WO1992014790A1 - Composition de resine thermoplastique - Google Patents

Composition de resine thermoplastique Download PDF

Info

Publication number
WO1992014790A1
WO1992014790A1 PCT/JP1992/000166 JP9200166W WO9214790A1 WO 1992014790 A1 WO1992014790 A1 WO 1992014790A1 JP 9200166 W JP9200166 W JP 9200166W WO 9214790 A1 WO9214790 A1 WO 9214790A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
resin
thermoplastic resin
styrene
vinyl compound
Prior art date
Application number
PCT/JP1992/000166
Other languages
English (en)
French (fr)
Inventor
Makoto Yamamoto
Atsushi Hayashi
Toshiaki Kobayashi
Shinichi Akatani
Yoshitsugu Hirokawa
Original Assignee
Nippon Zeon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co., Ltd. filed Critical Nippon Zeon Co., Ltd.
Publication of WO1992014790A1 publication Critical patent/WO1992014790A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a thermoplastic resin composition having excellent heat resistance, impact resistance, solvent resistance, compatibility and the like.
  • thermoplastic resins are used in various fields, but when sufficient performance cannot be obtained by using only a single resin, a method of using in combination with other resins has been attempted.
  • polycarbonate resin is excellent in mechanical strength such as tensile strength, bending strength and impact strength, heat resistance, etc., but hydrogenated (styrene-isoprene) to improve low-temperature impact resistance, solvent resistance, fluidity, etc.
  • a resin composition containing a block copolymer Japanese Patent Application Laid-Open No. 58-145577
  • a resin composition containing an acrylic rubber Japanese Unexamined Patent Publication No. Sho 53-34,153, Japanese Unexamined Patent Publication No. Sho 56-143, 39), etc.
  • polyphenylene ether resin has excellent heat resistance, and it is blended with polystyrene resin to improve moldability, and is widely used for heat-resistant molded products by injection molding.
  • Various resin compositions have been proposed for the purpose of improvement.
  • U.S. Pat.No. 3,660,331 discloses a composition in which polystyrene and rubber are blended with polyphenylene ether.
  • U.S. Pat.No. 3,994,856 describes polyphenylene ether with polystyrene.
  • a resin composition containing a block copolymer of an aromatic vinyl compound and a conjugated gen compound is disclosed in Japanese Patent Laid-Open Publication No.
  • the publication discloses a composition in which polystyrene, a hydrogenated (styrene-conjugated gen compound-styrene) block copolymer and a butyl rubber olefin graft copolymer are blended with polyphenylene ether.
  • polyolefin-based resins have excellent moldability, water resistance, and solvent resistance, and are inexpensive, so they are widely used in various molded products. However, they are inferior in heat resistance and are injected because they are crystalline resins. It has disadvantages such as the molded product easily shrinking. For this reason, various blend compositions have been proposed for the purpose of retaining the merits of each resin and capturing defects by using it in combination with a polyphenylene ether resin. The mechanical strength is rather reduced due to the failure.
  • thermoplastic resin As described above, even if a thermoplastic resin is used in combination with other resins, etc., due to insufficient compatibility, various properties such as low-temperature impact resistance, heat resistance stability, and solvent resistance of the thermoplastic resin are obtained. Was not satisfactory, and further improvements were required.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, by using a block copolymer having a specific structure, a thermoplastic resin having improved compatibility as compared with the prior art has been obtained. Of the present invention was completed.
  • thermoplastic resin compositions (1) to (6) are provided.
  • thermoplastic resin composition comprising 5 parts by weight.
  • thermoplastic resin composition according to the above (1), wherein the thermoplastic resin is a polycarbonate resin, a polyphenylene ether resin, an aromatic vinyl compound resin or a polyolefin resin.
  • thermoplastic resin composition according to the above (1) wherein the thermoplastic resin is a mixture of 10 to 90% by weight of a polyphenylene ether resin and 90 to 10% by weight of an aromatic vinyl compound resin.
  • thermoplastic resin is a mixture of 10 to 90% by weight of polyolefin X diene ether resin, 90 to 0% by weight of aromatic vinyl compound resin and 10 to 90% by weight of polyolefin resin.
  • Thermoplastic resin composition is a mixture of 10 to 90% by weight of polyolefin X diene ether resin, 90 to 0% by weight of aromatic vinyl compound resin and 10 to 90% by weight of polyolefin resin.
  • thermoplastic resin (A) used in the present invention an aromatic vinyl compound resin containing at least 25% by weight of a repeating structural unit represented by the following chemical formula 1 and being a resin-like polymer at room temperature is used. No.
  • R 2 are hydrogen, halogen, or a hydrocarbon group, which may be the same or different, and m is an integer of 1 to 5.
  • aromatic vinyl compound-based resin include polystyrene, high-impact polystyrene, poly-methyl styrene, poly-p-methyl styrene, and styrene-maleic anhydride copolymer.
  • polyolefin resins specific examples of which are homopolymers, random copolymers, block copolymers and mixtures thereof, or alpha-lefin and other unsaturated polymers. Random copolymers, block copolymers, graft copolymers with monomers and oxidized, halogenated or sulfonated versions of these polymers, and at least partially crystalline . Specific examples include polyethylene, polypropylene, polybutene, polymethylpentene, propylene-ethylene copolymer, ethylene-butene-11 copolymer, chlorinated polyethylene, and chlorinated polypropylene.
  • polyphenylene ether resin examples include a polyphenylene ether resin, and specific examples thereof include a homopolymer and a copolymer having a repeating structural unit represented by the following chemical formula 2.
  • R 3 R 4, R 5 and R e each hydrogen, halogen, hydrocarbon group, halogenated hydrocarbon group, the group consisting of hydrocarbon Okishi radicals and halogenated hydrocarbons Okishi group Represents a substituent, which may be the same or different.
  • polyphenylene ether resin examples include poly (2,6-dimethyl-1,4-phenylene) ether, poly (2,6-dimethyl-1,4-phenylene) ether, and poly (2-methyl-1-6).
  • styrene obtained by graft copolymerization can also be used.
