WO1993016513A1 - Element laser a semi-conducteur et laser fabrique au moyen d'un tel element - Google Patents

Element laser a semi-conducteur et laser fabrique au moyen d'un tel element Download PDF

Info

Publication number
WO1993016513A1
WO1993016513A1 PCT/JP1993/000156 JP9300156W WO9316513A1 WO 1993016513 A1 WO1993016513 A1 WO 1993016513A1 JP 9300156 W JP9300156 W JP 9300156W WO 9316513 A1 WO9316513 A1 WO 9316513A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
thickness
type
barrier layer
barrier
Prior art date
Application number
PCT/JP1993/000156
Other languages
English (en)
French (fr)
Inventor
Kiyofumi Muro
Tsuyoshi Fujimoto
Yuuji Yoshida
Yoshikazu Yamada
Shoji Ishizaka
Original Assignee
Mitsui Petrochemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries, Ltd. filed Critical Mitsui Petrochemical Industries, Ltd.
Priority to EP93903324A priority Critical patent/EP0578836B1/en
Priority to DE69324733T priority patent/DE69324733T2/de
Priority to CA002106562A priority patent/CA2106562C/en
Publication of WO1993016513A1 publication Critical patent/WO1993016513A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/18Semiconductor lasers with special structural design for influencing the near- or far-field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2009Confining in the direction perpendicular to the layer structure by using electron barrier layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3421Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers layer structure of quantum wells to influence the near/far field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3428Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers layer orientation perpendicular to the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • H01S5/3432Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs the whole junction comprising only (AI)GaAs

