WO1993020584A1 - Verfahren zum herstellen einer monokristallinen siliziumschicht auf einem vergrabenen dielektrikum - Google Patents

Verfahren zum herstellen einer monokristallinen siliziumschicht auf einem vergrabenen dielektrikum Download PDF

Info

Publication number
WO1993020584A1
WO1993020584A1 PCT/EP1993/000734 EP9300734W WO9320584A1 WO 1993020584 A1 WO1993020584 A1 WO 1993020584A1 EP 9300734 W EP9300734 W EP 9300734W WO 9320584 A1 WO9320584 A1 WO 9320584A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
layer
simox
wafer
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP1993/000734
Other languages
German (de)
English (en)
French (fr)
Inventor
Helmut Gassel
Holger Vogt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Foerderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Foerderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Foerderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Foerderung der Angewandten Forschung eV
Publication of WO1993020584A1 publication Critical patent/WO1993020584A1/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2007Bonding of semiconductor wafers to insulating substrates or to semiconducting substrates using an intermediate insulating layer

Definitions

  • the present invention relates to a method for producing a monocrystalline silicon layer which is separated from an underlying silicon substrate by a buried insulator layer.
  • ZMR process Zone Melt Recrystallization
  • SIMOX SIMOX
  • MA Guerra The Status of SIMOX technology. DN Schmidt, editor, Silicon-on-Insulator Technology and Devices, vol. 90-6, pages 21 to 47. The Electrochemical Society, Inc., 1990.
  • the third method which is counted among SOI technologies, is the afer bonding method. This is known from the following literature, among others: W. P. Maszara. Silicon-on-Insulator by Wafer Bonding: A review. J. Electrochem. Soc. , 138: 341-347, 1991.
  • the most important advantage of this method is that the thickness of the silicon film is extremely uniform and can be set very precisely between about 50 nm and a few 10 ⁇ m by the choice of ion energy or by subsequent epitaxial growth of silicon.
  • the main disadvantages of this method lie in the need for very high implantation doses as well as in the associated high costs and in the practical and physical limitation of the maximum oxide thickness to approximately 0.5 ⁇ m.
  • the surface of a wafer can first be thermally oxidized or a dielectric layer can be deposited on the wafer.
  • a second wafer is treated in the same way or else leave treated.
  • the surfaces of the two wafers are brought into contact with one another after hydrophilization, whereupon the wafers which adhere easily to one another by hydrogen bonding are insolubly connected to one another in a subsequent tempering step.
  • one of the two wafers is thinned from the original thickness, which is surely a few 100 ⁇ m, to the desired level. This is done either by grinding or ' by polishing or by chemical etching as well as by combinations of these thin processes.
  • the process is checked using complex measuring methods.
  • etching stop processes are used.
  • an etching stop is introduced into one of the two wafers before bonding, which inhibits the chemical reaction during the thinning on the back.
  • the layer thickness of the insulated silicon layer is determined by the depth in which the etching stop layer is introduced into the wafer to be thinly etched.
  • the person skilled in the past therefore chose either the SIMOX process for producing a monocrystalline silicon layer on a buried dielectric, if a uniform, precisely adjustable silicon film thickness is required for the desired application and the processes associated with this process high costs due to the high implantation doses required and the restriction to a maximum oxide layer thickness of 0.5 ⁇ m.
  • the wafer bonding method was used instead.
  • the invention is therefore based on the object of specifying a method for producing monocrystalline silicon layers which leads to a high uniformity of the thickness of the silicon film produced, with which a high crystal quality of the silicon layer is achieved and with which the buried layer Insulator layers can be produced, the thickness of which is not limited to the oxide thickness which can be achieved with SIMOX processes.
  • a preferred exemplary embodiment of the method according to the invention is explained in more detail below.
  • the starting point of the method according to the invention are two silicon wafers.
  • a SIMOX silicon wafer is first produced from one of the two silicon wafers using the SIMOX method.
  • a buried SIMOX oxide layer is first formed by high-dose oxygen implantation, through which a silicon layer is separated from the silicon substrate of the SIMOX wafer.
  • the thickness of the silicon layer can then be reduced or increased by methods known per se. For example, it is possible to strengthen the silicon layer by epitaxial growth.
  • the silicon layer of the SIMOX silicon wafer is cured by tempering. This is preferably done at temperatures between 700 ° C and 1412 ° C for a period between thirty minutes and 15 hours.
  • either the SIMOX silicon wafer or the other wafer, which will be referred to below as the carrier wafer, or both wafers are now thermally oxidized and / or provided with a dielectric.
  • the dielectric layer is deposited on the carrier wafer, it is considered preferable to produce it on the entire surface of the carrier wafer. Then, as will be explained in more detail, it can then be used to protect the carrier wafer against Etching agents are used.
  • Typical temperatures used in this tempering step are in the range of 800 ° C to 1300 ° C.
  • the wafers bonded together to form a single disk of essentially twice the thickness are now etched in an alkaline solution until the chemical reaction on the buried SIMOX oxide layer is slowed down.
  • the now exposed SIMOX oxide layer is preferably removed using hydrofluoric acid, which exposes the essentially monocrystalline silicon layer.
  • the surface that is now exposed is the previous interface between the silicon layer and the SIMOX oxide layer that has now been removed by etching.
  • the bonded wafer can be thermally oxidized and the resulting sacrificial oxide can then be etched away by wet chemistry.
  • the wafer can also be polished chemically and / or mechanically.
  • Another possibility which leads to both an improvement in the surface and a reduction in the crystal defect density of the silicon layer, is to introduce the required oxygen dose in the SIMOX oxygen implantation in sequential partial implantations of partial doses and tempering.
  • Implantationsdo ⁇ sen from l ' ⁇ o 17 cm be applied "2 to 3 • 10 18 cm” 2.
  • tion dose 4-10 17 cm “ 2 to produce the etching stop.
  • this implantation dose which is far below the implantation doses that are typically used in SIMOX technology for producing buried, insulating layers, there is a considerable cost reduction achieved with simultaneous improvement in the quality of the silicon layer.
  • the tempering is preferably carried out at 700 ° C. to 1412 ° C. with a duration of thirty minutes to 15 hours. Compared to the temperatures of above 1300 ° C with tempering times of six hours used in typical SIMOX tempering, a further cost reduction is therefore possible.
  • Any etching medium with sufficient selectivity of the etching rate between silicon and silicon dioxide can be used for the back etching of the SIMOX silicon wafer.
  • a 20 percent KOH solution at 80 ° C. is preferred. In this case a doping of 1.8 ⁇ 10 18 cm 2 is necessary.
  • the method according to the invention while saving costs compared to the SIMOX method, it is possible to produce high-quality silicon layers with a very homogeneous layer thickness and an essentially monocrystalline structure, without being subject to restrictions with regard to the thickness of the buried insulator layer .
  • the advantages of the SIMOX method and the wafer bonding method are therefore combined without having to accept the disadvantages and limitations of these methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Element Separation (AREA)
PCT/EP1993/000734 1992-04-01 1993-03-25 Verfahren zum herstellen einer monokristallinen siliziumschicht auf einem vergrabenen dielektrikum Ceased WO1993020584A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4210859.4 1992-04-01
DE19924210859 DE4210859C1 (enExample) 1992-04-01 1992-04-01

