WO1993007959A1 - Element ceramique de filtrage a courant tangentiel de liquides et de gaz - Google Patents

Element ceramique de filtrage a courant tangentiel de liquides et de gaz Download PDF

Info

Publication number
WO1993007959A1
WO1993007959A1 PCT/EP1992/002372 EP9202372W WO9307959A1 WO 1993007959 A1 WO1993007959 A1 WO 1993007959A1 EP 9202372 W EP9202372 W EP 9202372W WO 9307959 A1 WO9307959 A1 WO 9307959A1
Authority
WO
WIPO (PCT)
Prior art keywords
channels
support body
filter element
contour
ceramic filter
Prior art date
Application number
PCT/EP1992/002372
Other languages
German (de)
English (en)
Inventor
Hans Olapinski
Winfried Michell
Manfred Kielwein
Hans-Erich Simmich
Helmut Ziegelbauer
Original Assignee
Cerasiv Gmbh Innovative Produkte Und Anwendungen Keramischer Werkstoffe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cerasiv Gmbh Innovative Produkte Und Anwendungen Keramischer Werkstoffe filed Critical Cerasiv Gmbh Innovative Produkte Und Anwendungen Keramischer Werkstoffe
Priority to EP92921137A priority Critical patent/EP0609275B1/fr
Priority to DE59204705T priority patent/DE59204705D1/de
Priority to US08/211,853 priority patent/US5454947A/en
Publication of WO1993007959A1 publication Critical patent/WO1993007959A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • B01D63/066Tubular membrane modules with a porous block having membrane coated passages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • B01D29/31Self-supporting filtering elements
    • B01D29/35Self-supporting filtering elements arranged for outward flow filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/50Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition
    • B01D29/52Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition in parallel connection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2201/00Details relating to filtering apparatus
    • B01D2201/46Several filtrate discharge conduits each connected to one filter element or group of filter elements

