WO1993007175A1 - Process for producing protein/synthetic polymer complex and said complex produced thereby - Google Patents

Process for producing protein/synthetic polymer complex and said complex produced thereby Download PDF

Info

Publication number
WO1993007175A1
WO1993007175A1 PCT/JP1991/001328 JP9101328W WO9307175A1 WO 1993007175 A1 WO1993007175 A1 WO 1993007175A1 JP 9101328 W JP9101328 W JP 9101328W WO 9307175 A1 WO9307175 A1 WO 9307175A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
synthetic polymer
side chain
alcohol
chain
Prior art date
Application number
PCT/JP1991/001328
Other languages
English (en)
French (fr)
Inventor
Mitsuo Yasui
Suguru Sumita
Isamu Uemura
Original Assignee
Mitsuo Yasui
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuo Yasui filed Critical Mitsuo Yasui
Publication of WO1993007175A1 publication Critical patent/WO1993007175A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • C07K1/1072General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups
    • C07K1/1077General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups by covalent attachment of residues other than amino acids or peptide residues, e.g. sugars, polyols, fatty acids

Definitions

  • the present invention relates to a method for producing a protein-synthetic polymer composite and a composite obtained by the method. More specifically, the carboxyl group of the amino acid constituting the protein is reacted with an alcohol having a functional group, and the chain is extended by esterification to obtain an ester of the protein or after the chain is extended.
  • the present invention relates to a method for producing a protein-synthetic polymer complex by obtaining a protein-synthetic polymer complex by reacting a reacting synthetic polymer material.
  • Protein is a hydrophilic polymer that composes living organisms, and has excellent functions such as biocompatibility and bioactivity such as enzymatic action.
  • composition ratio of the protein and the synthetic polymer that bind to each other can be arbitrarily adjusted and the molding becomes free, the development of all-new, highly functional composite materials will be possible. It becomes possible. For example, if a protein with high hydrophilicity is compounded with a synthetic polymer, it will have excellent solubility with other synthetic polymers. It is useful as a material with a J-feel.For this purpose, it is necessary to devise a way to make the protein highly reactive even in organic solvents.
  • the present inventors have intensively studied to obtain a protein having high reactivity even in an organic solvent.
  • esterification of proteins with compounds containing no functional groups other than hydroxyl groups such as monohydric alcohols, is well known, but esterification with alcohols having functional groups other than hydroxyl groups is sufficiently clear. Has not been.
  • a polyfunctional alcohol is reacted with a carboxyl group of a side chain of an amino acid constituting a protein to obtain an ester.
  • the chain is extended by the esterification to prepare an esterified protein having a functional group derived from polyfunctional alcohol in the side chain of the protein.
  • proteins such as toluene, dimethylformamide, ethyl acetate, tetrahydrofuran, cyclohexane, and dimethyl sulfoxide, which have been used in the past, often have poor affinity for proteins themselves.
  • the esterified product obtained in the first step is subjected to addition polymerization of a raw material compound of epoxy resin or urethane resin or other polymerizable vinyl monomer, or by graft polymerization with a synthetic polymer. Combine conventional polymerization techniques to produce protein-synthetic polymer composites.
  • the present invention has been made based on the above findings, the gist of which is
  • a protein solution characterized by reacting an aqueous solution, fine powder or suspension of the protein with an excess of a polyfunctional alcohol to carry out esterification to extend the carboxyl group of the side chain of the protein.
  • An alcohol having an unsaturated bond is used as a polyfunctional alcohol, and a vinyl monomer is addition-polymerized to an unsaturated group derived from the alcohol present in a chain-extended side chain in the presence of a polymerization initiator or synthesized.
  • a method for producing a protein-synthetic polymer composite which comprises polymerizing a polymer by graft polymerization or graft-polymerizing an esterified product of a protein having the unsaturated group in a synthetic polymer; and (5) An esterified product of the protein obtained by the above (1) and various protein-synthetic polymer composites obtained by the production methods of the above (2) to (4).
  • Esterification is carried out by reacting an aqueous solution, fine powder or suspension of the protein with an excess of a polyfunctional alcohol, and the carboxyl group of the side chain of the protein is extended to produce an esterified protein. it can.
  • the protein used in the present invention is not particularly limited, and includes various polypeptides.
  • various polypeptides For example, gelatin, collagen, casein and the like are exemplified.
  • leather such as chrome leather containing these polypeptides, for example, cow skin, pig skin, sheep skin, etc., may be used as it is.
  • a protein esterified product can be obtained by adding a polyfunctional alcohol to a protein aqueous solution, fine powder or a suspension thereof and performing an esterification reaction.
  • the polyfunctional alcohol referred to here is a polyhydric alcohol such as diethylene glycol, triethylene glycol, polyethylene glycol, glycerin or butanediol, propanediol or the like, or aryl alcohol, 4-aryl catechol, Examples thereof include alcohols having an unsaturated bond such as arylcarbinol, and alcohols having an epoxy group.
