WO1993010540A1 - Härtende vergussmassen - Google Patents

Härtende vergussmassen Download PDF

Info

Publication number
WO1993010540A1
WO1993010540A1 PCT/DE1992/000889 DE9200889W WO9310540A1 WO 1993010540 A1 WO1993010540 A1 WO 1993010540A1 DE 9200889 W DE9200889 W DE 9200889W WO 9310540 A1 WO9310540 A1 WO 9310540A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
weight
compounds according
epoxy
potting compounds
Prior art date
Application number
PCT/DE1992/000889
Other languages
English (en)
French (fr)
Inventor
Werner Pfander
Irene Jennrich
Kristian Leo
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP92922502A priority Critical patent/EP0613581A1/de
Priority to JP5508863A priority patent/JPH07501093A/ja
Publication of WO1993010540A1 publication Critical patent/WO1993010540A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/306Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • Potting compounds for filling joints or cavities are widely used in technology.
  • the casting compounds are exposed to higher temperatures after the casting. This is e.g. in the case of water-cooled generators, in which the space between the windings and the housing is filled with a heat-conducting casting compound. The heat generated is quickly dissipated to the surrounding coolant and overheating is avoided. Potting compounds with a corresponding property profile are also required for ignition coils, diodes and semiconductors, including layer hybrids.
  • reaction resins for example phenol-formaldehyde resins, unsaturated polyester resins, epoxy resins, silicone resins or polyurethanes, which generally contain fillers for physical and economic reasons, are used for this purpose. Potting compounds that can withstand high loads must fulfill a number of properties:
  • the potting compounds known hitherto have deficiencies with respect to one or more of the parameters mentioned, and therefore do not show an overall satisfactory property profile.
  • the potting compounds according to the invention avoid the disadvantages of the prior art. They are highly flowable at the usual processing temperatures of about 60 to 80 ° C. and therefore also fill cavities with a complicated geometry and areas that are difficult to access. You can use many months, for example up to 12 months, 'be stored without loss of quality practical. The curing times correspond to the requirements for efficient production.
  • the hardened casting compounds dissipate the resulting heat quickly and reliably, so that a stable, steady-state temperature is established. Their coefficient of thermal expansion is low, so that no pressures arise which are unacceptable for normally designed apparatus, machines or devices.
  • the hardened casting compounds are also able to cope with long-lasting high thermal loads with temperatures of, for example, 200 ° C. and more and show a clearly reduced tendency to form cracks during shock-like cooling. The combination of high heat resistance and extensive resistance to crack formation are particularly characteristic of the new casting compounds.
  • component (1) which may be present in the casting compounds, epoxy resins of bisphenol A (2,2-bis (4 '-hydroxyphenyl) propane), of bisphenol F (bis-) (4-hydroxyphenyl) methane) or cycl oal i phati see epoxy resins, for example those of the formula
  • Their epoxy equivalence is expediently 100 to 250.
  • the molecular weight of the resins is generally> 250, it is expediently between 275 and 1,500. So that the resins give a product with a sufficiently high molecular weight when hardened, their epoxy functionality should be at least 1.2, expediently 1, 5 to 2.5 epoxy groups per molecule. Since the resins are not chemically uniform substances, the stated functionalities as well as the molecular weights are statistical averages. Suitable epoxy resins are readily available commercially. Their proportion in the casting compounds is expediently 5 to 30% by weight.
  • an important feature of the potting compounds according to the invention is their content of an elastomer-modified epoxy resin (2), suitably with an epoxy equivalence from 180 to 400, preferably from 220 to 320.
  • Rubber-modified epoxy resins are used.
  • Resins modified by elastic silicone are preferably used, such as are known, for example, from DE-PS 36 34 084.
  • This document describes reactive resins, including epoxy resins, in which three-dimensionally crosslinked polyorganosi 1 oxane rubbers with particle sizes of 0.01 to 50 ⁇ m are embedded, which have reactive groups on their surface, for example amino, carboxy or carboxylic acid anhydride groups , have and -. - React chemically with the reactive resin before or during further processing.
