WO1993016117A1 - Water-soluble cellulose derivative and biocompatible material - Google Patents

Water-soluble cellulose derivative and biocompatible material Download PDF

Info

Publication number
WO1993016117A1
WO1993016117A1 PCT/JP1993/000177 JP9300177W WO9316117A1 WO 1993016117 A1 WO1993016117 A1 WO 1993016117A1 JP 9300177 W JP9300177 W JP 9300177W WO 9316117 A1 WO9316117 A1 WO 9316117A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
soluble cellulose
cellulose
cellulose derivative
soluble
Prior art date
Application number
PCT/JP1993/000177
Other languages
English (en)
French (fr)
Inventor
Nobuo Nakabayashi
Kazuhiko Ishihara
Original Assignee
Nof Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nof Corporation filed Critical Nof Corporation
Priority to EP93904301A priority Critical patent/EP0580871B1/en
Priority to KR1019930703052A priority patent/KR970007243B1/ko
Priority to US08/133,167 priority patent/US5368733A/en
Priority to DE69319031T priority patent/DE69319031T2/de
Publication of WO1993016117A1 publication Critical patent/WO1993016117A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L33/00Antithrombogenic treatment of surgical articles, e.g. sutures, catheters, prostheses, or of articles for the manipulation or conditioning of blood; Materials for such treatment
    • A61L33/06Use of macromolecular materials
    • A61L33/08Polysaccharides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F251/00Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof
    • C08F251/02Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof on to cellulose or derivatives thereof

