WO1993010427A1 - Vakuumdicht gekapselter fühler für ein thermoelement - Google Patents

Vakuumdicht gekapselter fühler für ein thermoelement Download PDF

Info

Publication number
WO1993010427A1
WO1993010427A1 PCT/DE1992/000942 DE9200942W WO9310427A1 WO 1993010427 A1 WO1993010427 A1 WO 1993010427A1 DE 9200942 W DE9200942 W DE 9200942W WO 9310427 A1 WO9310427 A1 WO 9310427A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective tube
wires
sensor according
transparent
heat radiation
Prior art date
Application number
PCT/DE1992/000942
Other languages
English (en)
French (fr)
Inventor
Dittmar Winterhagen
Martin Turwitt
Thomas Jansing
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP92923077A priority Critical patent/EP0613551A1/de
Priority to JP5508874A priority patent/JPH07501144A/ja
Publication of WO1993010427A1 publication Critical patent/WO1993010427A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/08Protective devices, e.g. casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/16Special arrangements for conducting heat from the object to the sensitive element
    • G01K1/18Special arrangements for conducting heat from the object to the sensitive element for reducing thermal inertia

Definitions

  • thermocouple Vacuum-sealed sensor for a thermocouple
  • the present invention relates to a sensor for a thermocouple for measuring temperatures up to a maximum temperature with wires which are led into a protective tube and are connected to one another at a connection point therein.
  • thermocouple is used to measure temperatures, especially high temperatures. Such a measurement takes advantage of the fact that an electrical contact voltage occurs at a connection point between two electrical conductors with different exit functions that have to be performed in order to detach an electron from the respective conductor. This contact voltage arises from the diffusion of electrons from one conductor into the other conductor and is therefore temperature-dependent.
  • a thermocouple usually contains conductors made of two different materials, which are connected to one another at two connection points. The difference that can be measured in such an arrangement between the contact voltages at the two connection points, which have different temperatures, is referred to as thermal voltage.
  • the conductors are usually wire-shaped, consist of different metals or metal alloys and are connected to one another at the connection points, in particular soldered. One connection point is kept at a fixed reference temperature. The other connection point is exposed to the temperature to be measured, especially in a sensor.
  • This tube can consist of a ceramic (cf. DE-B-20 21 044) or an oxide crystal (cf. DE-A-14 89 263), of course only in the form of an agglomeration of crystalline particles.
  • these protective tubes are not transparent, especially not for
  • thermocouples available for this purpose, especially when working in an oxidizing atmosphere.
  • the object of the present invention is accordingly to provide a sensor of the type mentioned at the beginning for a thermocouple which can also be used in an oxidizing atmosphere at a very high maximum temperature, in particular well above 1800 ° C.
  • This object is achieved according to the invention in that the protective tube consists of a single crystal
  • a transparent material is understood to mean a material which is permeable to heat radiation, in particular a material in which the transmission of heat radiation clearly outweighs the absorption of heat radiation.
  • the material for the protective tube of the sensor is transparent to heat radiation, in particular to radiation in the infrared range, heat is transferred from the environment to the connection point in the guide.
  • wires of the sensor are expediently held within the protective tube 25 in order to reduce the mechanical stresses from the outside, in particular to avoid short-circuiting.
  • these brackets are made of the same ceramic as the outer protective tube. Impairment of the heat resistance, which could otherwise occur due to the different thermal expansions of two materials, is avoided in this way.
  • the protective tube is evacuated and sealed vacuum-tight. This prevents corrosion of the wires and the connection point.
  • the atmosphere inside the protective tube is inert. It consists e.g. B. from argon, helium or another inert gas.
  • the wires and the connection point of the sensor are also protected against corrosion.
  • Alloys of platinum or tungsten on the one hand and rhodium or rhenium on the other hand are advantageous as materials for the conductors, in particular the wires.
  • a thermocouple containing wires made of platinum / rhodium is suitable for measuring temperatures down to at least 1800 ° C, wires made of tungsten / rhenium are also suitable for significantly higher temperatures. Combinations of alloy wires with metals or metal alloys different from wire to wire are also possible.
  • the wires are conveniently inserted into the protective tube through a closure cap. The cover closes the protective tube and is made of a heat-resistant material.
  • the maximum temperature is preferably above 1800 ° C., in particular in the range up to approximately 2200 ° C.
  • the encapsulated sensor shown comprises two wires 1, 2 made of platinum / rhodium alloys or tungsten / rhenium alloys of different compositions.
  • the wires 1, 2 are soldered to one another at a connection point 3.
  • the wires 1, 2 are held in a holder 4, and this holder 4 is in turn held in a protective tube 5 closed at the end.
  • Bracket 4 and protective tube 5 each consist of a transparent material for heat radiation, for. B. made of aluminum oxide (A1 2 0,).
  • the protective tube 5 is closed at its upper end with a cover 6 made of a high-temperature resistant, not necessarily particularly permeable to heat radiation permeable material.
  • the wires 1, 2 are guided to the outside through bores in the cover 6 which are closed in a vacuum-tight manner.
  • One wire 1 leads to the connection point in the reference guide 1st
  • the other wire 2 is to a measuring device, not shown here, for. B. to a moving coil galvanometer, in which the thermal voltage generated by the action of heat on the connection point 3 shown is measured.
  • the bracket 4 is soldered to the lid 6.
  • the cover 6 is also connected to the protective tube 5 by soldering.
  • Glass solders are preferably used as the soldering material, but the use of ceramic solders or adhesives is also possible.
  • the use of these solders causes the leadthroughs of the wires 1, 2 through the cover 6 to be vacuum-tight and electrically insulated.
  • the protective tube 5 is evacuated or it has an atmosphere of an inert gas, preferably under negative pressure.
  • the sensor shown is not exposed to corrosion due to the selected structure and is therefore subject to only minimal wear. Because of the nature of the protective tube 5, long-term temperature resistance of the sensor is guaranteed. By selecting the material for the protective tube 5 that is transparent for heat radiation, the sensor responds very quickly to changes in temperature.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