Definitions

  • Ceramic filter element for tangential flow filtration of liquids and gases.
  • the invention relates to a ceramic filter element for tangential flow filtration of liquids and gases, according to the preamble of claim 1.
  • Ceramic membrane filters have proven themselves in particular in the water and beverage industries for the filtration of beer, wine and fruit juices, with the tangential flow filtration (cross-flow) having priority in continuous processes.
  • This application also known as dynamic filtration, enables suspensions to be filtered without the membrane becoming blocked.
  • the liquid to be filtered is not pressed directly through the membrane, but at a correspondingly high flow rate in the range of 2-7 m / sec. passed to the surface of the membrane, with only a part of the liquid flow passing through the membrane as a filtrate (permeate).
  • the blockage of the membrane ie the formation of a filter cake on the membrane is now thereby prevents the suspension on the membrane surface from constantly flushing away the particles retained on the membrane surface due to its high flow rate and the microturbulence occurring there.
  • Tangential flow filtration as are known for example from DE-A-35 19 620, have combined layers of different porosity and defined pore size.
  • the upper, thin membrane layer takes on a separating function, the solid, coarse ceramic layer underneath serves as a carrier layer.
  • Filt elements are mentioned as particularly effective, which generally have an elongated, cylindrical shape of the support layer structure - hereinafter referred to as "support body" - with a plurality of holes extending through the support body and with a very thin ceramic membrane applied to the surface thereof Separating element.
  • a major disadvantage of these known ceramic filter elements is that the sealing of the elements always becomes a problem when both unfiltered material is to be introduced at the ends of the elements and filtrate is to be removed.
  • filter elements with a large number of coaxial cylindrical channels, through which only unfiltered material flows, have proven their worth.
  • the filtrate penetrating through the membrane surface of the channels. flows under pressure through the support body and occurs its outer surface.
  • the disadvantage of these known multi-channel filter elements lies in the low flow rate of the filtrate.
  • the inner channels in particular contribute little to the filter performance, although they have a relatively large part of the membrane surface.
  • the support body itself has a non-negligible resistance. Such an examination is given as an example further on in the description.
  • the object of the present invention is to provide a ceramic filter element which is improved for the tangential flow filtration of liquids and gases and which has a support body with reduced flow resistance with which a higher pressure difference between the unfiltrate circuit and the filtrate outlet Flow rate of the filtrate is achieved.
  • channels are arranged coaxially around the imaginary central axis of the support body, the cross section of the contour of the outwardly directed channel wall being adapted to the outer contour of the support body, so that the support body there has a constant thickness corresponding to the mechanical load
  • Has wall thickness and the contour of the other channel walls is designed such that the webs remaining between the channels expand outwards in a wedge shape, the web width up to max. 3 times the thinnest wall thickness increases.
  • the flow resistance is kept low even on longer paths through the support body, because the webs remaining between the channels increase in width in accordance with the filtrate flow.
  • the peripheral channels also have an adaptation of their outwardly directed channel wall to the outer contour of the support body, which gives the shortest path of the filtrate through the support body.
  • the ceramic filter elements designed in this way allow, due to their favorable channel geometry, with the flow conditions improved compared to the prior art, an up to 30% increased flow rate of the filtrate, compared to filter elements which have a large number of channels in the form of cylindrical bores.
  • the present invention is particularly suitable for microfiltration, the elongated one
  • Support body with a polygonal cross section or in the form of a cylinder, and in particular on one
  • Pitch circle has at least 3 segment-shaped channels adapted to the outer contour. This results in comparatively large channel cross sections for a high throughput and a high
  • a particularly advantageous embodiment of the Invention provides that the webs of the supporting body remaining between the channels widen outward in steps in steps such that a second wedge angle ⁇ 2 is added to the first wedge angle ⁇ 1 and so on.
  • the contour of the channel walls, which delimits the web remaining between two adjacent channels, can have a curve with a continuously increasing gradient angle ⁇ if there are enough step changes. With the same flow rate and a larger channel cross section, more unfiltered material can be passed through the filter element.
  • the filtrate which is abundant due to the relatively coarse membrane, reaches the outer surface of the support body through the small wall thickness of the outer support body wall and the wedge-shaped webs from the inside of the support body with little pressure loss to the surface of the filter element and can be collected there with the appropriate device.
  • the webs as seen from the center of the support body, initially run with a constant width before they widen outwards in a wedge shape.
  • the straight web section can preferably correspond to half the web length.
  • a minimum width of the webs i.e. H.
  • a minimum wall thickness of the support body ceramic is a max. Channel cross section reached towards the center.
  • a particularly advantageous embodiment of the invention in ultrafiltration provides that the filter element has an elongated, square shape or has a support body shaped with a hexagonal cross section, which is crossed by a plurality of channels, similar to a honeycomb structure.
  • the honeycomb-like channel structure With the honeycomb-like channel structure, an extremely large membrane surface is realized and thus enables an economical filtrate throughput. This is because a membrane suitable for ultrafiltration has extremely small pores with a pore diameter in the range from 1 nm to 100 nm.
  • the filtrate must penetrate from the inside to the outside through the support body, whereby according to the invention a wedge-shaped flow path is created in that the channel cross-sectional areas are from the inside remove to the outside and the remaining webs widen outwards in step-like steps, thus reducing the flow resistance of the support body.