Definitions

  • the present invention relates to a novel water-soluble cellulose derivative having low biocompatibility such as blood compatibility and a blood compatible material.
  • blood purification methods such as hemodialysis and hemofiltration are used to extend the life of patients with chronic renal failure, and more than 100,000 patients in Japan have applied the blood purification method.
  • the principle of blood purification is to contact blood and the eluant through a thin film, diffuse waste and metabolites in the blood into the dialysate, and remove excess water using a pressure difference. And.
  • a blood purifier is used. This is a housing in which a blood circuit bundled with hollow fibers is housed, and has a structure in which blood flows inside the hollow fibers and dialysate flows outside.
  • hydrophilic polymers such as polyethylene oxide are covalently bonded to the surface or tertiary amino acids.
  • a cellulose membrane material such as a method of treating the surface with a molecule having an amino group.
  • An object of the present invention is to provide a novel water-soluble cellulose derivative having both biocompatibility and affinity for cellulose.
  • Another object of the present invention is to provide and provide a biocompatible material that is used for a blood purifier and the like, and is biocompatible.
  • FIG. 1 is a graph showing the infrared absorption spectrum of the MPC graphite cellulose prepared in Example 1.
  • FIG. 2 is a scanning electron micrograph of the inner surface of platelet-rich plasma after passing through untreated cellulose hollow fiber for 60 minutes.
  • FIG. 3 is a scanning electron micrograph of the inner surface of the cell-compatible hollow fiber coated with the biocompatible material of the present invention after passing platelet-rich plasma for 60 minutes through the hollow fiber.
  • FIG. 4 is a scanning electron micrograph of the inner surface after whole blood has passed through an untreated cellulose hollow fiber.
  • FIG. 5 is a scanning electron micrograph of the inner surface of a cellulose hollow fiber coated with the biocompatible material of the present invention after whole blood has passed therethrough.
  • n an integer of 1 to 100.
  • biocompatible material containing the water-soluble cellulose derivative as an active ingredient.
  • the water-soluble cellulose derivative of the present invention is a polymer having a structural unit represented by the above formula (I) obtained by subjecting MPC to the water-soluble cellulose by a graph polymerization, wherein n in the above formula (I) Is an integer from 1 to 100, preferably an integer from 1 to 30.
  • the molecular weight of the water-soluble cellulose derivative determined by gel permeation chromatography (hereinafter referred to as GPC) is 1.0 X 10 4 to 1.0 X 1 in terms of polyethylene glycol. It is preferably in the range of 0 s .
  • the amount of MPC to be graph-polymerized to water-soluble cellulose is preferably 5 to 70% by weight based on the total amount of the water-soluble cellulose derivative.
  • the amount is less than 5% by weight, for example, the antithrombotic property is reduced when used as an antithrombotic material, and when the amount is more than 70% by weight, the affinity with cellulose is unfavorably reduced.
  • the water-soluble cellulose used in preparing the water-soluble cellulose derivative of the present invention is, for example, a known water-soluble cellulose obtained by hydrolyzing cellulose microcrystals with acetic anhydride and sulfuric acid at the same time as acetylation, and then deacetylating in the presence of alkali.
  • Method Cellulose Handbook J, edited by Hiroshi Sobue, published by Asakura Shoten, 1958”
  • MPC can be obtained, for example, using 2-hydroxyethylmethacrylate and 2-hydroxy.
  • the graph polymerization reaction of the MPC to the water-soluble cellulose may be, for example, a water-soluble cellulose.
  • polymerization may be performed using a cerium ion-containing compound that generates radicals on water-soluble cellulose or a peroxide such as hydrogen peroxide as an initiator.
  • the homopolymerization is suppressed, in order to produce radicals on the cellulose, is rather to preferred 3 0-6 5, is rather especially preferred is 4 0 ⁇ 5 0 D C.
  • the polymerization time is preferably from 30 minutes to 3 hours, and particularly preferably from 1 to 2 hours in consideration of the graph polymerization yield of MPC.
  • the amount of MPC to be charged in the graph polymerization is preferably 10 to 100 times (weight ratio) the amount of water-soluble cellulose. If the amount of MPC charged is less than 10 times, for example, a sufficient amount of MPC to develop biocompatibility will not be obtained, and if it exceeds 100 times, the MPC alone will be used. This is not preferable because the amount of polymer produced is significantly increased.