  • polycarbonate resin Another example is a polycarbonate resin, and specific examples thereof include a homopolymer having a repeating structural unit represented by the following chemical formula 3, a copolymer, and a mixture thereof. Further, a thermoplastic branched polycarbonate obtained by reacting a polyfunctional aromatic compound with a divalent phenol or a carbonate precursor.
  • a polycarbonate resin
  • X represents a divalent aromatic group of divalent phenol.
  • This polycarbonate resin is prepared by a solvent method, that is, a reaction between divalent phenol and a carbonate precursor such as phosgene or a reaction with divalent phenol in a solvent such as methylene chloride in the presence of a known acid acceptor and a molecular weight modifier. It can be produced by a transesterification reaction with a carbonate precursor such as diphenyl carbonate.
  • bisphenols are preferably used as divalent phenols, and 2,2-bis (4-hydroxyphenyl) propane is particularly preferred. Further, 2,2-bis (4-hydroxyphenyl) propane may be partially or entirely replaced with another divalent phenol.
  • thermoplastic resins examples include polyvinyl chloride resin, polyvinyl acetate resin, poly (meth) acrylate resin, poly (meth) acrylamide resin, poly (meth) acrylonitrile resin, and polyacrylamide resin.
  • examples include a mid-based resin, a polyester-based resin, a polyacetal-based resin, a polysulfone-based resin, a polyarylene sulfide-based resin, a fluorine-based resin, a polyimide-based resin, and a thermoplastic polyurethane-based resin.
  • Polyvinyl chloride-based resins include polyvinyl chloride, polyvinylidene chloride, polyvinyl chloride-vinylidene chloride copolymer, etc .; Polyvinyl acetate-based resins include polyvinyl acetate polymer and polyvinyl acetate polymer Genated compounds or acetalized compounds; poly (meth) acrylate resins include:
  • Polymers or copolymers of (meth) acrylic esters such as (meth) methyl acrylate and (meth) ethyl acrylate Poly (meth) acrylamide-based resins include (meth) acrylamide Poly (meth) acrylonitrile-based resin such as poly (meth) acrylonitrile, etc .; and polyamide-based resin as polycondensation of dicarboxylic acid and diamine. , ⁇ -aminocarboxylic acid and polycondensates, ring-opening polymers of cyclic lactams, etc.
  • Nylon 46, Nylon 16, Nylon 66, Nylon 610, Nylon Polyacetal resins include polyoxymethylene, formaldehyde or trioxane and other aldehydes. Cyclic ether cyclic carbonate, epoxide, isocyanate, copolymer with vinyl compound, and the like; Examples of the polyester resin include polyethylene terephthalate, polybutylene terephthalate, and the like.
  • polysulfone resin As a polysulfone resin, a structural unit represented by the following chemical formula 4 or 5 is used. And poly (ether sulfone) and poly (4,4'-bisphenol ether sulfone). -Ar-Y-Ar-S0 ?. (4)
  • Ar represents a funinylene group
  • Y represents oxygen, sulfur, or an aromatic diol group.
  • Ar represents a phenylene group.
  • the polyarylene sulfide-based resin is a polyarylene sulfide polymer or copolymer having a structural unit represented by the following chemical formula 6, and specifically, polyphenylene sulfide, poly (4,4'— Diphenylene sulfide) and the like.
  • Ar represents a phenylene group, a phenylene group substituted with an alkyl group or a substituted alkyl group.
  • fluorine-based resin examples include polytetrafluoroethylene and the like; examples of the polyimide-based resin include a polyimide obtained by reacting an aromatic diamine compound with an aromatic tetracarboxylic dianhydride.
  • thermoplastic polyurethane-based resin examples include thermoplastic polyurethanes in which a block of a polyol (polyester or polyether) and diisocyanate is used as a soft segment, and a block of diisocyanate and glycol is used as a hard segment.
  • polyester di examples include poly (1,4-butylene adipate), poly (1,6-hexane adipate), polycaprolactone, and the like.
  • Polyether diols include polyethylene glycol, polypropylene glycol, and polyoxytetra. Methylene glycol and the like.
  • glycols include ethylene glycol, 1,4-butanediol, 1,6-hexanediol and the like
  • diisocyanates include aromatic, alicyclic and aliphatic ones. Examples include isocyanate, 4,4'-diphenylmethane diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate.
  • thermoplastic resin used in the present invention various copolymers can be further exemplified.
  • specific examples of various copolymers include styrene-acrylonitrile copolymer, styrene-butadiene-acrylonitrile copolymer, styrene-ethyl acrylate copolymer, and styrene-acrylonitrile-ethyl acrylate copolymer.
  • Polymers styrene-ethylene-propylene-acrylonitrile copolymer, styrene-butadiene-methacrylate copolymer, ethylene-vinyl acetate copolymer, propylene-ethyl acrylate copolymer, vinyl chloride-vinyl acetate copolymer , Vinyl chloride-ethylene copolymer, vinyl chloride-propylene copolymer, vinyl chloride-isobutylene copolymer, vinyl chloride- (meth) acrylate copolymer, vinyl chloride-maleate copolymer, vinyl chloride Rilonitrile copolymer, vinyl chloride -Vinylidene chloride-vinyl acetate copolymer, vinyl acetate-ethylene or propylene copolymer, vinyl acetate-acrylonitrile copolymer, vinyl acetate polyacrylate copolymer and the like.
  • the molecular weight of the thermoplastic resin used in the present invention is not particularly limited, but is usually a number average molecular weight of 5,000 to 500,000, preferably 100,000 to 400,000. It is 0. If the number average molecular weight is less than 50,000, the mechanical strength of the thermoplastic resin composition is undesirably reduced. On the other hand, when the number average molecular weight exceeds 500,000, the viscosity of the thermoplastic resin composition increases, and the processability decreases, which is not preferable.
  • the block copolymer containing an aromatic vinyl compound unit and an isobutylene unit used in the present invention is a rubbery (aromatic) rubber at room temperature having at least one polymer block of an aromatic vinyl compound and at least one polymer block of isobutylene. (Group 1 vinyl compound-isobutylene) block copolymer.
  • aromatic vinyl compound include styrene, monomethylstyrene, monomethylstyrene, p-methylstyrene, t-butylstyrene, monochlorostyrene, dichlorostyrene, methoxystyrene, indene and the like.
