WO1993017275A1 - Leitungsrohr zum transport eines mediums - Google Patents

Leitungsrohr zum transport eines mediums Download PDF

Info

Publication number
WO1993017275A1
WO1993017275A1 PCT/EP1992/000415 EP9200415W WO9317275A1 WO 1993017275 A1 WO1993017275 A1 WO 1993017275A1 EP 9200415 W EP9200415 W EP 9200415W WO 9317275 A1 WO9317275 A1 WO 9317275A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
sensor
transmission
pipe
winding
Prior art date
Application number
PCT/EP1992/000415
Other languages
English (en)
French (fr)
Inventor
Bernd Brandes
Original Assignee
Bernd Brandes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bernd Brandes filed Critical Bernd Brandes
Priority to EP92905219A priority Critical patent/EP0628145B1/de
Priority to DK92905219.9T priority patent/DK0628145T3/da
Priority to KR1019940703023A priority patent/KR100209181B1/ko
Publication of WO1993017275A1 publication Critical patent/WO1993017275A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21LLIGHTING DEVICES OR SYSTEMS THEREOF, BEING PORTABLE OR SPECIALLY ADAPTED FOR TRANSPORTATION
    • F21L4/00Electric lighting devices with self-contained electric batteries or cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/02Preventing, monitoring, or locating loss
    • F17D5/04Preventing, monitoring, or locating loss by means of a signalling fluid enclosed in a double wall