  • the form of the biocompatible material of the present invention is not particularly limited as long as it contains the water-soluble cellulose derivative as an active ingredient, and can be used, for example, as a coating.
  • the hollow fiber can be used as a biofluid-compatible material such as blood. It can also be formed on a film or the like.
  • the water-soluble cellulose derivative of the present invention has both biocompatibility and affinity for cell surface, various biocompatible materials It is useful as a raw material for ingredients. Further, since the biocompatible material of the present invention contains the water-soluble cellulose derivative as an active ingredient, it has good biocompatibility and can be used for blood purifiers and the like.
  • Hydrochloric acid was added to the reaction solution to neutralize it, and the solution was placed in a dialysis membrane and dialyzed in water for 3 days to remove low molecular weight substances to obtain a water-soluble aqueous cellulose solution. A part of the solution was removed, heated and dried to determine the weight concentration of cellulose, and diluted with water to obtain a 0.5% by weight solution. After 0.17 g of cerium ammonium nitrate and 3 ⁇ of 0.1 N nitric acid were added to this solution lOmfi, 9 g of MPCO was further added, and the mixture was replaced with argon for 10 minutes. The vessel was capped and stirred at 40 ° C for 1 hour to perform graph polymerization.
  • FIG. 1 shows the infrared absorption spectrum of the obtained MPC graphite cellulose.
  • the amount of MPC grafted on the cellulose was 10.1% by weight as determined by quantification of phosphorus, and the molecular weight determined by gel permeation chromatography was 1% in terms of polyethylene glycol. 2 X 10 s .
  • Example 1 The reaction was carried out in the same manner as in Example 1 except that the charged amount of MPC was changed as shown in Table 1, to obtain an MPC graphite water-soluble cellulose.
  • Table 1 shows the measured results of the amount and molecular weight of the MPC.
  • the MPC graft cellulose aqueous solution prepared in Examples 2 to 5 was flowed into a regenerated cellulose hollow fiber (inner diameter: 200 ⁇ , length: 10 cm) manufactured by the Cubra ammonia method at a flow rate of 5 mfiZ. Passed through. After standing for 10 minutes with the MPC graphite cellulose aqueous solution filled inside, the solution is pushed out with air and then The mixture was immediately dried in vacuum at room temperature for 3 hours. Table 2 shows the amount of coated MPC graphite cellulose.
  • Examples 6 to 9 were repeated except that the aqueous solution of MPC graphite cellulose shown in Table 3 was used, the concentration of the aqueous solution was set to 1.0% by weight, and the passing speed to the hollow fiber was set to 1 ⁇ / min. Similarly, the hollow fiber was coated with PC graphite cellulose. Table 3 shows the amount of coated MPC graphite cellulose.
  • Example 1 Example 5 1 2.7
  • Example 13 L8, Comparative Examples 1 and 2
  • FIG. 2 and FIG. 3 show S photographs of Example 16 and Comparative Example 1, respectively.
  • the inner surface was coated with MPC gulcellulose as shown in Table 5.
  • a module was prepared by bundling 480 each of untreated cellulose hollow fibers (Comparative Example 2) not coated with cellulose hollow fibers (Examples 17 and 18) or MPC graphite cellulose. It was connected to a blood circuit formed between the jugular veins of the rabbit, and the blood flow was adjusted to 2 ⁇ / min. The time required for blood to coagulate in the hollow fiber without administration of an anticoagulant was measured. Table 5 shows the results. After the experiment was completed, the inner surface of the hollow fiber was observed by SEM using the same operation as described above. S-photographs of Example 18 and Comparative Example 2 are shown in FIG. 4 and FIG. 5, respectively.
  • urea a 200 mg / dfi aqueous solution was prepared, and this solution was coated for 60 minutes with the inner surface of a cellulose hollow fiber coated with the MPC graphite cellulose shown in Table 6 (Examples 19 to 19).
  • An untreated cellulose hollow fiber (Comparative Example 3) not covered with 21) or MPC graphite cellulose was passed through a module hollow fiber bundled with 48 C bundles. Pure water of 3 OmG was circulated outside the hollow fiber in the module, and the amount of urea that had permeated from inside the hollow fiber was determined.
  • a solution of 26 mg Zdfi was used, and the permeation amount was calculated by the same operation as in the case of urea. Table 6 shows the results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Manufacturing & Machinery (AREA)
  • Hematology (AREA)
  • Surgery (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • External Artificial Organs (AREA)
  • Materials For Medical Uses (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Graft Or Block Polymers (AREA)