Definitions

  • the present invention relates to the fields of communication, optical recording of optical disks, etc., laser printers, lasers, and industrial fields that use laser high-power semiconductor lasers.
  • the present invention relates to a high-power semiconductor laser for exciting a solid-state laser that requires a high-output laser beam with a high angle of incidence, or a high-power semiconductor laser for exciting a harmonic conversion element and a laser device using the same. Background technology
  • the power to increase the output of semiconductor lasers is being evaluated from various fields.
  • One of the factors hindering the increase in power per unit mode of laser is single-sided melting by laser beam called instantaneous damage (COD).
  • C OD is particularly the case in A 1 GaAs-based lasers.
  • Laser guided mode thin utilization of Jakushirubeha laser focus that reduces the power density of the laser spread an de or separate confinement type les called L_ ⁇ _C structure, - it has been THE force s study.
  • various laser materials such as the A1GaAs system have a strong correlation between the bandgap of each mixed crystal system and the refractive index, so that the carrier is confined and guided.
  • the light confinement cannot be controlled to ® ⁇ .
  • a weakly guided laser with a thin active layer has a gently sloped profile in the direction of lamination, which is exponentially shaped in the direction of the laminar direction.
  • the waveguide mode has a deep tail in the cladding layer, and the growth of the cladding layer is quite thick compared to the expansion of the waveguide mode.
  • the waveguide mode near field pattern
  • beam thigh angle Both patterns are large due to the Gaussian beam, which is considered to be 3 ⁇ 4i, and there were problems in beam collection in many applications.
  • An object of the present invention is to consider the fact that the MBE method and MO CV Di ⁇ in recent years have facilitated the formation of a multilayer thin film.
  • the purpose of this study is to solve the problems of the mode control device design dilemma, such as 3 ⁇ 4H Gol, Takaide Kai L, 3 ⁇ 4 beam w ⁇ i, and improvement of beam profile. Disclosure of the invention
  • a barrier layer having a barrier height that cancels the waveguide of the active layer and has a sufficient barrier height for confining the carrier to the active layer is inserted on both sides of the active layer of a normal double hetero laser or quantum well laser. I do. As a result, it is possible to independently design the confinement of the waveguide mode and the active thickness required for oscillation.
  • the waveguide function of the barrier layer and the active layer can be offset by setting the thickness of the active region and the thickness of the barrier layer to a fraction of the oscillation wavelength or less.
  • further guiding and guiding are performed, and a low-refractive-index-difference cladding for the purpose of only controlling the waveguide of light, or a broad guiding consisting of graded-index structures such as springs and quadratic curves is formed at both ends. .
  • the thickness of the Nada layer can be set to give a bright gain to the oscillation.
  • another step is taken, as shown in Figs. 11 (a), (b) and (c).
  • the active layer is designed and the waveguide mode becomes ⁇ I ⁇ , so high output and low ⁇ angle It is possible to obtain a stable beam 14 that is close to a Gaussian beam.
  • the present invention can be easily realized by using an ultra-thin semiconductor manufacturing apparatus such as MBE, MOCVD, or ⁇ .
  • the effect of the present invention is remarkable in a laser diode using an A 1 Ga As-based semiconductor, and various kinds of m--v of GaInAs, AlGalnAs, GalnAsP, and A1GaInP are used. Almost the same effects can be expected for brilliant talents and various n-vi conductor lasers.
  • 3 ⁇ 4 and the activity of the carrier Insert a thin film of anti-guiding function and carrier blocking function made of a wide gap material at a higher refractive index than the conductive layer with sufficient barrier height to confine the layer.
  • this layer is doped with ⁇ on the ⁇ side and ⁇ on the ⁇ side, so that it is about 10 18 / cm 3, so that efficient carrier blocking and shot key barrier on the band discontinuity surface can be reduced.
  • the formation resistance can be reduced.
  • the cancellation of the wake-up ability of the U.S.A. and the impaired U.S.A. with the refraction-nada ability is less than one of the thickness power and the oscillation wavelength.
  • N 0 the refraction and thickness of the active layer are N, and d 0 , respectively, and the refraction and thickness of the barrier layer are N 2 , respectively.
  • the amount corresponding to the left side of each layer may be described, and the sum thereof may be used for the left side.
  • the composition of the barrier layer between the quantum wells is equal to the composition of the waveguide layer, and the active layer is composed of the quantum well having the thickness d w ,
  • the waveguiding mode can be controlled to 3 ⁇ 45: by the surrounding conduction and cladding layers.
  • Fig. 11 In any of (a), (b), and (c) structures, the situation in which power is turned off for higher-order modes due to single-mode oscillation.
  • this waveguide mode can be described by the regulation frequency; V, and V is defined by the following equation.
  • V ( ⁇ d / A) X (N 0 2— N 3 2) e- 5
  • is the pi
  • s is the oscillation wavelength (angstrom)
  • d is the thickness of the conductor and the leakage including the barrier layer (angstrom).
  • N 0 is the refraction of the thigh
  • N 3 is the refractive index of the cladding layer.
  • the mode is single mode guided at a regulation frequency; V is less than r / 2.
  • the waveguide mode is sinusoidal in the waveguide core layer and exponential in the cladding.
  • the mode confinement rate to the thigh is about 65%, which is different from the exponential profile over almost ⁇ i of the conventional weakly guided laser, and a guided mode close to Gaussian type is realized ( See Figure 2). Examples 1 and 2 (the structures of FIGS. 2 and 3, respectively) were designed in this situation.
  • Example 3 of the structure in FIG. 4 is a design example in which V is close to ⁇ .
  • V 0 ⁇ - ⁇ / ⁇ - (Nj 2 one N B 2) 0 ⁇ 5
  • Is the circumference d is the live 1 ⁇ thickness.
  • N is the refraction of the active layer 0 N 0 is the guide, the refraction is the active layer force ⁇
  • d is the well layer thickness
  • is the well layer refraction
  • ⁇ N 0 is the ⁇ jf refraction well of a multiple quantum well
  • V 0 Nd / ⁇ -(Nj2 one N e2 ) 0-5
  • V is defined by.
  • ⁇ Is the circumference d is the thickness of the barrier layer.
  • N 2 is the refractive index of the barrier layer N 0 is the refractive index
  • V 2 7 ⁇ ⁇ ⁇ / ⁇ ⁇ ( ⁇ 0 2 — ⁇ 3 2) 0 ⁇ 5
  • N 0 is the refractive index of the restaurant
  • N 3 is the refractive index of the cladding layer.
  • v B , 1 ⁇ 4, and v 2 correspond to the active, barrier layer, and conduction standards, respectively. If the anti-guide function s of the barrier layer is too large, a depression occurs near the active layer in the guided mode. As a result, the light confinement efficiency and the threshold current increase. The effect on the s- guided mode must be small.
  • the present invention repeatedly prototypes various semiconductor lasers,
  • the barrier layer must keep the carrier active.
  • d Ong stroke - beam
  • E the energy gap difference Shirubekoboshi and the barrier layer and E (eV)
  • E the energy gap difference Shirubekoboshi and the barrier layer and E (eV)
  • a l x Ga, -, As (0 ⁇ x ⁇ 1) in the semi flame laser using, electrical leakage of 3 ⁇ 4 ⁇ is 03 1 - 5 ( ⁇ ⁇ 35 :.
  • X is atomic ratio
  • «guide 3 ⁇ 4 ⁇ ;! is Alpha Ga - when a chi as (although 0 ⁇ ⁇ 1), the relationship between the thickness of the disabled and x d ( ⁇ )
  • X> may be in the range of (2. 2 X l 03 / d 2) and X ⁇ (5. 0X l 0 4 / d 2).
  • d 0 be an active thickness
  • V B 7T ⁇ d 0 / A ⁇ (N T 2-N 0 2) 0.5
  • d 0 is a quantum well.
  • the thickness of the well layer ⁇ N ⁇ is the refraction of the quantum well layer N 0 is the refractive index of the leakage current, and the force and the number of quantum wells are N In
  • V 0 N ⁇ 7 ⁇ - ⁇ ⁇ / ⁇ -( ⁇ , 2 1 ⁇ 0 2) 0.5
  • barrier layer having a large band gap on the active side and having an anti-waveguide function with a low refractive index has an effect of reducing or canceling out the waveguide function of the active layer. Another function is to block the injected carrier and confine electrons and holes within the active cell. This layer is also doped with P or N to reduce resistance or improve carrier confinement.
  • the waveguide mode control structure of the waveguide layer has the effect of expanding the oscillation mode and stably controlling the profile.
  • Example 1 according to the present invention H ⁇ i ⁇ ; sectional view
  • FIG. 4 is a schematic cross-sectional view of Embodiment 2 according to the present invention.
  • FIG. 3 is a schematic cross-sectional view of Example 3 according to the present invention.
  • Fig. 3 is a schematic cross-sectional view of an example according to the present invention.
  • Example 5 according to the present invention.
  • FIG. 6 is a cross-sectional view of Example 6 in outline.
  • FIG. 7 is a schematic sectional view of Example 7 according to the present invention.
  • Difficult example of the present invention 1 7 Outline ⁇ ⁇ ⁇ ;
  • FIG. 1 shows a waveguide mode 1 of the first and eighth to tenth embodiments.
  • FIG. 1 shows an example of a semiconductor laser-pumped solid-state laser device using a laser element according to the present invention.
  • FIG. 2 shows Example 1, FIG. 3 shows Example 2, FIG. 4 shows Example 3, FIG. 5 shows Example 4, FIG. 6 shows Difficult Example 5, FIG. 7 shows Example 6, FIG. 8 shows Example 7, and FIG. Example 8, FIG. 10 shows Example 9, FIG. 11 shows Example 10, FIG. 12 shows Example 11, FIG. 13 shows ⁇ ) 12, FIG. 14 shows Example 13, and FIG. 14 shows Example 13 and FIG. 15 is Example 14, FIG. 16 is Example 15, FIG. 17 is Example 16, FIG. 18 is Example 17, FIG. 19 is Example 18, and FIG. ⁇ Plan view.
  • FIG. 21 is a waveguide mode of Examples 1 to 3 and a comparative example
  • FIG. 22 is a waveguide mode of difficult examples 1 to 3 and a comparative example. Mode
  • FIG. 23 is the waveguide mode of Examples 4 to 7
  • FIG. 24 is the radiation mode of Examples 4 to 7
  • FIG. 25 is the waveguide mode of Examples 1, 8 to 10, and
  • FIG. 26 is Example 1.
  • FIG. 27 is the waveguide mode of Examples 11 to 14
  • FIG. 28 is the mode of Examples 11 to 14 and
  • FIG. 30 is the radiation mode of Examples 15 to 18
  • FIG. 31 is a diagram expressing the range of the barrier layer, with the width of the barrier layer as abscissa and ⁇ 1 ⁇ as the ordinate. is there.
  • the range above the upper right curve is too large for the anti-guiding function of the barrier layer, giving a large body to the guided mode.
  • a depression occurs in the waveguide mode near the active layer, leading to an optical confinement ratio of ⁇ , and an increase in the threshold current.
  • the waveguide mode deviates greatly from the Gaussian type, and it turns into an assault in the ° turn.
  • the carrier is sufficiently confined and the ⁇ g characteristic of the threshold current deteriorates.o
  • the range (effective range) in the present invention is between the solid lines of 2 ⁇ ⁇ .
  • the dopant was doped with 1 ⁇ 10 18 / cm 3 using Se as the n-type and Zn as the p-type.
  • a cleavage was performed to produce a prototype diode chip for gain conduction.
  • oscillation 14 was measured in pulse mode.
  • Table 1 shows 13 ⁇ 4 of a chip with a cavity length: 30. Note that ⁇ the end face is not coated. Dislike 1)
  • a 0.5 / czm-thick n-type buffer layer 10 is formed on an n-type substrate 8 made of Ga As, and an n-type cladding layer 1 and an n-type ⁇ # Leakage 2, n-type barrier layer 3, 3 ⁇ 4i3 ⁇ 4 ⁇ 4, P- type barrier layer 5, p-type barrier layer 6, and p-type cladding layer 7 were formed around JI, and finally n-type cap layer 11 was formed.
  • the specific configuration of each layer is as follows.
  • Thickness 0.3 / m
  • Thickness 1. O ⁇ m
  • n-type cladding layer 1 n-type cladding layer 1
  • Thickness 1.0 ⁇ m
  • Thickness 0.5 ⁇ m
  • the active layer 4 has a four-layer structure between side barrier layers 12 provided on the inner wall side of the barrier layers 5 and 3.
  • the quantum well layers 13 are formed to be separated by the barrier layers 14, respectively.
  • the specific structure of this activity 4 is as follows. Thickness: 165 years old, strike mouth
  • Thickness 25 on, strom
  • Thickness 55 ounces, strom
  • Thickness 50 ounce ', strike mouth
  • Thickness 165 ohms, strom
  • FIG. 21 shows a waveguide mode profile (near-field pattern) perpendicular to the epitaxy layer for the structure shown in this example
  • FIG. 22 shows a measurement of the dimensional mode. (Difficulty 2)
  • an n-type buffer layer 10 having a thickness of 0.5 / m is formed on an n-type plate 8 made of GaAs, and an n-type cladding layer 1 and an n-type
  • the n-type barrier layer 3, 3 ⁇ 41 ⁇ 2 ⁇ 4, the p-type barrier layer 5, the p-type ⁇ 6, and the p-type cladding layer 7 were successively formed, and the n-type cap layer 11 was formed last.
  • Thickness 0.3 / um
  • Thickness 2. O ⁇ m
  • Thickness 2. ⁇
  • Thickness 0.5 / m
  • the active layer 4 has an eight-layer quantum structure between side barrier layers 12 provided on the inner wall side of the barrier layers 5, 3.
  • the well layers 13 are formed so as to be separated from each other by the barrier layers 14.
  • the specific structure of this activity is as follows. Thickness: 330 years old
  • Thickness 25 ounces, strom
  • Thickness 55 ounces, strom
  • Thickness 50 ounce "strom"
  • Thickness 330 ounce "strom"
  • FIG. 21 shows a waveguide mode profile (near-field pattern) perpendicular to the epitaxy layer for the structure shown in the present embodiment
  • FIG. 22 shows a measurement in the dimensional mode. (Problem 3)
  • ⁇ ⁇ ⁇ 15 is provided between the p-type grading layer 7 and the p-type layer ⁇ and the leakage 6. With this arrangement of n ⁇ , lateral pressing can be performed 'near' 4 '.
  • n-type anti-reflection 15 a light confinement force is also exerted in the lateral direction, and a stable lateral mode can be realized.
  • Thickness 0.8 ⁇ m
  • Thickness 0.2
  • Thickness 0.93 / m
  • n-type cladding layer 1 n-type cladding layer 1
  • Thickness 1.0 ⁇ m
  • Thickness 0.5
  • the active layer 4 has a quantum well having an eight-layer structure between side barrier layers 12 provided on the inner wall side of the barrier layers 5, 3.
  • the layers 13 are formed so as to be separated from each other by the barrier layer 14. The specific configuration of this activity is as follows.
  • Thickness 330 years old, strike mouth
  • Thickness 50 on: cost
  • an n-type buffer layer 10 having a thickness of 0.5 m is formed on an n-type substrate 8 made of G a As, and an n-type cladding layer 1, an n-type photoconductive layer ⁇ J12, An n-type barrier layer 3, a p-type barrier layer 5, a p-type barrier layer 5, a p-type photoconductive layer 6, and a p-type cladding layer 7 were sequentially formed, and an n-type cap layer 11 was formed at the very end.
  • n-type cladding layer 1 n-type cladding layer 1
  • Thickness 0.5 y "m
  • the active layer 4 has a four-layer quantum structure in a region between the p-type barrier layer 5 and the n-type barrier layer 3 and between the side barrier layers 12 provided on the inner wall side of the barrier layers 5 and 3.
  • the well layers 13 are formed to be separated by the barrier layers 14, respectively.
  • the specific configuration of this activity 4 is as follows.
  • Thickness 25 ounces "stro- ⁇ " Itozoku:. A le.30 G a 0 7 0 As
  • Thickness 55 years old, 'Strom
  • Thickness 50 years old, strom
  • a 0.5 / m-thick ⁇ -type buffer layer 10 is formed on an ⁇ -type substrate 8 made of GaAs, and an ⁇ -type cladding layer 1, an ⁇ -type 3 ⁇ 43 ⁇ 43 ⁇ 4jf2, and an n-type A barrier layer 3, an activity 4, a p-type barrier layer 5, a p-type photoconductive layer 6, and a p-type cladding layer 7 were sequentially formed, and an n-type cap layer 11 was formed on each layer.
  • Thickness 0.3 m
  • Thickness 1.0 m
  • Thickness 0.46 / m
  • n-type cladding layer 1 n-type cladding layer 1
  • Thickness 1.0 ⁇ m
  • a four-layer quantum well layer is provided between the side barrier layers 12 provided on the inner wall side of each of the barrier layers 5 and 3. 13 are formed separated by barrier layers 14 respectively.
  • Thickness 200 angstrom
  • Thickness 25 ounces
  • Thickness 50 ounces, strom
  • Thickness 200 ohms, strom