  • the content of silicone rubber can vary within wide limits, it is generally between 20 and 50% by weight, based on component (2).
  • component (1) and (2) depends, among other things. on the task to be solved in each case, the resin selected and in particular its functionality and the elastomer content of component (2). It can easily be determined by preliminary tests. Depending on the required property profile of the casting compounds, component (1) can be used to a subordinate extent or can even be omitted entirely.
  • the hardeners used are the substances customary for this purpose with functionality on epoxy-reactive groups> 1, e.g. Polyamines and polycarboxylic acids or their anhydrides. Suitable hardeners are, for example, dicarboxylic anhydrides, such as phthalic anhydride.
  • the hardener is expediently used in approximately stoichiometric amounts, but an excess or deficit of, for example, up to 20 equiv.% Does not significantly influence the properties of the casting compound.
  • the filler is generally used in amounts of 40 to 75% by weight, advantageously from 50 to 65% by weight. When used in water-cooled generators, potting compounds with a proportion of filler between 55 and 60% by weight have proven particularly useful.
  • the usual inorganic substances, such as quartz sand or powder, talc, chalk, aluminum oxide or aluminum hydroxide, are used individually or in a mixture with one another.
  • An aluminum hydroxide, for example, which has previously been partially dewatered, is particularly suitable, expediently by heating to temperatures of 240 to 260 ° C. for 15 to 20 hours.
  • the fillers are generally used in grain sizes from 0.5 to 700 ⁇ m.
  • the type and amount of the filler and its particle size distribution influence not only the flow behavior during processing, but also the properties of the hardened casting compound, for example the heat 1 viability or toughness, a desired property which counteracts the formation of cracks.
  • the optimum parameters of the filler for a given application taking into account the organic components used, can be easily determined by preliminary tests.
  • the casting compounds according to the invention can consist of components (1) to (4), but they can also be others. Components included. Thus, by using one of the conventional accelerators, the time required for the casting compound to harden can be shortened.
  • the substances customary for this purpose for example imidazole or tertiary amine, are used in amounts which are expediently between 0.1 and 0.5% by weight, based on the sum of components (1) to (4).
  • the casting compound can also be colored for 1 s by incorporating a coloring inorganic or organic substance, as a pigment, color paste or solution.
  • the coloring substance is optionally added in amounts which are usually between 0.1 and 2.5% by weight, based on the sum of components (1) to (4).
  • the new casting compounds are produced in the usual way by intimately mixing the components, e.g. in one of the common compulsory mixers. They are again used in the usual way for filling cavities, i.e. they are generally poured or injected into the cavities to displace the air. The curing takes place by heating, if necessary to different temperature levels. Depending on the resin, hardener and accelerator, it generally takes up to 8 hours. The temperatures are advantageously between 90 and 180 ° C.
  • the casting compounds according to the invention generally have a viscosity of about 2,000 to about 10,000 mPa.s at 60 ° C.
  • the resulting hardened molding material shows that following property picture:
  • the casting compounds were cured and showed the following properties:
  • test specimens were quickly heated to 120 ° C. and cooled to -40 ° C. in a shock-like manner.
  • the test specimens from the casting compositions of Examples 1 and 2 showed no crack formation even after 5 passes, while the test specimen according to Example 3 already showed cracks after the first pass even if it was heated to only 60 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Die Erfindung betrifft Vergußmassen mit vorteilhaften Verarbeitungs- und Gebrauchseigenschaften, die ein Elastomer-modifiziertes Epoxid-Harz, zweckmäßig mit einem Epoxid-Aequivalentgewicht von 180 bis 400, einen Epoxid-Härter und einen Füllstoff sowie gegebenenfalls ein Epoxidharz, zweckmäßig mit einem Aequivalentgewicht von 100 bis 250, und gegebenenfalls einen Beschleuniger und/oder einen färbenden Stoff enthalten. Sie betrifft weiterhin die Verwendung dieser Vergußmassen zum Ausfüllen von Hohlräumen.