Publications (1)

Publication Number Publication Date
WO1993020584A1 true WO1993020584A1 (de) 1993-10-14

Family

ID=6455732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1993/000734 Ceased WO1993020584A1 (de) 1992-04-01 1993-03-25 Verfahren zum herstellen einer monokristallinen siliziumschicht auf einem vergrabenen dielektrikum

Country Status (3)

Country Link
DE (1) DE4210859C1 (enExample)
FR (1) FR2689682B1 (enExample)
WO (1) WO1993020584A1 (enExample)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005074033A1 (ja) 2004-01-30 2005-08-11 Sumco Corporation Soiウェーハの製造方法
EP1914799A4 (en) * 2005-07-29 2010-03-17 Shanghai Simgui Technology Co METHOD FOR PRODUCING SILICON ON ISOLATOR

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19715138A1 (de) * 1997-04-13 1998-10-22 Fraunhofer Ges Forschung Verfahren zur Herstellung einer Anordnung von in Serie bzw. Reihe geschalteten Einzel-Solarzellen
US6455398B1 (en) * 1999-07-16 2002-09-24 Massachusetts Institute Of Technology Silicon on III-V semiconductor bonding for monolithic optoelectronic integration
DE102004029929A1 (de) * 2004-06-21 2006-01-05 Infineon Technologies Ag Verfahren zum Herstellen von Mikrostrukturen

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3976511A (en) * 1975-06-30 1976-08-24 Ibm Corporation Method for fabricating integrated circuit structures with full dielectric isolation by ion bombardment
EP0444943A1 (en) * 1990-02-28 1991-09-04 Shin-Etsu Handotai Company Limited A method of manufacturing a bonded wafer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3976511A (en) * 1975-06-30 1976-08-24 Ibm Corporation Method for fabricating integrated circuit structures with full dielectric isolation by ion bombardment
EP0444943A1 (en) * 1990-02-28 1991-09-04 Shin-Etsu Handotai Company Limited A method of manufacturing a bonded wafer