  • the structure of the block copolymer is a branched block copolymer or a linear block copolymer, and includes a mixture thereof.
  • the block copolymer used in the present invention has an isobutylene unit content and an aromatic vinyl compound unit content of 50 to 95% by weight, preferably 55 to 90% by weight, and an aromatic vinyl compound unit of 5 to 50% by weight. % By weight, preferably from 10 to 45% by weight. If the unit content of the aromatic vinyl compound is less than 5% by weight, the fluidity at high temperatures is undesirably increased. On the other hand, if the aromatic vinyl compound unit content exceeds 50 parts by weight, the impact resistance of the thermoplastic resin composition decreases, which is not preferable.
  • the number average molecular weight is from 30,000 to 500,000, preferably from 50,000 to 400,000.
  • the number average molecular weight is less than 30,000, the fluidity increases, and If it exceeds 000, the viscosity will be high and the processability will be undesirably reduced.
  • cationically polymerizable monomers may be copolymerized as long as the performance of the resin composition of the present invention is not impaired.
  • Other cationically polymerizable monomers include 1-butene, pentene, hexene, butadiene, isoprene, methyl vinyl ether, and the like.
  • the method for producing the block copolymer used in the present invention is not particularly limited.
  • an initiator composed of a Lewis acid and an organic compound which forms a cationic polymerization active species in combination with the Lewis acid hereinafter referred to as an initiator compound
  • a third component such as amines and esters are added as necessary in the presence of a system to polymerize an aromatic vinyl compound and isobutylene in an inert solvent such as hexane / methylene chloride.
  • the initiator compound is an organic compound having a functional group such as an alkoxy group, an acyloxy group, or a halogen, for example, bis (2-methoxy-12-propyl) benzene, bis (2-acetoxy-2-propyl) benzene. Benzene or bis (2-chloro-2-propyl) benzene.
  • the Lewis acid include titanium tetrachloride, boron trichloride, and aluminum chloride.
  • amines include triethylamine, and examples of esters include ethyl acetate.
  • the linear block copolymer uses an initiator compound having one functional group and a Lewis acid as an initiator system, and substantially completes the reaction of an aromatic vinyl compound. After the polymerization is completed, isobutylene is added to the polymerization system, and further, the substantial polymerization reaction of isobutylene is completed. It can be produced later by a method in which the aromatic vinyl compound is again polymerized. In addition, a method is used in which an initiator compound having two functional groups and a Lewis acid are used to polymerize isobutylene until the reaction is completed, and then an aromatic vinyl compound is added to the polymerization system to continue the polymerization reaction. be able to.
  • the branched block copolymer is usually obtained by polymerizing isobutylene using a Lewis acid with an initiator compound having three or more functional groups until the reaction is completed. Thereafter, it can be produced by a method of adding an aromatic vinyl compound to the polymerization system and continuing the polymerization reaction.
  • the blending amount of the thermoplastic resin (A) and the block copolymer (B) containing an aromatic vinyl compound unit and an isobutylene unit used in the present invention is as follows: (A) 100 parts by weight of the component (A) B) Component 0.5 to 35 parts by weight, preferably 5 to 30 parts by weight. If the blending amount of the component (B) is less than 0.5 part by weight, the impact resistance and the fluidity of the thermoplastic resin composition are not improved. On the other hand, if the amount of the component (B) exceeds 35 parts by weight, the solvent resistance, heat resistance, rigidity, etc. of the thermoplastic resin composition are undesirably reduced.
  • thermoplastic resins used in the present invention when a polycarbonate resin, a polyphenylene ether resin, an aromatic vinyl compound resin, or a polyolefin resin is used, a particularly preferable thermoplastic resin composition is used. Things are obtained.
  • a polycarbonate thermoplastic resin composition having an excellent balance between low-temperature impact resistance and thermal stability can be obtained.
  • polycarbonate resin 1 Component (B) is added in an amount of 0.5 to 35 parts by weight, preferably 0.5 to 30 parts by weight, and more preferably 5 to 20 parts by weight, based on 100 parts by weight.
  • the amount of the component (B) is less than 0.5 part by weight, the low-temperature impact resistance is not improved and the fluidity is not improved.
  • the polycarbonate-based thermoplastic resin composition is not preferred because the solvent resistance and the rigidity are lowered.
  • the aromatic vinyl compound is particularly excellent in compatibility and has improved low-temperature impact resistance.
  • a compound-based thermoplastic resin composition is obtained.
  • the component (B) is blended in an amount of 0.5 to 35 parts by weight, preferably 5 to 20 parts by weight, based on 100 parts by weight of the aromatic vinyl compound resin.
  • the amount of the component (B) is less than 0.5 part by weight, the low-temperature impact resistance is not improved.
  • it exceeds 35 parts by weight the moldability and rigidity of the aromatic vinyl compound-based thermoplastic resin composition decrease, which is not preferable.
  • a block copolymer containing (B) an aromatic vinyl compound unit and an isobutylene unit into a mixture of a polyfuylene ether resin and an aromatic vinyl compound resin, a polymer having excellent low-temperature impact resistance can be obtained.
  • a refenylene ether-based thermoplastic resin composition is obtained.
  • the amount of the polyphenylene-based resin and the aromatic vinyl compound-based resin to be combined is 10 to 90% by weight, preferably 20 to 80% by weight, and The content of the compound resin is 90 to 10% by weight, preferably 80 to 20% by weight. If the content of the polyphenylene ether resin is less than 10% by weight, sufficient heat resistance cannot be obtained, and if it exceeds 90% by weight, the fluidity is reduced, and injection molding is difficult. Also aromatic If the amount of the group III vinyl compound resin is less than 10% by weight, the moldability decreases, and if it exceeds 90% by weight, the heat resistance decreases, which is not preferable.
  • the amount of the component (B) is from 0.5 to 35 parts by weight, preferably from 2 to 30 parts by weight, based on 100 parts by weight of the polyphenylene resin and the aromatic vinyl compound resin in total. Parts by weight, more preferably 5 to 25 parts by weight. If the amount of the component (B) is less than 0.5 part by weight, a sufficient improvement in impact strength cannot be obtained. If the amount exceeds 35 parts by weight, the impact resistance is improved, but the heat resistance is lowered.