Description

Härtende Vergußmassen
Stand der Technik
Vergußmassen zum Ausfüllen von Fugen oder Hohlräumen sind in der Technik weit verbreitet. Bei vielen Verwendungen werden die Vergußmassen nach dem Vergießen höheren Temperaturen ausgesetzt. Das ist z.B. bei wassergekühlten Generatoren der Fall, bei denen der zwischen den Wicklungen und dem Gehäuse liegende Raum mit einer gut wärmeleitenden Vergußmasse aus¬ gefüllt wird. Die entstehende Wärme wird auf diese Weise rasch zur umgebenden Kühlflüssigkeit abgeführt und eine Überhitzung vermieden. Auch für Zündspulen, Dioden und Halb¬ leiter, einschließlich Schichthybride, werden Vergußmassen mit entsprechendem Eigenschaftsbild benötigt.
Für derartige Verwendungen eignen sich praktisch nur Vergu߬ massen, die nach dem Vergießen durch chemische Reaktionen aushärten. Man verwendet dazu die bekannten Reaktionsharze, beispielsweise Phenol -Formal dehyd-Harze, ungesättigte Polye¬ ster-Harze, Epoxi d-Harze, Silikon-Harze oder Polyurethane, die aus physikalischen und ökonomischen Gründen in der Regel Füllstoffe enthalten. Hoch beanspruchbare Vergußmassen müssen eine Reihe von Eigenschaften erfüllen :
- Gute Fließfähigkeit, d.h. hinreichend niedrige Viskosität bei der Verarbeitung
- ausreichende offene Zeit, d.h. gute Lagerstabilität
- hinreichende Aushärtung in kurzer Zeit
- geringer Schwund beim Aushärten und geringe Rißanfälligkeit
- hohe Wärmeleitfähigkeit
- hohe thermische Belastbarke t
- niedriger thermischer Ausdehnungskoeffizient.
Die bislang bekannten Vergußmassen weisen in bezug auf je¬ weils einen oder mehrere der genannten Parameter Mängel auf, zeigen also insgesamt kein befriedigendes Eigenschaftsbild.
Vorteile der Erfindung
Die Vergußmassen nach der Erfindung vermeiden die Nachteile des Standes der Technik. Sie sind bei den üblichen Verarbei¬ tungstemperaturen von etwa 60 bis 80°C in hohem Maße flie߬ fähig und füllen daher auch Hohlräume mit komplizierter Geo¬ metrie und schwer zugänglichen Bereichen aus. Sie können viele Monate lang, beispielsweise bis zu 12 Monate, ' ohne praktischen Qualitätsverlust gelagert werden. Die Aushär¬ tungszeiten entsprechen den Anforderungen an eine rationelle Fertigung. Die ausgehärteten Vergußmassen leiten entstehende Wärme hinreichend rasch und zuverlässig ab, so daß sich ein stabiler stationärer Temperaturzustand einstellt. Ihr Wär¬ meausdehnungskoeffizient ist gering, so daß sich keine Drücke einstellen, die für normal ausgelegte Apparate, Maschinen oder Vorrichtungen unakzeptabel sind. Die ausgehärteten Ver¬ gußmassen sind auch langanhaltenden hohen Wärmebelastungen mit Temperaturen beispielsweise von 200°C und mehr gewachsen und zeigen eine deutlich verringerte Tendenz zur Rißbildung beim schockartigen Abkühlen. Die Verbindung von hoher Wärme¬ standfestigkeit und weitgehender Beständigkeit gegen Rißbil¬ dung zeichnen die neuen Vergußmassen besonders aus.
Beschreibung der Erfindung
Vergußmassen nach den Patentansprüchen weisen das beschrie- bene vorteilhafte Eigenschaftsbild auf. Man verwendet als Komponente (1), die in den Vergußmassen zugegen sein kann, zweckmäßig Epoxid-Harze von Bisphenol A (2,2-Bi s- (4 ' -hydro- xyphenyl ) -propan) , von Bisphenol F (Bi s- (4-hydroxyphenyl ) -me- than) oder cycl oal i phati sehe Epoxid-Harze, z.B. solche der Formel
Figure imgf000005_0001