  • the amount of these polyfunctional alcohols to be used is not particularly limited, but is usually used in excess with respect to the carboxyl groups in the protein. Specifically, the amount is 0.000 with respect to 1 g of the protein. A suitable amount is between 15 and 0.1 mole.
  • Esterification is usually performed at a reaction temperature of 10 to 1 The reaction can be carried out arbitrarily in the temperature range of 0 ° C, and the time required for the reaction cannot be unambiguously determined because the esterification ratio can be arbitrarily selected depending on the amount of polyfunctional alcohol used and the reaction temperature. Choose from 1 hour to 4 days.
  • esterified proteins having various functional groups derived from polyfunctional alcohols are obtained.
  • a polyhydric alcohol when a polyhydric alcohol is used, an esterified protein having a hydroxyl group in an extended chain is obtained, and when an alcohol having an unsaturated bond is used. In this case, an esterified protein having an unsaturated group in the extended chain is obtained.
  • Second embodiment Production of protein-synthetic polymer complex:
  • a polyhydric alcohol is used as the polyfunctional alcohol, and the chain-extended side chain is derived from the polyhydric alcohol.
  • a protein-synthetic polymer composite can be produced by synthesizing an esterified product of a protein having a hydroxyl group, followed by reacting a compound having an isocyanate group with the hydroxyl group to form urethane.
  • the polyhydric alcohol used herein includes, among the above-mentioned polyfunctional alcohols, two molecules in the molecule such as diethylene glycol, triethylene glycol, polyethylene glycol, glycerin or butanediol, and propanediol.
  • An alcohol having at least two hydroxyl groups is exemplified.
  • a method for perethane-forming a hydroxyl group present in the extended side chain of the obtained esterified product is carried out by reacting the esterified product with a compound having an isocyanate group.
  • a compound having an isocyanate group for example, after reacting an esterified compound with a compound having an isocyanate group, Urethane may be used by using all diamine.
  • a protein-synthetic polymer composite may be prepared by reacting the esterified product with a pre-polymer having a terminal dissociate to form a urethane to produce a protein-synthetic polymer composite.
  • the compound having an isocyanate group, a polyol and a diamine used here can be selected according to the purpose, and generally a general-purpose compound may be used.
  • (3) Third embodiment (Production of protein-synthetic polymer complex):
  • a polyhydric alcohol is used as the polyfunctional alcohol, and the chain-extended side chain is derived from the polyhydric alcohol.
  • a protein-synthetic polymer composite can be produced by synthesizing an esterified product of a protein having a hydroxyl group, followed by reacting a compound having an epoxy group with the hydroxyl group and further forming a resin.
  • the polyhydric alcohol used here those similar to those in the second embodiment are used.
  • the compound having an epoxy group include, for example, epichlorohydrin.
  • the resin After epoxidation of an esterified compound using the compound, the resin may be sequentially converted into a resin by reacting with a polyvalent phenol, for example. The epoxidized resin may be reacted with the hydroxyl group of the esterified compound to form a protein-synthetic polymer composite.
  • an alcohol having an unsaturated bond is used as the polyfunctional alcohol, and the alcohol is not added to the chain-extended side chain.
  • Synthesis of an esterified protein of a protein having an unsaturated group derived from an alcohol having a saturated bond, and then subjecting the unsaturated group to addition polymerization of a vinyl monomer in the presence of a polymerization initiator or graft polymerization of a synthetic polymer Alternatively, a protein-synthetic polymer composite can be produced by graft polymerization of an esterified product of the protein having an unsaturated group to a synthetic polymer.
  • polymerization initiator in the above (1) examples include, for example, benzoyl peroxide and azoisobutyronitrile, and further, using a known polymerization technique utilizing radiation polymerization, ultraviolet polymerization or polymerization by mechanochemical reaction. Is also good.
  • a silicon monomer in addition to vinyl chloride, ethylene, styrene, methyl methacrylate, butadiene, chloroprene, and the like, a silicon monomer can also be used.
  • the unsaturated group of the esterified product is cleaved by a polymerization initiator on a synthetic polymer or a synthetic polymer molded product, and the esterified product is grafted to the synthetic polymer or vice versa. Then, the synthetic polymer is grafted onto the esterified product.
  • the polymerization initiator used here those similar to those listed in the above (1) can be used.
  • the synthetic polymer include polyvinyl chloride, polyethylene, polyamide resin, silicon rubber, polybutadiene rubber, pochloroprene rubber, and thermoplastic rubber.
  • vulcanized rubber can be graphed, but its effect is smaller than that of unvulcanized rubber.
  • the protein-synthetic polymer complex of the present invention is obtained by the second to fourth modes using the esterified product obtained in the first embodiment as an intermediate as an intermediate.
  • the structural features of the protein-synthetic polymer complex obtained in this way are characterized by the presence of a protein on the side chain of the protein. Has a protein bond (obtained in the second embodiment), has a epoxylated side chain of the protein (obtained in the third embodiment), and has a synthetic polymer bound to the side chain of the protein ( (Obtained in the fourth embodiment).
  • Quantitation performed by the gravimetric method or the NMR method.