  • Fig. 1 shows a cross section of a ceramic filter element of a preferred embodiment according to the present invention.
  • Fig. 5 is a bar graph that compares the flow rates of a commercially available multi-channel filter element with 19 channels and 12 channels.
  • the ceramic filter element (1) shown in FIG. 1 can be used especially for microfiltration in the beverage industry.
  • the 850 mm long, cylindrical support body (2) extruded from ceramic material has four coaxially arranged channels (4).
  • the support body (2) consisting of a solid, heavy ceramic structure made of ⁇ . -A1_0 with an average pore size of 15 ⁇ with a porosity of 40%, has a diameter of 32 mm.
  • the surfaces of the channels (4) have a ceramic membrane (12) made of ⁇ -Al-O applied by means of slip technology, with an average pore size of 0.5 ⁇ m and a porosity of 35%.
  • the layer thickness of the membrane (12) is between 5 and 20 ⁇ m.
  • the filter element (1) has at its ends seals, not shown, for the inlet and outlet of the Unfiltra s, such that the open pores of the support body ceramic are closed at the ends by filling with a plastic mass over a length of a few millimeters.
  • the filter element (1) is fitted with end caps in one
  • Support body (2) and emerges from its outer contour (8), where it is collected with the appropriate device.
  • the four channels (4) arranged symmetrically about the central axis of the support body (2) are each surrounded by three channel walls, the cross-sectional contour of the outwardly directed circular channel wall (5) being adapted to the outer contour (8) of the support body (2) , so that here there is a constant wall thickness through which the filtrate can penetrate to the outside in the shortest possible way.
  • the thickness of the wall thickness depends on the mechanical load on the support body (2).
  • the two channel walls (6) run in such a way that the web (3) of the support body (2) remaining between two channels (4) widens in a wedge shape towards the outside. From the narrowest point, i.e. at the point adjacent to the central axis, at which the web is formed in the smallest width, where the contour of the channel walls (6) converges into the radius (10), the width of the web doubles to the widest point at the transition radius (11) (3).
  • the radii (10) or transition radii (11) are expedient for manufacturing and fluidic reasons.
  • the arrows (14) illustrate how the individual imaginary flow threads of the filtrate condense from the inside to the outside and find a larger space for drainage.
  • the channels (4) differ from those in FIG. 1 in that the webs (3) seen from the center of the circular filter element (1) initially run straight with a constant web width, the straight web section being one third of the length Bridge length corresponds. This is followed by two thirds of the web section initiated by a step (7), so that the web widens outwards at the wedge angle ⁇ 2.
  • a wedge angle ⁇ 1 0 degrees corresponds to a straight non-widening web section.
  • the stepped course of the contour of the channel walls (6 ') which is not limited to one step, results in a larger cross section of the channels (4) towards the center of the support body compared to such channels with rectilinear channel walls, as shown in FIG. 1 , while maintaining a minimum wall thickness of the supporting body partitions.
  • This filter element (1) with a hexagonal cross-section has on its outer pitch circle (15) six channels (4) with a contour of the channel wall (5 ') adapted to the outer contour (17).
  • the contour of the channel walls (6 '') follows the wedge-shaped flow path (13) indicated by hatching.
  • the six channels (4 ') arranged on the inner pitch circle (16) have a contour (18) which is adapted to the wedge-shaped flow path (13) and to another with the contour of the channels (4) arranged on the pitch circle (15) results in a web (19) widening towards the sides.
  • Another cylindrical channel (9) extends through the central axis of the support body (2).
  • the middle channel (9) is of no particular importance with regard to the filtration; rather, it avoids accumulation of material in the center of the support body (1) which is harmful during the sintering process, as a result of which crack formation and thus rejects can be prevented.
  • a membrane surface required for ultrafiltration must be very large in relation to the support body volume in order to achieve an economical flow rate.
  • filter elements with a honeycomb structure are suitable, as shown in FIG. 4.
  • the square filter element (1) has a multiplicity of equally square channels (4) which, like in all other embodiments, extend in the longitudinal direction through the filter element.
  • the cross-sectional area of the channels (4) decreases from the inside to the outside, so that the webs (3 ') of the support body (2) widen outwards in FIG. 4.
  • the inner channels which are more than 1/3 of the total channel or. Make up the membrane surface, contribute, with a support body without membrane or with membrane up to a fineness of 0.7 ⁇ m, only with approx. 10% to the filter performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Un élément (1) de filtrage à courant tangentiel comprend un corps allongé de support (2) en un matériau céramique poreux traversé par des canaux coaxiaux (4) sur la surface desquels est appliquée une membrane céramique (12) à structure poreuse calibrée. Une partie du fluide qui s'écoule dans les canaux (4) traverse la membrane et sort par la surface de l'enveloppe du corps de support (2) sous forme de filtrat. Le contour de la paroi (5) des canaux tournée vers l'extérieur est adapté au contour extérieur (8) du corps de support (2) et présente à cet endroit une épaisseur uniforme adaptée à la contrainte mécanique. Le contour des parois (6) des canaux est façonné de sorte que les séparations (3) entre les canaux (4) s'élargissent vers l'extérieur, en forme de coin. Cet élément de filtrage (1) comprend un corps de support (2) qui oppose une résistance réduite à l'écoulement du filtrat qui le traverse.
PCT/EP1992/002372 1991-10-16 1992-10-14 Element ceramique de filtrage a courant tangentiel de liquides et de gaz WO1993007959A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP92921137A EP0609275B1 (fr) 1991-10-16 1992-10-14 Element ceramique de filtrage a courant tangentiel de liquides et de gaz
DE59204705T DE59204705D1 (de) 1991-10-16 1992-10-14 Keramisches filterelement zur tangentialfluss-filtration von flüssigkeiten und gasen
US08/211,853 US5454947A (en) 1991-10-16 1992-10-14 Ceramic filter element for tangential flow filtration of liquids and gases