Ihr Epoxid-Aequi val entgewi cht beträgt zweckmäßig 100 bis 250. Natürlich ist es auch möglich, Gemische verschiedener Harze der genannten Art zu verwenden. Das Molgewicht der Harze be¬ trägt in der Regel > 250, es liegt zweckmäßig zwischen 275 und 1 500. Damit die Harze beim Aushärten ein Produkt mit hinreichend hohem Molgewicht ergeben, sollte ihre Epoxid- Funkti onal itat mindestens 1,2, zweckmäßig 1,5 bis 2,5 Epo- xid-Gruppen je Molekül betragen. Da die Harze keine chemisch einheitlichen Stoffe sind, handelt es sich bei den angegebe¬ nen Funktionalitäten ebenso wie bei den Molgewichten um sta¬ tistische Mittelwerte. Geeignete Epoxid-Harze sind im Handel ohne weiteres erhältlich. Ihr Anteil in den Vergußmassen beträgt zweckmäßig 5 bis 30 Gew. .
Ein wichtiges Merkmal der Vergußmassen nach der Erfindung ist ihr Gehalt an einem El astomer-modi fi zi erten Epoxid-Harz (2), zweckmäßig mit einem Epoxi d-Aequi val entgewi cht von 180 bis 400, vorzugsweise von 220 bis 320. Beispielsweise können Kautschuk- odifizi erte Epoxid-Harze eingesetzt werden. Bevor¬ zugt werden durch elasto eres Silikon modifizierte Harze ver¬ wendet, wie sie z.B. aus der DE-PS 36 34 084 bekannt sind. Diese Schrift beschreibt Reaktionsharze, darunter auch Epo¬ xidharze, in die dreidimensional vernetzte Pol iorganosi 1 oxan- kautschuke mit Tei 1 chengrößen von 0.01 bis 50 μm eingelagert sind, die an ihrer Oberfläche reaktive Gruppen, z.B. Amino-, Carboxy- oder Carbonsäureanhydrid-Gruppen, aufweisen und da- - . - her vor oder bei der Weiterverarbeitung chemisch mit dem Reaktionsharz reagieren. Der Gehalt an Sili onkautschuk kann in weiten Grenzen schwanken, er liegt im allgemeinen zwischen 20 und 50 Gew.%, bezogen auf die Komponente (2).
Das optimale Mengenverhältnis der Komponenten (1) und (2) hängt u.a. von der jeweils zu lösenden Aufgabe, dem gewählten Harz und insbesondere dessen Funktionalität sowie dem Elasto¬ meranteil der Komponente (2) ab. Es läßt sich durch Vorversu¬ che unschwer ermitteln. Je nach dem geforderten Eigenschafts- profil der Vergußmassen kann die Komponente (1) in unter¬ geordnetem Umfang eingesetzt werden oder auch ganz entfallen.
Als Härter verwendet man die für diesen Zweck üblichen Stof¬ fe mit einer Funktionalität an epoxyreaktiven Gruppen >1, z.B. Polyamine sowie Polycarbonsäuren oder deren Anhydride. Geeignete Härter sind beispielsweise Dicarbonsäureanhydride, wie Phthal säureanhydrid. Man wendet den Härter zweckmäßig in etwa stöchio etrischen Mengen an, doch beeinflusst ein Über¬ oder Unterschuß von beispielsweise bis zu 20 Aequiv.% die Eigenschaften der Vergußmasse nicht nennenswert.
Der Füllstoff wird im allgemeinen in Mengen von 40 bis 75 Gew.%, zweckmäßig von 50 bis 65 Gew.% eingesetzt. Bei Ver¬ wendung in wassergekühlten Generatoren haben sich Vergußmas¬ sen mit einem Anteil an Füllstoff zwischen 55 und 60 Gew.% besonders bewährt. Man verwendet die üblichen anorganischen Stoffe, wie Quarzsand oder -mehl, Talkum, Kreide, Aluminium- oxid oder Aluminiumhydroxid, jeweils für sich oder im Ge¬ misch miteinander. Gut geeignet ist z.B. ein Aluminiumhydro¬ xid, das zuvor teil entwässert wurde, zweckmäßig durch 15 bis 20-stündiges Erhitzen auf Temperaturen von 240 bis 260°C. Die Füllstoffe werden im allgemeinen in Korngrößen von 0,5 bis 700 μm verwendet. Art und Menge des Füllstoffes sowie dessen Korngrößenverteilung beeinflussen nicht nur das Flie߬ verhalten bei der Verarbeitung, sondern auch die Eigenschaf¬ ten der ausgehärteten Vergußmasse, beispielsweise die Wärme- 1 ei tfähigkeit oder die Zähigkeit, eine erwünschte, der Ri߬ bildung entgegenwirkende Eigenschaft. Die für einen gegebenen Einsatzzweck unter Berücksichtigung der eingesetzten organi¬ schen Komponenten optimalen Parameter des Füllstoffes lassen sich durch Vorversuche unschwer ermitteln.