  • the obtained esterified product was dissolved again in 10 ml of distilled water, and the same operation as described above was repeated three times. As a result, the yield of the esterified product reached a constant weight. Final yield was 4.7744 g.
  • the resulting fine powder was converted from yellow to magenta by the absorption of 1724 cm- 1 by the diffuse reflection method FT-IR and the color reaction by iron (H).
  • NMR analysis at 200 MHz revealed that about 91% of the carboxyl groups of the gelatin were esterified gelatin products (gelatin Z aryl alcohol). .
  • Calcium tanned leather (cowhide) powder crushed to about 10 / m or less, in terms of dry matter 5.10 g was placed in a stoppered Erlenmeyer flask together with 5 ml of aryl alcohol to form a suspension. The reaction was carried out at 50 ° C. for 24 hours while stirring with a tick stirrer. Next, excess aryl alcohol was removed with a mouth evaporator, and then completely removed under reduced pressure at 40 ° C. for 24 hours.
  • the obtained esterified product was washed with 10 ml of distilled water, and a small amount of alcohol was removed in the same manner as in Example 1. As a result of repeating this operation three times, the yield of the esterified product (chromium tanned leather Z-aryl alcohol) reached a constant weight. The final yield obtained was 5.237 g, and the esterification rate due to the weight increase was 37%.
  • Example 2 0.793 g of the esterified product (gelatin Zaryl alcohol) obtained in Example 1 was mixed with 2 ml of a 2 mmo 1 / toluene solution of a radical initiator benzoyl peroxide (hereinafter referred to as BPO). After placing in a reaction vessel, 0.762 g of styrene monomer and 5 ml of toluene were further added, and the atmosphere was replaced with nitrogen. The reaction was carried out for 80 hours and 3 hours, and methanol was added to stop the reaction.
  • BPO radical initiator benzoyl peroxide
  • the styrene monomer and the polystyrene not contributing to the bond in the obtained graft product were removed by washing with acetone, and 0.860 g of a protein-synthetic polymer complex (gelatin / polystyrene graft) was removed. Thing) was obtained.
  • Example 2 0.25 g of the esterified product (gelatin Zaryl alcohol) obtained in Example 1 was applied as it was on a transparent vinyl chloride resin plate containing 2 X cm of a plasticizer without powder, and After spraying a few drops of 3 mmo I £ BP0 dimethyl sulfoxide solution on the surface, wet it and transfer it all over the desiccator, and let it react at 80 for 3 hours while keeping it under reduced pressure. .
  • the reaction product formed a film on a vinyl chloride resin plate. After boiling for 1 hour in water, about 80% of the insoluble protein on the vinyl chloride resin plate was converted into a protein-synthetic polymer composite (gelatin / vinyl resin plate graphic) on the vinyl chloride resin plate. Remained bound.
  • gelatin that is not chemically modified as a control the same operation as above is performed using a dimethyl sulfoxide solution containing no BP0, water is added to the product, and boiling is performed for 15 minutes. All gelatin on the plate was dissolved.
  • Example 6 5-86% esterified gelatin (gelatin Z butane diol) obtained in the same manner as in Example 3 except that butanediol was used instead of diethylene glycol and gelatin instead of casein in Example 3 was dried under reduced pressure at 80 ° C. for 24 hours to remove water, and then 0.102 g thereof was dissolved in dimethyl sulfoxide to obtain an about 15% solution. While stirring this solution, the equivalent ratio of NCOZOH was set to 1.02, tolylene diisocyanate was added, and the mixture was stirred well and then cast on a glass plate.
  • this reaction product was placed in a bisking tube, dialyzed in a toda borate solution having a pH of 7.2 for 2 days, and then dried to about 5.3. g of product was obtained.
  • a protein-synthetic polymer composite in which the terminal hydroxyl groups were epoxidized. (Protein Z epoxy compound composite) was obtained.
  • the obtained epoxidized protein could be cross-linked with a usual curing agent used for curing epoxy resin.
  • Example 3 (casein diethylene glycol) obtained by drying under reduced pressure at 60 ° C for 24 hours to remove water was placed in a reaction vessel with 4.83 g and 10 ml of dimethyl sulfoxide. Was. Next, while stirring this solution with a stirrer, 0.952 g of butanediol and 10 dimethyl sulfoxide solution were added, followed by 0.363 g of diphenylmethane diisocyanate. A solution dissolved in 5 ml of dimethylformamide was added.
  • reaction vessel was heated to 5 (TC and reacted for about 2 hours.
  • the reaction product was precipitated in methanol to recover the polymer, and the unreacted mixture remaining in the polymer was treated with ethyl acetate. Soxhlet extraction was performed for 24 hours.
  • the obtained protein one synthetic polymer conjugate (protein / urethane compound complex) is a powder
  • the surface condition was analyzed by FT-IR by diffusion method, 1 7 4 0 cm - 1 Absorption of an urethane bond was observed at 1320 cm -1 , and absorption of an ester bond was observed at 1230 cm _1 .
  • the monomer and the homopolymer remaining in the obtained polymer were subjected to solute extraction with benzene for 24 hours.
  • the surface of the synthetic polymer be covered with the protein
  • the surface of the protein can be modified by coating the surface of the protein with the synthetic polymer, but also the protein and the synthetic polymer having various compositions can be used. Production of complex protein-synthetic polymer complex is possible.
  • the present invention is expected to be widely used in the fields of foodstuffs that produce protein materials, the plastics and rubber industries, or the fields of fine chemicals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Peptides Or Proteins (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Graft Or Block Polymers (AREA)