Definitions

  • the invention relates to a conduit for transporting a medium according to the preamble of claim 1.
  • Line pipes serve e.g. for the transfer of liquid media for district heating systems.
  • a conduit there is in the filling material e.g. Polyurethane, an electrically accessible conductor in the space between the inner tube and the outer tube, with which errors can be measured by measuring resistance, e.g. Pipe leaks can be determined and located.
  • An insulated cable is also provided for the transmission of measurement data from a control point to an evaluation point, which can lie inside the filling material or can also run separately from the tube outside of the tube. It is also known to use rental cables or the TEMEX service of the Deutsche Bundespost for data transmission. Such a data transmission therefore requires additional lines or charges for existing data transmission lines.
  • the object of the invention is to reduce the effort and costs for data transmission in such a conduit. This object is achieved according to the invention in that the sensor is additionally used for the transmission of the data. Advantageous developments of the invention are described in the subclaims.
  • the sensor generally consists of a non-insulated, bare wire that is exposed to the environment, in particular the filler material, without protection. Moisture occurring e.g. acts directly on the sensor, so that this represents a very sensitive component. This high sensitivity of the sensor is necessary, since otherwise it cannot perform its function as a sensor. For this reason it has long been assumed that the sensor is not suitable for the transmission of data because of the high sensitivity to the environment. Surprisingly, it was found that the sensor can be used for the transmission of the data despite this extremely unavoidable sensitivity. It has even been shown that the data transmission is only impaired at an astonishingly high threshold value of moisture and thus a low ohmic resistance to earth in the area of the sensor.
  • the data source and / or the data sink is preferably inductively or capacitively coupled to the sensor. This ensures a separation from the actual sensor function working with DC voltage.
  • the second wire is preferably used for the transmission of the data.
  • the wire serving as a return conductor generally has fewer branches than the measuring wire itself and is therefore less exposed to faults and errors.
  • a pipeline system consists of a first pipe for the feed and a second pipe for the return. Then the cores of the two tubes serving as return conductors can be used as a symmetrical line for the transmission of the data.
  • the data is preferably transmitted in the form of digital signals which are modulated onto a carrier in frequency modulation.
  • fork circuits are preferably provided, which enable a circuit-based separation of the data and the energy.
  • the senor can simultaneously perform three tasks. It serves firstly as a pure sensor for determining and locating a fault location, secondly for the described transmission of the data and thirdly for transmitting an energy which is used at the control points or external points to generate operating voltages for active components is required.
  • the sensor function takes place by means of a direct voltage, the data transmission by means of a modulated carrier of approximately 1 to 5 kHz or even up to 50 kHz and the energy transmission by means of an alternating voltage of 50 Hz, from which the required operating voltages are obtained by rectification.
  • the circuits for data transmission generally contain active components that require an operating voltage.
  • an operating voltage can be generated with a pelletizing element.
  • Such an element generates an operating voltage from a temperature difference at its two electrons. It is then possible to dispense with the supply of an operating voltage at certain points along the entire pipeline route.
  • the feed tube and the return tube for the medium are preferably each connected to the two electrodes of the pelletizing element by means of a pipe socket which is closed at the end.
  • FIG. 1 shows the basic structure of the conduit with that serving as a sensor and data transmitter
  • Fig. 2 shows a simplified block diagram for the solution according to the invention
  • Fig. 3 shows a circuit example for the feeding and extraction of data and energy
  • Fig. 4 shows an embodiment with inductive coupling
  • Fig. 5 shows another embodiment with capacitive input and Decoupling and - 5 -
  • FIG. 6 shows an exemplary embodiment for generating an operating voltage with a pelletizing element.
  • the conduit R consists of the inner pipe 1 carrying the medium, the outer pipe 2 surrounding the inner pipe 1 with a space, and the filling material 3 arranged in the space from e.g. Polyurethane and the sensor in the form of a bare wire 4.
  • the wire 4 which is stored in the filler 3 without insulation, serves as a sensor for determining a fault, such as e.g. a pipe leak and also for the transmission of measurement data.
  • the sensor S is connected to the measuring system MS, which consists of the wire AI serving for the measurement and the wire A2 serving as the return conductor.
  • the sensor S runs in the pipe R according to FIG. 1 and is led out of the pipe R at feeders ZI, Z2 for monitoring purposes.
  • Data D is coupled into the sensor S from the data processing DV via the data transcoder DT.
  • the data are evaluated in the data decoder DD and fed to the data acquisition and / or process control DEP.
  • the double arrows indicate that the data transmission is preferably bidirectional.
  • the sensor S which usually extends over the entire length of the pipeline R, thus serves on the one hand to report a fault to the measuring system MS and on the other hand to transmit the data D between the components shown.
  • the data D are transmitted in the form of digital signals which are modulated onto a carrier of 50 kHz, for example, by frequency modulation.
  • the frequency of the carrier can also be lower, for example in the range from 1 to 5 kHz. This frequency position can be advantageous in order to meet political requirements.
  • the frequency of the carrier is shifted between two values for the two binary values of the digital signal. Another possibility speed is that the carrier for the binary value "1" is present and blanked for the binary value "0".
  • the data path D is connected to the winding W1 of the transformer U1, the primary winding W2 of which is connected to the two wires AI of the two pipes R1, R2.
  • the energy path E is connected to the winding W3 of the transformer U2, the winding W4 of which lies between the center tap of the winding W2 and the interconnected inner tubes 1 of the two pipes R1, R2. This point is the reference point or the earth point for the circuit shown.
  • the wires AI fulfilling the sensor function of the two pipes R1, R2 thus additionally form a symmetrical line for data transmission.
  • FIG. 4 shows a circuit which essentially corresponds to the circuit according to FIG. 2.
  • the two conduits R1, R2 each contain a sensor S1, S2 with the actual measuring wire AI, which is more clearly shown, and the wire A2 serving as a return conductor.
  • the measuring wire AI is brought out in houses Hl, H2 for monitoring purposes.
  • the two wires A2 serving as return conductors of the two pipelines R1, R2 additionally serve as a symmetrical line for the transmission of the data D and the energy E.
  • the hybrid circuit with the two transmitters Ü1, Ü2 according to FIG 3 provided.
  • the coupling and decoupling of the data D is not capacitive, as in FIG. 4, but capacitive.
  • the data D are coupled into the sensor S via the capacitors C1, C2. With the capacitors C3, C4 the data are decoupled and fed to the data decoder DD.
  • the pipe R1 carries the medium for the feed at a temperature of + 90 ° C.
  • the pipe R2 serving as return pipe carries the medium at a temperature of + 50 ° C.
  • a pipe socket is attached to the pipe R1
  • the blind flange 5 set into which the medium penetrates, but which is ended at the end with a blind flange 6.
  • the electrode 7 assumes a temperature of approximately + 90 ° C. and the electrode 11 a temperature of approximately + 50 ° C. Due to this temperature difference, an operating voltage UB is generated at the terminals 12 due to the nature of the direction finder element 8.
  • This can be used at the various points of the arrangement according to FIGS. 2, 4, 5 for feeding active components such as amplifiers, impedance converters, processors and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

Ein Leitungsrohr mit einem das Medium führenden Innenrohr (1) und einem Außenrohr (2) enthält in dem Füllmaterial (3) zwischen den Rohren einen zur Ermittlung von Fehlerstellen dienenden Sensor (S). Außerdem werden über ein dem Leitungsrohr zugeordnetes Kabel Daten (D) übertragen. Aufgabe ist es, den Aufwand für die Übertragung der Daten (D) zu verringern. Erfindungsgemäß wird der Sensor (S) zusätzlich zur Übertragung der Daten (D) ausgenutzt. Insbesondere für ein Leitungsrohr zur Übertragung flüssiger Medien zur Fernheizung.