Die Vergußmassen nach der Erfindung können aus den Komponen¬ ten (1) bis (4) bestehen, sie können aber auch noch weitere . Bestandteile enthalten. So läßt sich durch Mitverwendung ei¬ nes der üblichen Beschleuniger die für das Aushärten der Vergußmasse erforderliche Zeit verkürzen. Man wendet die für diesen Zweck üblichen Stoffe, beispielsweise Imidazol oder tertiäre A ine, in Mengen an, die zweckmäßig zwischen 0,1 und 0,5 Gew.%, bezogen aof die Summe der Komponenten (1) bis (4), liegen.
Auch kann man gewünschtenfal 1 s die Vergußmasse einfärben, indem man einen färbenden anorganischen oder organischen Stoff, als Pigment, Farbpaste oder -lösung, einarbeitet. Der färbende Stoff wird gegebenfalls in Mengen zugesetzt, die üblicherweise zwischen 0,1 und 2,5 Gew.%, bezogen auf die Summe der Komponenten (1) bis (4), betragen.
Die neuen Vergußmassen werden in üblicher Weise hergestellt, indem man die Bestandteile innig vermischt, z.B. in einem der gebräuchlichen Zwangsmischer. Sie werden wiederum in üblicher Weise zur Füllung von Hohlräumen eingesetzt, d.h. sie werden im allgemeinen unter Verdrängung der Luft in die Hohlräume gegossen oder gespritzt. Die Aushärtung erfolgt durch Erhit¬ zen, gegebenfalls auf verschiedene Temperaturstufen. Sie nimmt im allgemeinen, je nach Harz, Härter und Beschleuniger, bis zu 8 Stunden in Anspruch. Die Temperaturen liegen dabei vorteilhaft zwischen 90 und 180°C.
Die Vergußmassen nach der Erfindung weisen im allgemeinen bei 60 °C eine Viskosität von etwa 2.000 bis etwa 10.000 mPa.s auf. Der entstehende gehärtete Formstoff zeigt das folgende Eigenschaftsbild :
- linearer thermischer Ausdehnungs¬ koeffizient a 30 - 50 . lθ"5 (1/°C)
- Glasumwandlungstemperatur Tg 130 - 200 °C
- Wärmeleitfähigkeit 0,8 - 1,8 W/mK
- linearer Schwund 0 bis 0,4 %
Beispiele
Die in der folgenden Tabelle genannten Einzelkomponenten wur¬ den in einem Rührgefäß innig gemischt. Die Prozentangaben be¬ deuten Gewichtsprozente.
Tabelle
Beispiele
(Vergleichs' beispiel)
Einzel omponenten
- Abmischung aus Bisphenol-A- - - 15 % Epoxidharz (70%) und cycloa- liphatischem EP-Harz der zuvor genannten Formel (30%)
- cycl oal iphati sches Epoxi d-Harz
(I)*, Si-elastomermodifiziert 25,5%
- cycloaliphatisches Epoxidharz - 26 % (II)*, Si-elastomermodifiziert
- Methyltetrahydrophthalsäure- - - 15 % anhydrid
- Methylnadicsäureanhydrid 17,3 % 17,0 % ( Methyl-endomethylentetra- hydrophthalsäureaπhydrid )
- Imidazol 0,1 % 0,1 % 0,1 % Quarzmehl 33 %
AI umi ni umhydroxi d 36,9 %
AI umini umoxid 57,1 %
teilentwässertes Alumini 56,9 umhydroxid ( A100H )
Eingesetzte Epoxidharze
Figure imgf000009_0001
(I) (II)
Die Vergußmassen wurden ausgehärtet und zeigten die folgenden Eigenschaften :
- linearer thermischer 50 36 30 Ausdehnungskoeffizient
( 10"* (1/°C)
- Glasumwandlungstemp. Tg (°C) 163 195 129
- Wärmeleitfähigkeit (W/mK) 0,97 0,85 1.49
- linearer Schwund (%) +0,04 +0,40 -0,25
Die Tendenz zur Rißbildung wurde durch Temperaturwechsel ver¬ suche bestimmt. Dazu wurden Probekörper rasch auf 120°C er¬ hitzt und schockartig auf -40°C abgekühlt. Die Probekörper aus den Gußmassen der Beispiele 1 und 2 zeigten auch nach 5 Durchgängen keinerlei Rißbildung, während der Probekörper nach Beispiel 3 nach dem ersten Durchgang selbst dann schon Risse aufwies, wenn er auch nur auf 60°C erhitzt wurde.