Description

_ _ 明 細 書
たんぱく質一合成高分子複合体の製造方法
及び得られた該複合体
技術分野
本発明はたんぱく質一合成高分子複合体の製造方法及び該方法に より得られる複合体に関する。 さらに詳しく は、 たんぱく質を構成 するアミ ノ酸のカルボキシル基に官能基を有するアルコールを反応 させ、 エステル化により鎖延長させ、 たんぱく質のエステル化物を 得たり、 あるいは鎖延長させた後、 さらに官能基に反応する合成高 分子原料を反応させるなどによりたんぱく質一合成高分子複合体を 得る、 たんぱく質一合成高分子複合体の製造方法に関する。 背景技術
たんぱく質は生体を構成する親水性ポリマーであり、 生体適合性. 酵素作用をはじめとする生理活性などすぐれた機能を有している。
これを単独で材料として用いる場合、 合成高分子に比べて安定性 や機械的強度や加工特性に劣り、 その優れた機能性が十分利用され ていない。 この欠点を補うため合成高分子との複合化が盛んに検討 されてきた。
しかしながら、 合成高分子は一般に疎水性であるために、 親水性 のたんぱく質との複合化はきわめて難しいのが現状である。 この問 題に対するアプローチの一つとして、 たんぱく質中に多数存在する 活性な側鎖の利用法があるが、 有機溶媒中での反応性が乏しいこと から、 たんぱく質をベースとしたモノマーのグラフ ト重合は水系溶 媒を用いることを余儀なく されている。 従って、 この種の重合には 自ずと限界がある。
そこで、 発明者らは過去にゼラチンを微粉末化して、 溶媒を使わ ない機械的混練法により、 天然高分子が合成高分子に少量結合した 吸 ·放湿性素材の開発を行ったが、 この手法は合成高分子がベース となった複合体の製法に限定されるため、 この機能性も限られたも のであった。
しかし、 互いに結合するたんぱく質と合成高分子との組成比が任 意に調整でき、 かつ成形が自由なものになれば、 これまでにない全 く新しい機能性に富んだいろいろな複合素材の開発が可能となる。 例えば親水性に富むたんぱく質を合成高分子と複合化すれば他の 合成高分子との栢溶性に優れるため、 複合して用いることが可能と なるばかりでなく、 それ自身肌ざわりの良い、 いわゆる 「しっとり J 感を有する素材として有用なものとなる。 そのためには、 たんぱく 質が有機溶媒中でも反応性に富むような工夫が必要となる。
本発明者らは上記した状況に鑑み、 有機溶媒中でも反応性に富む たんぱく質を得るため鋭意検討した。
従来、 一価アルコールなど水酸基以外の官能基を含まない化合物 とたんぱく質とのエステル化についてはよく知られているが、 水酸 基以外にも官能基をもつアルコールとのエステル化については十分 あきらかにはされていない。
そこで、 従来技術である一価アルコールとのエステル化法に着目 し、 たんぱく質の側鎖を多官能性アルコールでエステル化を行ない、 たんぱく質の側鎖のカルボキシル基を鎖延長して、 有機溶媒中での 反応性の改善を検討した。
その結果、 多官能性アルコールも一価アルコールと同様に、 たん ぱく質中のカルボキシル基と触媒なしでも容易にエステル化できる こと、 さらにこのエステル化物を用いてたんぱく質一合成高分子複 合体を得ることができることを見い出し本発明を完成するに到った。 発明の開示
即ち、 本発明においてたんぱく質一合成高分子複合体を合成する ためには、 まず第一段階として、 たんぱく質を構成するアミ ノ酸の 側鎖のカルボキシル基に、 多官能性アルコールを反応させてエステ - - ル化により鎖延長させ、 たんぱく質の側鎖に多官能性アルコール由 来の官能基を持つ、 たんぱく質のエステル化物を調製する。
そして、 第二段階として、 有機溶媒、 たとえばトルエン、 ジメチ ルホルムア ミ ド、 酢酸ェチル、 テ トラ ヒ ドロフラ ン、 シクロへキサ ン、 ジメチルスルホキシドなど従来、 たんぱく質自体では親和性が 乏しく用いられるこ との少なかった溶媒中で、 第一段階で得られた エステル化物にエポキシ樹脂や、 ウレタン樹脂の原料化合物あるい は他の重合性ビニルモノマ一などを付加重合させ、 あるいは合成高 分子とグラフ ト重合させるなどいわゆる従来の重合技術を組み合わ せて、 たんぱく質一合成高分子複合体を製造する。
本発明は上記した知見のもとになされたものでありその要旨は、
( 1 ) たんぱく質の水溶液、 微粉末あるいはその懸濁液と過剰の 多官能性アルコールを反応させてエステル化を行ない、 たんぱく質 の側鎖のカルボキシル基を鎖延長することを特徴とする、 たんぱく 質のエステル化物の製造方法、
( 2 ) 多官能性アルコールとして多価アルコールを用い、 鎖延長 された側鎖に存在する多価アルコール由来の水酸基にィソシァネー ト基を持つ化合物を反応させゥレタン化することを特徵とする、 た んぱく質 -合成高分子複合体の製造方法、
( 3 ) 多官能性アルコールとして多価アルコールを用い、 鎖延長 された側鎖に存在する多価アルコール由来の水酸基にエポキシ基を 持つ化合物を反応させ、 次いで樹脂化させることを特徵とする、 夕 ンパク質一合成高分子複合体の製造方法、
( 4 ) 多官能性アルコールとして不飽和結合を有するアルコール を用い、 鎖延長された側鎖に存在する該アルコール由来の不飽和基 に、 重合開始剤の存在下ビニルモノマーを付加重合させるかまたは 合成高分子をグラフ ト重合させるか、 あるいは合成高分子に該不飽 和基を有するたんぱく質のエステル化物をグラフ ト重合させること を特徴とする、 たんぱく質一合成高分子複合体の製造方法、 並びに ( 5 ) 前記 ( 1 ) により得られるたんぱく質のエステル化物、 お よび前記 ( 2 ) 〜 ( 4 ) の製造方法により得られる各種のたんぱく 質一合成高分子複合体に関する。 発明を実施するための最良の形態
以下、 本発明の各態様について説明する。
( 1 ) 第 1の態様 (エステル化物の製造) :
たんぱく質の水溶液、 微粉末あるいはその懸濁液と過剰の多官能 性アルコールを反応させてエステル化を行ない、 たんぱく質の側鎖 のカルボキシル基を鎖延長することにより、 たんぱく質のエステル 化物を製造することができる。