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4134223A DE4134223C1 (fr) 1991-10-16 1991-10-16
DEP4134223.2 1991-10-16

Publications (1)

Publication Number Publication Date
WO1993007959A1 true WO1993007959A1 (fr) 1993-04-29

Family

ID=6442792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1992/002372 WO1993007959A1 (fr) 1991-10-16 1992-10-14 Element ceramique de filtrage a courant tangentiel de liquides et de gaz

Country Status (5)

Country Link
US (1) US5454947A (fr)
EP (1) EP0609275B1 (fr)
DE (2) DE4134223C1 (fr)
ES (1) ES2081631T3 (fr)
WO (1) WO1993007959A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0686424A1 (fr) 1994-06-08 1995-12-13 T.A.M.I. Industries Elément inorganique multicanal pour la filtration d'un fluide
FR2724850A1 (fr) * 1994-09-28 1996-03-29 Tech Sep Support monolithe poreux pour membrane de filtration
FR2741821A1 (fr) * 1995-12-05 1997-06-06 Tami Ind Element tubulaire inorganique de filtration presentant une surface de filtration et une resistance mecanique accrues
FR2741822A1 (fr) * 1995-12-05 1997-06-06 Tami Ind Element tubulaire inorganique de filtration comportant des canaux de section non circulaire presentant des profils optimises
EP0787524A1 (fr) * 1996-01-31 1997-08-06 Corning Incorporated Dispositif pour modifier un stock d'alimentation, procédé de fabrication et d'utilisation
US6077436A (en) * 1997-01-06 2000-06-20 Corning Incorporated Device for altering a feed stock and method for using same
FR2805331A1 (fr) * 2000-02-21 2001-08-24 Ceramiques Tech Soc D Element multicanal et procede de fabrication d'un tel element
WO2012095611A1 (fr) 2011-01-13 2012-07-19 Technologies Avancees Et Membranes Industrielles Nouvelle geometrie d'elements de filtration
US8815183B2 (en) 2009-08-31 2014-08-26 Corning Incorporated Zoned monolithic reactor and associated methods
US9731229B2 (en) 2010-03-10 2017-08-15 Technologies Avancees Et Membranes Industrielles Filtration support geometry and membrane
WO2023126608A1 (fr) 2021-12-30 2023-07-06 Technologies Avancees Et Membranes Industrielles Dispositif et procédé pour la fabrication par extrusion d'un support poreux avec un canal central rectiligne et des canaux non rectilignes