  • Fig. 23 shows the waveguide mode profile (near-field pattern) perpendicular to the epitaxy layer for the structure shown in the example, and Fig. 24 shows the measurement in the fine mode.
  • Example 6
  • an n-type buffer layer 10 having a thickness of 0 is formed on an n-type substrate 8 made of G a As, and the n-type cladding layer 1, the n-type light leakage 2, n A type barrier layer 3, an active 1 ⁇ 4, a p-type barrier layer 5, a p-type photoconductive layer 6, and a p-type cladding layer 7 were sequentially formed, and an n-type cap layer 11 was formed at the very end.
  • Thickness 0.3 / m
  • Thickness 1.0 ⁇ m
  • Thickness 0.46 / m
  • Makoto A 10.3B J a.a .7 ⁇ As
  • n-type cladding layer 1 n-type cladding layer 1
  • Thickness 0.5 / m
  • Ga As 3 ⁇ 43 ⁇ 4 ⁇ 4 has a four-layer quantum structure in the region between the p-type barrier layer 5 and the n-type barrier layer 3 and between the side barrier layers 12 provided on the inner wall side of each of the barrier layers 5 and 3.
  • the well layers 13 are formed to be separated by the barrier layers 14, respectively.
  • the specific structure of this activity 4 is as follows.
  • Thickness 330 on strom
  • Thickness 25 ounces', strom
  • Thickness 50 ounces
  • FIG. 23 shows a waveguide mode profile (two-field : pattern) perpendicular to the epitaxy layer for the structure shown in this example, and FIG. 24 shows a mode measurement. (Example 7)
  • an n-type buffer layer 10 having a thickness of 0.5 m is formed on an n-type substrate 8 made of GaAs, and an n-type cladding layer 1, an n-type 3 ⁇ 4 # 3 ⁇ 4 ⁇ 2, ⁇ A barrier layer 3, an active layer 4, a ⁇ -type barrier layer 5, a ⁇ -type gallery 6 and a ⁇ -type cladding layer 7 were formed around the time, and an ⁇ -type cap layer 11 was formed on the substrate.
  • Thickness 0.3 / m
  • Thickness 0.46 / m
  • Thickness 0.46 m
  • n-type cladding layer 1 n-type cladding layer 1
  • Thickness 1.0 ⁇ m
  • Thickness 0.5 ⁇ m
  • Fiber: (100) Ga As active OT4 is formed between the side barrier layer 12 provided on the inner wall side of each of the barrier layers 5 and 3 in the region between the p-type barrier layer 5 and the n-type barrier layer 3.
  • a quantum well layer 13 having a four-layer structure is formed so as to be separated by a barrier layer 14.
  • the specific configuration of this activity 4 is as follows. ⁇ -type barrier layer 5
  • Thickness 50 ounce ', strike mouth
  • Thickness 500 ounce "strom
  • Fig. 23 shows the waveguide mode profile (two-field pattern) perpendicular to the epitaxy layer for the structure shown in this example, and Fig. 24 shows the Ml "mode measurement results (Example 8).
  • a 0.5 ⁇ m-thick n-type buffer layer 10 is formed on an ng-plate 8 made of GaAs, and an n-type cladding layer 1, an n-type leakage layer 2, and an n-type W mS, 3 ⁇ 43 ⁇ 44, p-type barrier layer 5, p-type leakage layer 6, p-type cladding layer 7 are formed in the first order, and n-type cap layer 11 is formed at the most
  • Thickness 1.0 ⁇ m
  • Thickness 0.46 ⁇
  • Thickness 0.46 ⁇
  • n-type cladding layer 1 n-type cladding layer 1
  • Thickness 1.0 / m
  • Thickness 0.5 ⁇ m
  • GaAs fiber (100)
  • GaAs active 4 is a side barrier layer provided on the inner wall side of each of barrier layers 5 and 3 in a region sandwiched between p-type barrier layer 5 and n-type barrier layer 3.
  • a quantum well layer 13 having a four-layer structure is formed between the barrier layers 14 between the barrier layers 14. The details of this activity 4 are as follows.
  • Thickness 50 ounce "strom"
  • Thickness 15 angstroms
  • Thickness 50 ounces', strom
  • Thickness 50 angstroms
  • strom A .50 G a 0 .52 A s
  • Figure 25 shows the waveguide mode profile (near field pattern) perpendicular to the epitaxy layer for the structure shown in ⁇ w
  • Fig. 26 shows the measurement results for the ⁇ mode. (Adaptation 9)
  • an n-type buffer layer 10 having a thickness of 0.5> "m is formed on an n-type ⁇ ⁇ 8 made of GaAs, and an n-type cladding layer 1, an n-type leakage layer 2, and an n-type
  • the barrier layer 3, the fiber layer 4, the p-type barrier layer 5, the p-type photoconductive layer 6, and the p-type clad 'layer 7 were sequentially formed, and finally the n-type cap layer 11 was formed.
  • Thickness 1.0 um
  • n-type cladding layer 1 n-type cladding layer 1
  • Thickness 1.0 / m
  • Thickness 0.5
  • the (100) GaAs active layer 144 is formed between the side barrier layers 12 provided on the inner walls of the barrier layers 5 and 3 in the region between the p-type barrier layer 5 and the n-type barrier layer 3.
  • a quantum well layer 13 having a four-layer structure is formed so as to be separated by a barrier layer 14.
  • the specific configuration of this activity 1W4 is as follows.
  • Thickness 330 ounces', strom
  • Thickness 25 ounces, strom
  • Thickness 50 ounce "strom"
  • FIG. 25 shows the waveguide mode profile (near-field pattern) perpendicular to the epitaxy layer for the structure shown in this example. See Figure 26. (Tsuru example 10)
  • an n-type buffer layer 10 having a thickness of 0.5 / m is formed on an n-type 3 ⁇ 43 ⁇ 48 made of GaAs.
  • the p-type barrier layer 3, the nada layer 4, the p-type barrier layer 5, the p-type photoconductive layer 6, and the p-type cladding layer 7 were sequentially formed, and the n-type cap layer 11 was formed at the very end.
  • Thickness 0.3 ⁇ m
  • Thickness 1.0 / m
  • n-type cladding layer 1 n-type cladding layer 1
  • Thickness 1.0 ⁇ m
  • Thickness 0.5 ⁇ m
  • the quantum well layers 13 having a four-layer structure are formed between the barrier layers 14.
  • the active layers 1 to 14 are as follows. Thickness: 500 oz ', Strom
  • Thickness 25 on 'strom
  • Thickness 50 angstroms
  • an n-type buffer layer 10 having a thickness of 0 is formed on an n-type 3 ⁇ 43 ⁇ 48 made of GaAs, and an n-type cladding layer 1, an n-type optical waveguide 2, an n-type barrier layer 3, An active layer 4, a p-type barrier layer 5, a p-type photoconductive layer 6, and a p-type cladding layer 7 were sequentially formed, and an n-type cap layer 11 was formed on the substrate.
  • Thickness 0, ⁇ ⁇
  • Thickness 1 ⁇ 0 ⁇ m Textile: A 1
  • Thickness 0.46 ⁇
  • n-type cladding layer 1 n-type cladding layer 1
  • Thickness 0.5 ⁇ m
  • ⁇ m is a four-layer quantum well between the side barrier layers 12 provided on the inner wall side of each barrier layer 5.3 in the region between the p-type barrier layer 5 and the n-type barrier layer 3.
  • the layers 13 are each formed separated by the barrier layer 14.
  • the specific configuration of this activity 4 is as follows.
  • Thickness 25 ounces', strom
  • Thickness 55 ounces, strom
  • 3 ⁇ 4 3 ⁇ 4 A 1 0 .25 G a 0 .75 A s Thickness: 50 Onku ,, Strom
  • an n-type buffer layer 10 having a thickness of 0.5 m is formed on an n-type 3 ⁇ 43 ⁇ 48 made of GaAs, and an n-type cladding layer 1, an n-type light guide, a leakage 2, A barrier layer 3, an active layer 4, a p-type barrier layer 5, a p-type photoconductive layer 6, and a p-type cladding layer 7 were sequentially formed, and finally an n-type cap layer 11 was formed.
  • Thickness 0.3 ⁇ m
  • Thickness 1. O m
  • Thickness 0.46 m
  • Thickness 0.46 / m
  • n-type cladding layer 1 n-type cladding layer 1
  • Thickness 1 ⁇ 0 ⁇ m lUc: A 1 0 .35 G a 0 .65 A s
  • m The (100) Ga As activity 4 is formed between the side barrier layer 12 provided on the inner wall side of each of the barrier layers 5 and 3 in the region between the p-type barrier layer 5 and the n-type barrier layer 3.
  • a quantum well layer 13 having a four-layer structure is formed so as to be separated by a barrier layer 14.
  • the specific structure of this activity 1-14 is as follows.
  • Thickness 135 on strom
  • Thickness 25 angstroms
  • Thickness 50 ounce ', strike mouth
  • Thickness 135 ohms, strom
  • an 11-type buffer layer 10 having a thickness of 0.5111 is formed on an n-type 3 ⁇ 43 ⁇ 48 made of GaAs.
  • the active layer 4, the p-type barrier layer 5, the p-type photoconductive layer 6, and the p-type clad layer 7 were sequentially formed, and the n-type cap layer 11 was formed at the very end.
  • Thickness 0.3 m
  • Thickness 0.46 ⁇ m
  • n-type cladding layer 1 n-type cladding layer 1
  • Thickness 1. O zm
  • Thickness 0.5 m
  • GaAs active 13 ⁇ 4g4 is provided on the inner wall side of each barrier layer 5, 3 in the region between the p-type barrier layer 5 and the n-type barrier layer 3.
  • the layers 13 are each formed separated by a barrier layer 14. The specific configuration of this activity is as follows. p-type barrier layer 5
  • Thickness 200 ounces
  • Thickness 55 ounces, strike mouth
  • Thickness 50 ounces, strike mouth
  • Thickness 200 '', strike mouth
  • 3 ⁇ 4 c A la.50 G a 0 .50 A s waveguide mode first direction perpendicular to the epitaxial layer to the structure shown in this 3 ⁇ 4S3 ⁇ 4 example Dopurofu Iru the (Nia field pattern) 27, measurement of 3 ⁇ 4 dimension mode Ohate Is shown in Fig. 28. (Difficulty 14)
  • n-type cap layer 1 1 Thickness: 0.3 / m
  • Thickness 1.0 m
  • Thickness 0.46 / m
  • n-type cladding layer 1 n-type cladding layer 1
  • Thickness 1.0 / m
  • Ga As activity 14 ⁇ 4 is provided on the inner wall side of each of the barrier layers 5 and 3 in the region between the p-type barrier layer 5 and the n-type barrier layer 3. Between the side barrier layers 12, quantum well layers 13 having a four-layer structure are formed separated by barrier layers 14. The specific configuration of this activity 4 is as follows.
  • Thickness 330 ounce '
  • Thickness 25 ounces, strike mouth
  • Thickness 55 on strom
  • Thickness 50 on: Ostrom
  • Thickness 330 ounces, Trom
  • an n-type buffer layer 10 having a thickness of 0.5> "m is formed on an n-type fiber 8 made of GaAs, and the n-type cladding layer 1 and the ni ⁇
  • the n-type barrier 3, the active layer 4, the p-type barrier H5, the p-type light guide 6, and the p-type cladding layer 7 were sequentially formed, and the n-type cap layer 11 was formed at the end of J ⁇ .
  • Thickness 0.3 / m
  • Thickness 1.0 ⁇ m
  • n-type cladding layer 1 n-type cladding layer 1
  • Thickness 1. O ⁇ m
  • Thickness 0.5 / m
  • Makoto: (100) GaAs xm 4 is formed between the side barrier layers 12 provided on the inner wall side of the barrier layers 5 and 3 in the region between the p-type barrier layer 5 and the n-type barrier layer 3.
  • the quantum well layers 13 having a four-layer structure are formed so as to be separated from each other by the barrier layers 14. The components of this activity are as follows.
  • Thickness 50 years old, strom
  • Thickness 25 ounces, strike mouth
  • Thickness 55 ounces, strom
  • Thickness 50 oz '
  • Thickness 50 ounces, strike mouth
  • FIG. 29 shows a waveguide mode profile (near-field pattern) perpendicular to the epitaxy layer for the structure shown in this example, and FIG. 30 shows a measurement result in the dimensional mode. (Difficulty 16)
  • an n-type buffer layer 10 having a thickness of 0.5 / m is formed on an n-type sickle 8 made of Ga As, and the n-type cladding layer 1, the n-type ⁇ , and the 2, an n-type barrier layer 3, an active layer 4, a p-type barrier layer 5, a p-type light guide 6, and a p-type cladding layer 7 were sequentially formed, and finally an n-type cap layer 11 was formed.
  • Thickness 0.3 m
  • Thickness 1.0 ⁇ m
  • n-type cladding layer 1 n-type cladding layer 1
  • Thickness 1.0 m
  • Thickness 0.5 / m
  • the (100) Ga As active layer 4 is a side-norer layer provided on the inner wall side of each of the barrier layers 5 and 3 in the region between the p-type barrier layer 5 and the n-type barrier layer 3.
  • a quantum well layer 13 having a four-layer structure is formed between the barrier layers 14 between them. The specific structure of this activity 4 is as follows.
  • Thickness 100 ounce, 'Strom
  • Thickness 25 on strom
  • Thickness 55 ounces, 'strom
  • an n-type buffer layer 10 having a thickness of 0.5 m is formed on an n-type 3 ⁇ 43 ⁇ 48 made of GaAs, and an n-type cladding layer 1, an n-type optical waveguide 3 ⁇ 4jf2, and an n-type ⁇ 3, active layer 4, p-type barrier layer 5, p-type light guide 6, p-type cladding layer 7.
  • an n-type cap layer 11 was formed at ft ⁇ ⁇ .
  • Thickness 0.3 / m
  • Thickness 1.0 / m
  • n-type cladding layer 1 n-type cladding layer 1
  • Thickness 1.0 / zrn
  • Thickness 0.5 yum
  • Fiber GaAs fiber: (100) G a Asf3 ⁇ 4 ⁇
  • the side barrier layer provided on the inner wall side of each barrier layer 5, 3
  • a quantum well layer 13 having a four-layer structure is formed between the barrier layers 14. The details of this activity 13 ⁇ 414 are as follows.
  • Thickness 200 on strom 3 ⁇ 4J (;: A 1 0 .65 G a 0 .35 A s
  • Thickness 25 ounce "strom"
  • Thickness 55 ounces, strike mouth
  • Thickness 50 ounces
  • Thickness 200 ohms, strom
  • FIG. 29 shows the waveguide mode profile (near-field pattern) perpendicular to the epitaxy layer for the structure shown in this embodiment
  • FIG. 30 shows the measurement in the 3 ⁇ 4
  • an n-type buffer layer 10 having a thickness of 0.5 m is formed on an n-type ⁇ ⁇ 8 made of GaAs, and an n-type cladding layer 1, an n-type optical waveguide 2, and an n-type barrier
  • An n-type cap layer 11 was formed in order to sequentially form the layer 3, the active layer 4, the p-type barrier layer 5, the p-type light guide 6, and the p-type cladding layer 7.
  • Thickness 1.0 / m
  • n-type cladding layer 1 n-type cladding layer 1
  • Thickness 1.0 ⁇ m
  • Thickness 0.5 / "m
  • m 4 is a four-layer quantum well layer 13 between the side barrier layers 12 provided on the inner wall side of the barrier layers 5 and 3 in a region sandwiched between the n-type barrier layer 5 and the n-type barrier layer 3. Are formed separately from each other in the paria layer 14.
  • the specific structure of this activity 4 is as follows.
  • Thickness 280 ounces, 'Strom
  • Thickness 25 ounces, 'strom
  • Fiber A I0.25 Ga 0 .75 As
  • Thickness 55 ounces, strike mouth
  • Thickness 50 on; Ostrom
  • FIG. 20 is a schematic plan view of a quantum well laser device having a conventional structure prepared for comparison with Examples 1 to 18.
  • Thickness 0.3 / m
  • n-type cladding layer 1 n-type cladding layer 1
  • Thickness 0.5 / m
  • the (100) GaAs active 4 is separated into four quantum well layers 13 across the barrier layer 14 in the region sandwiched by the barrier layers 12 again.
  • the specific configuration of the active layer 4 is as follows. Side barrier layer 12
  • Thickness 120 angstroms
  • Thickness 50 ounces, strike mouth
  • Thickness 50 ounces, strom
  • Fig. 21 shows the waveguide mode profile (Your field pattern) perpendicular to the epitaxy layer for the structure shown in this example, and Fig. 22 shows the mode measurement results.
  • the weak waveguide half of the comparative example has a tt curve with an exponential tail on the ⁇ side and a sharp tt curve at the center.
  • the beam intensity at 1W4 mode center
  • the level of light injury was significantly increased. That is, in Examples 1 to 3, the reduction of the dimension angle and the remarkable improvement of the light damage level were apparent as compared with the comparative example.
  • the laser oscillation wavelength (angstrom) is about 800 nm.
  • the ⁇ member damage level and slow " ⁇ J rate are both the light output per one end face.
  • ⁇ high output half ⁇ In the industrial field using a laser, a high efficiency half laser having a small beam angle and a good beam profile is obtained. I can do things.
  • a high-power semi-laser can be manufactured with a simple structure while avoiding instantaneous light damage on the end face. In particular, in the case of A Gat-xAs semiconductor lasers, the fabrication process becomes easier because the A 1 loss of conduction is reduced.
  • the element of the present invention can be used as a high-efficiency semiconductor laser device, and further, a semiconductor laser-excited solid-state laser device can be configured as a solid-state laser excitation source.
  • a laser medium such as Nd: YAG or Nd: YLF can be used.
  • a semiconductor laser is used as an excitation source of a solid-state laser, a method of coupling a semiconductor laser and a laser medium becomes a problem.
  • the excitation light from the semiconductor laser is generated by a laser excitation mode and a laser oscillator mode mode. Light is efficiently collected by a lens that matches the mode.
  • the light may be condensed by using the lens as described above.
  • the laser medium 23 can also be formed without performing any optical processing on the light.
  • Reference numeral 23 denotes an output mirror.
  • FIG. 32 shows a direct connection for directly coupling the semiconductor laser element 21 and the laser medium 23
  • FIG. 33 shows a coupling of the semiconductor laser element 21 and the laser medium 23 with the optical fiber 122.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Geometry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Description