Description

Leitungsrohr zum Transport eines Mediums
Die Erfindung geht aus von einem Leitungsrohr zum Transport eines Mediums gemäß dem Oberbegriff des Anspruchs 1.
Leitungsrohre dienen z.B. zur Übertragung flüssiger Medien für Fernheizungssysteme. Bei einem derartigen Leitungsrohr liegt in dem Füllmaterial, z.B. Polyurethan, in dem Zwischen¬ raum zwischen dem Innenrohr und dem Außenrohr ein elektrisch zugänglicher Leiter, mit dem durch Widerstandsmessung Fehler¬ stellen wie z.B. Rohrleckagen festgestellt und geortet wer¬ den können. Zur Übertragung von Meßdaten von einer Kontroll¬ stelle zu einer Auswertstelle ist außerdem ein isoliertes Kabel vorgesehen, das innerhalb des Füllmaterials liegen oder auch außerhalb des Rohres getrennt von diesem verlaufen kann. Es ist auch bekannt, für die Datenübertragung Mietka¬ bel oder den TEMEX-Dienst der Deutschen Bundespost auszunut¬ zen. Eine derartige Datenübertragung erfordert somit einen zusätzlichen Aufwand an Leitungen oder Gebühren für bereits vorhandene Datenübertragungsleitungen.
Der Erfindung liegt die Aufgabe zugrunde, bei einem derarti¬ gen Leitungsrohr den Aufwand und die Kosten für die Daten¬ übertragung zu verringern. Diese Aufgabe wird gemäß der Erfindung dadurch gelöst, daß der Sensor zusätzlich zur Übertragung der Daten ausgenutzt ist. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen beschrieben.
Der Sensor besteht im allgemeinen aus einem nicht isolier¬ ten, blanken Draht, der ungeschützt der Umgebung, insbesonde¬ re dem Füllmaterial, ausgesetzt ist. Auftretende Feuchtig¬ keit z.B. wirkt unmittelbar auf den Sensor ein, so daß die¬ ser ein sehr empfindliches Bauteil darstellt. Diese hohe Emp¬ findlichkeit des Sensors ist notwendig, da er sonst seine Funktion als Sensor nicht erfüllen kann. Deshalb wurde bis¬ lang angenommen, daß der Sensor wegen der großen Sensitivi- tät gegenüber der Umgebung für die Übertragung von Daten nicht geeignet ist. Überraschend wurde festgestellt, daß der Sensor trotz dieser extremen unvermeidbaren Sensitivität für die Übertragung der Daten eingesetzt werden kann. Es hat sich sogar gezeigt, daß die Datenübertragung erst bei einem erstaunlich hohen Schwellwert von Feuchtigkeit und somit niedrigem ohmschen Widerstand gegen Erde im Bereich des Sen¬ sors beeinträchtigt wird.
Durch die erfindungsgemäße Doppelausnutzung des Sensors, ei¬ nerseits für die Sensorfunktion zur Ermittlung von Fehler¬ stellen selbst und andererseits für die Datenübertragung er¬ geben sich mehrere Vorteile. Bisherige Kabel oder sonstige Übertragungsstrecken für die Datenübertragung können entfal¬ len. Ein Kabelbruch im Verlauf des Sensors wird sogar dop¬ pelt gemeldet, da dann neben der Sensor-Fehlermeldung zusätz¬ lich ein Ausfall der Daten auftritt. Durch schaltungsmäßige Entkopplung und Arbeit in verschiedenen Frequenzbereichen ist auch eine weitestgehend rückwirkungsfreie Arbeitsweise für die beiden Funktionen gewährleistet. Durch die Ausnut¬ zung des im allgemeinen ohnehin vorhandenen Sensors für die Datenübertragung ist eine Nachrüstung von Altanlagen in Rieh- - 3 -
tung einer Datenübertragung leicht möglich. Durch diese Mög¬ lichkeit können auch Hausstationen und ähnliche Einrichtun¬ gen in die Kontrolle einbezogen werden. Der Personalaufwand für die Überwachung der Rohrleitung kann wesentlich redu¬ ziert und gleichzeitig die Betriebssicherheit erhöht werden.
Vorzugsweise ist die Datenquelle und/oder die Datensenke in¬ duktiv oder kapazitiv an den Sensor angekoppelt. Dadurch wird eine Trennung von der mit Gleichspannung arbeitenden eigentlichen Sensorfunktion sichergestellt. Bei einem Sensor mit einer ersten, als Fühler für eine Fehlerstelle dienenden Ader und mit einer zweiten, als Rückleiter dienenden Ader wird vorzugsweise die zweite Ader für die Übertragung der Daten ausgenutzt. Die als Rückleiter dienende Ader hat im allgemeinen weniger Abzweigungen als die Meßader selbst und ist daher weniger den Störungen und Fehlern ausgesetzt.