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4324347A1 (de) * 1992-07-23 1994-01-27 Noritake Co Ltd Monolithischer Keramikfilter
DE4329473C1 (de) * 1993-09-01 1994-08-18 Chmiel Horst Druckstabile anorganische Membranen
US5641332A (en) * 1995-12-20 1997-06-24 Corning Incorporated Filtraion device with variable thickness walls
DE69800531T2 (de) * 1997-04-09 2001-09-27 Ceramiques Tech Bazet Soc D Makroporöser Träger mit einem Porositätsgradient und Methode zu dessen Herstellung
DE19731551A1 (de) * 1997-07-23 1999-01-28 Ceramtec Ag Filtervorrichtung
US5928510A (en) * 1997-11-20 1999-07-27 Miller Brewing Company Filter apparatus for even flow distribution
FR2776286B1 (fr) * 1998-03-20 2000-05-12 Ceramiques Tech Soc D Fibre ceramique poreuse multi-canal
US8062521B2 (en) * 1998-05-29 2011-11-22 Crystaphase Products, Inc. Filtering medium and method for contacting solids-containing feeds for chemical reactors
FR2785831B1 (fr) * 1998-11-18 2001-11-23 Orelis Support monolithe poreux d'un element de filtration et element de filtration
DE19956145A1 (de) * 1999-11-23 2001-05-31 Membraflow Gmbh & Co Kg Filter Kerzenfilter mit Reinigungsöffnung
DE10010387A1 (de) * 2000-02-28 2001-09-06 Mannesmann Ag Kompositmembran und Kompositmembransystem sowie Verfahren zur Herstellung der Kompositmembranen
DE10022917C5 (de) 2000-03-31 2005-07-28 Atech Innovations Gmbh Filtervorrichtung für die Mikro- und/oder Ultrafiltration
DE10160855A1 (de) * 2001-12-12 2003-06-26 Schumacher Umwelt Trenntech Filterelement und Filtervorrichtung für die Cross-Flow-Filtration
US7556665B2 (en) * 2003-03-19 2009-07-07 Ngk Insulators, Ltd. Honeycomb structure
US7722832B2 (en) 2003-03-25 2010-05-25 Crystaphase International, Inc. Separation method and assembly for process streams in component separation units
ITMI20040070A1 (it) * 2004-01-21 2004-04-21 Alessandro Bassoli Modulo con supporto indeformabile per setti filtranti ed elementi a membrana
DE102004060183B4 (de) * 2004-12-14 2011-06-16 Saint-Gobain Industriekeramik Rödental GmbH Tangentialflussfilter mit optimierter Leitungskanalgeometrie und -anordnung
US8325965B2 (en) * 2006-01-04 2012-12-04 Boston Acoustics, Inc. Audio speaker having a tweeter capable of continuous rotation
EP2821122A1 (fr) 2006-01-18 2015-01-07 Novasep Process Elément de filtration
JP2007237053A (ja) * 2006-03-07 2007-09-20 Ngk Insulators Ltd 濾過器及び濾過器の逆洗方法
DE102006045164A1 (de) * 2006-09-25 2008-04-03 Robert Bosch Gmbh Filterelement, insbesondere zur Filterung von Abgasen einer Brennkraftmaschine
DE102009001383A1 (de) * 2008-12-17 2010-06-24 Robert Bosch Gmbh Flüssigkeitsfilter und Filtersystem
WO2010099317A2 (fr) 2009-02-27 2010-09-02 Donaldson Company, Inc. Cartouche filtrante ; ses composants ; et procédés correspondants
US7875176B2 (en) * 2009-03-06 2011-01-25 Porous Media Corporation Membrane module for fluid filtration
DE102009040110A1 (de) * 2009-09-04 2011-03-10 Vws Deutschland Gmbh Kondensatreinigungsanlage
WO2011113738A1 (fr) * 2010-03-18 2011-09-22 Gea Mechanical Equipment Gmbh Installation et procédé de filtration de boissons
CN102258901A (zh) * 2010-05-26 2011-11-30 英利能源(中国)有限公司 硅块生产设备及其过滤器
FR3021231B1 (fr) 2014-05-22 2018-02-16 Saint-Gobain Centre De Recherches Et D'etudes Europeen Filtres tangentiels
FR3024664B1 (fr) * 2014-08-11 2020-05-08 Technologies Avancees Et Membranes Industrielles Nouvelles geometries d'elements tubulaires multicanaux de separation par flux tangentiel integrant des promoteurs de turbulences et procede de fabrication
EP3237098B1 (fr) 2014-12-22 2020-06-10 Pro-Equipment, Inc. Filtre à membrane dynamique à flux croisé haute vitesse
US10744426B2 (en) 2015-12-31 2020-08-18 Crystaphase Products, Inc. Structured elements and methods of use
US10054140B2 (en) 2016-02-12 2018-08-21 Crystaphase Products, Inc. Use of treating elements to facilitate flow in vessels
CN107970783B (zh) * 2017-12-07 2020-03-24 山东理工大学 横截面为花瓣型的中空纤维陶瓷透氧膜的制备方法
CN113226522B (zh) * 2018-12-27 2023-03-24 可隆工业株式会社 包括多通道中空纤维膜的用于燃料电池的膜加湿器
WO2021127644A1 (fr) 2019-12-20 2021-06-24 Crystaphase Products, Inc. Resaturation de gaz dans un courant d'alimentation en liquide
EP4210865A1 (fr) 2020-09-09 2023-07-19 Crystaphase Products Inc. Zones d'entrée de récipient de traitement

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1557899A (en) * 1976-12-09 1979-12-12 Connelly R F Balanced pressure tubular molecular filtration system
US4233351A (en) * 1978-05-18 1980-11-11 Nippon Soken, Inc. Ceramic honeycomb structure