Description

明 細 書
水溶性セルロース誘導体及び生体適合性材料
技術分野
本発明は、 僅れた血液適合性等の生体適合性を有する新規 な水溶性セルロース誘導体及び血液適合性材料に関する。 背景技術
現在、 慢性腎不全患者の延命法と して血液透析、 血液濾過 等の血液浄化法が用い られており、 我国における血液浄化法 適用患者は 1 0万人を超える。 血液浄化の原理は、 血液と透 析液と を薄膜を介して接触させ、 血液中の老廃物や代謝産物 を透析液中に拡散除去し、 更に余剰の水分を圧力差を利用し て取り除く こ と による。 血液浄化を行なう場合には血液浄化 器が用いられている。 これは中空糸を束ねた血液回路がハウ ジングに収められているもので、 中空糸の内部を血液が、 外 側を透析液が流れる構造となっている。
従来、 血液浄化を行なう場合には、 血液浄化器内での血液 凝固反応を抑制するためにへパリ ン等の血液抗凝固剤の連続 投与が行なわれている。 しかしながら、 血液浄化器の溶質除 去性能が改良され、 2 0年に及ぼう とする長期延命が可能に なっている現在、 へパリ ンを使用する問題が次々 と指摘され ている。 特に、 へパリ ンの長期間投与による脂質代謝異常等 の肝臓障害、 出血時間の延長或いはア レルギー反応は、 患者 に対する副作用と して認められている。 このような観点から 血液浄化療法の際に抗凝固剤の使用量を低減させるか、 ある いは全く使用 しなく ても血液凝固を引き起こさない血液適合 性等に優れる生体適合性材料の開発が望まれている。
そ こで例えば、 セルロース系中空糸の血液適合性を改善す る試みと して、 ポリ エチ レ ンオキサイ ドのよ う な親水性高分 子を表面に共有結合させた り、 第 3級ア ミ ノ基を有する髙分 子で表面を処理する方法等のセルロース膜素材の有する補体 活性化の抑制に係わる報告がされている。 しかしながら、 こ れ らの中空糸では血液凝固を抑制する こ と が難し く 、 やは り 多量の抗凝固剤の投与が必要であ り 、 このよ う な基材と して のセルロースに対する親和性と生体適合性と を備える物質自 体の開発が望まれている。
本発明の 目的は、 生体適合性とセルロースに対する親和性 の双方を有する新規な水溶性セルロース誘導体を提供する こ と にある。
本発明の別の 目的は、 生体適合性に倭れ、 血液浄化器等に 利用可能な生体適合性材料を提,供する こ と にある。
図面の簡単な説明
FIG . 1は、 実施例 1 で調製した M P C グラ フ トセルロ ース の赤外吸収スぺク トルを示すグラ フである。
F IG . 2は、 未処理のセルロース中空糸内を 6 0分間血小板 多血漿を通過させた後の内面の走査型電子顕微鏡写真であ る 。
FIG . 3は、 本発明の生体適合性材料で被膜されたセル口一 ス中空糸内を 6 0分間血小板多血漿を通過させた後の内面の 走査型電子顕微鏡写真である。
F IG . 4は、 未処理のセルロース中空糸内を全血通過させた 後の内面の走査型電子顕微鏡写真である。 FIG.5は、 本発明の生体適合性材料で被膜されたセルロー ス中空糸を全血通過させた後の内面の走査型電子顕微鏡写真 である。
発明の開示
本発明によれば、 水溶性セルロースに、 2 —メ タ ク リ ロイ ルォキシェチルホスホ リルコ リ ン (以下 M P Cと称す) を グ ラ フ ト重合させて得られる下記式 ( I )
Figure imgf000005_0001
(式中、 nは 1 〜 1 0 0の整数を示す。 ) で表わされる構造 単位を有する水溶性セルロース誘導体が提供される。
また本発明によれば、 前記水溶性セルロース誘導体を有効 成分と して含む生体適合性材料が提供される。
発明を実施するための最良の形態
以下本発明を更に詳細に説明する。 ' 本発明の水溶性セルロース誘導体は、 水溶性セルロースに M P Cをグラ フ ト重合させて得られる前記式 ( I ) で表わさ れる構造単位を有する重合体であって、 前記式 ( I ) 中の n は、 1〜 1 0 0 の整数、 好ま し く は 1〜 3 0の整数である。 また水溶性セルロース誘導体のゲルパ一 ミ エ一ショ ンク ロマ ト グラ フィ 一 (以下 G P Cと称す) によ る分子量がポリ ェチ レ ングリ コール換算で 1 . 0 X 1 04〜 1 . 0 X 1 0 sの範囲 であるのが好ま しい。 分子量が 1 . 0 X 1 04未満の場合に は、 生体適合性材料と して用いる際に安定な被膜形成ができ ず、 1 . 0 X 1 0 s を超える場合には水に対する溶解性が低 下するので好ま し く ない。 また水溶性セルロースに グラ フ ト 重合される M P C量は、 水溶性セルロース誘導体全量に対し て、 5〜 7 0重量%であるのが好ま しい。 5重量%未満の場 合には、 例えば抗血栓材料と した際に抗血栓性が低下 し、 ま た 7 0重量% を超える場合にはセルロースと の親和性が低下 するので好ま し く ない。