メΐ -
WO 93/16513 PCT/JP93/00156
-1一 糸田 » 半導体レーザ素子及びそれを用いたレーザ装置 技 術 分 野
本発明は、 通信、 光ディスク等の光記録、 レーザプリンタ一、 レーザ 、 レ 一ザ加 m 高出力半導体レーザを用いる産業分野に係わる。 特に高出力で « 射角のレーザビームを必要とする固体レーザ励趣、 あるいは高調波変換素子励 起用の高出力半導体レーザ及びそれを用いたレーザ装置に係わる。 背 景 技 術
各方面から半導体レ一ザの高出力化力 まれている。 半 ¾ ^レーザの単一モー ドあたりの高出力化を妨げている要因として瞬時^損傷 (C OD) と呼ばれる レーザビームによる単面融解がある。 C ODは特に A 1 G a A s系レーザにおい て體である。 レーザ導波モ一ドを広げレーザのパワー密度を低減する事を主眼 に薄い活 の弱導波レーザ、 あるいは L〇C構造と呼ばれる分離閉じこめ型レ —ザ力 s検討されてきた。
しかしながら、 こうした構造では A 1 G a A s系を始めとする各種レーザ材料 には各混晶系のバンドギヤップと屈折率の間には強い相関があるため、 キヤリャ 一の閉じこめと、 導∞への光閉じこめを ®ϊϊに制御することは出来ない。
特に、 高出力化に於いて弱導波レーザ、 L O C構造レーザいずれに於いても導 波モードを広げる事は薄い ¾tt層を とし、 また広がった導波モ一ドでの発振 の為の高い利得を得るには広い活 ¾ が であるという自己矛盾を内蔵してお り、 実際にはこういつた手法によるェピ方向のモード広がりはせいぜい 1〃m程 度が限界でその出力は単一モ—ドあたり 1 O O mW纖が限界であった。
また、 薄い活性層の弱導波レーザでは積層方向の導波モ一ドカ指数関数的な富 士山状のなだらかな傾斜のプロファイルを有するため全体のビーム強度にくらべ て瞬時光 才員傷が起こる活性層での輻射密度が高く高出カイ匕に であるばかり か、 導波モードがクラッド層に深くテールを引くため導波モードの広がりの割に はかなり厚いクラッド層の成長が^^であつた。
また、 導波モード (ニァフィールドパターン) 、 ビーム腿角 (ファーフィ一 ルドパターン) ともに ¾iとされるガウス型ビームからのズレカ s大きく、 多くの 用途に於いてビ一ムの集¾¾に問題があつた。
一方、 C 0 Dの起こる出射単面付近をレ一ザ出射ビームに対して透明にするい わゆるウィンドウ構造、 キヤリャ一注入を単面付近に行なわない構造のレーザも 検討されてきた。 しかしこういつた構造は^:に製造プロセスカ穩になる傲 非点 が増大する等の問題がある。
また、 多数の半導体レーザの間の光学的フィ一ドバックにより単一モ一ドの高 出力レーザを作製する試みはある力、 デバイス力 «I化する等の問題がある。 本発明の目的は、 近年の MB E法、 MO C V Di ^により多層の薄膜形成カ 易になったことに鑑みて、 の弱導波レ一ザ、 L〇C構造レーザが持っていた 導波モードの制御のデバイス設計上のジレンマを ¾H艮、 高出カイ L ¾寸ビームの w^ i , ビームプロフアイルの改善等の課題を解決しょうとするものである。 発 明 の 開 示
本発明では、 通常のダブルへテロレーザ、 量子井戸レーザの活性層の両サイド に、 活性層の導波 を相殺しかつキヤリヤーの活性層への閉じこめに十分な障 壁高さを有する障壁層を挿入する。 これにより、 導波モードの閉じこめと、 発振 に必要な活 1¾1厚みを独立に設計出来る。
この際、 活 領域とこの障壁層の厚みを発振波長の数分の 1以下にする事に より障壁層と活性層の導波機能を相殺する事ができる。 こうした条件において更 に導 そして導、^両端に光の導波制御のみを目的とする低屈折率差のクラッ ド、 あるいは獻泉、 2次曲線等のグレーディドインデックス構造からなる広い導 を形成する。 これにより活 i^ †パラメ一ターと ¾ ^に ¾5∑に導波モ一ド の^ I†力 s '可能に成るため、 高出力、 低^ [角の抛オビ一ム、 ガウス型ビームに近 い安定したモ—ドを得る。
端面の瞬時光学損傷を回避して半導体レーザの高出力化をはかるため、 またビ —ム »r拡がり角を低減するためには、 いわゆる弱導波にして導波モ一ドを拡げ る がある。 しカゝしな力5ら活 における光学利得には例えば量子井戸レーザ の禾 u得飽和において見られるように一定の限界がある。 このため拡がった導波モ ―ドでの発振を維持するためには必然的に広い活性層あるいは量子井戸の一層の 多重化が必 で、 この事力 s弱導 «造と自 盾を起こすため高出力、 ィ s&iオビ 一ム角レ一ザダイォード a¾t†上の問題となっていた。
上記の反導波機能を有する障翻の存在により弱導、廳匕とは赃にその発振 に な鮮利得を与える灘層厚 量子井戸数を設定できる。 特に、 活性 層領域の導波機能を障壁層の反導波機能により相殺した上で、 別に導翻に図 1 一 (a) , (b) , (c) で示すようなステップ状、 ,あるいは 2次曲線 状の屈折率分布等を持つ導波モ一ド制御機構を導入する事により活性層の設計と 導波モードの^ I†とカ啊立するため、 高出力かつ、 低^ ^角の ¾ίビームすなわ ちガウス型ビームに近い安定した 14を得ることができる。
本発明は MBE、 MOCVDあるいは ΜΟΜΒΕ等の超薄膜半導体製造装置を 用いる事により容易に実現できる。 また、 本発明の効果は A 1 Ga As系半導体 を用いたレーザダイオードで顕著である力、 Ga lnAs系、 Al Ga lnAs 系、 Ga lnAsP系、 A 1 G a I n P系の各種 m— v鮮導 才料さらには各 種の n—vi 導体レーザにおいてほぼ同様の効果を期待できる。
図 1に示す様に^ |¾のダブルへテロ型構造、 あるいは多重量子井戸構造のレ一 ザの活 1 ^两サイ ドに活 1ϋの導波 を相殺する機能と、 またキヤリャ一の活 性層への閉じこめに十分な障壁高さを有する導 ¾ ^よりも 折率でワイドギヤ ップの材料からなる反導波機能とキヤリャ一ブロック機能を有する薄 を挿入 する。
また、 この層にも Ρサイドには Ρ、 Νサイドには Νの 1018/cm3程度のド一 ピングを行なう事により効率的なキヤリヤーブロッキングとバンド不連続面での ショットキ一バリヤ一の形成による抵抗を但減できる。
活簡領域とこの反導灘能を持つ障 USの導醒能の相殺は两方の厚み力^ 振波長の の 1以下の条件では、 図 1に於いて概ね、 導、廳の屈折率を N0、 活 性層の屈折^ 及び厚みをそれぞれ N,、 d0、 障壁層の屈折 及び厚みをそれ ぞれ N2、 とするとき、
d0X (N^-Ns2) β·5 = 2 X di (Ν02— Ν22) 0.5
の条件が成り立つ時ほぼ実現される。 活 14 力多 子井戸構造のように多層で 構成される場合には各層につき左辺にあたる量を言† し、 それを加算したものを 左辺に使用すれば良い。 具体的には量子井戸間のバリャ一層の組成が導波層の組 成と等しい の厚み dwの量子井戸からなる活 ½ の場合には、
mX dw X (Ν,202) 0· ε = 2 X di (N0≥— N2s .5 の時に活 1¾gと障壁層の導波機能の相殺がほぼ実現される。
活 と障壁層の導波機能を相殺した時、 導波モードは廻りの導 、 クラッ ド層により ¾5:に制御できる。 図 1一 (a) 、 (b) 、 (c) いずれの構造に於 いても単一モ一ド発振の為に高次モ一ドに対して力ットオフになる状況力 まし レ、。 図 1— (a) のステップインデックス型の導波機構に関していえば、 この導 波モードは規樹匕周波数; Vにより言 ¾Eでき、 Vは次式で定義される。
V= (π d/A ) X (N02— N32 ) e- 5
ここに、 ττは円周率で、 スは発振波長 (オングストローム)、 dは活欄、 障壁 層を含む導、漏の厚み (オングストローム) である。 また、 N0は導腿の屈折 N3はクラッド層の屈折率である。
対称導 では規 匕周波数; Vが; r/2以下で単一モード導波である。 尚、 導波モ一ドは導波コア層内では正弦関数的でありクラッド内では指数関数的なプ 口ファイルになる。
Figure imgf000006_0001
の時、 導腿へのモード閉じこめ率は約 65%で、 従来の弱導波レーザのほぼ^ i に亘る指数関数的なプロフアイルと異なり、 ガウ ス型に近い導波モードが実現される (図 2参照)。 実施例 1、 2 (それぞれ図 2, 3の構造) がほぽこの状況で設計されたものである。
対称に近い導波構造に於いては奇数次のモ一ドが励振される は殆どないた め規樹匕周波数; Vをさらに 7Γ¾ ^まで上げ更にモ一ドをガウス型に近づけても 多横モ一ド発振を引き起こすことなく同様の効果を得ることができる。 図 4の構 造の実施例 3は Vが πに近い設計例である。
また、 図 1一 (b) , (c) に示す様なグレーディ ドインデックス構造の採用 により一層発振モードをガウス型に近づける事が出来る。
上記のことを指針にし、 我々は繰り返し半導体レーザの試作を行い障壁層に関 して以下の条件を得ること力 sできた。 V0
V0 = π - ά/λ - ( Nj2 一 NB 2) 0·5
で定義する。 は円周 dは活 1 ^厚み。 スは発振波長 (オングストローム)。
N,は活性層屈折 ¾ N0は導、羅屈折 活性層力 ί量子井戸の場合は、 dは井戸 層厚^ は井戸層屈折^ N0は導 ¾jf屈折 井戸が Ν本ある多重量子井戸 の場合は
V0 = N · · d/λ - ( Nj2 一 Ne2 ) 0- 5
とする。 次に V,を で定義する。 ^は円周 dは障壁層厚み。 N2は障壁層屈折 N0は導 ¾^屈 折
次に V2
V2 = 7Γ ♦ ά/λ · ( Ν02 — Ν32 ) 0· 5
で定義する。 7Γは円周 dはクラッド層間の厚み。 N0は導廳屈折 N3は クラッド層屈折率である。
から明らかのように vB、 ¼、 v2はそれぞれ活 、 障壁層、 導 の規 格ィ! ^波数に相当する。 障壁層の反導波機能力 s大きすぎると、 導波モードの活性 層近傍にくぼみが生じる。 その結果、 光閉じこめ率力 、ししきい値電流の増大 を招く。 従 障 力 s導波モードに与える影響は小さくなければならない。 本 発明は種々の半導体レ一ザの試作を繰り返し、
V! < V2 / 10
であれば障壁層力全体の導波モ一ドに与える影響力 微であることを発見した。 また障壁層力5'活性層の導波モードを相殺するためには以下の条件で特に有効で あることを種々の半 » ^レーザの試作を繰り返し確認し
V0/3 く Vi < V0
さらに障壁層はキヤリヤーを に活 に閉じこめなければならない。 我々 は、 障壁層の厚みを d (オング、ストロ-ム)、 導翻と障壁層のエネルギーギャップ差を E (eV) としたとき、 E > 2. 5X 1 O d2 であればキヤリヤーを 十分^ !Jに へ閉じこめられることを発見した。
ここで、 A lx Ga,-, As (0≤x< 1) を用いた半難レーザにおいて、 導 漏の¾^は 031- 5 (Ό≤χ< . 35 :ただし Xは原子比) とする のがよく、 さらには、 導 ¾ϋの «;が Α Ga!— χ As (ただし 0≤χ<1 ) で あるとき、 xと障 の厚み d (オングストローム) の関係が、
X > (2. 2 X l 03/d2) かつ X < (5. 0X l 04/d2) の範囲 にあるとよい。
また、 d0を活'隨の厚みとし、 VB = 7T · d0/A · ( NT2 - N02 ) 0.5 ただし、 活漏カ s量子井戸である場合には、 d0は量子井戸層の厚^ N〗は量子 井戸層の屈折 N0は導漏の屈折率とし、 力、つ量子井戸の本数を Nとしたとき には、
V0 = N · 7Γ - άβ/λ - ( Ν, 2 一 Ν02 ) 0.5 と定義したとき、
(V0/3) <V,<V0
となるようにするとよレ
活 両サイドのバンドギヤップが大きく屈折率の低い反導波機能を有する障 壁層の作用は活性層力持つ導波機能を低減あるいは相殺する作用を持つ。 またも う一つの機能は、 注入されたキャリャ一をプロックし、 電子及びホールを活 1¾1 内に閉じこめる作用を有する。 この層にも Pあるいは Nドーピングを行なうこと により、 抵抗の低減あるいはキヤリヤー閉じこめ機能を向上させる。
導波層の導波モ一ド制御構造は発振モ一ドの拡がり、 プロフィ一ルを安定に制 御する作用を有する。 図面の簡単な説明
【図 1】
本発明の半導体レーザのェピタキシ方向への概 滅 ,図
【図 2】
本発明に係わる実施例 1の概 H^i^;断面図
【図 3】
本発明に係わる実施例 2の概 滅断面図
【図 4】
本発明に係わる^ ¾例 3の概¾滅断面図
【図 5】
本発明に係わる^例 の概 滅断面図
【図 6】
本発明に係わる実施例 5の概 B&«断面図
【図 7】
本発明に係わる^例 6の概 B»¾断面図
【図 8】
本発明に係わる 例 7の概 滅断面図
【図 9】 本発明こ係わる^例 8の概 Β§¾β¾断面図
【図 1 0
本発明こ係わる ^例 9の概! ^断面図
【図 1 1
本発明こ係わる «例 1 0の概 K§M®f 図
【図 1 2
本発明こ係わる難例 1 1概 断面図
【図 1 3 I
本発明こ係わ ΐ ' 1 2概 断面図
【図 1 4
本発明こ係わ mm 1 3概 断面図
【図 1 5 I
本発明こ係わる難例 1 4概 B»¾断面図
【図 1 6
本発明こ係わる 例 1 5概 断面図
【図 1 7
本発明こ係わる難例 1 6概 P¾¾^断面図
【図 1 8
本発明こ係わる難例 1 7概 Ρ^Μ;断面図
J
【図 1 9
本発明こ係わる麵例 1 8概 i&«断面図
【図 2 0
本発明こ係わる J«例概 Pf&ffi^匪図
【匿? 1
' と参考例の導波モード 14を表す図
【|g 2
難例 3と参考例の ¾寸ビーム角の を表す図
【図 2 3
4〜 7の導波モード特性を表す図
【図 2 4】
^例 4〜 7の ビ一ム角の特性を表す図 【図 25】
実施例 1 , 8〜 10の導波モ一ド 1まを表す図
【図 26】
実施例 1, 8〜 10の ¾寸ビーム角の ¾を表す図
【図 27】
ι ι~ι 4の導波モ一ドネ を表す図
【図 28】
i ι〜ι 4の ¾寸ビーム角の を表す図
【図 29】
実施例 15-18の導波モ一ド ¾を表す図
【図 30】
実施例 15-18の &オビ一ム角の 1¾を表す図
【図 31】
障壁層の^!範囲を表現する図