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2944841A1 (de) * 1979-11-07 1981-05-21 Degussa Ag, 6000 Frankfurt Katalytischer abgaskonverter fuer brennkraftmaschinen
JPS6072731A (ja) * 1983-09-30 1985-04-24 Dainippon Printing Co Ltd 色間見当プリセツト装置
DE3519620A1 (de) * 1984-06-04 1986-01-02 Norton Co., Worcester, Mass. Einrichtung und verfahren zur steuerung der diffusion von fluidkomponenten
EP0306350B1 (fr) * 1987-09-04 1991-08-14 Ngk Insulators, Ltd. Structure à nid d'abeilles pour la filtration de fluides
JPH0520407Y2 (fr) * 1988-04-14 1993-05-27
US5104546A (en) * 1990-07-03 1992-04-14 Aluminum Company Of America Pyrogens separations by ceramic ultrafiltration

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1557899A (en) * 1976-12-09 1979-12-12 Connelly R F Balanced pressure tubular molecular filtration system
US4233351A (en) * 1978-05-18 1980-11-11 Nippon Soken, Inc. Ceramic honeycomb structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF MEMBRANE SCIENCE Bd. 39, Nr. 3, Dezember 1988, AMSTERDAM Seiten 221 - 241 H. P. HSIEH ET AL. 'MICROPOUROUS ALUMINA MEMBRANES' *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2720953A1 (fr) * 1994-06-08 1995-12-15 Tami Ind Elément inorganique multicanal pour la filtration d'un fluide.
FR2720954A1 (fr) * 1994-06-08 1995-12-15 Tami Ind Elément inorganique multicanal pour la filtration d'un fluide.
US5607586A (en) * 1994-06-08 1997-03-04 T.A.M.I. Industries Multichannel inorganic element for filtering a fluid
EP0686424A1 (fr) 1994-06-08 1995-12-13 T.A.M.I. Industries Elément inorganique multicanal pour la filtration d'un fluide
EP1736233A1 (fr) * 1994-06-08 2006-12-27 Orelis Element inorganique multicanal pour la filtration d'un fluide.
US5895572A (en) * 1994-09-28 1999-04-20 Techsep Porous monolithic support for filtration membranes
FR2724850A1 (fr) * 1994-09-28 1996-03-29 Tech Sep Support monolithe poreux pour membrane de filtration
EP0704236A1 (fr) * 1994-09-28 1996-04-03 Tech-Sep Support monolithe poreux pour membrane de filtration
FR2741821A1 (fr) * 1995-12-05 1997-06-06 Tami Ind Element tubulaire inorganique de filtration presentant une surface de filtration et une resistance mecanique accrues
EP0778073A1 (fr) 1995-12-05 1997-06-11 T.A.M.I. Industries Elément tubulaire inorganique de filtration présentant une surface de filtration et une résistance mécanique accrues
EP0778074A3 (fr) * 1995-12-05 1998-01-14 T.A.M.I. Industries Elément tubulaire inorganique de filtration comportant des canaux de section non circulaire présentant des profils optimisés
US5853582A (en) * 1995-12-05 1998-12-29 T.A.M.I. Industries Societe Anonyme Tubular inorganic filter element having increased mechanical strength and increased filter area
US5873998A (en) * 1995-12-05 1999-02-23 Societe Anonyme: T.A.M.I. Industries Inorganic tubular filter element including channels of non-circular section having optimized profile
EP0778074A2 (fr) 1995-12-05 1997-06-11 T.A.M.I. Industries Elément tubulaire inorganique de filtration comportant des canaux de section non circulaire présentant des profils optimisés
FR2741822A1 (fr) * 1995-12-05 1997-06-06 Tami Ind Element tubulaire inorganique de filtration comportant des canaux de section non circulaire presentant des profils optimises
EP0787524A1 (fr) * 1996-01-31 1997-08-06 Corning Incorporated Dispositif pour modifier un stock d'alimentation, procédé de fabrication et d'utilisation
US6077436A (en) * 1997-01-06 2000-06-20 Corning Incorporated Device for altering a feed stock and method for using same
WO2001062370A1 (fr) * 2000-02-21 2001-08-30 Exekia Element multicanal et procede de fabrication d'un tel element
FR2805331A1 (fr) * 2000-02-21 2001-08-24 Ceramiques Tech Soc D Element multicanal et procede de fabrication d'un tel element
US8815183B2 (en) 2009-08-31 2014-08-26 Corning Incorporated Zoned monolithic reactor and associated methods
US9731229B2 (en) 2010-03-10 2017-08-15 Technologies Avancees Et Membranes Industrielles Filtration support geometry and membrane
KR101937630B1 (ko) 2010-03-10 2019-01-10 테크놀로지 아방세 에 망브란 엥뒤스트리엘 여과작용 지지부 외형 및 멤브레인
WO2012095611A1 (fr) 2011-01-13 2012-07-19 Technologies Avancees Et Membranes Industrielles Nouvelle geometrie d'elements de filtration
US9522351B2 (en) 2011-01-13 2016-12-20 Technologies Avancees Et Membranes Industrielles Shape of filtering elements
WO2023126608A1 (fr) 2021-12-30 2023-07-06 Technologies Avancees Et Membranes Industrielles Dispositif et procédé pour la fabrication par extrusion d'un support poreux avec un canal central rectiligne et des canaux non rectilignes
FR3131544A1 (fr) 2021-12-30 2023-07-07 Technologies Avancees Et Membranes Industrielles Dispositif et procédé pour la fabrication par extrusion d’un support poreux avec un canal central rectiligne et des canaux non rectilignes

