel le 2
Thermoplastbandkleber Silikonbandkleber
180°C 200°C 220°C 180°C 200°C 220°C
Proben
Stab« 64 64 1 64 16 1 Wochen
Thermisch-mechanische Festigkeit der Hauptisolieruno Tabelle 3
Thermoplastbandkleber Silikonbandkleber fd-tan delta)max(o/oo)
0,3 0,2 0,9 2,8
11 ,5
Figure imgf000014_0003
Hauptisolierung für UN= 11kV Isolierdicke: 1,95mm

Claims

Patentansprüche
1. Verwendung eines Isolierbandes zur Isolierung von, für eine erste Wärmeklasse vorgesehenen Wicklungen elektrischer Maschinen, wobei das Isolierband, bestehend aus einem Trä¬ germaterial, einem elektrisch durchschlagfesten Material und einem thermoplastischen Kleber, mit einem Harz imprägniert und anschließend gehärtet wird, d a d u r c h g e k e n n z e i c h n e t , daß der Kleber im wesentlichen aus einem Stoff besteht, dessen maximale Dauergebrauchstemperatur für sich mindestens eine Wärmeklasse unterhalb der oberen Grenztemperatur der ersten Wärmeklasse liegt.
2. Verwendung eines Isolierbandes nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß der Kleber im wesentlichen aus einem Polyurethan, einem gesättigten Polyester, einem Polyacrylat, einem Polymeth- acrylat, einem Styrolpolimerisat, einem Polyamid, einem Polyvinyläther, einem Polyvinylacetat bzw. aus einer Mischung mehrer dieser Stoffe besteht.
3. Verwendung eines Isolierbandes nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , daß der Kleber mit einem Beschleuniger vermischt ist.
4. Verwendung eines Isolierbandes nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , daß ein Beschleuniger getrennt vom Kleber auf das Isolierband aufgebracht ist.
5. Verwendung eines Isolierbandes nach Anspruch 3 oder 4, d a d u r c h g e k e n n z e i c h n e t , daß der Beschleuniger tertiäre A ine, Imidazole, quartäre Ammoniumsalze, Lewissäuren, Lewisbasen, Phosphoniumsalze, Piperazine, metallorganische Verbindungen oder eine Mischung mehrer dieser Stoffe enthält.
6. Elektrische Maschine mit einer Wicklung, die für eine erste Wärmeklasse ausgelgt ist und die unter Verwendung eines Isolierbandes isoliert ist, d a d u r c h g e k e n n z e i c h n e t , daß die Wicklung ein Isolierband gemäß einem der Ansprüche 1 bis 5 enthält.
PCT/DE1993/000790 1992-08-25 1993-08-24 Isolierband für eine wicklung einer elektrischen maschine WO1994005018A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE59310183T DE59310183D1 (de) 1992-08-25 1993-08-24 Isolierband für eine wicklung einer elektrischen maschine
US08/387,939 US5674340A (en) 1992-08-25 1993-08-24 Insulating tape for the winding of an electric machine
AT93918929T ATE202654T1 (de) 1992-08-25 1993-08-24 Isolierband für eine wicklung einer elektrischen maschine
EP93918929A EP0657061B1 (de) 1992-08-25 1993-08-24 Isolierband für eine wicklung einer elektrischen maschine
BR9306956A BR9306956A (pt) 1992-08-25 1993-08-24 Fita isolante par aum enrolamento de uma máquina elétrica

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP92250226.5 1992-08-25
EP92250226A EP0586753A1 (de) 1992-08-25 1992-08-25 Isolierband für einer Wicklung eine elektrischen Maschine

Publications (1)

Publication Number Publication Date
WO1994005018A1 true WO1994005018A1 (de) 1994-03-03

Family

ID=8211203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1993/000790 WO1994005018A1 (de) 1992-08-25 1993-08-24 Isolierband für eine wicklung einer elektrischen maschine

Country Status (6)