Claims

Patentansprüche - 8 -
1. Vergußmassen auf Basis von durch chemische Reaktion här¬ tenden Harzen, enthaltend
(1) 0 bis 30 Gew.% eines Epoxid-Harzes
(2) 20 bis 50 Gew.% eines Elasto er-modifizierten Epoxid-Harzes
(3) 10 bis 25 Gew.% eines Epox d-Härters
(4) 40 bis 75 Gew.% eines Füllstoffes,
wobei sich die Gewichtsprozente jeweils auf die Summe der Komponenten (1) bis (4) beziehen.
2. Vergußmassen nach Anspruch 1, dadurch gekennzeichnet, daß das Epoxid-Harz (1) ein Epoxid-Aequivalentgewicht von 100 bis 250 besitzt.
3. Vergußmassen nach den Ansprüchen 1 oder 2, dadurch ge¬ kennzeichnet, daß das Elastomer-modifizerte Epoxid-Harz ein Epoxid-Aequivalentgewicht von 180 bis 400 besitzt.
4. Vergußmassen nach den Ansprüchen 1 bis 3, dadurch gekenn¬ zeichnet, daß das Epoxid-Harz ein Harz auf Basis Bisphenol A oder Bisphenol F oder ein cycloaliphatisches Epoxid-Harz, je¬ weils mit einer Epoxid-Funktionalität von 1,2 bis 2,5, ist.
5. Vergußmassen nach den Ansprüchen 1 bis 4, dadurch gekenn¬ zeichnet, daß das Elasto er-modifizierte Epoxid-Harz Sili- kon- odifiziert ist.
6. Vergußmassen nach den Ansprüchen 1 bis 5, dadurch gekenn¬ zeichnet, daß sie zusätzlich einen Beschleuniger enthalten.
7. Vergußmassen nach den Ansprüchen 1 bis 6, dadurch gekenn¬ zeichnet, daß sie zusätzlich einen färbenden Stoff enthalten.
8. Verwendung von Vergußmassen nach den Ansprüchen 1 bis 7 zum Ausfüllen von Hohlräumen.
PCT/DE1992/000889 1991-11-22 1992-10-23 Härtende vergussmassen WO1993010540A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP92922502A EP0613581A1 (de) 1991-11-22 1992-10-23 Härtende vergussmassen
JP5508863A JPH07501093A (ja) 1991-11-22 1992-10-23 硬化性封止用コンパウンド