本発明の水溶性セルロース誘導体を調製する際に用いる前 記水溶性セルロースは、 例えばセルロース微結晶 を無水酢酸 一硫酸でァセチル化と同時に加水分解し、 次いでアルカ リ存 在下で脱ァセチル化する公知の方法 ( 「セルロースハン ドブ ッ ク J 、 祖父江寛編、 朝倉書店発行、 1958)等によ り得る こ と ができ、 また M P Cは例えば 2 — ヒ ド ロ キシェチルメ タ ク リ レー ト と、 2—ク ロ ロ ー 2—ォキソ一 1 , 3, 2—ジ才キ サホスホラ ン と の縮合物をァセ トニ ト リル中 6 0 °Cにて 1 5 時間 卜 リ メチルァ ミ ン と反応させる公知の方法(rPolym.J.,2 2巻, P355~360 (1990))等によ り得る こ と ができる。
本発明の水溶性セルロース誘導体を製造する際の前記 M P Cの水溶性セルロースへのグラ フ ト重合反応は、 例えば水溶 液系において、 水溶性セルロース上にラジカルを生成させる セ リ ウムイオン含有化合物や過酸化水素等の過酸化物等を開 始剤と して重合させれば良く、 反応温度はセルロースの分解、 M P Cの単独重合を抑制し、 セルロース上にラジカルを生成 させるために、 好ま し く は 3 0〜 6 5 、 特に好ま し く は 4 0〜 5 0 DCである。 また重合時間は、 好ま し く は 3 0分〜 3 時間、 M P Cのグラ フ ト重合収率を考慮すると 1〜 2時間が 特に望ま しい。 更にグラ フ ト重合させる際の M P Cの仕込み 量は、 水溶性セルロースに対して 1 0〜 1 0 0 0倍 (重量比) とする こ とが好ま しい。 M P Cの仕込み量が 1 0倍未満の場 合には、 例えば生体適合性を発現するに十分な M P Cのグラ フ ト量が得られず、 1 0 0 0倍を超える場合には M P Cの単 独重合体の生成量が著し く多く なるので好ま し く ない。
本発明の生体適合性材料は、 前記水溶性セルロース誘導体 を有効成分と して含有しておれば、 その形態は特に限定され るものではなく 、 例えば被膜等に して使用することができる。 具体的には、 前記水溶性セルロース誘蘀体を所望濂度に希釈 した水溶液と し、 セルロース製中空糸内を通過させた後、 室 温程度において 1〜 2 4時間真空乾燥させる方法等によ り、 該中空糸内面に被膜を形成し、 血液等の生体液適合性材料と して使用する こ と ができる他、 前記水溶性セルロース誘導体 水溶液自体を公知の方法によ り、 中空糸又は生体膜等に形成 することもできる。
本発明の水溶性セルロース誘導体は、 生体適合性とセル口 ースに対する親和性の双方を有するので、 各種生体適合性材 料の原料と して有用である。 また本発明の生体適合性材料は、 前記水溶性セルロース誘導体を有効成分とするので、 生体適 合性に偻れ、 血液浄化器等に利用可能である。
実施例
以下本発明を実施例及び比較例によ り更に詳細に説明する が、 本発明はこれらに限定されるものではない。
実施例 1
M P Cのセルロースへのグラ フ ト化反応、
セルロース微粉末 1 0 g を無水酢酸 3 8 mfiと永酢酸 3 8 πώ と の混合液に分散させ、 濃硫酸 4 πώを加えた後、 5 0 °Cにて 1時間撹拌し、 透明の液体を得た。 次いで得られた透明の液 体をアセ トン中に滴下して再沈殿させ、 濾過する こ と によ り 低分子化合物を除去した後、 真空乾燥してァセチルセル口一 ス 9 . 5 g を得た。 得られたァセチルセルロース 2 . 5 g に 1 N炭酸ナ ト リ ウム水溶液 5 0 mQと 3 N水酸化ナ ト リ ウム水 溶液 Ι Ο Ο ηώを加え、 撹拌して脱ァセチル化 した。 反応液に 塩酸を加えて中和し、 その溶液を透析膜内に入れ水中で 3 日 間透析して低分子物質を除去し、 水溶性セルロース水溶液を 得た。 溶液の一部を取 リ 、 加熱乾燥してセルロースの重量濃 度を決定し、 水によ り希釈して 0 . 5重量%の溶液と した。 この溶液 l O mfiに硝酸セ リ ウムアンモニ ゥム 0 . 1 7 g及び 0 . 1 N硝酸 3 πώを加えた後、 更に M P C O . 9 g を加え、 アルゴンで 1 0分間置換した。 容器に密栓を し 4 0 °Cにて 1 時間撹拌してグラ フ ト重合を行っ た。 反応終了後、 透析膜内 に入れ、 水に対して透析し、 M P Cグラ フ トセルロースを精 製した。 得られた M P Cグラ フ トセルロースの赤外吸収スぺ ク トルを FIG.1に示す。 またセルロースにグラフ 卜された M P C量はリ ンの定量によ り求めた結果、 1 0 . 1重量%であ り、 ゲルパーミ エーシヨ ンク ロマ トグラ フィーによ り求めた 分子量はポリエチレングリ コール換算で 1 . 2 X 1 0 sであ つ た。
実施例 2〜 5