Der Fühler ist für die Verwendung in oxidierender Atmosphäre bei Temperaturen im Bereich auch oberhalb von 1.800 °C vorgesehen. Der Fühler enthält Drähte (1, 2), die in ein Schutzrohr (5) hineingeführt und darin an einer Verbindungsstelle (3) miteinander verbunden sind. Das Schutzrohr (5) ist aus einer in Form eines Einkristalls vorliegenden für Wärmestrahlung transparenten Keramik oder aus einem für Wärmestrahlung transparenten Oxidkristall, z.B. aus Al2O3 (Saphir) oder ZrO2, gefertigt. Ein solcher Werkstoff weist bei guter mechanischer Festigkeit und hoher Korrosionsbeständigkeit eine gute Durchlässigkeit für Infrarotstrahlung auf. Eine die Drähte (1, 2) des Thermofühlers stützende Halterung (4) ist zweckmäßigerweise aus dem gleichen Material. Der Raum innerhalb des Schutzrohres (5) kann evakuiert oder mit einem Inertgas gefüllt sein. Der Fühler besitzt eine ausgezeichnete Langzeit-Temperaturbeständigkeit und spricht äußerst schnell auf Temperaturänderungen an. Es lassen sich mit ihm Temperaturen bis ca. 2200 °C messen.