【図 32】
本発明のレーザ素子を利用した直接結 半導体レーザ! ¾固体レーザ装置を 示す図
【図 33】
本発明のレ一ザ素子を利用したファイバ一結^ ¾半導体レーザ励起固体レーザ 装置の例を示す図 発明を実施するための最良の形態
以下本発明を図面に基づいて説明する。
MOCV D半導体薄膜製造装置により図 2〜 20に示すようなプロファイルの エピタキシー成長を行った。 図 2は実施例 1、 図 3は 例 2、 図 4は実施例 3、 図 5は実施例 4、 図 6は難例 5、 図 7は 例 6、 図 8は実施例 7、 図 9は実 施例 8、 図 10は実施例 9、 図 11は実施例 10、 図 12は実施例 1 1、 図 13 は^^) 12、 図 14は^例 13、 図 14は実施例 13、 図 15は実施例 14、 図 16は実施例 1 5、 図 17は実施例 16、 図 18は実施例 17、 図 19は実施 例 18、 そして図 20は上激例におけるレーザ素子の概 S§¾ ^平面図である。 図 21は実施例 1〜 3と比較例の導波モード、 図 22はは難例 1〜 3と比較例の モード、 図 2 3は実施例 4〜7の導波モード、 図 24は実施例 4〜7の 射 モード、 図 2 5は 例 1, 8〜1 0の導波モード、 図 2 6は 例 1, 8〜1 0の ¾ モード、 図 27は実施例 1 1〜1 4の導波モード、 図 28は実施例 1 1 〜 1 4の モ—ド、 図 29は^例 1 5-1 8の導波モード、 図 30は実施例 1 5〜1 8の 射モード、 図 3 1は障壁層の巾を横軸、 Α 1« ^を縦軸にして、 障壁層の ^範囲を表現した図である。
図 3 1において、 右上の曲線より上の範囲では障壁層の反導波機能カ呔きすぎ、 導波モードに大きな體を与える。 具体的には、 活性層近傍の導波モードにぐぼ みが生じ、 光閉じこめ率の ^、を招き、 しきい値電流が増大する。 また導波モー ドがガウス型から大きくはずれ膽ノ、°ターンに驢カ性じることになる。 左下の 曲線より下の範囲ではキャリャ一の閉じこめが 十分になりしきい値電流の ¾g 特性が悪化する o
V0/3 < Vt < V0
が成立する範囲では活性層の導波機能を障壁層力 s最適に補正され最も良好な導波 モードを示す。 この範囲にある^例は0>で示してある。 ① は 例 1を表す。
② は ¾6¾例 2を表す。 以下同様に、 同図 (図 3 1 ) において丸付醉で示された ものはその ¾^に対応した 例を示している。
本発明において な範囲 (効果のある範囲) は 2¾ ^の実線の間である。 各 例に共通な として、 ド一パントは n型としては S e、 p型としては Z nを用い 1 X 1 018/cm3のドーピングを行った。 S i 02拡散マスクを用い 表面からストライプ状に 拡散を行った後、 へき開して利得導 造のダイォ 一ドチップを試作し、 LDマウントにダイボンディングした後、 パルスモードで 発振 14を測定した。-代表的なストライプ巾: 2· 5 μτη キヤビティー長: 3 0 のチップの 1¾を表 1に示す。 なお、 两端面には ^コ一ティングを施 していない。 嫌例 1 )
図 2に示すように、 G a Asからなる n型基板 8上に、 厚さ 0. 5 /czmの n型 ノ ッファ層 1 0を形成し、 その に n型クラッド層 1、 n型^ #漏 2、 n型 障壁層 3、 ¾i¾^4、 P型障壁層 5、 p型^ ¾漏6、 p型クラッド層 7を JI頃次 形成し、 最 に n型キャップ層 1 1を形成した。 各層の具体的構成は下記の通りである。
ri型キャップ層 1 1
厚さ: 0. 3 / m
繊: G a A s
p型クラッド層 7
厚さ: 1. O^m
賊: A la.35 G a0.65 A s
P型 漏 6
厚さ: 0. 46〃m
,: A 10.3B G aB .70 A s
n型^ ¾漏 2
厚さ: 0. 46〃m
滅: A 10.30 G a0.70 A s
n型クラッド層 1
厚さ: 1. 0〃m
¾J¾: A 10.35 G a0, 65 A s
n型バッファ層 10
厚さ: 0. 5〃m
滅: GaAs
π型麵 8
賊: (100) GaAs
活 ¾®4は、 p型障壁層 5と n型障壁層 3とに挟まれた領域において、 各障壁 層 5, 3の内壁側に設けられたサイドバリア層 12の間に、 4層構造の量子井戸 層 13がそれぞれバリア層 14に隔てられて形成されている。 この活 4の具 体的構成は下記の通りである。 厚さ: 165才ンク '、スト口—ム
'碰: A 10.38 G a0.62 A s
サイドバリア層 12
厚さ: 25オン 、ストローム
'- A 1 a .3 a G a0.70 A s 量子井戸層 13
厚さ: 55オンク、、ストロ-ム
繊: G a A s
ノ リア層 14
厚さ: 50オンク'、スト口-ム
: A l0.3a a0.78 A s
n型障壁層 3
厚さ: 165オンク、、ストローム
: A 10.38 G a0.62 A s
本 例に示した構造に対するエピタキシー層に垂直方向の導波モードプロフ ィ一ル (ニァフィールドパターン) を図 21、 ¾寸モードの測 杲を図 22に 示す。 (難例 2)
図 3に示すように、 GaAsからなる n薩板 8上に、 厚さ 0. 5/mの n型 ク ッファ層 10を形成し、 その ±^に n型クラッド層 1、 n型光導漏 2、 n型 障壁層 3、 ¾½^4、 p型障壁層 5、 p型 ¾ 6、 p型クラッド層 7を頃次 形成し、 最± ^に n型キャップ層 11を形成した。
各層の具体的構成は下記の通りである。
n型キャップ層 1 1
厚さ: 0. 3 /um
舰: GaAs
p型クラッド層 7
厚さ: 2. O^m
Figure imgf000013_0001
P型光導腿 6
厚さ: 0. 93〃m
誠: Al 厚さ: 0. 93 m
'¾J§£: A 10.30 Ga0.70As n型クラッド層 1
厚さ: 2. Ομπι
糸賊: A l0.3 i G a0.69 A s
n型バッファ層 1 0
厚さ: 0. 5 / m
糸賊: G a A s
π型麵 8
繊: ( 100) Ga As
活 4は、 p型障壁層 5と n型障壁層 3とに挟まれた領域において、 各障壁 層 5, 3の内壁側に設けられたサイドバリア層 1 2の間に、 8層構造の量子井戸 層 1 3がそれぞれバリア層 14に隔てられて形成されている。 この活'^ 14の具 体的構成は下記の通りである。 厚さ : 330才ンク "スト口—ム
滅: A 10. 5 B G a0. 5B A s
サイドバリア層 1 2
厚さ : 25オンク、、ストロ-ム
糸滅: A 1 ø .30 G a0.78 A s
量子井戸層 1 3
厚さ : 55オンク、、ストロ-ム
糸賊: G a A s
バリア層 14
厚さ : 50オンク"ストロ-ム
糸滅: A 1 ø .30 G a0.70 A s
r型障壁層 3
厚さ: 330オンク"ストロ-ム
§J (;: A 1B . 50 G a0.50 A s
本実施例に示した構造に対するエピタキシー層に垂直方向の導波モ一ドプロフ ィ一ル (ニァフィールドパターン) を図 2 1、 ¾寸モードの測 ¾ ^杲を図 22に 示す。 (難例 3 )
図 4に示すように、 p型グラッド層 7と p型^ ¾、漏6との間に、 πΜΚ^Μ 1 5を設けている。 この n ^ の配置により、 横方向への電 搾を活'^ 4の近くで行うことが'できる。
すなわち、 n型反 1 5により、 横方向にも光の閉じ込め力行わ^ 安定し た横モ一ドを実現することができる。
n型キャップ層 1 1
0. 3 μΤΏ.
贼: G a A s
p型クラッド層 7
厚さ: 0. 8〃m
¾g¾: A 10.35 G a0.65 A s
11醒¾¾1 5
厚さ: 0. 2
繊: A 10.35 Ga0, 65 As
型光導腿 6
厚さ: 0. 93 / m
¾L^¾: A 10.30 G a0. 70 As
n型光導腿 2
厚さ: 0. 93 "m
繊: A 1
n型クラッド層 1
厚さ: 1. 0〃m
Mo: A 10.35 *j a0.65 A s
n型バッファ層 1 0
厚さ: 0. 5
繊: GaAs 纖: (100) GaAs 活 4は、 p型障壁層 5と n型障壁層 3とに挟まれた領域において、 各障壁 層 5, 3の内壁側に設けられたサイドバリア層 12の間に、 8層構造の量子井戸 層 13力 fそれぞれバリア層 14に隔てられて形成されている。 この活'^ 4の 具体的構成は下記の通りである。
厚さ: 330才ンク、、スト口—ム
: A 1 ø.50 G a0.58 A s
サイドバリア層 12
厚さ: 25才ンク "ストロ-ム
: A 10.3B G a0.78 A s
量子井戸層 13
厚さ: 55オン Γストロ-ム
繊: G a A s
バリア層 14
厚さ: 50オン: Γスト ϋム
Μ;: Α 10.38 G a0. Ye A s 厚さ: 330オンク、、ストロ-ム
: Ale) .50 a0.50 A s 本 ^例に示した構造に対するェピタキシ一層に垂直方向の導波モードプロフ ィール (ニァフィールドパターン) を図 21、 抛寸モードの測 果を図 22に 示す。 (実施例 )
図 5に示すように、 G a Asからなる n型基板 8上に、 厚さ 0. 5 mの n型 バッファ層 10を形成し、 その ^に n型クラッド層 1、 n型光導' ¾J12、 n型 障壁層 3、 ¾1«4、 p型障壁層 5、 p型光導漏 6、 p型クラッド層 7を順次 形成し、 最± ^に n型キャップ層 11を形成した。
各層の具体 成は下記の通りである。 n型キャップ層 1 1
厚さ: 0. 3 y«m
誠: GaAs
p型クラッド層 7
厚さ: 1. 0y«m
M;: A la.35 G ae.esA s
P型 漏 6
厚さ: 0. 46
城: A I0.30 G a0.70 A s
n型 »觸 2
厚さ: 0. 46
¾β¾: A la.3d G a0.70 A s
n型クラッド層 1
厚さ: 1. Oyurn
Figure imgf000017_0001
n型バッファ層 10
厚さ: 0. 5 y"m
|§^¾: GaAs 誠: (100) GaAs
活觸4は、 p型障壁層 5と n型障壁層 3とに挟まれた領域において、 各障壁 層 5, 3の内壁側に設けられたサイドバリア層 12の間に、 4層構造の量子井戸 層 13がそれぞれバリア層 14に隔てられて形成されている。 この活^ 4の具 体的構成は下記の通りである。 p型障壁層 5
厚さ: 100才ンク "スト口-ム
M (;: A 10.38 G a0.62 A s
サイドバリア層 12
厚さ: 25オンク"ストロ- Λ 糸賊: A le.30 G a0.70 As
量子井戸層 13
厚さ: 55才ンク、'ストロ-ム
: G a A s
ノ リァ層 14
厚さ: 50才ンク、、ストロ-ム
: A 10.3B <a a0.78 A s
n型障壁層 3
厚さ: 100才ンク '、ストローム
糸城: A 10.38 G a0.62 A s 本 ¾ί¾例に示した構造に対するエピタキシー層に垂直方向の導波モードプロフ ィ一ル (ニァフィールドパターン) を図 23、 抛寸モードの測^果を図 24に 示す。
(麵例 5)
図 6に示すように、 GaAsからなる η型基板 8上に、 厚さ 0. 5 /mの η型 ノ ッファ層 10を开成し、 その に η型クラッド層 1、 η型 ¾¾¾jf2、 n型 障壁層 3、 活¾ϋ4、 p型障壁層 5、 p型光導漏 6、 p型クラッド層 7を順次 形成し、 ¾± ^に n型キャップ層 11を形成した。
各層の具体的構成は下記の通りである。 n型キャップ層 1 1
厚さ: 0. 3 m
,Μ;: G a A s
ρ型クラッド層 7
厚さ: 1. 0 m
ノ滅: A 10.35 .65 A S
P型光導漏 6
厚さ: 0. 46 / m
A 10.3B G a0.70 A s n型«漏 2
厚さ: 0. 46 "m
M;: A 10.3 G a0. ye A s
n型クラッド層 1
厚さ: 1. 0〃m
: A 10.35 G a0.65 A s
n型バッファ層 10
厚さ: 0. 5 «m
繊: GaAs 誠: (100) GaAs
i m は、 p型障壁層 5と n型障壁層 3とに挟まれた領域において、 各障壁 層 5, 3の内壁側に設けられたサイドバリア層 12の間に、 4層構造の量子井戸 層 13がそれぞれバリア層 14に隔てられて形成されている。 この活 1¾jf4.の具 体的構成は下記の通りである。
P型障壁層 5
厚さ: 200オング'ストローム
繊: A 10.38 Ga0.62As
サイドバリア層 12
厚さ: 25オンク、'スト口-ム
: A 10.30 G a0.70 A s
量子井戸層 13
厚さ: 55才ンク "ストロ-ム
¾J¾: GaAs
パリア層 14
厚さ: 50オンク、、ストロ-ム
: A la.30 Ga0.7eAs
n型障壁層 3
厚さ: 200オンク、、ストロ-ム
M (;: A 10.38 G a0.62 A s ^施例に示した構造に対するエピタキシー層に垂直方向の導波モ一ドプロフ ィール (ニァフィールドパターン) を図 23、 細寸モードの測 果を図 24に 示す。 例 6 )
図 7に示すように、 G a Asからなる n型基板 8上に、 厚さ 0. の n型 バッファ層 10を形成し、 その ±^に n型クラッド層 1、 n型光導漏 2、 n型 障壁層 3、 活 1^4、 p型障壁層 5、 p型光導漏 6、 p型クラッド層 7を順次 形成し、 最 ± ^に n型キャップ層 1 1を形成した。
各層の具体的構成は下記の通りである。 n型キャップ層 1 1
厚さ: 0. 3 / m
糸賊: G a A s
P型クラッド層 7
厚さ: 1. 0〃m
: A 10.35 J ae.65 A s
p型光導漏 6
厚さ: 0. 46 "m
¾g¾: A I0.30 Gae.78As
n型 漏 2
厚さ: 0. 46 / m
誠: A 10.3B J a.a .7 ø A s
n型クラッド層 1
厚さ: 1.
Figure imgf000020_0001
n型バッファ層 1 0
厚さ: 0. 5 / m
滅: G a A s
π型纖 8