M P Cの仕込み量を表 1 に示すとおり代えた以外は実施例 1 と同様に反応を行い、 M P Cグラ フ ト水溶性セルロースを 得た。 グラフ 卜された M P Cの量及び分子量の測定結果を表 1 に示す。
表 1 . 水溶性 M P Cグラ フ トセルロースの合成結果
Figure imgf000009_0001
実施例 6〜 9
キュブラアンモニゥム法によ り製造された再生セルロース 製中空糸 (内径 2 0 0 μ πι、 長さ 1 0 cm) に実施例 2〜 5で 調製した M P Cグラフ トセルロース水溶液を流速 5 mfiZ分で 通過させた。 内部に M P Cグラ フ トセルロース水溶液を満た した状態で 1 0分間放置後、 溶液を空気によ り押し出し、 そ のままただちに室温にて 3時間真空乾燥した。 被覆された M P Cグラ フ トセルロースの量を表 2 に示す。
表 2 . セルロース中空糸の 0 . 5重量% M P Cグラ フ ト セルロース水溶液によ る被覆結果
Figure imgf000010_0001
実 ½例 1 0_ 2
表 3 に示す M P Cグラ フ トセルロース水溶液を用い、 該水 溶液の濃度を 1 . 0重量% と し、 更に中空糸への通過速度を 1 Ο πώ/分に した以外は実施例 6〜 9 と同様に中空糸への Μ P Cグラ フ トセルロースの被覆を行っ た。 被覆された M P C グラ フ トセルロース量を表 3 に示す。
表 3 . セルロース中空糸の 1 . 0重量% M P Cグラ フ ト セルロース水溶液によ る被覆結果
使用 したセルロ -一ス 被覆されたセルロース量 μ g / CJ0 実施例 1 0 実施例 1 8 . 9
実施例 1 1 実施例 3 1 0 . 2
実施例 1 2 実施例 5 1 2 . 7 実施例 1 3〜 : L 8、 比較例 1及び 2
血液適合性の評価
表 4 に示す M P Cグラ フ 卜セルロースで内面を被覆したセ ルロース製中空糸 (実施例 1 3〜 1 6 ) 又は M P Cグラ フ ト セルロースで被覆していない未処理のセルロース製中空糸
(比較例 1 ) を各々 4 8 0本束ねたモジュール (総膜面積 0 1 nf ) を用いて、 家兎の頸動脈からクェン酸ナ ト リ ウム ( 0 3 8 % ) を抗凝固剤と して採取した新鮮血を流速 0 . 5 πώΖ 分で 1 時間通過させた。 その後、 生理食塩水で中空糸内部を リ ンスし、 最後に 1 . 2 5 %のグルタルアルデヒ ドを含む生 理食塩水を満たして 2時間放置した。 内部を純水で置換し凍 結乾燥した。 金蒸着のあと、 走査型電子顕微鏡 ( S E M) で 中空糸内面を観察し、 粘着している血小板数を計測した。 結 果を表 4 に示す。 また、 実施例 1 6及び比較例 1 についての S Ε Μ写真をそれぞれ FIG2及び FIG3に示す。
表 4 . セルロース中空糸への血小板粘着実験結果
Figure imgf000011_0001
また表 5 に示す M P Cグ 卜セルロースで内面を被覆し たセルロース製中空糸 (実施例 1 7及び 1 8 ) 又は M P Cグ ラ フ 卜セルロースで被覆していない未処理のセルロース製中 空糸 (比較例 2 ) を各々 4 8 0本束ねたモジュールを、 家兎 の頸動静脈間に形成した血液回路に接続し、 血流速が 2 πώ/ 分になるよ う に調節した。 抗血液凝固剤を投与しない状態で 血液が中空糸内で凝固するまでの時間を計測した。 結果を表 5 に示す。 実験終了後、 中空糸の内面を前記と同じ操作によ リ S E Mで観察した。 実施例 1 8及び比較例 2 についての S Ε Μ写真をそれぞれ FIG4及び FIG5に示す。
表 5 . セルロース中空糸への全血凝血時間
Figure imgf000012_0001
実施例 1 9〜 2 1及び比較例 3
物質透過性の測定
尿素及びク レアチニンの透析性能をそれぞれ測定した。 即 ち、 尿素の場合は 2 0 0 mg/dfiの水溶液を調製し、 この溶液 を 6 0分間、 表 6 に示す M P Cグラ フ トセルロースで内面を 被覆したセルロース製中空糸 (実施例 1 9〜 2 1 ) 又は M P Cグラ フ 卜セルロースで被覆していない未処理のセルロース 製中空糸 (比較例 3 ) を各々 4 8 C本束ねたモジュール中空 糸内を通過させた。 モジュール内の中空糸の外側に 3 O mGの 純水を循環させ、 中空糸内から透過してきた尿素量を求めた 一方ク レアチニンの場合は 2 6 mgZdfiの溶液を用い、 尿素の 場合と同様の操作で透過量を算出した。 結果を表 6 に示す。
表 6. セルロース中空糸への溶質透過実験結果
用いた中空糸 ½ 量 (ng)
尿 9R クレアチニン 実施例 19 実施例 8 9. 8 0. 68 実施例 20 実施例 9 8. 7 0. 59 実施例 21 実施例 12 9. 5 0. 63 比較例 3 未処理のセルロース中空糸 10. 8 0. 72