Im allgemeinen besteht ein Rohrleitungssystem aus einem er¬ sten Rohr für den Hinlauf und einem zweiten Rohr für den Rücklauf. Dann können die als Rückleiter dienenden Adern der beiden Rohre als symmetrische Leitung für die Übertragung der Daten ausgenutzt werden. Die Übertragung der Daten er¬ folgt vorzugsweise in Form digitaler Signale, die einem Trä¬ ger in Frequenzmodulation aufmoduliert sind.
An der Speisestelle oder der Entnahmestelle sind vorzugswei¬ se Gabelschaltungen vorgesehen, die eine schaltungsmäßige Trennung der Daten und der Energie ermöglichen.
Der Sensor kann in einer Weiterbildung der Erfindung gleich¬ zeitig drei Aufgaben erfüllen. Er dient erstens als reiner Sensor zur Ermittlung und Ortung einer Fehlerstelle, zwei¬ tens zu der beschriebenen Übertragung der Daten und drittens zur Übertragung einer Energie, die an den Kontrollstellen oder Außenstellen zur Erzeugung von Betriebsspannungen für aktive Bauteile benötigt wird. Beispielsweise erfolgt die Sensorfunktion mittels einer Gleichspannung, die Datenüber¬ tragung mittels eines modulierten Trägers von etwa 1 - 5 kHz oder auch bis zu 50 kHz und die Energieübertragung mittels einer Wechselspannung von 50 Hz, aus der durch Gleichrich¬ tung die benötigten Betriebsspannungen gewonnen werden.
Die Schaltungen für die Datenübertragung enthalten im allge¬ meinen aktive Bauteile, die eine Betriebsspannung benötigen. Gemäß einer Weiterbildung der Erfindung kann eine solche Be¬ triebsspannung mit einem Pelletier-Element erzeugt werden. Ein derartiges Element erzeugt aus einer Temperaturdifferenz an seinen beiden Elektronen eine Betriebsspannung. Dann kann an bestimmten Stellen der gesamten Rohrleitungsstrecke auf die Zuführung einer Betriebsspannung verzichtet werden. Bei einer solchen Lösung ist vorzugsweise das Hinlaufröhr und Rücklaufröhr für das Medium je mit einem am Ende geschlosse¬ nen Rohrstutzen mit den beiden Elektroden des Pelletier-Ele- entes verbunden.
Ausführungsbeispiele der Erfindung werden im folgenden an¬ hand der Zeichnung erläutert. Darin zeigen Fig. 1 den grundätzliehen Aufbau des Leitungsrohres mit dem als Sensor und Datenübertrager dienenden
Leiter, Fig. 2 ein vereinfachtes Blockschaltbild für die erfindungsgemäße Lösung, Fig. 3 eine Schaltungsbeispiel für die Einspeisung und Entnahme der Daten und einer Energie, Fig. 4 ein Ausführungsbeispiel mit induktiver Einkopp lung, Fig. 5 ein weiteres Ausführungsbeispiel mit kapazitiver Ein- und Auskopplung und - 5 -
Fig. 6 ein Ausführungsbeispiel für die Erzeugung einer Betriebsspannung mit einem Pelletier-Ele- ent.
In Fig. 1 besteht das Leitungsrohr R aus dem das Medium füh¬ rende Innenrohr 1, dem das Innenrohr 1 mit Zwischenraum umge¬ benden Außenrohr 2, dem im Zwischenraum angeordneten Füllma¬ terial 3 aus z.B. Polyurethan sowie dem Sensor in Form eines blanken Drahtes 4. Der ohne Isolation im Füllmaterial 3 gela¬ gerte Draht 4 dient als Sensor zur Ermittlung einer Fehler¬ stelle wie z.B. einer Rohrleckage und zusätzlich für die Übertragung von Meßdaten.
In Fig. 2 ist an das Meßsystem MS der Sensor S angeschlos¬ sen, der aus der zur Messung dienenden Ader AI und der als Rückleiter dienenden Ader A2 besteht. Der Sensor S verläuft in dem Rohr R gemäß Fig. 1 und ist an Zuführungen ZI, Z2 aus der Rohrleitung R zu Überwachungszwecken herausgeführt. Von der Datenverarbeitung DV werden Daten D über den Datentran- skoder DT in den Sensor S eingekoppelt. Je nach Bedarf wer¬ den die Daten in dem Datendekoder DD ausgewertet und der Da¬ tenerfassung und/oder ProzeßSteuerung DEP zugeführt. Die Dop¬ pelpfeile zeigen an, daß die Datenübertragung vorzugsweise bidirektional erfolgt. Der Sensor S, der sich in der Regel über die gesamte Länge der Rohrleitung R erstreckt, dient also einmal zur Meldung einer Fehlerstelle an das Meßsystem MS und andererseits zur Übertragung der Daten D zwischen den dargestellten Bauteilen. Die Daten D werden in Form von digi¬ talen Signalen übertragen, die einem Träger von z.B. 50 kHz durch Frequenzmodulation aufmoduliert sind. Die Frequenz des Trägers kann auch niedriger liegen, z.B. im Bereich von 1 bis 5 kHz. Diese Frequenzlage kann vorteilhaft sein, um po¬ stalische Forderungen zu erfüllen. Dabei ist die Frequenz des Trägers für die beiden binären Werte des digitalen Si¬ gnals zwischen zwei Werten umgetastet. Eine andere Möglich- keit besteht darin, daß der Träger für den binären Wert "1" vorhanden und für den binären Wert "0" ausgetastet ist.