  • a polyphenylene ether-polyolefin thermoplastic resin composition having excellent heat resistance, solvent resistance, etc., and particularly improved compatibility can be obtained.
  • the polyphenylene ether resin is 10 to 90% by weight, preferably 20 to 80% by weight.
  • the compounding amount of the component (B) is preferably 0.5 to 35 parts by weight with respect to 100 parts by weight of the polyphenylene ether yarn resin, the aromatic vinyl compound resin and the polyolefin resin component in total. Is 2 to 30 parts by weight, more preferably 5 to 25 parts by weight. If the amount of the component (B) is less than 0.5 part by weight, sufficient compatibility between the polyphenylene ether-based resin and the polyolefin resin cannot be obtained. If the amount exceeds 35 parts by weight, the heat resistance is undesirably reduced.
  • Various additives such as fillers, flame retardants, ultraviolet absorbers, antioxidants, antistatic agents, lubricants, pigments, etc. are added to the thermoplastic resin composition of the present invention within a range that does not substantially impair the effects of the present invention. Agents can be added as needed.
  • the filler is compounded for the purpose of improving or increasing the mechanical strength and durability of the thermoplastic resin composition.
  • the filler include glass fibers, glass beads, glass flakes, and carbon black. , Calcium sulfate, calcium carbonate, calcium gayate, titanium oxide, alumina, silica, asbestos, talc, clay, mai, quartz powder, and the like.
  • additives include, for example, a hindered phenol-based antioxidant; a phosphorous antioxidant such as a phosphite ester and a phosphate ester; an antioxidant such as an amine antioxidant; a benzotriazole type; UV absorbers such as organic compounds; external lubricants such as aliphatic carboxylic acid esters and paraffins; organic compound stabilizers such as organic tin compounds and organic lead compounds; flame retardants, release agents, and antistatic agents Agents, coloring agents and the like.
  • a hindered phenol-based antioxidant a phosphorous antioxidant such as a phosphite ester and a phosphate ester
  • an antioxidant such as an amine antioxidant
  • a benzotriazole type UV absorbers such as organic compounds
  • external lubricants such as aliphatic carboxylic acid esters and paraffins
  • organic compound stabilizers such as organic tin compounds and organic lead compounds
  • flame retardants, release agents, and antistatic agents Agents, coloring agents
  • hindered phenol-based antioxidants examples include 2,6-di-tert-butyl-p-cresol, n-octadecyl-3- (4'-hydroxyloxy 3 ', 5'-di-tert-butylphenyl) propionate and the like. Preferred Used.
  • phosphorus-based antioxidant tri (nonylphenyl) phosphite or the like is used, and these may be used in combination with the hindered phenol-based antioxidant.
  • thermoplastic resin composition of the present invention is obtained by blending and kneading a predetermined ratio of a block copolymer containing (A) a thermoplastic resin and (B) an aromatic vinyl compound unit and an isobutylene unit as essential components. It can be prepared.
  • the kneading is performed by a commonly used method, for example, a ribbon blender, a Hensiel mixer, a Banbury mixer, a drum tumbler, a single-screw extruder, a twin-screw extruder, a kneader, a multi-screw extruder, or the like. It can be performed by the method used.
  • An appropriate heating temperature for kneading is usually in the range of 250 to 300 ° C.
  • thermoplastic resin composition having improved heat resistance, solvent resistance and compatibility as compared with the prior art, and having excellent low-temperature impact resistance.
  • thermoplastic resin composition thus obtained can be molded in the automotive field such as an automobile bumper by applying various known molding methods, for example, injection molding, extrusion molding, compression molding, calendar molding, and rotational molding.
  • molding methods for example, injection molding, extrusion molding, compression molding, calendar molding, and rotational molding.
  • Products molded products in the field of home appliances, molded products in the field of office automation equipment, housing members, optical components, building materials, etc.
  • Table 1 shows the bound styrene content of the obtained block copolymer, the average molecular weight, and the heterogeneity index of the molecular weight distribution (the ratio of the weight average molecular weight to the number average molecular weight).
  • the bound styrene content of each block copolymer was measured by NMR, and the weight average molecular weight and molecular weight distribution were determined by high performance liquid chromatography (H It was calculated from the molecular weight distribution curve measured using LC_802A (manufactured by Tosoh Corporation) based on the calibration curve previously obtained from the analysis result of standard polystyrene having a known molecular weight.
  • H high performance liquid chromatography
  • thermoplastic resin composition was performed by the following method.
  • ASTM D-638 type II I dumbbell type test pieces were subjected to a tensile test to evaluate the cutting state of the test pieces.
  • (A) Polystyrene (number average molecular weight 100,000) and (B) Styrene-isobutylene-styrene block copolymer shown in Table 1 are blended in the amounts shown in Table 2, and pelletized using an extruder. After that, a test piece was prepared and the izzod impact strength (-30 ° C, 23 ° C: JIS K-7110) was measured. In addition, the Izod impact strength of a resin composition containing (C) hydrogenated (styrene-butadiene-styrene) block copolymer was similarly measured. Table 2 shows the results.
  • the styrene-isobutylene-styrene block copolymer shown in Table 4 was blended in the amounts shown in Table 4, and pelletized using an extruder to prepare test specimens. The Izod impact strength (23 ° C: ASTM D-256) was measured. In addition, the delamination phenomenon was observed.