繊: (100) Ga As ¾¾^4は、 p型障壁層 5と n型障壁層 3とに挟まれた領域において、 各障壁 層 5, 3の内壁側に設けられたサイドバリア層 12の間に、 4層構造の量子井戸 層 13がそれぞれバリア層 14に隔てられて形成されている。 この活 4の具 体的構成は下記の通りである。
P型障壁層 5
厚さ: 330オン ストローム
誠: A10.38 VJ a0.62 A S
サイドバリア層 1 2
厚さ: 25オンク'、ストロ-ム
¾i¾: A 10.30 G a0.70 A s
量子井戸層 13
厚さ: 55オンク'、ストローム
纖: GaAs
パリア層 14
厚さ: 50オンク、'スト口-ム
繊: A 1 ø.30 CJ e.70 A s
n型障壁層 3
厚さ: 330才ンク ' トロ-ム
Ui¾: A 10.38 Ga0.62 A s
本 例に示した構造に対するエピタキシー層に垂直方向の導波モードプロフ ィ一ル (二ァフィ一ルト :パターン) を図 23、 モードの測^果を図 24に 示す。 (雄例 7 )
図 8に示すように、 GaAsからなる n型基板 8上に、 厚さ 0. 5 ; mの n型 バッファ層 10を开城し、 その に n型クラッド層 1、 n型 ¾#¾ϋ2、 η型 障壁層 3、 活簡 4、 ρ型障壁層 5、 ρ型 ¾¾廳6、 ρ型クラッド層 7を頃次 形成し、 に η型キャップ層 1 1を形成した。
各層の具体 成は下記の通りである。 n型キャップ層 1 1
厚さ: 0. 3 / m
舰: G a A s
p型クラッド層 7
厚さ: 1.
賊: A 10.35 Gae.esAs
型光導觸 6
厚さ: 0. 46 / m
§ ¾: A 1 a.3B ae.70 A s
n型光導廳 2
厚さ: 0. 46 m
'ネ賊: A 10.30 G a0.70 A s
n型クラッド層 1
厚さ: 1. 0〃m
誠: A 10, 35 8.0, esAS
n型バッファ層 10
厚さ: 0. 5〃m
誠: G a A s
π型繊 8
繊: (100) Ga As 活 OT4は、 p型障壁層 5と n型障壁層 3とに挟まれた領域において、 各障壁 層 5 , 3の内壁側に設けられたサイドバリア層 12の間に、 4層構造の量子井戸 層 13がそれぞれバリァ層 14に隔てられて形成されている。 この活 ½ϋ 4の具 体的構成は下記の通りである。 ρ型障壁層 5
厚さ: 500才ンク "ストロ-ム
牛城: A 10.38 G ae.62 A s
サイドバリア層 12 厚さ: 25オンク、、ストロ-ム
Figure imgf000023_0001
量子井戸層 1 3
厚さ: 55才ンク、、スト口-ム
纖: G a A s
ノ リ ア層 14
厚さ: 50オンク'、スト口-ム
¾ : A 10.30 G a0.70 A s
n型障壁層 3
厚さ: 500オンク"ストローム
¾β£: A 10.38 Ga0.62 A s
本^例に示した構造に対するエピタキシー層に垂直方向の導波モードプロフ ィール (二ァフィ一ルドパターン) を図 23、 Ml "モードの測 ¾ ^果を図 24に 示す。 (鐵例 8 )
図 9に示すように、 GaAsからなる ng¾板 8上に、 厚さ 0. 5〃mの n型 ノ ッファ層 10を形成し、 その に n型クラッド層 1、 n型 ¾¾漏2、 n型 W mS, ¾¾ 4、 p型障壁層 5、 p型 漏 6、 p型クラッド層 7を I次 形成し、 最 ± ^に n型キャップ層 1 1を开成し
各層の具体 成は下記の通りである。 n型キャップ層 1 1
厚さ: 0. 3/"m
繊: G a A s
p型クラッド層 7
厚さ: 1. 0〃m
¾β¾: A la.35 Ga0.65 A s
p m 羅 6
厚さ: 0. 46 μιη
liJ5¾: A 10.30 G a0.70 A s n型鍵羅 2
厚さ: 0. 46 μπι
Figure imgf000024_0001
n型クラッド層 1
厚さ: 1. 0/ m
: Α
Figure imgf000024_0002
As
η型バッファ層 1 0
厚さ: 0. 5〃m
: G a A s 繊: ( 100) GaAs 活 4は、 p型障壁層 5と n型障壁層 3とに挟まれた領域において、 各障壁 層 5, 3の内壁側に設けられたサイ ドバリア層 1 2の間に、 4層構造の量子井戸 層 1 3がそれぞれバリア層 14に隔てられて形成されている。 この活 4の具 体白耀成は下記の通りである。
厚さ: 50オンク"ストロ-ム
: A 10.50 G a0.58 A s
サイドバリア層 1 2
厚さ: 15オンクストロ-ム
繊: A 1
量子井戸層 1 3
厚さ: 55才ンク "ストロ-ム
滅: G a A s
バリア層 14
厚さ: 50オンク'、ストロ-ム
: A丄 0.30 Ga0.70 A s
π型障壁層 3
厚さ: 50オング、、ストロ-ム : A .50 G a0.52 A s
^ wに示した構造に対するエピタキシー層に垂直方向の導波モ一ドプロフ ィール (ニァフィールドパターン) を図 25、 谢モードの測定結果を図 26に 示す。 翻例 9 )
図 10に示すように、 GaAsからなる n型 ¾¾8上に、 厚さ 0. 5>"mの n 型バッファ層 10を形成し、 その ^に n型クラッド層 1、 n型 漏 2、 n 型障壁層 3、 纖層 4、 p型障壁層 5、 p型光導灘 6、 p型クラッ ト'層 7を順 次形成し、 最 ± に n型キャップ層 1 1を形成した。
各層の具体的構成は下記の通りである。 n型キャップ層 1 1
厚さ: 0. 3 y"m
: G a A s
ρ型クラッド層 7
厚さ: 1. 0 um
Figure imgf000025_0001
p m 6
厚さ: 0. 46 "m
Figure imgf000025_0002
厚さ: 0. 46 um
^: A 10.3B G a0.70 A s
n型クラッド層 1
厚さ: 1. 0/ m
¾J§¾: A 10.35 G a0.65 A s
n型バッファ層 10
厚さ: 0. 5
繊: G a A s ϋ型繊 8
繊: (100) GaAs 活 14 4は、 p型障壁層 5と n型障壁層 3とに挟まれた領域において、 各障壁 層 5, 3の内壁側に設けられたサイドバリア層 12の間に、 4層構造の量子井戸 層 13がそれぞれバリア層 14に隔てられて形成されている。 この活 1W4の具 体的構成は下記の通りである。
厚さ: 330オンク'、ストロ-ム
¾g¾: A 10.5B G a0.50 A s
サイドバリア層 12
厚さ: 25オンク、、ストロ-ム
糸滅: A 10.3 B G a0. re A s
量子井戸層 13
厚さ: 55才ンク '、ストロ-ム
¾ ¾: G a A s
ノ リア層 14
厚さ: 50オンク"ストロ-ム
S c: A 1 ø .30 > a0.70 A s
π型障壁層 3
厚さ: 330才ンク "ストローム
¾5¾: A 1 ø .50 G 5Β A s 本 ¾S¾例に示した構造に対するエピタキシー層に垂直方向の導波モ一ドプロフ ィ一ル (ニァフィールドパターン) を図 25、 S¾寸モードの測 ^果を図 26に 示す。 (鶴例 10)
図 11に示すように、 GaAsからなる n型 ¾¾8上に、 厚さ 0. 5/ mの n 型バッファ層 10を形成レ その ± ^に n型クラッド層 1、 n型光導漏 2、 n 型障壁層 3、 灘層 4、 p型障壁層 5、 p型光導漏 6、 p型クラッド層 7を順 次形成し、 最± ^に n型キャップ層 11を形成した。
各層の具体的構成は下記の通りである。 n型キャップ層 1 1
厚さ: 0. 3〃m
: G a A s
ρ型クラッド層 7
厚さ: 1. 0/ m
¾5¾: A 10. 35 G a0.65 A s
P型鍵漏 6
厚さ: 0. 46 y"m
滅: A 10. 30 G a0. 7B A s 厚さ: 0. 46
li^;: A 10.3 B G a0.70 A s
n型クラッド層 1
厚さ: 1. 0〃m
Figure imgf000027_0001
n型バッファ層 10
厚さ: 0. 5〃m
: G a A s 繊: (100) Ga As x m (i, p型障壁層 5と n型障壁層 3とに挟まれた領域において、 各障壁 層 5, 3の内壁側に設けられたサイドパリア層 12の間に、 4層構造の量子井戸 層 13がそれぞれバリア層 14に隔てられて形成されている。 この活1¾14の具 体 成は下記の通りである。 厚さ: 500オンク'、ストローム
Εβ£: A 10.50 G a0.58 A s
サイ ドバリア層 12
厚さ: 25オン 'ストロ-ム
: A 1B.3B G a0.78 A s
量子井戸層 13
厚さ: 55オンク "ストロ-ム
: G a A s
バリア層 14
厚さ: 50オンクストロ-ム
¾g¾: A 10.3B G a@.70 A s 厚さ: 500オンク'、ストローム
: A 10.5B G a0.50 A s 本^ i例に示した構造に対するエピタキシー層に垂直方向の導波モ一ドプロフ ィ一ル (ユアフィールドパターン) を図 25、 ¾|寸モ一ドの測^果を図 26に 示す。
(. 11 )
図 12に示すように、 GaAsからなる n型 ¾¾8上に、 厚さ 0. の n 型バッファ層 10を形成し、 その に n型クラッド層 1、 n型光導羅 2、 n 型障壁層 3、 活性層 4、 p型障壁層 5、 p型光導漏 6、 p型クラッ ド層 7を順 次形成し、 に n型キャップ層 11を形成した。
各層の具体的構成は下記の通りである。
II型キャップ層 1 1
厚さ: 0, Β μτ
舰: GaAs
P型クラッド層 7
厚さ: 1 · 0〃 m 繊: A 1
p型^ 漏 6
厚さ: 0. 46 μτα
繊: A 10.25 G a0.75 A s
n m腿 2
厚さ: 0. 46 /«m
¾J§¾: A 10.25 Ga0.75As
n型クラッド層 1
厚さ: 1.
繊: A 1
n型バッファ層 1 0
厚さ: 0. 5〃m
: GaAs
π型纖 8
舰: (100) GaAs
^ m は、 p型障壁層 5と n型障壁層 3とに挟まれた領域において、 各障壁 層 5. 3の内壁側に設けられたサイドバリア層 12の間に、 4層構造の量子井戸 層 1 3がそれぞれバリア層 14に隔てられて形成されている。 この活^ 4の具 体的構成は下記の通りである。 p型障壁層 5
厚さ: 5。オン ストロ-ム
繊: A 1
サイドバリア層 1 2
厚さ: 25オンク'、ストロ-ム
繊: A1
量子井戸層 1 3
厚さ: 55オンク、、ストロ-ム
纖: GaAs
ノ リア層 14 厚さ : 50オンク'、ストロ-ム
¾ ¾: A 10.25 G a0.75 A s 厚さ : 50オンク、、ストローム
¾^: A I 0.50 G a0.58 A s 本^例に示した構造に対するエピタキシー層に垂直方向の導波モ一ドプロフ ィ一ル (ニァフィールドパターン) を図 27、 放射モードの測定結果を図 28に 示す。
(鶴例 12)
図 13に示すように、 GaAsからなる n型 ¾¾8上に、 厚さ 0. 5 mの n 型バッファ層 10を形成し、 その ± ^に n型クラッド層 1、 n型光導、漏 2、 n 型障壁層 3、 活性層 4、 p型障壁層 5、 p型光導漏 6、 p型クラッド層 7を順 次形成し、 最 ±^に n型キャップ層 1 1を形成した。
各層の具体的構成は下記の通りである。 n型キャップ層 1 1
厚さ : 0. 3^m
纖: G a A s
p型クラッド層 7
厚さ : 1. O m
繊: A10.35 G 3.Q , 6-5 A S
P型光導漏 6
厚さ : 0. 46 m
¾ c: A 10.25 a0.75 A s
π型光導漏 2
厚さ : 0. 46 / m
¾¾: A 10.25 G a0.75 A s
n型クラッド層 1
厚さ : 1· 0〃m lUc: A 10.35 G a0.65 A s
n型バッファ層 10
厚さ : 0. 5 «m
繊: G a A s
n型練 8
m : (100) Ga As 活 ' 4は、 p型障壁層 5と n型障壁層 3とに挟まれた領域において、 各障壁 層 5, 3の内壁側に設けられたサイドバリァ層 12の間に、 4層構造の量子井戸 層 13がそれぞれバリア層 14に隔てられて形成されている。 この活 1¾14の具 体的構成は下記の通りである。
厚さ: 135オン ストローム
Figure imgf000031_0001
サイドバリア層 12
厚さ: 25オンクストロ-ム
ίΜ:: A 1B . 25 Ga0.75As
量子井戸層 13
厚さ: 55才ンク、'スト口-ム
繊: G a A s
バリア層 14
厚さ: 50オンク'、スト口-ム
繊: A10.25 G as.75 A S
n型障壁層 3
厚さ: 135オンク、、ストローム
¾ : A 10.5 B G ae.50 A s 本 ^例に示した構造に対するエピタキシー層に垂直方向の導波モ一ドプロフ ィ一ル (ニァフィールドパターン) を図 27、 ¾寸モードの測 果を図 28に 示す。 (難例 13) '
図 14に示すように、 GaAsからなる n型 ¾¾8上に、 厚さ 0. 5 111の11 型バッファ層 10を形成レ その に n型クラッド層 1、 n型光導漏 2、 n 型障壁層 3、 活性層 4、 p型障壁層 5、 p型光導 ¾^6、 p型クラッド層 7を順 次形成し、 最± ^に n型キャップ層 11を形成した。
各層の具体的構成は下記の通りである。 n型キャップ層 1 1
厚さ: 0. 3 m
繊: G a A s
p型クラッド層 7
厚さ: 1.
滅: A 10.35 G a0. 65 As
P型光導羅 6
厚さ: 0. 46
舰: A 10.25 Ga0. 75 As
n型光導漏 2
厚さ: 0. 46 ^m
ノ撤: A 10.25 Ga0. 75 A s
n型クラッド層 1
厚さ: 1. O zm
: A I 0.35 G a0.65 A S
n型バッファ層 10
厚さ: 0. 5 m
^, '■ G a A s 繊: (100) GaAs 活 1¾g4は、 p型障壁層 5と n型障壁層 3とに挟まれた領域において、 各障壁 層 5 , 3の内壁側に設けられたサイドノ リア層 12の間に、 4層構造の量子井戸 層 13がそれぞれパリア層 14に隔てられて形成されている。 この活 の具 体的構成は下記の通りである。 p型障壁層 5
厚さ: 200オンク"スト口-ム
: A la.5B G a0.50 A s
サイドバリア層 12