Fig. 3 zeigt eine GabelSchaltung zur Einkopplung oder Aus¬ kopplung der Daten D und der zur Sensorfunktion oder zur Speisung von aktiven Schaltungen benötigten Energie Ξ. Die Datenstrecke D ist an die Wicklung Wl des Übertragers Ül an¬ geschlossen, dessen Primärwicklung W2 an die beiden Adern AI der beiden Rohrleitungen Rl, R2 angeschlossen ist. Die Ener¬ giestrecke E ist an die Wicklung W3 des Übertragers Ü2 ange¬ schlossen, dessen Wicklung W4 zwischen dem Mittelabgriff der Wicklung W2 und den mit einander verbundenen Innenrohren 1 der beiden Rohrleitungen Rl, R2 liegt. Dieser Punkt ist der Bezugspunkt oder der Erdpunkt für die dargestellte Schal¬ tung. Die die Sensorfunktion erfüllenden Adern AI der beiden Rohrleitungen Rl, R2 bilden also zusätzlich eine symmetri¬ sche Leitung für die Datenübertragung.
Fig. 4 zeigt eine Schaltung, die im wesentlichen der Schal¬ tung nach Fig. 2 entspricht. Die beiden Leitungsrohre Rl, R2 enthalten je einen Sensor Sl, S2 mit der stärker gezeichne¬ ten eigentlichen Meßader AI und der als Rückleiter dienenden Ader A2. An verschiedenen Stellen ist die Meßader AI in Häu¬ ser Hl, H2 zur Uberwachungszwecken herausgeführt. Die beiden als Rückleiter dienenden Adern A2 der beiden Rohrleitungen Rl, R2 dienen zusätzlich als symmetrische Leitung zur Über¬ tragung der Daten D und der Energie E. Für die Einkopplung oder Auskopplung ist wieder die Gabelschaltung mit den bei¬ den Übertragern Ül, Ü2 gemäß Fig. 3 vorgesehen.
In Fig. 5 erfolgt die Einkopplung und Auskopplung der Daten D nicht wie in Fig. 4 induktiv, sondern kapazitiv. Von der Kontrollstelle K werden die Daten D über die Kondensatoren Cl, C2 in den Sensor S eingekoppelt. Mit den Kondensatoren C3, C4 werden die Daten ausgekoppelt und dem Datendekoder DD zugeführt.
In Fig. 6 führt die Rohrleitung Rl für den Hinlauf das Medi¬ um mit einer Temperatur von +90° C, während die als Rücklei¬ ter dienende Rohrleitung R2 das Medium mit einer Temperatur von +50° C führt. An die Rohrleitung Rl ist ein Rohrstutzen
5 angesetzt, in den das Medium eindringt, der aber am Ende mit einem Blindflansch 6 abgeschlossen ist. Der Blindflansch
6 steht mit der Elektrode 7 des dargestellten Pelletier-Ele- mentes 8 in Wärmekontakt. Entsprechend ist die Rohrleitung R2 für den Rücklauf über den zum Dehnungsausgleich dienen¬ den Wellrohr-Rohrstutzen 9 versehen, der am Ende mit dem Blindflansch 10 abgeschlossen ist und mit der Elektrode 11 des Peiletier-Elementes 8 in Verbindung steht. Durch diese Anordnung nimmt die Elektrode 7 eine Temperatur von etwa +90° C und die Elektrode 11 eine Temperatur von etwa +50° C an. Durch diese Temperaturdifferenz wird durch die Eigenart des Peiletier-Elementes 8 an den Klemmen 12 eine Betriebs¬ spannung ÜB erzeugt. Diese kann an den verschiedenen Stellen der Anordnung nach Fig. 2, 4, 5 zur Speisung aktiver Bautei¬ le wie Verstärker, Impedanzwandler, Prozessoren und dgl. ver¬ wendet werden.
In der Praxis kann es vorkommen, daß sich in den Rohren per¬ manente Luftblasen oder Ablagerungen bilden, die zu einer Korrosionsmöglichkeit führen können. Deshalb kann es zweckmä¬ ßig sein, in Fig. 6 die beiden Rohstutzen 5, 9, die an sich durch das Element 8 getrennt sind, über das Rohr 13 zu ver¬ binden. In dem Rohr 13 ist noch das manuell einstellbare Ven¬ til 14 vorgesehen. Das Rohr 13 bildet einen geringen soge¬ nannten Bypaß, der auch einer Auskühlung am Pelletier-Ele- ment vorbeugt.