Also Published As

Publication number Publication date
US5454947A (en) 1995-10-03
ES2081631T3 (es) 1996-03-16
EP0609275A1 (fr) 1994-08-10
DE59204705D1 (de) 1996-01-25
EP0609275B1 (fr) 1995-12-13
DE4134223C1 (fr) 1992-11-12

Similar Documents

Publication Publication Date Title
EP0609275B1 (fr) Element ceramique de filtrage a courant tangentiel de liquides et de gaz
DE69632299T2 (de) Anorganisches rohrförmiges Filterelement mit Kanälen die einen nicht-kreisförmigen Durchschnitt und optimierte Profile aufweisen
DE19700231C2 (de) Vorrichtung zum Filtern und Trennen von Strömungsmedien
EP1812147B1 (fr) Dispositif pour eliminer par filtrage des substances contenues dans des liquides
DE60023607T2 (de) Querstromfiltrationsmembran und Verfahren zu ihrer Herstellung
EP0289740B1 (fr) Elément d'espacement pour la conduction de fluides
EP0707884A1 (fr) Appareil de filtration et de séparation de fluides, notamment de fluides biologiques-organiques, pourvu d'éléments filtrants sous forme de coussins à membranes
EP0396853A2 (fr) Elément d'espacement de conduction de fluides
EP2543420B1 (fr) Filtre céramique poreux
DE60209790T2 (de) Filterelement und -apparat für cross-flow-filtrationsprozesse
DE4330163A1 (de) Poröser Keramikfilter
DE602004000058T2 (de) Verfahren zur Filtration
WO1990009229A1 (fr) Filtre a spirale
WO1993023139A1 (fr) Dispositif de filtrage
EP3022282B1 (fr) Filtre à écoulement transversal pour le vin
WO2014169902A2 (fr) Éléments filtrants et dispositif de filtration avec au moins un élément filtrant
DE69926256T2 (de) Monolitischer, poröser träger für filterelement und filterelement
EP0350853B1 (fr) Procédé et appareil pour filtrer des dispersions gazeuses ou liquides
EP0999888B1 (fr) Dispositif filtrant
DE2814326A1 (de) Poroese abstuetzung zur verwendung in einer trenneinrichtung mit hohlfasern
DE10019674A1 (de) Vorrichtung zur Querstrom-Filtration mittels Membranen
DE112005000925T5 (de) Träger mit modifizierter Porosität und Membran für die Tangential-Filtration eines Fluids
DE19819676A1 (de) Keramik-Filterelement sowie Filteranordnung mit solchen Keramik-Filterelementen
AT410760B (de) Sortier- bzw. filtriervorrichtung für mehrphasengemische
DE19854319A1 (de) Fiterelement

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1992921137

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08211853

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1992921137

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992921137

Country of ref document: EP