Description

Vakuumdicht gekapselter Fühler für ein Thermoelement
Die vorliegende Erfindung betrifft einen Fühler für ein Thermoelement zur Messung von Temperaturen bis zu einer maximalen Temperatur mit Drähten, die in ein Schutzrohr hineingeführt und darin an einer Verbindungsstelle mit¬ einander verbunden sind.
Ein Thermoelement dient zur Messung von Temperaturen, ins- besondere hohen Temperaturen. Bei einer solchen Messung wird ausgenutzt, daß an einer Verbindungsstelle zweier elektrischer Leiter mit unterschiedlichen Austrittsarbei¬ ten, die geleistet werden müssen, um ein Elektron aus dem jeweiligen Leiter herauszulösen, eine elektrische Kontakt- Spannung auftritt. Diese Kontaktspannung entsteht durch Dif¬ fusion von Elektronen von einem Leiter in den anderen Lei¬ ter hinein und ist somit temperaturabhängig. Üblicherweise enthält ein Thermoelement Leiter aus zwei verschiedenen Ma¬ terialien, die an zwei Verbindungsstellen miteinander ver- bunden sind. Die in einer solchen Anordnung meßbare Diffe¬ renz zwischen den Kontaktspannungen an den beiden Verbin¬ dungsstellen, die unterschiedliche Temperaturen aufweisen, wird als Thermospannung bezeichnet. Die Leiter weisen üb¬ licherweise Drahtform auf, bestehen aus unterschiedlichen Metallen oder Metallegierungen und sind an den Verbindungs¬ stellen miteinander verbunden, insbesondere verlötet. Die eine Verbindungsstelle wird dabei auf einer festen Refe¬ renztemperatur gehalten. Die andere Verbindungsstelle wird, insbesondere in einem Fühler, der zu messenden Temperatur ausgesetzt.
Zum Schutz vor mechanischen Beschädigungen ist es üblich, die Lötstellen jeweils innerhalb eines Schutzrohres anzu- 1
ordnen. Dieses Rohr kann aus einer Keramik (vgl. DE-B-20 21 044) oder aus einem Oxidkristall (vgl. DE-A-14 89 263) bestehen, freilich nur in Gestalt einer Agglomeration von kristallinen Partikeln. Im herkömmlichen Sinne sind diese Schutzrohre nicht transparent, insbesondere nicht für
Infrarotstrahlung; der Wärmeübergang an die nicht auf der Referenztemperatur befindliche Verbindungsstelle in dem Fühler geschieht ausschließlich durch Wärmeleitung durch das Schutzrohr hindurch. Dies führt zu erheblichen Zeit- Verzögerungen beim Ansprechen und macht infolge der Träg¬ heit des Vorganges eine Verfolgung rascher Temperatur¬ schwankungen unmöglich. Bei Auswahl geeigneter Materialien für die Leiter, z. B. einer Platin-Rhodium/Platin-Rhodium- Paarung (mit jeweils unterschiedlichen Legierungsanteilen in den Leitern), können Messungen bis zu ca. 1.800* C durchgeführt werden. Aus der VDI-Zeitschrift 1969, Nr. 24, S. 1706 - 1712, ist es auch bekannt, die der zu messenden Temperatur ausgesetzte Verbindungsstelle des Thermoele¬ ments in einer Atmosphäre aus inertem Schutzgas anzuord- nen.
Nachdem jetzt elektrische Heizer oder Öfen zur Verfügung stehen, mit deren Hilfe deutlich höhere Temperaturen als 1800° C im praktischen Betrieb erreicht werden können, ist es wünschenswert, Thermoelemente hierfür zur Verfügung zu haben, insbesondere auch dann, wenn bei oxidierender Atmosphäre gearbeitet wird.
Aufgabe der vorliegenden Erfindung ist demnach die Angabe eines Fühlers der eingangs genannten Art für ein Thermo¬ element, der bei einer sehr hohen maximalen Temperatur, insbesondere deutlich über 1800° C, auch in oxidierender Atmosphäre eingesetzt werden kann. Die Lösung dieser Aufgabe erfolgt erfindungsgemäß dadurch, daß das Schutzrohr aus einer in Form eines Einkristalls
*••» vorliegenden, für Wärmestrahlung transparenten Keramik oder aus einem für Wärmestrahlung transparenten Oxidkri¬ stall mit einem Schmelzpunkt oberhalb der maximalen Tem¬ peratur besteht. Dabei ist auch gemeint, daß das Schutz¬ rohr aus der Keramik bzw. dem Oxidkristall herausgearbei¬ tet sein kann.
10 Unter einem transparenten Material wird im Sinne der Er¬ findung ein Material verstanden, welches für Wärmestrah¬ lung durchlässig ist, insbesondere ein Material, bei dem die Transmission von Wärmestrahlung deutlich gegenüber der Absorption von Wärmestrahlung überwiegt.
15
Da das Material für das Schutzrohr des Fühlers für Wärme¬ strahlung, insbesondere für Strahlung im infraroten Be¬ reich, transparent ist, erfolgt eine Übertragung von Wär¬ me aus der Umgebung auf die Verbindungsstelle in dem Füh-
20 1er nicht in der Hauptsache durch Wärmeleitung, sondern vor allem durch Wärmestrahlung. Damit kann der Fühler auf Temperaturänderungen sehr schnell reagieren.
Die Drähte des Fühlers sind innerhalb des Schutzrohres 25 zweckmäßigerweise gehaltert, um die mechanischen Beanspru¬ chungen von außen zu verringern, insbesondere ein Kurz¬ schließen zu vermeiden. In weiterer Ausgestaltung sind diese Halterungen aus der gleichen Keramik wie das äußere Schutzrohr hergestellt. Beeinträchtigungen der Warmfestig- 30 keit, die sonst durch die unterschiedlichen Wärmedehnungen zweier Materialien auftreten könnten, werden so vermieden.