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19914138411 DE4138411C2 (de) 1991-11-22 1991-11-22 Härtende Vergußmassen
DEP4138411.3 1991-11-22

Publications (1)

Publication Number Publication Date
WO1993010540A1 true WO1993010540A1 (de) 1993-05-27

Family

ID=6445342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1992/000889 WO1993010540A1 (de) 1991-11-22 1992-10-23 Härtende vergussmassen

Country Status (4)

Country Link
EP (1) EP0613581A1 (de)
JP (1) JPH07501093A (de)
DE (1) DE4138411C2 (de)
WO (1) WO1993010540A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2751977A1 (fr) * 1996-07-30 1998-02-06 Nippon Kayaku Kk Composition liquide de resine epoxy, produit durci de cette composition et element a semi-conducteur encapsule avec ce produit durci

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10057111C1 (de) 2000-11-16 2002-04-11 Bosch Gmbh Robert Wärmeleitfähige Vergußmasse
DE10131116A1 (de) * 2001-06-28 2003-01-23 Siemens Linear Motor Systems G Vergossenes Motorteil für einen Elektromotor und Verfahren zu seiner Herstellung
JP7244177B2 (ja) * 2018-11-12 2023-03-22 株式会社ダイセル 硬化性組成物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4518631A (en) * 1983-11-14 1985-05-21 Dow Corning Corporation Thixotropic curable coating compositions
US4529755A (en) * 1982-10-23 1985-07-16 Denki Kagaku Kogyo Kabushiki Kaisha Epoxy resin composition for encapsulating semiconductor
EP0266513A2 (de) * 1986-10-07 1988-05-11 hanse chemie GmbH Modifiziertes Reaktionsharz, Verfahren zu seiner Herstellung und seine Verwendung

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137125A (en) * 1979-04-12 1980-10-25 Nippon Soda Co Ltd Production of polybutadiene-modified epoxy resin
DE3229558C2 (de) * 1982-08-07 1984-11-08 Robert Bosch Gmbh, 7000 Stuttgart Imprägniervergußmasse für elektrische Bauteile
JPS6064483A (ja) * 1983-09-20 1985-04-13 Toshiba Corp 樹脂封止型発光装置
US4665111A (en) * 1984-10-12 1987-05-12 Siemens Aktiengesellschaft Casting compound for electrical and electronic components and modules
JPS61192720A (ja) * 1985-02-22 1986-08-27 Nippon Oil Co Ltd 積層板用樹脂組成物
JPS63273624A (ja) * 1987-05-01 1988-11-10 Ube Ind Ltd エポキシ樹脂組成物
JPH01113454A (ja) * 1987-10-26 1989-05-02 Matsushita Electric Works Ltd エポキシ樹脂組成物の製法
DE68928275T2 (de) * 1988-11-25 1998-01-15 Kanegafuchi Chemical Ind Härtbare Zweikomponentenzusammensetzung, enthaltend Epoxidharz und ein Silizium umfassendes elastomerisches Polymer
DE3913488C2 (de) * 1989-04-25 1994-02-03 Bosch Gmbh Robert Vergußmasse für elektrische und elektronische Bauteile