本発明で用いられるたんぱく質は、 特に限定されるものではなく、 各種のポリぺプタイ ドが挙げられる。 例えば、 ゼラチン、 コラーゲ ン、 カゼイン等が例示される。 また、 これらのポリぺプタイ ドを含 むクロムなめし革のような皮、 例えば牛皮、 豚皮、 羊皮などをその まま用いてもよい。
本発明においては、 たんぱく質の水溶液、 微粉末あるいはその懸 濁液に、 多官能性アルコールを加え、 エステル化反応を行うことに より、 たんぱく質のエステル化物を得ることができる。
ここでいう多官能性アルコールとしては、 ジエチレングリ コール、 トリエチレングリ コール、 ポリエチレングリ コール、 グリセリ ンあ るいはブタンジオール、 プロパンジオール等の多価アルコールまた はァリルアルコール、 4 ーァリルカテコール、 ァリルカルビノール 等の不飽和結合を有するアルコールが挙げられ、 さらにはエポキシ 基を有するアルコール等であってもよい。
これらの多官能性アルコールの使用量は、 特に限定されることは ないが、 通常たんぱく質中のカルボキシル基に対し過剰量が用いら れ、 具体的には前記たんぱく質 1 gに対し、 0 . 0 0 1 5〜 0 . 1 モルの量が適量である。 エステル化は反応温度として通常 1 0〜 1 0 0 °cの範囲で任意に行うことができ、 反応に要する時間は、 多官 能性アルコールの使用量および反応温度によりエステル化率を任意 に選択できるため一義的には定まらないが、 通常 1 時間〜 4 日間の 範囲で選ばれる。
これらの多官能性アルコールを前記たんぱく質と反応させること により、 たんぱく質中のグルタ ミ ン酸 (G 1 u ) 、 ァスパラギン酸 ( A s ) 等の側鎖カルボキシル基がエステル化され、 .鎖延長され る。 このようにして延長された鎖には、 多官能性アルコール由来の 種々の官能基を有するたんぱく質のエステル化物が得られる。 例え ば、 前記の多官能性アルコールのうち、 多価アルコールを用いた場 合は、 延長された鎖に水酸基を有するたんぱく質のエステル化物が 得られ、 また、 不飽和結合を有するアルコールを用いた場合には、 延長された鎖に不飽和基を有するたんぱく質のエステル化物が得ら れる。
( 2 ) 第 2の様態 (たんぱく質一合成高分子複合体の製造) : 前記の第 1 の態様において、 多官能性アルコールとして多価アル コールを用い、 鎖延長された側鎖に多価アルコール由来の水酸基を 有するたんぱく質のエステル化物を合成し、 次いで該水酸基にィソ シァネー ト基を持つ化合物を反応させウレタン化することにより、 たんぱく質一合成高分子複合体を製造することができる。
ここで用いられる多価アルコールとしては、 前記のような多官能 性アルコールのうち、 ジエチレングリ コール、 ト リエチレングリ コ ール、 ポリエチレングリ コール、 グリセリ ンあるいはブタンジォー ル、 プロパンジオール等の分子内に 2個以上の水酸基を有するアル コールが挙げられる。
得られたエステル化物の延長された側鎖に存在する水酸基をゥレ タン化する方法としては、 該エステル化物とイソシァネー ト基を持 つ化合物を反応させることにより行われる。 具体的には例えば、 ェ ステル化物をィソシァネー ト基を持つ化合物と反応させた後、 ポリ オールゃジァミ ンを用いてウレタン化してもよい。 また、 イソシァ ネート基を持つ化合物として、 末端ジィソシァネー トのプレボリマ 一を用いて該エステル化物と反応させてゥレタン化し、 たんぱく質 一合成高分子複合体としてもよい。
ここで用いるイソシァネー ト基を持つ化合物やポリオール、 ジァ ミ ンは目的に応じて選択することができ、 通常は汎用のものでよい。 ( 3 ) 第 3の様態 (たんぱく質一合成高分子複合体の製造) : 前記の第 1 の態様において、 多官能性アルコールとして多価アル コールを用い、 鎖延長された側鎖に多価アルコール由来の水酸基を 有するたんぱく質のエステル化物を合成し、 次いで該水酸基にェポ キシ基を持つ化合物を反応させ、 さらに樹脂化させることにより、 たんぱく質一合成高分子複合体を製造することができる。
ここで用いられる多価アルコールとしては、 第 2の態様の場合と 同様のものが用いられる。 また、 エポキシ基を持つ化合物としては、 例えばェピクロルヒ ドリ ン等が挙げられ、 これを用いてエステル化 物をエポキシ化した後、 例えば多価フエノールを反応させて、 順次 樹脂化してもよく、 あるいは末端エポキシ化した樹脂をエステル化 物の水酸基に反応させ、 たんぱく質—合成高分子複合体としてもよ い。
( 4 ) 第 4の様態 (たんぱく質一合成高分子複合体の製造) : 前記の第 1 の態様において、 多官能性アルコールとして不飽和結 合を有するアルコールを用い、 鎖延長された側鎖に不飽和結合を有 するアルコール由来の不飽和基を有するたんぱく質のエステル化物 を合成し、 次いで該不飽和基に重合開始剤の存在下ビニルモノマー を付加重合させるかまたは合成高分子をグラフ ト重合させるか、 あ るいは合成高分子に該不飽和基を有するたんぱく質のエステル化物 をグラフ ト重合させることにより、 たんぱく質一合成高分子複合体 を製造することができる。
ここで用いられる不飽和結合を有するアルコールとしては、 前記 のようなァリルアルコール、 4 ーァリルカテコール、 ァリルカルビ ノール等が挙げられる。
このような不飽和基を有するエステル化物を用いてたんぱく質一 合成高分子複合体を製造するには、 種々の方法が挙げられる。 例え ば、 ①従来の重合開始剤を用いて種々の重合性ビニルモノマーと付 加重合させる、 ②合成高分子をエステル化物にグラフ ト重合させる. ③合成高分子にエステル化物をグラフ ト重合させる方法が挙げられ る
前記①における重合開始剤としては、 例えば過酸化べンゾィルや- ァゾイソプチロニト リルなどであり、 さらに、 放射線重合や紫外線 重合あるいはメカノケミカル反応による重合などを利用した公知の 重合技術を用いてもよい。
また、 重合性ビュルモノマーとしては、 塩化ビニル、 エチレン、 スチレン、 メチルメタク リ レー ト、 ブタジエン、 クロ口プレンなど のほか、 シリコン系モノマーを用いることもできる。