In einer weiteren Ausbildung ist das Schutzrohr evakuiert und vakuumdicht verschlossen. Einer Korrosion der Drähte und der Verbindungsstelle wird so vorgebeugt.
In einer alternativen Ausführungsform ist die Atmosphäre innerhalb des Schutzrohres inert. Sie besteht z. B. aus Argon, Helium oder einem anderen inerten Gas. Auch so sind die Drähte und die Verbindungsstelle des Fühlers vor Korrosion geschützt.
Als geeignete Werkstoffe, die sowohl die erforderliche
Temperaturfestigkeit aufweisen als auch im Infrarotbereich des elektromagnetischen Wellenspektrums die erforderliche Durchlässigkeit besitzen, kommen z. B. Saphir (Al^O,)- oder Zirkonoxid (Zr02)-Einkristalle in Frage. Diese Werk- stoffe weisen neben einer hohen Korrosionsbeständigkeit eine gute mechanische Festigkeit auf und bieten dem Durch¬ gang der Wärmestrahlung kein nennenswertes Hindernis. Aus den genannten Werkstoffen Saphir und Zirkonoxid lassen sich ohne besondere Schwierigkeiten Einkristalle der be- nötigten Größe züchten, die gegebenenfalls mittels geeig¬ neter Verfahren, z. B. durch Ultraschallbohren und ähnli¬ che Ultraschallzerspanungsverfahren, formgebend bearbei¬ tet werden können.
Als Materialien für die Leiter, insbesondere die Drähte, bieten sich vorteilhaft Legierungen aus Platin oder Wolf¬ ram einerseits und Rhodium oder Rhenium andererseits an. Ein Thermoelement enthaltend Drähte aus Platin/Rhodium eignet sich für die Messung von Temperaturen bis minde- stens 1800° C, Drähte aus Wolfram/Rhenium auch für deut¬ lich höhere Temperaturen. Kombinationen von Drähten aus Legierungen mit von Draht zu Draht verschiedenen Metallen oder Metallegierungen sind ebenfalls möglich. Die Drähte sind günstigerweise durch einen Verschlußdek- kel in das Schutzrohr hineingeführt. Der Verschlußdeckel schließt das Schutzrohr ab und ist aus einem hitzebestäπ- digen Material gefertigt.
Die maximale Temperatur liegt vorzugsweise oberhalb von 1800° C, insbesondere im Bereich bis ca. 2200° C.
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung im Axiallängsschnitt dargestellt.
Für den Einsatz in Hochtemperaturöfen bei Temperaturen bis zu 2200° C in unterschiedlichen Atmosphären umfaßt der dargestellte gekapselte Fühler zwei Drähte 1, 2 aus Pla- tin/Rhodium-Legierungen oder Wolfram/Rhenium-Legierungen verschiedener Zusammensetzung. Die Drähte 1, 2 sind an ei¬ ner Verbindungsstelle 3 miteinander verlötet. Eine weite¬ re, nicht gezeigte Verbindungsstelle bildet einen ebenfalls nicht gezeigten Referenz-Fühler, der mit dem dargestellten Fühler 1, 2 und einem nicht gezeigten Meßgerät für die Ther- mospannuπg das Thermoelement bildet. Die Drähte 1, 2 sind in einer Halterung 4 gehaltert, und diese Halterung 4 wie¬ derum ist in einem endseitig geschlossenen Schutzrohr 5 ge¬ halten. Halterung 4 und Schutzrohr 5 bestehen jeweils aus einem für Wärmestrahlung transparenten Material, z. B. aus Aluminiumoxid (A120,). Sie sind aus einem Einkristall (Sa¬ phir) dieses Stoffes herausgearbeitet. Das Schutzrohr 5 ist an seinem oberen Ende mit einem Deckel 6 aus einem hochtemperaraturbeständigen, nicht notwendigerweise für Wärmestrahlung besonders durchlässigen Stoff vakuumdicht verschlossen. Die Drähte 1, 2 si-d durch vakuumdicht ver¬ schlossene Bohrungen im Deckel 6 nach außen geführt. Der eine Draht 1 führt zur Verbindungsstelle im Referenz-Füh- 1er. Der andere Draht 2 ist zu einem hier nicht gezeigten Meßgerät, z. B. zu einem Drehspulgalvanometer, geführt, in dem die durch die Einwirkung der Wärme auf die gezeigte Verbindungsstelle 3 erzeugte Thermospannung gemessen wird.
Die Halterung 4 ist am Deckel 6 angelötet. Der Deckel 6 ist ebenfalls durch Löten mit dem Schutzrohr 5 verbunden. Als Lötmaterial werden vorzugsweise Glaslote verwendet, aber auch die Verwendung von keramischen Loten oder Kle- bern ist möglich. Die Verwendung dieser Lote bewirkt, daß die Durchführungen der Drähte 1, 2 durch den Deckel 6 va¬ kuumdicht und elektrisch isoliert sind. Das Schutzrohr 5 ist evakuiert, oder es besitzt eine Atmosphäre aus einem inerten Gas, vorzugsweise unter Unterdruck.
Der dargestellte Fühler ist infolge des gewählten Aufbaus keiner Korrosion ausgesetzt und unterliegt damit nur mini¬ malem Verschleiß. Aufgrund der Beschaffenheit des Schutz¬ rohres 5 ist eine Langzeit-Temperaturbeständigkeit des Fühlers gewährleistet. Durch die Wahl des für Wärmestrah¬ lung transparenten Materials für das Schutzrohr 5 spricht der Fühler sehr schnell auf Temperaturänderungen an.