Claims

P a t e n t a n s p r ü c h e
1. Leitungsrohr zum Transport eines Mediums mit einem das Medium führenden Innenrohr (1), einem Außenrohr (2), ei¬ nem Füllmaterial (3) in dem Zwischenraum zwischen den Rohren, einem in dem Zwischenraum verlaufenden Sensor (S) in Form eines elektrischen Leiters zur Erfassung von Fehlerstellen und mit einer Leitung zur Übertragung von Daten, dadurch gekennzeichnet, daß der Sensor (S) zusätzlich zur Übertragung der Daten (D) ausgenutzt ist.
2. Leitungsrohr nach Anspruch 1, dadurch gekennzeichnet, daß die Datenquelle und/oder die Datensenke induktiv oder kapazitiv an den Sensor (S) angekoppelt ist.
3. Leitungsrohr nach Anspruch 1, dadurch gekennzeichnet, daß bei einem Sensor (S) mit einer ersten, als Fühler für eine Fehlerstelle dienenden Ader (AI) und mit einer zweiten, als Rückleiter dienenden Ader (A2) die zweite Ader (A2) für die Übertragung der Daten (D) ausgenutzt ist (Fig. 3, 4).
4. Leitungsrohr nach Anspruch 3, dadurch gekennzeichnet, daß die Rückleiter (A2) der Sensoren (Sa, S2) von zwei parallel verlaufenden Rohren (Rl, R2) als symmetrische Leitung für die Übertragung der Daten (D) ausgenutzt sind (Fig. 4) .
5. Leitungsrohr nach Anspruch 1, dadurch gekennzeichnet, daß die Daten (D) digitale Signale sind und durch Fre¬ quenzmodulation eines Trägers übertragen werden.
6. Leitungsrohr nach Anspruch 2, dadurch gekennzeichnet, daß die Datenquelle oder -senke an eine erste Wicklung (Wl) eines ersten Übertragers (Ül) und dessen zweite Wicklung (W2) an zwei Sensoren (Sl, S2) von zwei Lei¬ tungsrohren (Rl, R2) angeschlossen ist und daß eine En¬ ergiequelle oder -senke an eine Wicklung (W3) eines zweiten Übertragers (Ü2) angeschlossen ist, dessen ande¬ re Wicklung (W4) zwischen einem Abgriff der zweiten Wicklung (W2) und den miteinander elektrisch verbunde¬ nen Innenrohren (1) der beiden Leitungsrohre (Rl, R2) liegt (Fig. 3).
7. Leitungsrohr nach Anspruch 1, dadurch gekennzeichnet, daß der Sensor (S) zur Ermittlung einer Fehlerstelle, zur Übertragung der Daten (D) und zur Übertragung einer Energie (E) zur Speisung von aktiven Schaltungen an ei¬ ner Meß- oder Auswertstelle ausgenutzt ist.
8. Leitungsrohr nach Anspruch 7, dadurch gekennzeichnet, daß die Sensorfunktion mittels einer Gleichspannung, die Datenübertragung mittels eines modulierten Trägers mit einer Frequenz von 1 - 50 kHz und die Energieüber¬ tragung mittels einer WechselSpannung von 50 Hz erfolgt.
9. Leitungsrohr nach Anspruch 1, dadurch gekennzeichnet, daß für die Erzeugung von Betriebsspannungen für Bautei¬ le für die Datenübertragung ein Pelletier-Element (8) vorgesehen ist (Fig. 6).
10. Leitungsrohr nach Anspruch 9, dadurch gekennzeichnet, daß ein Hinlaufröhr (Rl) und ein Rücklaufröhr (R2) für das Medium je mit einem am Ende abgeschlossenen Rohr¬ stutzen (5, 9) mit den beiden Elektroden (7, 11) des Pelletier-Elements (8) verbunden sind, von denen minde¬ stens einer (9) flexibel angeschlossen ist (Fig. 6).
PCT/EP1992/000415 1991-02-12 1992-02-27 Leitungsrohr zum transport eines mediums WO1993017275A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP92905219A EP0628145B1 (de) 1991-02-12 1992-02-27 Verfahren zur ermittlung von fehlerstellen an leitungsrohren
DK92905219.9T DK0628145T3 (da) 1991-02-12 1992-02-27 Fremgangsmåde til bestemmelse af fejlsteder i ledningsrør
KR1019940703023A KR100209181B1 (ko) 1991-02-12 1992-02-27 파이프의 결함 장소를 검출하는 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4104216A DE4104216A1 (de) 1991-02-12 1991-02-12 Leitungsrohr zum transport eines mediums