前記②または③においては、 エステル化物の不飽和基を合成高分 子や合成高分子成形品上で重合開始剤により開裂させて、 該エステ ル化物を合成高分子にグラフ トさせたり、 あるいは逆に合成高分子 を該エステル化物にグラフ トすることにより行われる。 ここで用い られる重合開始剤は、 前記①で列記したものと同様のものが使用で きる。 また、 合成高分子としてはポリ塩化ビニル、 ポリエチレン、 ポリアミ ド樹脂、 シリ コンゴム、 ポリブタジエンゴム、 ポクロロプ レンゴム、 熱可塑性ゴムなどが挙げられる。 但し、 ゴムについては 加硫物でもグラフ ト可能であるが、 未加硫物に比べてその効果は小 さい。
本発明のたんぱく質一合成高分子複合体は、 前記のような第 1 の 態様により得られるエステル化物を中間体として、 第 2〜 4の各態 様により得られるものである。 このようにして得られるたんぱく質 -合成高分子複合体の構造上の特徴は、 たんぱく質の側鎖にゥレ夕 ン結合を有する (第 2の態様で得られる) 、 たんぱく質の側鎖がェ ポキシ化されている (第 3の態様で得られる) 、 およびたんぱく質 の側鎖に合成高分子が結合している (第 4の態様で得られる) 点が 挙げられる。
以下、 実施例により本発明を詳細に説明するが、 本発明はこれら の実施例により何等限定されるものではない。
なお、 実施例において得られたエステル化物中にエステル結合が 存在することの確認は、 以下の方法によって行った。
定性: FT— I Rによるエステル結合の存在またはヒ ドロキサム酸 一鉄 (IT) による呈色反応により行った。
ヒ ドロキサム酸一鉄 (Π) による呈色反応では、 約 2 %のサ ンプル水溶液 0.2 m 1 にヒ ドロキシルアミ ン水溶液 ( 2 m 0 1ノ £ /3.5 N Na〇Ha q= l Z l ) 0.6m^を加え、 3 0 °Cで 5分 間放置する。 その後、 4 N HC l a q 0.4m lおよび 0.4 m l の F e C 13 a q溶液 ( 1 0 wt % F e C 13 - 6 H 2 0 / 0. 1 N HC l a q) を加える。
エステルが存在すれば、 溶液の色は、 赤紫色に呈色する。
定量 :重量法または N MR法により行った。
重量法では、 反応後のたんぱく質を水洗、 乾燥し、 重量増加を測 定してエステル化率を算出した。 また、 NMR法では 2 0 0 MH z の NMRを用いて、 たんぱく質中のフヱニルァラニンの核置換 Hと ァリルアルコールの = C H2 基 Hとの面積比よりエステル化率を算 t }し 7こ 0
実施例 1
共栓つき三角フラスコにアルカ リ処理ゼラチン (コニ力ゼラチン ㈱製、 分子量約 1 0万の ゼラチン) 4. 4 8 9 g (乾物量) を入 れ、 これを蒸留水 1 0 m lで溶解する。 つぎに、 5 m 1のァリルァ ルコールを加えて密栓し、 5 0 °Cで 2 4時間反応させた。 このエス テル化物を回収するため、 溶媒である水と、 反応にあずからなかつ た過剰のァリルアルコールを 5 0でオーブン中で蒸発させた後、 引 き続き、 8 0 2 4時間減圧下で完全に乾燥除去した。
得られたエステル化物を再び蒸留水 1 0 m lで溶解し、 上記と同 様の操作を 3回繰り返した結果、 エステル化物の収量が恒量に達し た。 最終収量は、 4. 7 7 4 gとなった。 得られた微粉末は、 拡散 反射法 FT— I Rによる 1 7 2 4 c m-1の吸収およびヒ ドロキサム 酸一鉄 (BO による呈色反応により、 黄色から赤紫色への呈色から エステル結合が存在することが確認された。 また 2 0 0 MH zの N MR分析によりゼラチンのカルボキシル基の約 9 1 %がエステル化 されたゼラチンのエステル化物 (ゼラチン Zァリルアルコール) で あることが判明した。
実施例 2
約 1 0 /m以下に粉砕した、 クロムなめし革 (牛皮) 粉末の乾物 量換算 5. 1 0 5 gを共栓付三角フラスコに 5 m 1 のァ リ ルアルコ ールと共に入れ懸濁状態とし、 マグネチックスタラーで攪拌しなが ら 5 0 °Cで 2 4時間反応させた。 次に過剰のァリルアルコールを口 —タ リ一エバポレーターで除去した後、 さらに 4 0 °C 2 4時間減圧 下で完全に除去した。
得られたこのエステル化物を蒸留水 1 0 m lで洗浄し、 実施例 1 と同様の手法で微量のアルコールを除去した。 この操作を 3回繰り 返した結果、 エステル化物 (クロムなめし革 Zァリルアルコール) の収量が恒量に達した。 得られた最終収量は 5. 2 3 7 gで、 重量 増加によるエステル化率は 3 7 %であった。
実施例 3
共拴つき三角フラスコに 5 m l のジエチレングリ コールと 5. 2 5 6 gのカゼイン (試薬 1級) および 0. 1 N HC 1 5 m l とを 入れ、 スタラーで攪拌しながら、 5 0 °Cに保って反応させた。 2 4 時間反応させた後、 停止し、 反応物をメタノール中に沈澱させ、 繰 り返し水洗して、 結合に関与しなかったジエチレングリ コールを完 全に除去した。 これを風乾した後、 さらに減圧乾燥を行って、 微量 の水分を除去した。 この結果、 5 . 3 5 8 gのエステル化物 (カゼ イン ジエチレングリ コール) を得た。
実施例 4
実施例 1で得られたエステル化物 (ゼラチン Zァリルアルコール) 0 . 7 9 3 gとラジカル開始剤ベンゾィルパーォキサイ ド (以下 B P Oという) の 2 m m o 1 / の トルェン溶液 2 m 1 とを反応容器 に入れた後、 さらにスチレンモノマ一 0 . 7 6 2 gと 5 m l の トル ェンを加えて、 窒素置換し、 8 0 、 3時間反応させ、 メタノール を加えて反応を停止させた。 得られたグラフ ト物中のスチレンモノ マー、 および結合に閟与しないポリスチレンをァセ トンで洗浄して 除去し、 0 . 8 6 0 gのたんぱく質一合成高分子複合体 (ゼラチン /ポリスチレングラフ ト物) を得た。
実施例 5