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4529755A (en) * 1982-10-23 1985-07-16 Denki Kagaku Kogyo Kabushiki Kaisha Epoxy resin composition for encapsulating semiconductor
US4518631A (en) * 1983-11-14 1985-05-21 Dow Corning Corporation Thixotropic curable coating compositions
EP0266513A2 (de) * 1986-10-07 1988-05-11 hanse chemie GmbH Modifiziertes Reaktionsharz, Verfahren zu seiner Herstellung und seine Verwendung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2751977A1 (fr) * 1996-07-30 1998-02-06 Nippon Kayaku Kk Composition liquide de resine epoxy, produit durci de cette composition et element a semi-conducteur encapsule avec ce produit durci

Also Published As

Publication number Publication date
DE4138411C2 (de) 1995-01-26
DE4138411A1 (de) 1993-05-27
EP0613581A1 (de) 1994-09-07
JPH07501093A (ja) 1995-02-02

Similar Documents

Publication Publication Date Title
DE102009053965B4 (de) Mit einer Vergussmasse vergossene Gradientenspule
DE69222670T2 (de) Epoxyharzzusammensetzung zur Verkapselung einer Halbleiteranordnung
DE102010022523B4 (de) Gradientenspule mit in einer Vergussmasse vergossenen Spulenwicklungen
EP2904049B1 (de) Wärmeleitfähiges polymer und harzzusammensetzungen zur herstellung desselben
DE1569172A1 (de) Lactonpolyester-Epoxyharze
DE60016879T2 (de) Gießharz und Verfahren zur Herstellung von Harzformen
DE1931053A1 (de) Verfahren zur Herstellung von Kunstharzbeton
DE3141955A1 (de) Reaktionsharzmassen und daraus hergestellte formstoffe
WO1993010540A1 (de) Härtende vergussmassen
DE69615737T2 (de) Verfahren zur Herstellung elektrisch isolierter Spulen
DE3913488C2 (de) Vergußmasse für elektrische und elektronische Bauteile
CN106751480B (zh) 一种层状无机填料/环氧树脂纳米复合材料及其制备方法
DE2156700C3 (de) Fließfähige Preßmasse mit definierter elektrischer Leitfähigkeit
DE102012202161A1 (de) Elektroisolierharz auf Basis von Isohexiddioldiglycidethern
EP0077966B1 (de) Verfahren zur Herstellung von Reaktionsharzsystemen
DE102013205117A1 (de) Vergussmasse, Verwendung der Vergussmasse, thermisch gehärteter Komposit erhältlich aus der Vergussmasse und elektrische Maschine mit der Vergussmasse
DE4141963A1 (de) Harzzusammensetzung, insbesondere giessharz
US3943217A (en) Process for manufacturing bodies of various shapes from inorganic powders
DE2230653A1 (de) Lagerstabile, schnellhärtende Epoxidharzpressmassen
EP0038292B2 (de) Verwendung von synthetischem kristallinem Calciumsilikat
DE2416408C3 (de) Wärmehärtbare Gemische auf der Basis eines Epoxyharzes und einer komplexen Imidazoliumsalzverbindung und ihr Herstellungsverfahren
DE2228583C2 (de) Lagerstabile, schnellhärtende Epoxidharzpressmassen;
DE602004000392T2 (de) Homogene Alumoxan-LCT-Epoxidharz Polymere und Herstellungsverfahren
EP1568733A1 (de) Füllstoff bestehend aus mit Organopolysiloxan beschichteten porösen anorganischen Füllstoffteilchen zur Verwendung in härtbaren Vergussmassen
DE3137898A1 (de) Epoxidharzmasse zum einbetten von bauteilen der autoelektronik

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE

WWE Wipo information: entry into national phase

Ref document number: 1992922502

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1994 244257

Date of ref document: 19940520

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1992922502

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1992922502

Country of ref document: EP