Publications (1)

Publication Number Publication Date
WO1993017275A1 true WO1993017275A1 (de) 1993-09-02

Family

ID=6424878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1992/000415 WO1993017275A1 (de) 1991-02-12 1992-02-27 Leitungsrohr zum transport eines mediums

Country Status (5)

Country Link
EP (1) EP0628145B1 (de)
KR (1) KR100209181B1 (de)
DE (1) DE4104216A1 (de)
DK (1) DK0628145T3 (de)
WO (1) WO1993017275A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0665177A1 (de) * 1994-01-27 1995-08-02 ALB. Klein GmbH & Co. KG Vorrichtung und Verfahren zum Überwachen von doppelwandigen Förderrohren

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19519650C2 (de) * 1995-05-30 1997-04-17 Bernd Brandes Verfahren zur Ortung undichter Stellen in Rohrleitungen und Rohrleitungssystem, insbesondere für die Übertragung von Fernwärme
DE19821084C2 (de) * 1998-05-12 2000-08-31 Thermosoft Klimatechnik Gmbh Verfahren zur Dichtigkeitsüberwachung
DE10117238A1 (de) * 2001-04-06 2002-10-17 Fraunhofer Ges Forschung Verfahren und Vorrichtung zur Detektion von Fehlerstellen in isolierten Leitungssystemen
DE102004047224A1 (de) * 2004-02-17 2005-09-22 Brandes Gmbh Überwachungssystem für ein Fernwärmeverteilsystem
DE102020003135A1 (de) 2020-05-26 2021-12-02 Curt Reichert Sensoreinrichtung zur Funktionsüberwachung einer Rohrleitung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2142075B2 (de) * 1971-08-21 1976-08-12 Feiten & Guilleaume Kabelwerke AG, 5000Köln Schlauchkabel
GB1455415A (en) * 1973-03-26 1976-11-10 Rasmussen As E Insulated pipe system having means for detection of moisture in the insulation thereof
US4112247A (en) * 1976-09-20 1978-09-05 Western Electric Company, Inc. Gas feeder pipe assembly including electrical conductors
DE3628336A1 (de) * 1986-08-21 1988-02-25 Roero Ges Fuer Isolier Und Fer Rohrleitungssystem und waermeisolierte rohre, z.b. fuer fernheizleitungen

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3648642A (en) * 1970-01-28 1972-03-14 Continental Oil Co Communication channel between boat and marine cable depth controllers
DE7034009U (de) * 1970-09-12 1970-12-10 Felten & Guilleaume Kabelwerk Rohr fuer druckuebertragungssysteme.
DE7132112U (de) * 1971-08-21 1971-11-11 Felten & Guilleaume Kabelwerke Ag Schlauchkabel
DE2829302A1 (de) * 1978-07-04 1980-01-17 Gerhard Krause Anordnung zur uebertragung von signalen innerhalb von gebaeuden
SE424359B (sv) * 1979-09-05 1982-07-12 Blom H Anordning for brottindikering vid fjerrvermeror
DE3201643A1 (de) * 1982-01-18 1983-07-28 Siemens AG, 1000 Berlin und 8000 München Vorrichtung zur ortung eines feuchtigkeitseinbruches in einen langgestreckten gegenstand grosser ausdehnung
DE3419705A1 (de) * 1984-05-25 1985-11-28 Siemens AG, 1000 Berlin und 8000 München Kabel mit kunststoffmantel und pruefleitern zur erkennung von eindringender feuchtigkeit
DE3433432A1 (de) * 1984-09-12 1986-03-20 kabelmetal electro GmbH, 3000 Hannover Fuehlader zum melden und orten von lecks in fernwaermeleitungen und verfahren zu ihrer herstellung
DE3622800A1 (de) * 1985-07-26 1987-01-29 Mitec Moderne Ind Gmbh Messanordnung mit einer vielzahl von messeinheiten
DE3626999A1 (de) * 1986-08-08 1988-02-11 Kabelmetal Electro Gmbh Vorrichtung zur laufenden ueberwachung einer fernwaermeleitung
DE3816884A1 (de) * 1988-05-18 1989-11-30 Guenter Dipl Ing Hess Montageschlauch
DE3907411A1 (de) * 1989-03-08 1990-09-13 Ant Nachrichtentech Zwischenstelle fuer eine digitalsignal-uebertragungsanlage
DE3908903A1 (de) * 1989-03-15 1990-09-20 Siemens Ag Meldeader und elektrisches oder optisches kabel mit einer meldeader sowie kabelnetz aus kabeln mit einer meldeader
DE4011259A1 (de) * 1989-04-10 1990-10-11 Inst Energieversorgung Sensorkabel zur ueberwachung der waermedaemmung von medienfuehrenden versorgungsleitungen, insbesondere fernwaermeleitungen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2142075B2 (de) * 1971-08-21 1976-08-12 Feiten & Guilleaume Kabelwerke AG, 5000Köln Schlauchkabel
GB1455415A (en) * 1973-03-26 1976-11-10 Rasmussen As E Insulated pipe system having means for detection of moisture in the insulation thereof
US4112247A (en) * 1976-09-20 1978-09-05 Western Electric Company, Inc. Gas feeder pipe assembly including electrical conductors
DE3628336A1 (de) * 1986-08-21 1988-02-25 Roero Ges Fuer Isolier Und Fer Rohrleitungssystem und waermeisolierte rohre, z.b. fuer fernheizleitungen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0665177A1 (de) * 1994-01-27 1995-08-02 ALB. Klein GmbH & Co. KG Vorrichtung und Verfahren zum Überwachen von doppelwandigen Förderrohren