Claims

請 求 の 範 囲
1)水溶性セルロースに、 2 — メ タ ク リ ロ イルォキシェチルホ スホ リルコ リ ン を グラ フ ト重合させて得られる下記式 ( I )
Figure imgf000014_0001
(式中、 n は 1 〜 1 0 0 の整数を示す。 ) で表わされる構 造単位を有する水溶性セルロース誘導体。
2)前記水溶性セルロース誘導体のゲルパーミ エーシヨ ンク ロ マ ト グラ フ ィ 一によ る分子量が、 ポリ エチ レ ングリ コール 換算で 1 . 0 X 1 04〜 1 . O X 1 06である請求の範囲 1 記載の水瑢性セルロース誘導体。
3)前記水溶性セルロース誘獰体中の 2 — メ タ ク リ ロ イルォキ シェチルホスホ リルコ リ ン量が、 水溶性セルロース誘導体 全量に対して、 5 〜 7 0重量%である請求の範囲 1 記載の 水溶性セルロース誘導体。
4)前記水溶性セルロースに、 2 — メ タ ク リ ロ イルォキシェチ ルホスホ リルコ リ ン を グラ フ 卜重合させる際の 2 — メ タ ク リ ロ イルォキシェチルホスホ リルコ リ ンの仕込み量が、 水 瑢性セルロースに対して重量比で 1 0〜 1 0 0 0倍である 請求の範囲 1記載の水溶性セルロ ース誘導体。
5)請求の範囲 1記載の水溶性セルロ ース誘導体を有効成分と して含む生体適合性材料。
6 )前記生体適合性材料が、 中空糸内面に形成された被膜であ る請求項 5記載の生体適合性材料。
PCT/JP1993/000177 1992-02-13 1993-02-12 Water-soluble cellulose derivative and biocompatible material WO1993016117A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP93904301A EP0580871B1 (en) 1992-02-13 1993-02-12 Water-soluble cellulose derivative and biocompatible material
KR1019930703052A KR970007243B1 (ko) 1992-02-13 1993-02-12 수용성 셀룰로스 유도체 및 생체 적합성 재료
US08/133,167 US5368733A (en) 1992-02-13 1993-02-12 Water-soluble cellulose derivative and biocompatible material
DE69319031T DE69319031T2 (de) 1992-02-13 1993-02-12 Wasserlösliches cellulosederivat und bioverträgliches material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4/58763 1992-02-13
JP04058763A JP3138316B2 (ja) 1992-02-13 1992-02-13 水溶性グラフト重合体

Publications (1)

Publication Number Publication Date
WO1993016117A1 true WO1993016117A1 (en) 1993-08-19

Family

ID=13093587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000177 WO1993016117A1 (en) 1992-02-13 1993-02-12 Water-soluble cellulose derivative and biocompatible material

Country Status (6)

Country Link
US (1) US5368733A (ja)
EP (1) EP0580871B1 (ja)
JP (1) JP3138316B2 (ja)
KR (1) KR970007243B1 (ja)
DE (1) DE69319031T2 (ja)
WO (1) WO1993016117A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05220218A (ja) * 1992-02-13 1993-08-31 Norio Nakabayashi 抗血栓性再生セルロース系膜及びその製造方法
JP3532692B2 (ja) * 1995-04-03 2004-05-31 日本油脂株式会社 ホスホリルコリン基含有重合体水性溶液および製造方法
EP0781795B1 (en) * 1995-12-26 2003-10-15 Teijin Limited Application of sulfone containing polyalkyl ethers to medical materials
US6258371B1 (en) 1998-04-03 2001-07-10 Medtronic Inc Method for making biocompatible medical article
WO2002009857A1 (fr) * 2000-07-27 2002-02-07 Asahi Medical Co., Ltd. Membrane de fibres creuses modifiées
CN1255446C (zh) * 2001-03-02 2006-05-10 荷兰联合利华有限公司 去污聚合物以及包含它们的洗衣洗涤剂组合物
JP4248189B2 (ja) * 2002-04-09 2009-04-02 株式会社資生堂 ホスホリルコリン基含有多糖類及びその製造方法
WO2012091502A2 (ko) * 2010-12-30 2012-07-05 주식회사 케이씨아이 폴리사카라이드 기반의 그라프트 공중합체 및 이를 포함하는 퍼스날 케어용 조성물
US9919250B2 (en) * 2013-01-31 2018-03-20 The University Of Akron Filters for oil-water separation having zwitterionic polymers coated or grafted thereon
JP2015061901A (ja) * 2013-08-21 2015-04-02 学校法人東海大学 ホスホリルコリン基を有する重合体からなるナノシート分散液
CN105504328B (zh) * 2016-02-25 2018-06-29 西安科技大学 一种室温下一步涂覆改善壳聚糖膜血液相容性的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743563B2 (ja) * 1973-08-08 1982-09-16