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
1989 IEEE SOS/SOI TECHNOLOGY CONFERENCE OCTOBER 3-5 ,1989 1989, IEEEE NEW-YORK Seiten 64 - 65 , XP000167653 A. SÖDERBÄRG 'FABRICATION OF BESOI-MATERIALS USING IMPLANTED NITROGEN AS AN EFFECTIVE ETCH STOP BARRIER.' *
JOURNAL OF APPLIED PHYSICS. Bd. 69, Nr. 9, 1. Mai 1991, NEW YORK US Seiten 6656 - 6664 , XP000235687 K. VANHEUSDEN ET AL. 'CHEMICAL ETCH RATES IN HF SOLUTIONS AS A FUNCTION OF THICKNESS OF THERMAL SIO2 FORMED BY OXYGEN IMPLANTATION.' *
JOURNAL OF THE ELECTROCHEMICAL SOCIETY Bd. 138, Nr. 1, Januar 1991, MANCHESTER, NEW HAMPSHIRE US Seiten 341 - 347 , XP000177334 W.P. MASZARA 'SILICON-ON-INSULATOR BY WAFER BONDING: A REVIEW.' *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 233 (E-1209)28. Mai 1992 & JP,A,40 45 556 ( FUJITSU LTD ) 14. Februar 1992 *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 542 (E-1290)12. November 1992 & JP,A,42 06 766 ( KUSUKAWA KIKUO ) 28. Juli 1992 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005074033A1 (ja) 2004-01-30 2005-08-11 Sumco Corporation Soiウェーハの製造方法
EP1710836A4 (en) * 2004-01-30 2010-08-18 Sumco Corp METHOD FOR PRODUCING AN SOI WATER
US7867877B2 (en) 2004-01-30 2011-01-11 Sumco Corporation Method for manufacturing SOI wafer
EP1914799A4 (en) * 2005-07-29 2010-03-17 Shanghai Simgui Technology Co METHOD FOR PRODUCING SILICON ON ISOLATOR

Also Published As

Publication number Publication date
FR2689682A1 (fr) 1993-10-08
FR2689682B1 (fr) 1998-07-31
DE4210859C1 (enExample) 1993-06-09

Similar Documents

Publication Publication Date Title
DE19840421C2 (de) Verfahren zur Fertigung von dünnen Substratschichten und eine dafür geeignete Substratanordnung
DE69728355T2 (de) Verfahren zur Herstellung eines Halbleitergegenstands
DE69710031T2 (de) Verfahren zur Übertragung einer Halbleiterschicht mittels Silizium-auf-Isolator (SOI) Technologie
DE69738278T2 (de) Herstellungsverfahren von einem dünnen Halbleiterfilm, der elektronische Anordnungen enthält
DE69233314T2 (de) Verfahren zur Herstellung von Halbleiter-Produkten
DE69332511T2 (de) Verfahren zur Herstellung eines Halbleitersubstrats
DE69025911T2 (de) Verfahren zur Herstellung von CMOS/SOI-Anordnungen mit hoher Geschwindigkeit, niedrigem Leckstrom und verbesserter Strahlungshärte
DE69728950T2 (de) Verfahren zur Herstellung eines Halbleitergegenstands
DE69133004T2 (de) Verfahren zur Herstellung eines Halbleiterkörpers
DE69225650T2 (de) Verfahren zur Herstellung eines Halbleitersubstrates
DE69728022T2 (de) Vefahren zum Herstellen eines Halbleiterartikels unter Verwendung eines Substrates mit einer porösen Halbleiterschicht
DE69532951T2 (de) Struktur mit kavitäten und herstellungsverfahren für solch eine struktur
EP0538279B1 (de) Verfahren zum dünnätzen von substraten
DE69826053T2 (de) Halbleitersubstrat und Verfahren zu dessen Herstellung
DE4229628A1 (de) Halbleitereinrichtung vom stapeltyp und verfahren zur herstellung einer solchen
DE69225881T2 (de) Verfahren zur Herstellung eines Substrates vom SOI-Typ mit einer uniformen dünnen Silizium-Schicht
DE102015112648A1 (de) Verfahren zum bilden einer waferstruktur, verfahren zum bilden eines halbleiterbauelements und einer waferstruktur
DE2432544C3 (de) Als Halbleiterschaltung ausgebildetes Bauelement mit einem dielektrischen Träger sowie Verfahren zu seiner Herstellung
DE19936941A1 (de) Verfahren zur Herstellung dünner Schichten, insbesondere Dünnschichtsolarzellen, auf einem Trägersubstrat
DE4210859C1 (enExample)
DE2738961A1 (de) Verfahren zur herstellung einer integrierten halbleiterschaltung mit luftisolation
DE4042334C2 (de) Verfahren zum Erzeugen einer isolierten, einkristallinen Siliziuminsel
DE4006158C2 (enExample)
DE19841430A1 (de) Verfahren zur Herstellung kristalliner Halbleiterschichten
DE19750167B4 (de) Verfahren zur Herstellung integrierter Schaltkreise

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)