  • a resin composition containing (C) a hydrogenated (styrene-butadiene-styrene) block copolymer was similarly evaluated. Table 4 shows the results. Table 4
  • (A) Polycarbonate (number average molecular weight 30,000) and (B) Styrene-isobutylene-styrene block copolymer shown in Table 1 were blended in the amounts shown in Table 5, and pelletized using an extruder. Specimens were prepared and measured for their razor impact strength (30 ° C: ASTM D-256), flexural strength, thermal stability, and solvent resistance. In addition, a resin composition containing (C-11) hydrogenated (styrene butane-styrene) block copolymer and (C-2) styrene-methyl methacrylate graft acryl rubber was similarly evaluated. Table 5 shows the results. Table 5
  • (A) Methyl methacrylate-styrene copolymer (number average molecular weight 60,000) and (B) Styrene-isobutylene-styrene block copolymer shown in Table 1 are blended in the amounts shown in Table 7 and extruded. After pelletization, a test piece was prepared and the Izod impact strength (30 ° C, 23 ° C: JISK-7110), tensile strength, and elongation were measured. Further, a resin composition containing (C) a hydrogenated (styrene-butadiene-styrene) block copolymer was similarly evaluated. Table 7 shows the results. Table 7

Description

明 細 書
熱可塑性樹脂組成物
技術分野
本発明は耐熱安定性、 耐衝撃性、 耐溶剤性および相溶性等が優れた熱 可塑性樹脂組成物に関する。
背景技術
一般に熱可塑性樹脂は種々の分野で使用されているが、 単一の樹脂だ けでは十分な性能が得られない場合は他の樹脂等と組み合わせて使用す る手法が試みられている。
たとえばポリカーボネート樹脂は引張強度、 曲げ強度、 衝撃強度等の 機械的強度や耐熱性等に優れているが、 低温耐衝撃性、 耐溶剤性、 流動 性等を改良するために水素化 (スチレン一イソプレン一スチレン) ブロッ ク共重合体を配合した樹脂組成物 (特開昭 5 8 - 1 4 5 7 5 7号公報等) 、 アクリル系ゴムを配合した樹脂組成物 (特公昭 4 3— 1 8 6 1 1号公 報、 特公昭 4 8 - 2 9 3 0 8号公報、 特開昭 5 3— 3 4 1 5 3号公報、 特開昭 5 6— 1 4 3 2 3 9号公報等) 等が提案されている。
またポリフユ二レンエーテル系樹脂は耐熱性に優れる上、 これにポリ スチレン系樹脂をブレンドして成形性を改善し、 射出成形による耐熱成 形品用途に広く使われているが、 耐衝撃強度を改善する目的で種々の樹 脂組成物を提案されている。 例えば米国特許第 3 6 6 0 5 3 1号明細書 にはポリフェニレンエーテルにポリスチレンおよびゴムを配合した組成 物が、 米国特許第 3 9 9 4 8 5 6号明細書にはポリフエ二レンエーテル にポリスチレンおよび芳香族ビニル化合物と共役ジェン化合物とのブロッ ク共重合体を配合した樹脂組成物が、 さらに特開昭 6 1 - 1 2 7 7 4 7 号公報にはポリフヱニレンエーテルにポリスチレン、 水素化 (スチレン 一共役ジェン化合物一スチレン) ブロック共重合体およびブチルゴム一 ォレフィングラフト共重合体を配合した組成物等が挙げられる。
—方、 ポリオレフイン系樹脂は成形性、 耐水性、 耐溶剤性に優れ、 安 価なこともあり各種成形品に広く使われているが、 耐熱性に劣り、 また 結晶性樹脂であることから射出成形品が収縮し易い等の欠点を有してい る。 このためポリフヱニレンエーテル系樹脂と組合せて使用することに より、 それぞれの樹脂の長所を保持し、 欠点を捕う目的で種々のプレン ド組成物が提案されているが、 これらは相溶性が不良なために機械的強 度はむしろ低下する。
ポリフエニレンエーテル系樹脂とポリオレフィン系榭脂との相溶性を 改善し、 機械的強度の向上を図ることを目的として、 水素化 (芳香族化 合物一共役ジェン化合物) プロック共重合体を配合した樹脂組成物が提 案されている (特開昭 6 0— 7 6 5 4 7号公報、 特開昭 6 3— 8 3 1 4 9号公報等) が、 射出成形品における層状剥離現象を抑制することがで きない。
このように、 熱可塑性樹脂を使用する際に他の樹脂等と組み合わせて も、 相溶性が不十分なために、 熱可塑性樹脂の低温耐衝撃性、 耐熱安定 性、 耐溶剤性等の各種性能は満足すべきものではなく、 さらに改良手法 が求められていた。
発明の開示