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743563A (en) * 1980-08-28 1982-03-11 Origin Electric Co Ltd Power source equipment with unbalanced magnetization suppressing circuit
GB8618334D0 (en) * 1986-07-28 1986-09-03 Biocompatibles Ltd Polyesters
SE8703310D0 (sv) * 1987-08-26 1987-08-26 Astra Meditec Ab Articles exhibiting a blood-compatible surface layer and process for providing articles with such a surface layer
US4831097A (en) * 1988-03-21 1989-05-16 Gaf Corporation Heterocyclic containing cellulosic graft polymers
FR2657896B1 (fr) * 1990-02-05 1992-05-29 Inst Textile De France Materiau polymerique a greffons phosphates et utilisations.
JPH05220218A (ja) * 1992-02-13 1993-08-31 Norio Nakabayashi 抗血栓性再生セルロース系膜及びその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743563B2 (ja) * 1973-08-08 1982-09-16

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0580871A4 *

Also Published As

Publication number Publication date
JPH05345802A (ja) 1993-12-27
US5368733A (en) 1994-11-29
DE69319031T2 (de) 1998-10-08
EP0580871A1 (en) 1994-02-02
JP3138316B2 (ja) 2001-02-26
EP0580871A4 (en) 1994-11-30
KR970007243B1 (ko) 1997-05-07
EP0580871B1 (en) 1998-06-10
DE69319031D1 (de) 1998-07-16

Similar Documents

Publication Publication Date Title
US4329383A (en) Non-thrombogenic material comprising substrate which has been reacted with heparin
US5658561A (en) Method of producing anti-thrombogenic material and material produced thereby
US4008047A (en) Blood compatible polymers for blood oxygenation devices
Ishihara et al. Improvement of blood compatibility on cellulose dialysis membrane. III. Synthesis and performance of water‐soluble cellulose grafted with phospholipid polymer as coating material on cellulose dialysis membrane
EP0699103B1 (en) Surface modified biocompatible membranes
US4415490A (en) Non-thrombogenic material
US5543465A (en) Process for the production of hydrophilic membranes
US4308377A (en) Shaped material comprising denatured chitin and process for preparing same
US4210529A (en) Blood compatible polymers and applications thereof
JPH01244763A (ja) 医療用材料およびその製造方法
WO1993016117A1 (en) Water-soluble cellulose derivative and biocompatible material
EP0066408B1 (en) Porous membrane
CN114106493B (zh) 一种肝素化pvc材料、其制备方法及作为医疗器械的应用
Ishihara et al. Improvement of blood compatibility on cellulose hemodialysis membrane: IV. Phospholipid polymer bonded to the membrane surface
Zaman et al. Recent advancement challenges with synthesis of biocompatible hemodialysis membranes
Ishihara et al. Improvement of blood compatibility on cellulose dialysis membrane: 2. Blood compatibility of phospholipid polymer grafted cellulose membrane
EP1658126B1 (en) Surface treatment of the membrane and associated product
JP3404514B2 (ja) 抗血栓性再生セルロース系膜
JP4626005B2 (ja) 血液適合性組成物およびそれを被覆した医療用具
JPH0536065B2 (ja)
JPH1147567A (ja) 分離膜およびその製造方法
JP3170817B2 (ja) 分散性の改善された中空繊維膜およびその製法
JPH02104366A (ja) 血液透析用透析膜
US5486606A (en) Cellulosic polymer, blood-treating device, and process for producing the same
JP2977588B2 (ja) 抗血栓性ヘモフィルター

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

WWE Wipo information: entry into national phase

Ref document number: 08133167

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1993904301

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1993904301

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1993904301

Country of ref document: EP