Claims

Patentansprüche
1. Fühler für ein Thermoelement zur Messung von Tempera¬ turen bis zu einer maximalen Temperatur mit Drähten (1, 2), die in ein Schutzrohr (5) hineingeführt und darin an einer Verbindungsstelle (3) miteinander verbunden sind, d a d u r c h g e k e n n z e i c h n e t, daß das Schutzrohr (5) aus einer in Form eines Einkristal- les vorliegenden, für Wärmestrahlung transparenten Keramik oder aus einem für Wärmestrahlung transparenten Oxidkri¬ stall mit einem Schmelzpunkt oberhalb der maximalen Tem¬ peratur besteht.
2. Fühler nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß die Drähte (1, 2) innerhalb des Schutzrohres (5) in zumindest einer Halterung (4) aus einer für Wärmestrahlung transparenten Keramik oder einem für Wärmestrahlung trans¬ parenten Oxidkristall gehaltert sind.
3. Fühler nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, daß das Schutzrohr (5) evakuiert und vakuumdicht ver¬ schlossen ist.
4. Fühler nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, daß innerhalb des Schutzrohres (5) eine inerte Atmosphäre vorliegt.
5. Fühler nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t, daß das Schutzrohr (5) aus einem Saphir- oder Zirkonoxid- Einkristall besteht.
6. Fühler nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t, daß seine Drähte (1, 2) aus Platin/Rhodium-Legierungen verschiedener Zusammensetzungen oder aus Wolfram/Rhe- nium-Legierungen verschiedener Zusammensetzungen bestehen.
7. Fühler nach einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t, daß für das Schutzrohr (5) ein Verschlußdeckel (6) aus einem hitzebeständigen Material vorgesehen ist, durch den die Drähte (1, 2) hindurchgeführt sind.
8. Fühler nach einem der Ansprüche 1 bis 7, d a d u r c h g e k e n n z e i c h n e t, daß die maximale Temperatur oberhalb von 1800" C, insbe¬ sondere im Bereich bis ca. 2200° C, liegt.
PCT/DE1992/000942 1991-11-22 1992-11-12 Vakuumdicht gekapselter fühler für ein thermoelement WO1993010427A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP92923077A EP0613551A1 (de) 1991-11-22 1992-11-12 Vakuumdicht gekapselter fühler für ein thermoelement
JP5508874A JPH07501144A (ja) 1991-11-22 1992-11-12 熱電対の密封感熱部

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19914138460 DE4138460C2 (de) 1991-11-22 1991-11-22 Innerhalb eines Schutzrohres angeordnetes Thermoelement
DEP4138460.1 1991-11-22

Publications (1)

Publication Number Publication Date
WO1993010427A1 true WO1993010427A1 (de) 1993-05-27

Family

ID=6445374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1992/000942 WO1993010427A1 (de) 1991-11-22 1992-11-12 Vakuumdicht gekapselter fühler für ein thermoelement

Country Status (4)