そこで本発明者等は前記課題を解決すベく鋭意研究を重ねた結果、 特 定の構造を有するプロック共重合体を使用することにより、 従来技術に 比べて相溶性の改善された熱可塑性樹脂が得られることを見出し本発明 を完成するに到った。
かく して本発明によれば、 次の (1) 〜 (6) の熱可塑性樹脂組成物 が提供される。
(1) (A) 熱可塑性樹脂 100重量部および (B) 芳香族ビニル化合 物単位およびイソブチレン単位を含有するブロック共重合体 0. 5〜3
5重量部から成ることを特徵とする熱可塑性樹脂組成物。
(2) 熱可塑性樹脂がポリカーボネート系榭脂、 ポリフユ二レンエーテ ル系樹脂、 芳香族ビニル化合物系樹脂またはポリオレフィン系樹脂であ る上記 (1) の熱可塑性樹脂組成物。
(3) 熱可塑性樹脂がポリフニ二レンエーテル系樹脂 10〜90重量% と芳香族ビニル化合物系樹脂 90〜10重量%との混合物である上記 (1) の熱可塑性樹脂組成物。
(4) 熱可塑性樹脂がポリフ X二レンエーテル系樹脂 10〜90重量% と芳香族ビニル化合物系樹脂 90〜0重量%とポリオレフィン系樹脂 1 0〜 90重量%との混合物である上記 (1) の熱可塑性樹脂組成物。
(5) ブロック共重合体が、 イソブチレン単位 50〜95重量%および 芳香族ビニル化合物単位 5〜 50重量%を含有し、 数平均分子量が 30, 000〜500, 000である上記 (1) の熱可塑性樹脂組成物。
本発明で使用する (A) 熱可塑性樹脂の例としては、 下記化学式 1で 表わされる繰り返し構造単位を少なくとも 25重量%含有し、 室温で榭 脂状の重合体である芳香族ビニル化合物系樹脂が挙げられる。
Figure imgf000006_0001
[式中、 および R 2 は水素、 ハロゲンまたは炭化水素基であり、 そ れぞれに同じであっても異なってもよく、 mは 1〜5の整数である。 ] 芳香族ビニル化合物系樹脂の代表例としては、 ポリスチレン、 ハイイ ンパク トポリスチレン、 ポリ一な一メチルスチレン、 ポリ一 p—メチル スチレン、 スチレン一無水マレイン酸共重合体等が挙げられる。
他の例としては、 ポリオレフイン樹脂が挙げられ、 その具体例として は、 一才レフインの単独重合体、 ランダム共重合体、 ブロック共重合 体およびそれらの混合物、 または α—才レフィンと他の不飽和単量体と のランダム共重合体、 ブロック共重合体、 グラフ ト共重合体およびこれ ら重合体の酸化、 ハロゲン化またはスルホン化したものであり、 少なく とも部分的に結晶性を示すものである。 具体例としては、 ポリエチレン、 ポリプロピレン、 ポリブテン、 ポリメチルペンテン、 プロピレンーェチ レン共重合体、 エチレン一ブテン一 1共重合体、 塩素化ポリエチレン、 塩素化ポリプロピレン等が挙げられる。
その他の例としては、 ポリフヱニレンエーテル樹脂が挙げられ、 その 具体例としては、 下記化学式 2で表わされる繰り返し構造単位を有する 単独重合体、 共重合体等が挙げられる。
Figure imgf000007_0001
[式中、 R3、 R4、 R5 及び Re はそれぞれ水素、 ハロゲン、 炭化水素 基、 ハロゲン化炭化水素基、 炭化水素ォキシ基及びハロゲン化炭化水 素ォキシ基からなる群から選択される置換基を示し、 それぞれ同じで あっても異なっても良い。 ]
ポリフユ二レンエーテル樹脂の具体例としては、 ポリ (2, 6—ジメ チル一 1, 4一フヱニレン) エーテル、 ポリ (2, 6—ジェチルー 1, 4—フヱニレン) エーテル、 ポリ (2—メチル一 6—ェチルー 1, 4一 フエ二レン) エーテル、 ポリ (2, 6—ジブチルー 1, 4一フヱニレン) エーテル、 ポリ (2, 6—ジフエニル一1, 4—フエ二レン) エーテル、 ポリ (2, 6—ジメ トキシー 1, 4ージフエ二レン) エーテル、 ポリ (2, 6—ジクロ口一 1, 4一フエ二レン) エーテル、 また 2, 6—ジ メチルフヱノールと 2, 3, 6—トリメチルフヱノールの共重合体、 2, 6—ジメチルフヱノールと 2, 3, 5, 6—テトラメチルフエノール共 重合体等が挙げられる。 また、 スチレンをグラフ ト共重合したものも使 用することができる。
別の例としては、 ポリカーボネート樹脂が挙げられ、 その具体例は、 下記化学式 3で表わされる繰り返し構造単位を有する単独重合体、 共重 合体およびそれらの混合物である。 また多官能性芳香族化合物を二価フユ ノールまたはカーボネート前駆体と反応させて得られた熱可塑性分岐ポ リカーボネ一ト樹脂が挙げられる,
Figure imgf000008_0001
[式中、 Xは二価フユノールの二価芳香族基を表す。 ]
このポリカーボネ一ト樹脂は溶剤法、 すなわち塩化メチレン等の溶剤 中で公知の酸受容体、 分子量調整剤の存在下、 二価フエノールとホスゲ ンのようなカーボネート前駆体との反応または二価フヱノールとジフヱ ニルカーボネートのようなカーボネート前駆体とのエステル交換反応に よって製造することができる。
ここで、 好適に使用しうる二価フヱノールとしてはビスフヱノ一ル類 があり、 特に 2 , 2—ビス (4—ヒ ドロキシフヱニル) プロパンが好ま しい。 また、 2 , 2—ビス (4—ヒ ドロキシフヱニル) プロパンの一部 または全部を他の二価フエノールで置き換えたものであってもよい。 さ らに、 2 , 2—ビス (4—ヒ ドロキシフヱニル) プロパン以外のビス (4 —ヒ ドロキシフヱニル) アルカン;ハイ ドロキノン; 4, 4 ' 一ジヒ ド 口キシジフエニル; ビス (4ーヒドロキシフヱニル) シクロアルカン; ビス (4—ヒドロキシフェニル) スルフィ ド; ビス (4—ヒ ドロキシフエ ニル) スルホン; ビス (4—ヒ ドロキシフエニル) スルホキシド; ビス ( 4—ヒ ドロキシフエニル) エーテルのような化合物またはビス (3, 5—ジブ口モー 4—ヒドロキシフヱニル) プロパン; ビス (3 , 5—シ クロー 4ーヒ ドロキシフヱニル) プロパンのようなハロゲン化ビスフエ ノ一ル類等を挙げることができる。 さらにその他の熱可塑性樹脂の例としては、 ポリ塩化ビニル系樹脂、 ポリ酢酸ビニル系樹脂、 ポリ (メタ) ァクリレート系樹脂、 ポリ (メタ) アクリルアミ ド系樹脂、 ポリ (メタ) アクリロニトリル系樹脂、 ポリア ミ ド系樹脂、 ポリエステル系樹脂、 ポリアセタール系樹脂、 ポリスルホ ン系榭脂、 ポリアリーレンスルフイ ド系樹脂、 ふつ素系樹脂、 ポリイミ ド系榭脂、 熱可塑性ポリゥレタン系樹脂等が挙げられる。