2 X c mの可塑剤を含まない透明な塩化ビニル樹脂板上に実施 例 1で得られたエステル化物 (ゼラチン Zァリルアルコール) 0 . 2 2 5 gを粉末のままで塗布し、 この粉末上に 3 m m o I £ B P 0のジメチルスルホキシド溶液を数滴ふりかけて濡らした後、 デシ ケ一夕一中に移し、 ァスピレー夕で減圧下に置いたまま、 これを 8 0で、 3時間反応させた。 反応物は、 塩化ビニル樹脂板に皮膜を形 成した。 これを水中で 1 時間煮沸した結果、 塩化ビニル樹脂板上に は約 8 0 %の不溶のたんぱく質が、 たんぱく質一合成高分子複合体 (ゼラチン/ビニル樹脂板グラフ 卜物) として塩化ビニル樹脂板上 に結合した状態で残った。
これに対して、 コン トロールとして化学修飾を施さないゼラチン についても B P 0を含まないジメチルスルホキシド溶液で上記と同 様の操作を行い、 生成物に水を加え 1 5分間煮沸すると、 塩化ビニ ル樹脂板上のゼラチンはすべて溶解した。
実施例 6 5 - 実施例 3においてジエチレングリ コールに代えてブタンジオール を用い、 カゼィンに代えてゼラチンを用いた以外は実施例 3 と同様 にして得られたゼラチンの 8 6 %エステル化物 (ゼラチン Zブタン ジオール) を 8 0 °Cで 2 4時間減圧乾燥し、 水分を除去した後その 0 . 1 0 2 gをジメチルスルホキシ ドに溶解して約 1 5 %溶液とし た。 この溶液を攪拌しながら、 — N C O Z O Hの当量比を 1 . 0 2 として ト リ レンジイソシァネー トを加え、 よく攪拌した後、 ガラス 板上にキャスチングした。 約 3 0分後に水中に浸潰し、 溶剤を除去 した結果、 透明で、 水中で 3時間煮沸しても溶解しない、 屈曲性に 富む強靭なフィルム状のたんぱく質-合成高分子複合体 (たんぱく 質 ウレタン化合物複合体) を得た。
実施例 7
実施例 6 と同様にして得たエステル化物 (ゼラチン ブタンジォ —ル) 5 gと 0 . 2 gの苛性ソーダとを 2 5 m 1 の蒸留水に溶解し た。 一方、 5 m 1 のジメチルスルホキシドを入れた滴下ロー ト、 お よびコンデンサー付きの三つ口フラスコに 2 m 1 のェピクロルヒ ド リ ンを入れた。 次に、 エステル化物の苛性ソーダ溶液を滴下ロー ト から約 1 0分かけて滴下し、 攪拌しながら 5時間反応を行った。 反 応後、 混合物を過剰のアセ ト ンに注いで濾過、 洗浄を行った後、 真 空乾燥を行ってエステル化物のエポキシ化中間体とした。 引き続き、 このエポキシ化中間体の 4 gを 2 5 m 1 のジメチルスルホキシ ドに 溶解した。 この溶液をコンデンサ一および滴下ロー トを付けた三つ 口フラスコに入れ、 5 0 °Cに加熱し、 ビスフエノール A 8 . 5 m m 0 1 を加えた。 溶解後、 ビスフヱノール Aと等モル量の 4 0 %苛性 ソ一ダ溶液を徐々に加え、 6時間反応させた。 反応停止後、 反応物 は過剰のアセ トンで濾過し、 繰り返し洗浄した。
次に、 この中に含まれる苛性ソーダを除く ためこの反応生成物を ビスキングチューブに入れ、 p H 7 . 2のホウ酸ツーダ溶液中で 2 日間透析を行った後、 乾燥したところ約 5 . 3 gの生成物を得た。 この 5. 3 gを硬化型の樹脂に変性するために、 上記のエポキシ化 中間体で行ったのと同様の操作を繰り返すことにより、 末端の水酸 基をエポキシ化したたんぱく質一合成高分子複合体 (たんぱく質 Z エポキシ化合物複合体) を得た。
この結果、 得られたエポキシ化たんぱく質は、 エポキシ樹脂の硬 化で用いられる通常の硬化剤で架橋を行うことができた。
実施例 8
6 0 °C. 2 4時間減圧乾燥を行って水分を除去した実施例 3のェ ステル化物 (カゼイン ジエチレングリ コール) 4. 6 8 3 gと 1 0 m 1 のジメチルスルホキシドとを反応容器に入れた。 次に、 この溶 液をスターラーで攪拌しながら 0. 9 5 2 gのブタンジオールと 1 0 のジメチルスルホキシド溶液とを加え、 つづいて 0. 3 6 3 g のジフエニルメタンジイソシァネー トを 5 m 1 のジメチルホルムァ ミ ドに溶かした溶液を添加した。 つぎに、 反応容器を 5 (TCに加温 し、 約 2時間反応させた後、 反応物をメタノールに沈澱させポリマ 一を回収し、 ポリマー中に残存する未反応混合物を酢酸ェチルによ り、 2 4時間ソックスレー抽出した。
この結果、 得られたたんぱく質一合成高分子複合体 (たんぱく質 /ウレタン化合物複合体) は、 粉末状であり、 表面状態を拡散法に よる F T— I Rで分析したところ、 1 7 4 0 c m -1 にウレタン結 合の、 1 3 2 0 c m -1 , 1 2 3 0 c m _1 にエステル結合の吸収 が認められた。
実施例 9
B P Oの 3 min o 1 / i トルェン溶液を 5 m l採り、 この溶液を 重合管に入れ、 予め、 6 0で、 2 4時間減圧乾燥を行って水分を除 去した実施例 1で得たエステル化物 (ゼラチン/ァリルアルコール) (微粉末状) 5. 2 5 gを加えた。 さらに、 常法により精製したク ロロプレンモノマー 1. 0 m 1 をこの トルエン混合溶液に溶解し、 重合管内を窒素置換して封管した後、 6 0 °C中で重合を開始した。 - -
6時間重合反応を行った後、 開封し、 反応混合物をメタノール中 に注いでポリマーを回収した。
得られたポリマ一中に残存するモノマーならびにホモポリマーを ベンゼンにより、 2 4時間ソ ッ クスレ一抽出を行った。
減圧乾燥により、 得られたポリマーは約 5 . 5 gでこのポリマ一 はたんばく質の表面にゴムが結合した状態になっていることが拡散 法 (F T— I R分析) による差スペク トルから、 1 6 4 0 c m 一1 にクロロプレン二重結合が認められたことにより確認された (たん ばく質一合成高分子複合体) 。 産業上の利用可能性
本発明を実施することにより合成高分子の表面をたんぱく質で被 覆したり、 逆に、 たんぱく質の表面を合成高分子で被覆して改質す るだけでなく、 種々な組成のたんぱく質と合成高分子よりなるたん ばく質 -合成高分子複合体の製造が可能である。
したがって、 新しい機能性に富んだ製品、 例えば機能性分離膜、 生体適合性材料、 生分解性ポリマー、 たんぱく質系耐水接着剤、 同 難燃材などに適用できる。
本発明は、 たんぱく質素材を産出する食品分野からプラスチッ ク やゴム工業、 あるいはファインケミカル分野にまたがって幅広く活 用が期待できるものである。