厚さ: 25オン:オストロ-ム
Figure imgf000033_0001
量子井戸層 13
厚さ: 55オンク、、スト口-ム
'誠: G a A s
バリア層 14
厚さ: 50オンク、、スト口-ム
Figure imgf000033_0002
n型障壁層3
厚さ: 200オンク'、スト口-ム
¾ c: A la.50 G a0.50 A s 本 ¾S¾例に示した構造に対するエピタキシー層に垂直方向の導波モ一ドプロフ ィール (ニァフィールドパターン) を図 27、 ¾寸モードの測雄果を図 28に 示す。 (難例 14)
図 15に示すように、 Ga Asからなる n型纖 8上に、 厚さ 0. 5;"mの n 型バッファ層 10を形成し、 その ± ^に n型クラッド層 1、 n型^ ¾觸2、 n 型障 3、 活性層 4、 p型障壁層 5、 p型光導 ¾ 6、 p型クラッド層 7を順 次形成し、 に n型キャップ層 11を形成した。
各層の具体的構成は下記の通りである。 n型キャップ層 1 1 厚さ: 0. 3 / m
M;: G a A s
p型クラッド層 7
厚さ: 1. 0 m
誠: A1
P型 漏 6
厚さ: 0. 46 y"m
糸賊: A 10.25 G a0.75 A s
n型光導翻 2
厚さ: 0. 46 / m
滅: A 10.25 G a0.75 A s
n型クラッド層 1
厚さ: 1. 0/ m
TfS : A 10.35 G a0.65 A s
n型バッファ層 10
厚さ: 0.
§J: Ga As 繊: (100) Ga As 活 14^4は、 p型障壁層 5と n型障壁層 3とに挟まれた領域において、 各障壁 層 5, 3の内壁側に設けられたサイドバリァ層 12の間に、 4層構造の量子井戸 層 13がそれぞれバリア層 14に隔てられて形成されている。 この活 ¾ 4の具 体的構成は下記の通りである。
厚さ: 330オンク'、ストローム
M;: A IB.SB G a0.5B A s
サイドバリァ層 1 2
厚さ: 25オンク、'スト口—ム
¾¾: A 1B.25 Ga0.75As 量子井戸層 1 3
厚さ: 55オン ストローム
繊: G a A s
バリア層 14
厚さ: 50オン:オストローム
Figure imgf000035_0001
n型障壁層 3
厚さ: 330オンク、 トローム
: A 10.50 G a0.5B A s 本^例に示した構造に対するエピタキシー層に垂直方向の導波モ一ドプロフ ィール (ニァフィールドパターン) を図 27、 モードの測^果を図 28に 示す。 (難例 1 5 )
図 1 6に示すように、 GaAsからなる n型纖 8上に、 厚さ 0. 5>"mの n 型バッファ層 10を形成し、 その ± ^に n型クラッド層 1、 ni ^漏 2、 n 型障 3、 活性層 4、 p型障 H 5、 p型光導觸 6、 p型クラッド層 7を順 次形成し、 最 J ^に n型キャップ層 1 1を形成した。
各層の具体的構成は下記の通りである。 n型キャップ層 1 1
厚さ: 0. 3 / m
誠: GaAs
p型クラッド層 7
厚さ: 1. 0〃 m
Figure imgf000035_0002
厚さ: 0. 46〃m
纖: A 1
n m^ 2 厚さ: 0. 46 μΐΐί
¾ : A 1B.25 G a0.75 A s
n型クラッド層 1
厚さ: 1. O^m
繊: Al 0.35 Vj ag .65 A s
n型バッファ層 1 0
厚さ: 0. 5 / m
繊: GaAs
π型麵 8
誠: (100) GaAs x m 4は、 p型障壁層 5と n型障壁層 3とに挟まれた領域において、 各障壁 層 5, 3の内壁側に設けられたサイドバリア層 12の間に、 4層構造の量子井戸 層 13がそれぞれバリア層 14に隔てられて形成されている。 この活^ 4の具 体醒成は下記の通りである。
厚さ: 50才ンク、、ストロ-ム
舰: A 10.65 G a0.35 A s
サイドバリア層 1 2
厚さ: 25オンク、、スト口-ム
繊: A .25 Ga0.75 As
量子井戸層 13
厚さ: 55オンク、、ストロ-ム
舰: GaAs
ノ リア層 14
厚さ: 50オンク'、ストローム
誠: A la.25 G a0.75 A s
n型障壁層 3
厚さ: 50オンク、、スト口-ム
M : Al 本 例に示した構造に対するエピタキシー層に垂直方向の導波モ一ドプロフ ィ一ル (ニァフィールドパターン) を図 29、 ¾寸モードの測 ¾ ^果を図 30に 示す。 (難例 16)
図 17に示すように、 Ga A sからなる n型鎌 8上に、 厚さ 0. 5/ mの n 型バッファ層 10を形成し その ± ^に n型クラッド層 1、 n型^ 、藤 2、 n 型障壁層 3、 活性層 4、 p型障壁層 5、 p型光導腿 6、 p型クラッド層 7を順 次形成し、 最± ^に n型キャップ層 11を开城した。
各層の具体的構成は下記の通りである。 n型キャップ層 1 1
厚さ: 0. 3 m
繊: G a A s
ρ型クラッド層 7
厚さ: 1. 0〃m
繊: A 10.35 G a0.65 A s
P型 漏 6
厚さ: 0. 46〃m
: A 10.25 G a8.75 A s
n型»漏 2
厚さ: 0. 46〃m
纖: A 10.25 Gae.75As
n型クラッド層 1
厚さ: 1. 0 m
¾β¾: A I0.35 G a0.65 A s
n型バッファ層 10
厚さ: 0. 5 / m
M;: G a A s — 3~ 繊: (100) Ga As 活髓4は、 p型障壁層 5と n型障壁層 3とに挟まれた領域において、 各障壁 層 5, 3の内壁側に設けられたサイドノ リァ層 12の間に、 4層構造の量子井戸 層 13がそれぞれバリア層 14に隔てられて形成されている。 この活 4の具 体的構成は下記の通りである。
厚さ: 100オンク、'ストロ-ム
ΕδΚ: A I0.35 G a0. $5 A S
サイ ドバリア層 12
厚さ: 25オン ストロ-ム
茅滅: A I0.25 G a0.Y5 A s
量子井戸層 13
厚さ: 55オンク、'ストロ-ム
滅: G a A s
バリア層 14
厚さ: 50才ンク "スト口-ム
茅滅: A 10.25 G a0.7ε A s
100オンク、、スト ϋ-ム
¾§^Sc: Al0.35 ja0.65 A s 本^例に示した構造に対するエピタキシー層に垂直方向の導波モ一ドプロフ ィ一ル (ニァフィールドパターン) を図 29、 ¾|寸モードの測^果を図 30に 示す。
(雄例 17)
図 18に示すように、 GaAsからなる n型 ¾¾8上に、 厚さ 0. 5 mの n 型バッファ層 10を形成し、 その ±^に n型クラッド層 1、 n型光導 ¾jf2、 n 型障^ 3、 活性層 4、 p型障壁層 5、 p型光導漏 6、 p型クラッド層 7を順 次形成し、 ft± ^に n型キャップ層 1 1を形成した。
各層の具体的構成は下記の通りである。 n型キャップ層 1 1
厚さ: 0. 3/ m
繊: GaAs
ρ型クラッド層 7
厚さ: 1. 0/ m
織: A 10.35 Ga0.65As 厚さ: 0. 46 yum
/¾J¾¾: A la.25 G a0.75 A s
n型 漏 2
厚さ: 0. 46 y"m
繊: A la.25 Ga0.75 As
n型クラッド層 1
厚さ: 1. 0/zrn
繊: A 10.35 Ga0.65As
n型バッファ層 10
厚さ: 0. 5 yum
繊: GaAs 繊: ( 100 ) G a A s f¾ {± p型障壁層 5と n型障壁層 3とに挟まれた領域において、 各障壁 層 5, 3の内壁側に設けられたサイドバリア層 12の間に、 4層構造の量子井戸 層 13がそれぞれバリァ層 14に隔てられて形成されている。 この活 1¾14の具 体賺成は下記の通りである。
P難壁層 5
厚さ: 200オン ストローム ¾J (;: A 10.65 G a0.35 A s
サイドバリア層 12
厚さ: 25オンク"ストロ-ム
茅賊: A 10.25 G a0.75 A s
量子井戸層 13
厚さ: 55オンク、、スト口-ム
'撤: G a A s
バリァ層 14
厚さ: 50オンク"スト口-ム
: A 10.25 ^ a0.75 A s
ri型障壁層 3
厚さ: 200オンク、、ストロ-ム
ί城: A 1 .65 G a0.35 A s
本実施例に示した構造に対するエピタキシー層に垂直方向の導波モ一ドプロフ ィ一ル (ニァフィールドパターン) を図 29、 ¾|寸モードの測 果を図 30に 示す。 (実施例 18)
図 19に示すように、 GaAsからなる n型 ¾¾8上に、 厚さ 0. 5 mの n 型バッファ層 10を形成し、 その ± に n型クラッド層 1、 n型光導鹏 2、 n 型障壁層 3、 活性層 4、 p型障壁層 5、 p型光導腿 6、 p型クラッド層 7を順 次形成レ 最± ^に n型キャップ層 1 1を形成した。
各層の具体的構成は下記の通りである。 n型キャップ層 1 1
厚さ: 0. 3 "m
繊: G a A s
P型クラッド層 7
厚さ: 1. 0/ m
¾g£: A I 0.35 J a0.65 A s 厚さ: 0. 46 m
M;: A 10.25 G a0.75 A s
n mi 2
厚さ: 0. 46〃m
M (;: A I0.25 G a0.75 A s
n型クラッド層 1
厚さ: 1. 0〃m
¾5¾: A I0.35 G a0.65 A s
n型バッファ層 10
厚さ: 0. 5 /"m
繊: G a A s 繊: (100) Ga As
m 4は、 型障壁層 5と n型障壁層 3とに挟まれた領域において、 各障壁 層 5, 3の内壁側に設けられたサイドバリァ層 12の間に、 4層構造の量子井戸 層 13がそれぞれパリア層 14に隔てられて形成されている。 この活 4の具 体的構成は下記の通りである。
厚さ: 280オンク、'ストロ-ム
: A G a0.35 A s
サイドバリア層 1 2
厚さ: 25オンク、'ストロ-ム
繊: A I0.25 Ga0.75 As
量子井戸層 13
厚さ: 55オンク、、スト口-ム
¾J§¾: G a A s
バリァ層 14
厚さ: 50オン;オストローム
- liJ§¾: A 10. £5 G aB.75 A s
n型障壁層 3 普 厚さ: 280才ンク '、スト口-ム
滅: A 10.65 G a0.35 A s 本実施例に示した構造に対するエピタキシー層に垂直方向の導波モ一ドプロフ ィ一ル (ニァフィールドパターン) を図 29、 ¾ォモードの測^果を図 30に 示す。
(:比較例)
図 20は、 前記^例 1〜 18との比較のために作成した従来構造の量子井戸 型レ一ザ素子の概 平面図である。
各層の具体的構成は下記の通りである。 n型キャップ層 1 1
厚さ: 0. 3 / m
: G a A s
ρ型クラッド層 7
厚さ: 1. 5〃m
¾ ¾: A 1 ø.65 G a0. as A s
n型クラッド層 1
厚さ: 1. 5 m
舰: A 10.65 Ga0.35 As
n型バッファ層 10
厚さ: 0. 5 / m
- G a A s
π型鎌 8
舰: (100) GaAs 活 4は、 再度バリァ層 1 2に挟まれた領域において、 バリア層 14を隔て て 4層の量子井戸層 13カ けられている。 この活性層 4の具体的な構成は下記 の通りである。 サイドバリア層 12
厚さ: 120オンクストロ-ム
¾β¾: Α 10.30 G a0.7B A s
量子井戸層 13
厚さ: 50オンク、、スト口-ム
繊: GaAs
ノ リア層 14
厚さ: 50オンク、、ストロ-ム
: A 10.3B G a0.70 A s
本 例に示した構造に対するェピタキシ一層に垂直方向の導波モードプロフ ィ一ル (ユアフィールドパターン) を図 21、 モードの測 ¾¾果を図 22に 示す。
図 21から明かなように、 比較例の弱導波半 » ^レーザは两側に指数関数テ一 ルを持つた中心で尖った tt曲線になつているのに対し、 例 1〜¾½例 18 は釣り鐘状のガウス型ビームに近い特性开狱になっている。 このため本 例の 半導体レーザを用いた場合には、 技術と同禾 のモード広がりでも 損傷 の起こる ¾1W4 (モード中心) でのビーム強度が賓くなっており次の表 1の測 ¾§果に示すように、 光 員傷レベルを大幅に引き上げることができた。 すなわ ち、 本実施例 1〜 3では比較例に比べて; ¾寸角の低減と大幅な光^ ί員傷レベルの 改善が明かとなった。 なお、 表 1においてレーザの発振波長 (オングストローム) は約 800nmである。 また、 ^^員傷レベル、 スロー "^J率はいずれも 1端面 当たりのの光出力である。
【表 1】
Figure imgf000044_0001
産業上の禾翻可能性
本発明により、 通信、 光ディスク等の光記録、 レーザプリンタ一、 レーザ,、 レーザ加: η高出力半 ^レーザを用いる産業分野において、 寸ビーム角 でビームプロファイルの良い高効率の半 ^レーザを得る事が出来る。 また、 単 純な構造で端面の瞬時光 員傷を回避して高出力の半 レーザを作製する事が できる。 特に A Gat-xAs半導体レーザでは導^の A 1 滅を下げられる ために作製プロセスも容易になる。
このため、 本発明の素子は、 高効率半導体レーザ装置として利用でき、 さらに は、 固体レーザの励起源として、 半導体レーザ励起固体レーザ装置を構成するこ とができる。 固体レーザとしては、 Nd : YAGや、 Nd : YLFなどのレーザ 媒質を使用できる。 半導体レーザを固体レーザの励起源として用いる場合、 半導 体レーザとレーザ媒質との結合方式が問題となる。 通常、 半導体レ一ザからの励 起光は、 ^^レーザの励起ポリユームとレーザ発振器のモードポリュ一ムとが モ一ドマッチングするようなレンズで効率よく集光される。
本発明に係るレーザ素子では、 このようにレンズを用いて集光してもよく、 図 3 2、 図 3 3のように、 半 レーザ素子 2 1からの!^光に何等光学的加工を 施さずにレーザ媒質 2 3に^することもできる。 なお、 2 3は出力ミラ一であ る。 また、 図 3 2は半導体レーザ素子 2 1とレーザ媒質 2 3とを直接結合する直 接結^ 、 図 3 3は半導体レーザ素子 2 1とレーザ媒質 2 3とを光ファイバ一 2 2で結合するフアイバ一結^ S半 # ^レーザ励起固体レーザ装置である。