ポリ塩化ビニル系樹脂としては、 ポリ塩化ビニル、 ポリ塩化ビニリデ ン、 ポリ塩化ビニルー塩化ビニリデン共重合体等; ボリ酢酸ビニル系樹 脂としては、 ポリ酢酸ビニル重合体、 ポリ詐酸ビニル重合体の部分ゲン 化物又はァセタール化物等; ポリ (メタ) アタリレート系樹脂としては、
(メタ) アクリル酸メチル、 (メタ) アクリル酸ェチル等の (メタ) ァ クリル酸エステルの重合体又は共重合体等: ポリ (メタ) アクリルアミ ド系榭脂としては、 (メタ) アクリルアミ ド、 アルキル基置換 (メタ) ァクリルァミ ドの重合体又は共重合等; ポリ (メタ) ァクリロニトリル 系榭脂としては、 ポリ (メタ) アクリロニトリル等; ポリアミ ド系樹脂 としては、 ジカルボン酸とジァミンとの重縮合物、 α —アミノカルボン 酸と重縮合物、 環状ラクタムの開環重合物等が挙げられ、 具体的には、 ナイロン一 4 6、 ナイロン一 6、 ナイロン一 6 6、 ナイロン一 6 1 0、 ナイロン一 1 1、 ナイロン一 1 2等: ポリァセタール系樹脂としては、 ポリオキシメチレン、 ホルムアルデヒ ド又はトリオキサンと他のアルデ ヒ ド、 環状エーテル環状カーボネート、 エポキシド、 イソシァネート、 ビニル化合物との共重合体等; ポリエステル系樹脂としては、 ポリェチ レンテレフタレート、 ポリブチレンテレフタレート等が挙げられる。
ポリスルホン系榭脂としては、 下記化学式 4または化学式 5の構造単 位を有する熱可塑性ポリスルホンであり、 ポリ (エーテルスルホン) 、 ポリ (4, 4 ' —ビスフヱノールエーテルスルホン) 等が挙げられる。 - Ar-Y-Ar-S0?. (4)
[式中、 A rはフニ二レン基、 Yは酸素、 硫黄又は芳香族ジオール基を 表わす。 ]
Figure imgf000010_0001
[式中、 A rはフヱニレン基を表わす。 ]
ポリアリーレンスルフィ ド系榭脂としては、 下記化学式 6の構造単位 を有するポリアリーレンスルフィ ド重合体又は共重合体であり、 具体的 には、 ポリフエ二レンスルフィ ド、 ポリ (4, 4 ' —ジフエ二レンスル フィ ド) 等が挙げられる。
Figure imgf000010_0002
[式中、 A rはフヱニレン基、 アルキル基もしくは置換アルキル基で置 換されたフエ二レン基を表わす。 ]
ふつ素系樹脂としては、 ポリテトラフロロエチレン等; ポリイミ ド系 樹脂としては芳香族ジアミン化合物と芳香族テトラ力ルポン酸ニ無水物 との反応によるポリイミ ド等が挙げられる。
熱可塑性ポリウレタン系樹脂としては、 ポリオール (ポリエステルま たはポリエーテル) とジイソシァネートのブロックをソフ トセグメント とし、 ジィソシァネー卜とグリコールのブロックをハードセグメントと する熱可塑性ポリウレタンが挙げられる。 具体的には、 ポリエステルジ オールとしては、 ポリ (1 , 4ーブチレンアジペート) 、 ポリ (1, 6 —へキサンアジペート) 、 ポリ力プロラク トン等が挙げられ、 またポリ エーテルジオールとしては、 ポリエチレングリコール、 ポリプロピレン グリコール、 ポリオキシテトラメチレングリコール等がある。 更にグリ コールとしては、 エチレングリコール、 1 , 4一ブタンジオール、 1 , 6—へキサンジオール等があげられ、 ジイソシァネートとしては、 芳香 族、 脂環族および脂肪族系のものがあり、 例えばトリレンジイソシァネ —ト、 4 , 4 ' —ジフエニルメタンジイソシァネート、 へキサメチレン ジイソシァネート、 イソホロンジイソシァネート等が挙げられる。
また本発明で使用する熱可塑性樹脂としては、 さらに各種の共重合体 を例示することができる。 各種の共重合体の具体例としては、 スチレン ーァクリロニトリル共重合体、 スチレン一ブタジエンーァクリロニトリ ル共重合体、 スチレン一アクリル酸ェチル共重合体、 スチレン一ァクリ ロニトリル—ァクリル酸ェチル共重合体、 スチレン一エチレン一プロピ レン一アクリロニトリル共重合体、 スチレン一ブタジエン一メタクリル 酸エステル共重合体、 エチレン一酔酸ビニル共重合体、 プロピレンーァ クリル酸ェチル共重合体、 塩化ビニルー酢酸ビニル共重合体、 塩化ビニ ル一エチレン共重合体、 塩化ビニループロピレン共重合体、 塩化ビニル 一イソブチレン共重合体、 塩化ビニルー (メタ) アクリル酸エステル共 重合体、 塩化ビニルーマレイン酸エステル共重合体、 塩化ビニルーァク リロニトリル共重合体、 塩化ビニルー塩化ビニリデンー酢酸ビニル共重 合体、 酢酸ビニルーエチレン又はプロピレン共重合体、 酢酸ビニル一ァ クリロニトリル共重合体、 齚酸ビ二ルーァクリル酸エステル共重合体等 が挙げられる。 本発明で使用する熱可塑性樹脂の分子量は特に限定されないが、 通常 は数平均分子量 5, 0 0 0〜5 0 0 , 0 0 0、 好ましくは、 1 0, 0 0 0〜4 0, 0 0 0である。 数平均分子量が 5, 0 0 0未満では、 熱可塑 性樹脂組成物としての機械的強度が低下するので好ましくない。 また、 数平均分子量が 5 0 0 , 0 0 0を超えると熱可塑性樹脂組成物の粘度が 増大し、 加工性が低下するので好ましくない。