Country Link
US (1) US5674340A (de)
EP (2) EP0586753A1 (de)
AT (1) ATE202654T1 (de)
BR (1) BR9306956A (de)
DE (1) DE59310183D1 (de)
WO (1) WO1994005018A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19822137A1 (de) * 1998-05-16 1999-11-18 Asea Brown Boveri Hochspannungsisolierte Statorwicklung
JP3907357B2 (ja) * 1998-11-12 2007-04-18 キヤノン株式会社 段差付きコイル製造方法
CA2344564C (en) * 2000-09-14 2008-07-22 General Electric Canada Inc. Graded electric field insulation system for dynamoelectric machine
EP2765685A1 (de) * 2013-02-08 2014-08-13 Siemens Aktiengesellschaft Außenglimmschutz mit zuverlässiger Anbindung an die Hauptisolierung und an das Blechpaket
DE102015214872A1 (de) * 2015-02-05 2016-08-11 Siemens Aktiengesellschaft Isolierband für eine Spule und Wickelband-Isoliersystem für elektrische Maschinen
DE102015213535A1 (de) * 2015-07-17 2017-01-19 Siemens Aktiengesellschaft Fester Isolationswerkstoff, Verwendung dazu und damit hergestelltes Isolationssystem
DE102016203867A1 (de) * 2016-03-09 2017-09-14 Siemens Aktiengesellschaft Fester Isolationswerkstoff, Verwendung dazu und damit hergestelltes Isolationssystem
EP3389058A1 (de) * 2017-04-10 2018-10-17 Siemens Aktiengesellschaft Glimmschutzband für elektrische hochspannungsmaschine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2427673A1 (fr) * 1978-06-02 1979-12-28 Hitachi Ltd Procede de production de bobinages electriques
EP0012566A1 (de) * 1978-12-08 1980-06-25 Hitachi, Ltd. Elektrische Wicklungen und deren Herstellung

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1273647B (de) * 1959-02-21 1968-07-25 Siemens Ag Isoliermaterial aus einem organischen Kunststoff als Traeger fuer eine damit verklebte Glimmerschicht
CH493070A (de) * 1965-12-23 1970-06-30 Lokomotivbau Elektrotech Bindemittel für die Fertigung imprägnierter, kaltflexibler, bei Raumtemperatur nicht klebender Isolier-Folien-Bahnen und -Bänder
US3560320A (en) * 1967-10-05 1971-02-02 Gen Electric Insulating material
US3586557A (en) * 1968-01-08 1971-06-22 Westinghouse Electric Corp Micaceous insulation and electrical apparatus insulated therewith
US3695984A (en) * 1968-01-08 1972-10-03 Westinghouse Electric Corp Novel micaceous insulation
CH547001A (de) * 1971-04-08 1974-03-15 Schweizerische Isolawerke Verfahren zur herstellung eines wickelbands fuer die isolation elektrischer maschinen.
DE3121725A1 (de) * 1981-06-01 1982-12-23 Hitachi, Ltd., Tokyo Elektrisch isolierte wicklungen und ihre herstellung
DE3234792A1 (de) * 1982-09-20 1984-03-22 Kraftwerk Union AG, 4330 Mülheim Impraegnierbares feinglimmerband
FR2591793B1 (fr) * 1985-12-13 1988-08-12 Alsthom Ruban micace isolant electrique et anti-feu adhesif, notamment pour cable electrique ou a fibres optiques
DE3824254A1 (de) * 1988-07-14 1990-01-18 Siemens Ag Isolierband zur herstellung einer mit einer heisshaertenden epoxid-saeureanhydrid-mischung impraegnierten isolierhuelse fuer elektrische leiter
EP0355558A1 (de) * 1988-08-18 1990-02-28 Siemens Aktiengesellschaft Isolierband zur Herstellung einer imprägnierten Isolier-hülse für elektrische Leiter
CH677565A5 (de) * 1988-11-10 1991-05-31 Asea Brown Boveri
DE8905612U1 (de) * 1989-04-28 1989-06-15 Siemens AG, 1000 Berlin und 8000 München Isolierband
JPH0337907A (ja) * 1989-07-03 1991-02-19 Nippon Rika Kogyosho:Kk 集成マイカ絶縁薄膜