Country Link
EP (1) EP0613551A1 (de)
JP (1) JPH07501144A (de)
DE (1) DE4138460C2 (de)
WO (1) WO1993010427A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4418472A1 (de) * 1994-05-20 1995-12-14 Mannesmann Ag Sonde zur Temperaturmessung von Gasen oder Flüssigkeiten
WO2000000797A1 (en) 1998-06-26 2000-01-06 Texaco Development Corporation Thermocouple for use in gasification process
US6536950B1 (en) 1999-10-13 2003-03-25 Texaco Inc. Sapphire reinforced thermocouple protection tube
CZ302212B6 (cs) * 2006-03-29 2010-12-22 CRYTUR@@spol@@s@r@@o Termoclánková@sonda@pro@merení@teplot@v@extrémních@podmínkách@s@pouzdrem
CN102703967A (zh) * 2012-06-05 2012-10-03 湖南红太阳光电科技有限公司 一种多晶铸锭炉热电偶装置
US9598976B2 (en) 2014-01-14 2017-03-21 Solar Turbines Incorporated Ceramic pedestal and shield for gas path temperature measurement
CN107221595A (zh) * 2017-07-05 2017-09-29 徐荣华 真空热电管
DE112014000282B4 (de) * 2014-01-21 2017-10-12 Okazaki Manufacturing Company Temperatursensor für hohe Temperaturen

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6059453A (en) * 1998-04-20 2000-05-09 Rosemount Inc. Temperature probe with sapphire thermowell
JP4484129B2 (ja) * 2000-11-16 2010-06-16 いすゞ自動車株式会社 熱電対
US7131768B2 (en) * 2003-12-16 2006-11-07 Harco Laboratories, Inc. Extended temperature range EMF device
DE102008060033B4 (de) * 2008-12-02 2013-08-14 Temperaturmeßtechnik Geraberg GmbH Temperaturfühler für Turbolader
DE102010063062A1 (de) 2010-12-14 2012-06-14 Endress + Hauser Wetzer Gmbh + Co. Kg Schutzrohrinnenteil für ein Thermometer mit einem Schutzrohr
DE202011001280U1 (de) 2011-01-10 2012-04-18 Klaus Irrgang Universelles Hochtemperaturelement
DE102011083437B4 (de) 2011-01-10 2013-07-18 Klaus Irrgang Universelles Hochtemperaturelement
DE102011089942A1 (de) 2011-12-27 2013-06-27 Endress + Hauser Wetzer Gmbh + Co. Kg Aufnahmevorrichtung für einen Messeinsatz
DE202012104929U1 (de) 2012-12-18 2013-02-12 Klaus Irrgang Thermoelektrischer Hochtemperaturfühler mit einer Mantelleitung
DE102012112579A1 (de) 2012-12-18 2014-06-18 Endress + Hauser Wetzer Gmbh + Co Kg Aufnahmevorrichtung für einen Messeinsatz
DE202013100708U1 (de) 2013-02-18 2013-04-05 Klaus Irrgang Temperaturfühler für schnelle Temperaturwechsel
EP3032231B1 (de) 2013-08-08 2018-12-19 Furuya Metal Co., Ltd. Thermometer
DE202015008966U1 (de) 2015-03-31 2016-05-02 Temperaturmeßtechnik Geraberg GmbH Modular strukturierter Hochtemperaturfühler

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2948766A (en) * 1955-04-30 1960-08-09 Degussa Tungsten/rhenium thermocouples
AT272703B (de) * 1966-05-18 1969-07-25 Oesterr Studien Atomenergie Thermoelement
AT329299B (de) * 1974-01-18 1976-05-10 Plansee Metallwerk Anordnung zur temperaturmessung von metallschmelzen
DE3528161C1 (de) * 1985-08-06 1986-10-23 Degussa Ag, 6000 Frankfurt Thermoelement zur Messung von Temperaturen in Vakuumoefen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3379578A (en) * 1964-11-19 1968-04-23 Corhart Refractories Co Immersion-type thermocouple having a sheath composed of a sintered ceramic refractory
DE2021044B2 (de) * 1969-08-08 1972-02-10 Egyesult Izzolampa es Villamossagi Reszvenytarsasag, Budapest Thermoelementdraht thermoelement und thermodetektoren