Claims

請 求 の 範 囲
1 . たんぱく質の水溶液、 微粉末あるいはその懸濁液と過剰の多 官能性アルコールを反応させてエステル化を行ない、 たんぱく質の 側鎖のカルボキシル基を鎖延長することを特徵とする、 たんぱく質 のエステル化物の製造方法。
2 . 多官能性アルコールとして多価アルコールを用い、 鎖延長さ れた側鎖に存在する多価アルコール由来の水酸基にィソシァネー ト 基を持つ化合物を反応させゥレ夕ン化することを特徴とする、 たん ぱく質一合成高分子複合体の製造方法。
3 . 多官能性アルコールとして多価アルコールを用い、 鎖延長さ れた側鎖に存在する多価アルコール由来の水酸基にエポキシ基を持 つ化合物を反応させ、 次いで樹脂化させることを特徴とする、 たん ぱく質 -合成高分子複合体の製造方法。
4 . 多官能性アルコールとして不飽和結合を有するアルコールを 用い、 鎖延長された側鎖に存在する該アルコール由来の不飽和基に、 重合開始剤の存在下ビニルモノマーを付加重合させるかまたは合成 高分子をグラフ ト重合させるか、 あるいは合成高分子に該不飽和基 を有するたんぱく質のエステル化物をダラフ ト重合させることを特 徵とする、 たんぱく質一合成高分子複合体の製造方法。
5 . たんぱく質がゼラチン、 コラーゲン又はカゼインである請求 の範囲第 1項、 第 2項、 第 3項または第 4項記載の製造方法。
6 . たんぱく質として皮を用いることを特徵とする請求の範囲第 1項、 第 2項、 第 3項または第 4項記載の製造方法。
7 . 請求の範囲第 1項記載の製造方法により得られるたんぱく質 の側鎖のカルボキシル基がエステル化されている、 たんぱく質のェ ステル化物。
8 . 請求の範囲第 2項記載の製造方法により得られるたんぱく質 の側鎖にゥレタン結合を有する、 たんぱく質一合成高分子複合体。
9 . 請求の範囲第 3項記載の製造方法により得られるたんぱく質 の側鎖がエポキシ化されている、 たんぱく質一合成高分子複合体。
1 0. 請求の範囲第 4項記載の製造方法により得られるたんぱく質 の側鎖に合成高分子が結合している、 たんぱく質一合成高分子複合 体。
PCT/JP1991/001328 1990-06-22 1991-09-30 Process for producing protein/synthetic polymer complex and said complex produced thereby WO1993007175A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2164821A JP2519581B2 (ja) 1990-06-22 1990-06-22 たんぱく質―合成高分子複合体の製造方法及び得られた該複合体

Publications (1)

Publication Number Publication Date
WO1993007175A1 true WO1993007175A1 (en) 1993-04-15

Family

ID=15800558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/001328 WO1993007175A1 (en) 1990-06-22 1991-09-30 Process for producing protein/synthetic polymer complex and said complex produced thereby

Country Status (2)

Country Link
JP (1) JP2519581B2 (ja)
WO (1) WO1993007175A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017215A (ja) * 1973-06-11 1975-02-24
JPS59139396A (ja) * 1983-01-31 1984-08-10 Kuraray Co Ltd ネオカルチノスタチン複合体の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017215A (ja) * 1973-06-11 1975-02-24
JPS59139396A (ja) * 1983-01-31 1984-08-10 Kuraray Co Ltd ネオカルチノスタチン複合体の製造方法

Also Published As

Publication number Publication date
JP2519581B2 (ja) 1996-07-31
JPH0454200A (ja) 1992-02-21

Similar Documents

Publication Publication Date Title
US5473034A (en) Method for producing protein-synthetic polymer conjugate and said conjugate produced thereby
US4302553A (en) Interpenetrating polymeric networks
US2650212A (en) Adhesive composition comprising a diisocyanate modified polyester
JP5676461B2 (ja) 使い捨て用樹脂成形品用樹脂組成物および使い捨て用樹脂成形品
JPS61197639A (ja) 成形性組成物
US4169866A (en) Polymer systems containing polycarbodiimides and thermoplastic polymer
CN113088154B (zh) 一种含胍基抗菌防霉水性聚氨酯皮革涂饰材料的制备方法
JPH11511804A (ja) 生分解性プラスティックを製造するために、合成ポリマーに官能基をグラフトさせる方法
US3518326A (en) Thermosetting resins derived from n - 3 - oxohydrocarbon - substituted acrylamides
JPH10140002A (ja) 生分解性で堆肥化可能な成形体
JPS63120719A (ja) 合成樹脂材料用改質剤
US2778810A (en) Elastomers derived from polyisocyanate modified polyesters
US5166232A (en) Cellulose/plastic blends, a process for their production and their use
WO1993007175A1 (en) Process for producing protein/synthetic polymer complex and said complex produced thereby
US2730518A (en) Beryllium hydroxide as catalyst in reacting polyesters with diisocyanates
WO1993013131A1 (en) Process for producing protein-synthetic polymer composite and said composite produced thereby
US3660532A (en) Castable elastomers and their manufacture
JPH069885A (ja) エステル化タンパク質を用いて得られる皮革様成形品
JPH10195169A (ja) 重合性を付与した天然有機高分子化合物の製造方法
CA2119232A1 (en) Method for producing protein-synthetic polymer conjugate and said conjugate produced thereby
JPH06116446A (ja) 生分解性樹脂組成物
US3758444A (en) Polyurethanes based on activatedlactam cross linkers
JPH0616952A (ja) アミド化タンパク質を用いて得られる皮革様成形品
JPH04258637A (ja) 硬化可能なブロック共重合体及びそれを用いる低収縮剤
JPS6251966B2 (ja)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2119232

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 08204389

Country of ref document: US