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2427673A1 (fr) * 1978-06-02 1979-12-28 Hitachi Ltd Procede de production de bobinages electriques
EP0012566A1 (de) * 1978-12-08 1980-06-25 Hitachi, Ltd. Elektrische Wicklungen und deren Herstellung

Also Published As

Publication number Publication date
EP0657061B1 (de) 2001-06-27
US5674340A (en) 1997-10-07
ATE202654T1 (de) 2001-07-15
EP0657061A1 (de) 1995-06-14
EP0586753A1 (de) 1994-03-16
BR9306956A (pt) 1999-01-12
DE59310183D1 (de) 2001-08-02

Similar Documents

Publication Publication Date Title
DE69928461T2 (de) Isoliermaterial und Wicklung für elektrische Maschinen
CH677565A5 (de)
EP1118086A1 (de) Glimmschutzband
EP0424376B1 (de) Isolierband zur herstellung einer mit einer heisshärtenden epoxidharz-säureanhydrid-mischung imprägnierten isolierhülse für elektrische leiter
DE2811858C3 (de) Verfahren zur Isolierung einer elektrischen Wicklung
DE2258336A1 (de) Spule zum einlegen in die nuten einer elektrischen maschine
WO1991001059A1 (de) Leiterwicklungsanordnung für eine elektrische grossmaschine
DE2627463A1 (de) Verfahren zur herstellung von wicklungen fuer elektrische maschinen und apparate
WO1997043818A1 (de) Trägerkörper für eine elektrische wicklung und verfahren zur herstellung eines glimmschutzes
WO1994005018A1 (de) Isolierband für eine wicklung einer elektrischen maschine
EP0012946B1 (de) Verfahren zur Herstellung von Wickelbändern für die Hochspannungsisolierung elektrischer Maschinen und Apparate und Wickelband zur Herstellung einer Isolierhülse für elektrische Leiter
DE3114420C2 (de) Elektrischer Leiter mit einer aus Glimmerbändern gewickelten Isolierhülse
DE1490427B1 (de) Glimmerband zur Herstellung einer mit einer heisshaertbaren Traenkharzmischung impraegnierten Isolierung fuer elektrische Leiter,insbesondere fuer Wicklungsstaebe bzw. Spulen elektrischer Maschinen
DE2818193C2 (de) Verfahren zur Herstellung einer imprägnierbaren Glimmerisolierfolie
DE1219554B (de) Verfahren zur Herstellung von Isolierungen aus Folien oder Baendern mit Kunstharztraenkung
DE2126852A1 (de) Isolierter elektrischer Leiter
EP0088261B1 (de) Hochspannungsisolation für rotierende elektrische Maschinen
DE2739571A1 (de) Elektrischer leiter oder elektrische spule mit einer isolierung aus glimmer- und harzschichten
WO1995017755A1 (de) Verfahren zur herstellung einer isolation
DE3045462A1 (de) Verfahren zum herstellen einer koronaabschirmung fuer die staenderwicklung einer elektrischen maschine
DE2126853B2 (de) Spulen für die Nutenwicklung einer elektrischen Maschine
DE2739289C3 (de) Vorimprägniertes Isoliermaterial, seine Herstellung und Verwendung
DE3234792A1 (de) Impraegnierbares feinglimmerband
DE102014204416A1 (de) Isolationsband, dessen Verwendung als elektrische Isolation für elektrische Maschinen, die elektrische Isolation und Verfahren zur Herstellung des Isolationsbandes
DE2620459A1 (de) Elektrische isolation und verfahren zu deren herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1993918929

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08387939

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1993918929

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1993918929

Country of ref document: EP