Also Published As

Publication number Publication date
DE4104216A1 (de) 1992-08-13
EP0628145A1 (de) 1994-12-14
DK0628145T3 (da) 1996-05-06
KR950700514A (ko) 1995-01-16
EP0628145B1 (de) 1995-12-20
DE4104216C2 (de) 1992-11-12
KR100209181B1 (ko) 1999-07-15

Similar Documents

Publication Publication Date Title
DE2413345C2 (de) Isoliertes Rohrleitungssystem, insbesondere ein unterirdisches Rohrleitungssystem für Fernheizung
EP2002413B1 (de) Bidirektionaler, galvanisch getrennter übertragungskanal
AT501758A4 (de) Verfahren zur ortung von leckagen in rohren
EP2283371B1 (de) Leistungsmessvorrichtung
WO2010049299A1 (de) Verteiler-modul bzw. damit gebildetes messsystem
DE3818601A1 (de) Digitales signaluebertragungssystem fuer die hausleittechnik
DE3010369A1 (de) System und verfahren zum auffinden von widerstands- und verbindungsfehlern in mehradrigen kabeln
EP0060552B1 (de) Anordnung zur Überwachung eines Rohrleitungssystems, insbesondere aus wärmegedämmten Fernwärmerohren
EP0628145B1 (de) Verfahren zur ermittlung von fehlerstellen an leitungsrohren
DE19519650C2 (de) Verfahren zur Ortung undichter Stellen in Rohrleitungen und Rohrleitungssystem, insbesondere für die Übertragung von Fernwärme
EP2696183A2 (de) Leckage-Überwachungsvorrichtung und Verfahren zur Leckage-Überwachung in einem Fernwärmerohr
WO2020052892A1 (de) MEßGERÄTE-SYSTEM SOWIE DAMIT GEBILDETE MEßANORDNUNG
DE69118483T2 (de) Magnetischer Durchflussmesser
CN208508358U (zh) 新型hgis集成组合式光学互感器
DE202014100207U1 (de) Koppler für Mittelspannungs-Powerline-Communication
EP0257575A1 (de) Rohrleitungssytem und wärmeisolierte Rohre, z.B. für Fernheizleitungen
DE102020003135A1 (de) Sensoreinrichtung zur Funktionsüberwachung einer Rohrleitung
DE3611603C2 (de)
CN207380099U (zh) 一种多通道信号转换装置
DE3102244C2 (de) Einrichtung zum potentialfreien Energietransport
DE3433028C2 (de)
DE102017128249B4 (de) Anordnung für einen Aktuator-Sensor Interface Feldbus (AS-i-Bus) mit einem Diagnosegerät
DE102007051766A1 (de) System zur Auslesung von Fernwärmezählern
DE102019115145A1 (de) Solarmodul, solarmodulintegrierbare Anordnung und Energieerzeugungsanlage
EP0973016A2 (de) Vorrichtung zur Messwertübertragung zwischen Sensoren und einer Überwachungseinheit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CS HU KR PL US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: PV1994-2073

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 1992905219

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1994 290941

Date of ref document: 19941107

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1992905219

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV1994-2073

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 1992905219

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: PV1994-2073

Country of ref document: CZ