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2948766A (en) * 1955-04-30 1960-08-09 Degussa Tungsten/rhenium thermocouples
AT272703B (de) * 1966-05-18 1969-07-25 Oesterr Studien Atomenergie Thermoelement
AT329299B (de) * 1974-01-18 1976-05-10 Plansee Metallwerk Anordnung zur temperaturmessung von metallschmelzen
DE3528161C1 (de) * 1985-08-06 1986-10-23 Degussa Ag, 6000 Frankfurt Thermoelement zur Messung von Temperaturen in Vakuumoefen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Patent Abstracts of Japan, Band 9, Nr 161, P-370,, Zusammenfasung von JP, 60-36927 (USHIO DENKI K.K.), *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4418472A1 (de) * 1994-05-20 1995-12-14 Mannesmann Ag Sonde zur Temperaturmessung von Gasen oder Flüssigkeiten
DE4418472C2 (de) * 1994-05-20 1998-03-19 Hartmann & Braun Ag Sonde zur Temperaturmessung von Gasen oder Flüssigkeiten
WO2000000797A1 (en) 1998-06-26 2000-01-06 Texaco Development Corporation Thermocouple for use in gasification process
AU755541B2 (en) * 1998-06-26 2002-12-12 Texaco Development Corporation Thermocouple for use in gasification process
US7036983B2 (en) 1998-06-26 2006-05-02 General Electric Company Thermocouple for use in gasification process
US6536950B1 (en) 1999-10-13 2003-03-25 Texaco Inc. Sapphire reinforced thermocouple protection tube
AU782587B2 (en) * 1999-10-13 2005-08-11 Texaco Development Corporation Sapphire reinforced thermocouple protection tube
CZ302212B6 (cs) * 2006-03-29 2010-12-22 CRYTUR@@spol@@s@r@@o Termoclánková@sonda@pro@merení@teplot@v@extrémních@podmínkách@s@pouzdrem
CN102703967A (zh) * 2012-06-05 2012-10-03 湖南红太阳光电科技有限公司 一种多晶铸锭炉热电偶装置
US9598976B2 (en) 2014-01-14 2017-03-21 Solar Turbines Incorporated Ceramic pedestal and shield for gas path temperature measurement
DE112014000282B4 (de) * 2014-01-21 2017-10-12 Okazaki Manufacturing Company Temperatursensor für hohe Temperaturen
CN107221595A (zh) * 2017-07-05 2017-09-29 徐荣华 真空热电管

Also Published As

Publication number Publication date
JPH07501144A (ja) 1995-02-02
DE4138460A1 (de) 1993-05-27
DE4138460C2 (de) 1994-02-10
EP0613551A1 (de) 1994-09-07

Similar Documents

Publication Publication Date Title
WO1993010427A1 (de) Vakuumdicht gekapselter fühler für ein thermoelement
EP0525557B1 (de) Temperaturmessvorrichtung
DE4431291A1 (de) Hochtemperatursonde
DE2829340A1 (de) Pyrometer-schutzhuelle und pyrometrisches verfahren
EP0416336B1 (de) Temperaturwächter
DE4207317C3 (de) Vorrichtung zur Messung der Temperatur von Metallschmelzen
Hausner Determination of the melting point of uranium dioxide
DE2263469C3 (de) Temperaturmeßeinrichtung
DE3716145C2 (de)
DE3516260C2 (de)
DE1573310B1 (de) Eintauch-Thermoelement
DE4118549C2 (de) Pyrometer und ein Verfahren zur Herstellung desselben
DE2841016C2 (de) Vorrichtung zur Überwachung eines Bestandteils eines Fluidgemischs
DE1496319C3 (de)
Maimoni Electrical resistance of aluminium at low temperatures
Campbell et al. High-temperature furnaces for X-ray diffractometers
DE3811864A1 (de) Messvorrichtung zum messen des sauerstoffpartialdruckes in aggressiven fluessigkeiten hoher temperatur
Oktay The Thermodynamic Activities of Silver in Liquid Silver-Copper-Germanium Alloys/Thermodynamische Aktivitäten von Ag in flüssigen Ag-Cu-Ge-Legierungen
DE2650307A1 (de) Einrichtung zur gasanalyse ohne probenahme
DE1573310C (de) Eintauch Thermoelement
DE2318004A1 (de) Temperaturdifferenzanalysator fuer temperaturen oberhalb 1000 grad c
Fanciullo Thermocouple Development Lithium-Cooled Reactor Experiment
Ozelton et al. A rotating-field apparatus for determining resistivities of reactive liquid metals and alloys at high temperatures
Selman et al. The Stability of Metal-sheathed Platinum Thermocouples
Cannon A 2200° C Fuel Centerline Johnson Noise Power Thermometer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1992923077

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992923077

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1992923077

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1992923077

Country of ref document: EP