Claims

請 求 の 範 囲
【請求項 1】 光導波機能を有する活 ^力5'表面に設けられた半導体レーザ 素子において
素子面から垂直方向に形成された活性層の断面両外方に、 前記活性層の光導波 機能を低減する障壁層と、
前記障壁層の両外方に設けられたバンドキヤップを有する導 と、
前言 a¾ を挟むように設けられたクラッド層とを備えた半導体レーザ素子。
【請求項 2】 前記導腿のバンドギャップは、 断面水平外方から前記障壁 層にいくにしたがって狭くなる平面状または球面状の傾斜バンドギヤップである 請求項 1記載の半 レ—ザ素子。
【請求項 3】 導波モードの規 匕周波数 Vを定義するため、 7Γは円周 を障壁層の厚 d2を雨クラッド層の厚 λを発振波長、 Ν0を導漏の屈 折率 (但し導 ¾ の屈折率力'連続的に変ィ匕する場合は ΝΒとして最大値を用いる)、 を'難層の屈折 Ν2を障壁層の屈折 Ν3はクラッド層の屈折率とし、 V ,および V2を、
V! = π - ά, /λ - ( Ν02 - Ν22) 0.5
V2 = ττ . d2/ス . ( Na2 ― N32) 0- 5
と定義したとき、
V く V2/l 0
となる請求項 1または 2記載の半 レ一ザ素子。
【請求項 4】 障壁層の厚みを d (オングストローム) 、 導漏と障壁層の のエネルギーギャップ差を E (e V) としたとき、
Figure imgf000046_0001
である請求項 3記載の半導体レーザ素子。
【請求項 5】 AlxGaixAs (0≤χ<1) を用いた請求項 4の半導体 レ一ザにおいて、 導 の組成は
AlxGa:-xAs (0≤x<0. 35)
であることを とする半# ^レ一ザ素子。
【請求項 6】 導 の組成が A 1XG a,-x As (ただし 0≤xく 1) であ るとき、 Xと障壁層の厚み d (オングストローム) の関係が、 x > (2. 2X 103/d2)
かつ
x < (5. 0x1 OVd2)
の範囲にある請求項 5記載の半 ·レーザ素子。
【請求項 7】 (10を« ^の厚みとし、 VBを、
V0 = 7Γ . d0/ス . ( N!2 - N0 Β· 5
ただし、 ^tt 力 s '量子井戸である場合には、 d0は量子井戸層の厚 は量子 井戸層の屈折 N0は導漏の屈折率とし、 カゝっ量子井戸の本数を Nとしたとき には、
V0 = N. 7r . d0/ス . ( N,2 - Ν0 2) 0·5 と定義したとき、
(V0/3) <V,く V0
となる請求項 4記載の半 # ^レーザ素子。
【請求項 8】
請求項 1から 7のいずれかに記載の半 レーザ素子を用いたレーザ装 ^
【請求項 9】
請求項 1から 7のいずれかに記載の半導体レ一ザ素子を、 レーザ励 光源と して用いた半導体レ一ザ腿固体レ―ザ装 So
【請求項 10】
請求項 9記載のレーザ装置において、 レーザ素子から出力される励起光を、 レ ンズを用いずに固体レーザに投入することを特徴とする半 レーザ励起固体レ —ザ装 to
PCT/JP1993/000156 1992-02-05 1993-02-05 Element laser a semi-conducteur et laser fabrique au moyen d'un tel element WO1993016513A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP93903324A EP0578836B1 (en) 1992-02-05 1993-02-05 Semiconductor laser element and laser manufactured using the same
DE69324733T DE69324733T2 (de) 1992-02-05 1993-02-05 Halbleiterlaserelement und damit hergestellter laser
CA002106562A CA2106562C (en) 1992-02-05 1993-02-05 Semiconductor laser element and laser device using the same element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4/20289 1992-02-05
JP2028992 1992-02-05

Publications (1)

Publication Number Publication Date
WO1993016513A1 true WO1993016513A1 (fr) 1993-08-19

Family

ID=12023013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000156 WO1993016513A1 (fr) 1992-02-05 1993-02-05 Element laser a semi-conducteur et laser fabrique au moyen d'un tel element

Country Status (5)

Country Link
EP (1) EP0578836B1 (ja)
KR (1) KR0153125B1 (ja)
CA (1) CA2106562C (ja)
DE (1) DE69324733T2 (ja)
WO (1) WO1993016513A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0660472A2 (en) * 1993-12-24 1995-06-28 Mitsui Petrochemical Industries, Ltd. Semiconductor laser device
EP0805533A4 (en) * 1994-12-28 1998-04-08 Mitsui Petrochemical Ind SEMICONDUCTOR LASER ELEMENT
US6175582B1 (en) 1997-11-26 2001-01-16 Mitsui Chemicals Inc. Semiconductor laser device
JP2001144372A (ja) * 1999-08-27 2001-05-25 Mitsui Chemicals Inc 半導体レーザ装置
US6546032B1 (en) 1999-08-27 2003-04-08 Mitsui Chemicals, Inc. Semiconductor laser apparatus
JP2010512666A (ja) * 2006-12-12 2010-04-22 アギア システムズ インコーポレーテッド 応力低減電子ブロッキング層を有する窒化ガリウム・ベース半導体デバイス

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100350012B1 (ko) * 1994-03-01 2002-12-16 세이코 엡슨 가부시키가이샤 반도체레이저및이것을사용한광센싱장치
DE69517044T2 (de) * 1994-10-18 2000-10-26 Mitsui Chemicals Inc Halbleiterlaservorrichtung
FR2749447B1 (fr) * 1996-06-04 1998-07-10 France Telecom Dispositif optique a guide de lumiere semi-conducteur, a faisceau emergent de faible divergence, application aux lasers de fabry-perot et a contre-reaction distribuee
WO1998056090A1 (en) * 1997-06-02 1998-12-10 Coherent, Inc. Red-light semiconductor laser including gradient-composition layers
GB2346735B (en) 1999-02-13 2004-03-31 Sharp Kk A semiconductor laser device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133781A (ja) * 1983-12-21 1985-07-16 Nec Corp 半導体レ−ザ−
JPS6115385A (ja) * 1984-07-02 1986-01-23 Nec Corp 半導体レ−ザ
JPH02150087A (ja) * 1988-12-01 1990-06-08 Asahi Glass Co Ltd レーザダイオード励起固体レーザ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1137605A (en) * 1979-01-15 1982-12-14 Donald R. Scifres High output power laser
JPH0212885A (ja) * 1988-06-29 1990-01-17 Nec Corp 半導体レーザ及びその出射ビームの垂直放射角の制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133781A (ja) * 1983-12-21 1985-07-16 Nec Corp 半導体レ−ザ−
JPS6115385A (ja) * 1984-07-02 1986-01-23 Nec Corp 半導体レ−ザ
JPH02150087A (ja) * 1988-12-01 1990-06-08 Asahi Glass Co Ltd レーザダイオード励起固体レーザ

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0660472A2 (en) * 1993-12-24 1995-06-28 Mitsui Petrochemical Industries, Ltd. Semiconductor laser device
EP0660472A3 (en) * 1993-12-24 1995-12-20 Mitsui Petrochemical Ind Semiconductor laser device.
US5764668A (en) * 1993-12-24 1998-06-09 Mitsui Petrochemical Industries, Ltd. Semiconductor laser device
EP0805533A4 (en) * 1994-12-28 1998-04-08 Mitsui Petrochemical Ind SEMICONDUCTOR LASER ELEMENT
US5949807A (en) * 1994-12-28 1999-09-07 Mitsui Chemicals, Inc. Semiconductor laser device
US6175582B1 (en) 1997-11-26 2001-01-16 Mitsui Chemicals Inc. Semiconductor laser device
JP2001144372A (ja) * 1999-08-27 2001-05-25 Mitsui Chemicals Inc 半導体レーザ装置
US6546032B1 (en) 1999-08-27 2003-04-08 Mitsui Chemicals, Inc. Semiconductor laser apparatus
JP4523131B2 (ja) * 1999-08-27 2010-08-11 三井化学株式会社 半導体レーザ装置
JP2010512666A (ja) * 2006-12-12 2010-04-22 アギア システムズ インコーポレーテッド 応力低減電子ブロッキング層を有する窒化ガリウム・ベース半導体デバイス

Also Published As

Publication number Publication date
EP0578836B1 (en) 1999-05-06
DE69324733T2 (de) 1999-10-07
EP0578836A1 (en) 1994-01-19
KR0153125B1 (ko) 1998-12-01
DE69324733D1 (de) 1999-06-10
CA2106562C (en) 1999-05-04
EP0578836A4 (en) 1994-07-06
CA2106562A1 (en) 1993-08-06

Similar Documents

Publication Publication Date Title
JP5717726B2 (ja) 大出力パワー用の横結合を持つdfbレーザダイオード
JP4983790B2 (ja) 光半導体装置とその製造方法
JPWO2009116140A1 (ja) 光半導体素子及びその製造方法
JP5170954B2 (ja) 半導体レーザ装置
EP0660472B1 (en) Semiconductor laser device
WO1993016513A1 (fr) Element laser a semi-conducteur et laser fabrique au moyen d&#39;un tel element
JPH05226789A (ja) 歪層量子井戸レーザを含む製品
JPH08195529A (ja) 半導体レーザエピタキシャル結晶積層体および半導体レーザ
JP5412036B2 (ja) ヘテロ構造、注入レーザ、半導体増幅素子及び半導体光増幅器
WO2007094063A1 (ja) 半導体光増幅装置
JPH0595170A (ja) フエーズロツクレーザアレイおよびその製造方法
US7095769B2 (en) Semiconductor laser diode with higher-order mode absorption layers
US5617437A (en) Semiconductor laser
US6973109B2 (en) Semiconductor laser device having strain buffer layer between compressive-strain quantum well layer and tensile-strain barrier layer
JP3854615B2 (ja) 水平方向レージング構造を有する利得固定半導体光増幅器及びその製造方法
JP4345673B2 (ja) 半導体レーザ
JP2002141610A (ja) 半導体レーザ素子およびその製造方法
US8731018B2 (en) Semiconductor laser
JPH11340568A (ja) 半導体装置及びその作製方法
JP3590277B2 (ja) 半導体レーザ
JP2004103679A (ja) 半導体発光素子および半導体発光素子モジュール
JPH11233874A (ja) 半導体レーザ装置およびその製造方法
JPH03227092A (ja) 半導体レーザ
JP2001148541A (ja) 半導体発光装置およびその半導体発光装置を励起光源に用いた固体レーザ装置
JP2000058969A (ja) 半導体レーザ装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2106562

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1993903324

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019930702883

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 1993 129147

Country of ref document: US

Date of ref document: 19931005

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1993903324

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1993903324

Country of ref document: EP