本発明で使用する芳香族ビニル化合物単位およびイソブチレン単位を 含有するプロック共重合体は、 芳香族ビニル化合物の重合体プロックと イソブチレンの重合体ブロックとをそれぞれ少なくとも 1個有する室温 でゴム状の (芳香族ビニル化合物一イソプチレン) ブロック共重合体で ある。 芳香族ビニル化合物としては、 スチレン、 一メチルスチレン、 一メチルスチレン、 p —メチルスチレン、 t —ブチルスチレン、 モノ クロロスチレン、 ジクロロスチレン、 メ トキシスチレン、 インデン等が 例示される。 また、 ブロック共重合体の構造は分岐状ブロック共重合体 または線状ブロック共重合体であり、 これらの混合物を含むものである。 本発明で使用するブロック共重合体のイソブチレン単位含量と芳香族 ビニル化合物単位含量は、 イソブチレン単位 5 0〜9 5重量%好ましく は 5 5〜 9 0重量%、 芳香族ビニル化合物単位 5〜 5 0重量%好ましく は 1 0〜4 5重量%である。 芳香族ビニル化合物単位含量が 5重量%未 满では高温での流動性が増加するので好ましくない。 また、 芳香族ビニ ル化合物単位含量が 5 0重量部を超えると熱可塑性樹脂組成物の耐衝撃 性が低下するので好ましくない。 また、 数平均分子量は、 3 0 , 0 0 0 〜5 0 0 , 0 0 0、 好ましくは 5 0, 0 0 0〜4 0 0, 0 0 0である。 数平均分子量が 3 0, 0 0 0未満では流動性が増加し、 また、 5 0 0 , 0 0 0を超えると粘度が高くなるため、 加工性が低下するので好ましく ない。
また本発明で使用するプロック共重合体中には本発明の樹脂組成物の 性能を損なわない範囲で他のカチオン重合性モノマーを共重合してもか まわない。 他のカチオン重合性モノマーとしては、 1ーブテン、 ペンテ ン、 へキセン、 ブタジエン、 イソプレン、 メチルビ二ルェ一テル等が挙 げられる。
本発明で使用するプロック共重合体の製造方法は特に限定されないが、 たとえばルイス酸およびこれと組合せてカチオン重合活性種を形成する 有機化合物(以下開始剤化合物と言う)とから構成される開始剤系の存在 下に、 必要に応じてアミン類、 エステル類等の第 3成分を添加して、 へ キサンゃ塩化メチレン等の不活性溶媒中で、 芳香族ビニル化合物とイソ ブチレンを重合する方法が挙げられる。
ここで開始剤化合物は、 アルコキシ基、 ァシロキシ基またはハロゲン 等の官能基を有する有機化合物であって、 たとえばビス (2—メ トキシ 一 2—プロピル) ベンゼン、 ビス (2—ァセトキシー 2—プロピル) ベ ンゼンあるいはビス (2—クロロー 2—プロピル) ベンゼン等である。 またルイス酸としては四塩化チタン、 三塩化ホウ素、 塩化アルミニウム 等が挙げ れる。 さらにアミン類としてはトリェチルァミン等、 エステ ル類としては酢酸ェチル等が例示される。
本発明で使用するプロック共重合体のうち線状プロック共重合体は、 1個の官能基を有する開始剤化合物とルイス酸を開始剤系として用い、 芳香族ビニル化合物を実質的に反応が終了するまで重合したのち、 ィソ プチレンを重合系内に添加し、 更にィソプチレンの実質的な重合反応終 後に再び芳香族ビニル化合物の重合を実施する方法によって製造する ことができる。 また 2個の官能基を有する開始剤化合物とルイス酸とを 使用し、 イソブチレンを反応が終了するまで重合したのち、 重合系内に 芳香族ビニル化合物を添加して重合反応を継続する方法を用いることが できる。
また、 本発明で使用するプロック共重合体のうち分岐状プロック共重 合体は、 通常は 3個以上の官能基を有する開始剤化合物とルイス酸とを 用いてイソブチレンを反応が終了するまで重合したのち、 重合系内に芳 香族ビニル化合物を添加して重合反応を継続する方法を用いて製造する ことができる。
本発明で使用する (A ) 熱可塑性樹脂と (B ) 芳香族ビニル化合物単 位およびィソブチレン単位を含有するプロック共重合体との配合量は、 (A) 成分 1 0 0重量部に対して (B ) 成分 0. 5〜3 5重量部、 好ま しくは 5〜 3 0重量部である。 ( B ) 成分の配合量が 0. 5重量部未満 では熱可塑性樹脂組成物の耐衝撃性や流動性が改善されないので好まし くない。 また、 (B ) 成分の配合量が 3 5重量部を超えると、 熱可塑性 樹脂組成物の耐溶剤性、 耐熱性、.剛性等が低下するので好ましくない。 本発明で使用する熱可塑性樹脂の中でも、 ポリカーボネート系樹脂、 ポリフエ二レンエーテル系樹脂、 芳香族ビニル化合物系榭脂、 またはポ リオレフィン系樹脂を使用した場合には、 特に好ましい熱可塑性樹脂組 成物が得られる。
たとえばポリカーボネート系樹脂と (B ) 成分とを配合することによ り、 低温耐衝撃性と熱安定性とのバランスに優れたポリカーボネート系 熱可塑性樹脂組成物が得られる。 このとき、 ポリカーボネート系樹脂 1 0 0重量部に対して、 (B ) 成分を 0 . 5〜3 5重量部、 好ましくは 0. 5〜3 0重量部、 さらに好ましくは 5〜2 0重量部の割合で配合する。 ( B ) 成分が 0. 5重量部未満の場合には低温耐衝撃性が向上せず流動 性も改良されない。 また 3 5重量部を超えるとポリカーボネート系熱可 塑性榭脂組成物としては耐溶剤性及び剛性が低下するので好ましくない。 芳香族ビニル化合物系樹脂と (B ) 芳香族ビニル化合物単位およびィ ソブチレン単位を含有するプロック共重合体とを配合することにより、 特に相溶性に優れ、 低温耐衝撃性が改良された芳香族ビニル化合物系熱 可塑性樹脂組成物が得られる。 このとき、 芳香族ビニル化合物系樹脂 1 0 0重量部に対して、 (B ) 成分を 0 . 5〜3 5重量部、 好ましくは 5 〜2 0重量部の割合で配合する。 (B ) 成分が 0 . 5重量部未満の場合 には低温耐衝撃性が改良されない。 また 3 5重量部を超えると芳香族ビ ニル化合物系熱可塑性樹脂組成物としては成形性および剛性が低下する ので好ましくない。
またポリフユ二レンエーテル系樹脂と芳香族ビニル化合物系樹脂との 混合物に (B ) 芳香族ビニル化合物単位およびイソブチレン単位を含有 するブロック共重合体を配合することにより、 低温耐衝撃性の優れたポ リフエニレンエーテル系熱可塑性樹脂組成物が得られる。
このとき、 ポリフユニレン系樹脂と芳香族ビニル化合物系樹脂との配 合量に関しては、 ポリフエ二レンエーテル系樹脂 1 0〜9 0重量%、 好 ましくは 2 0〜 8 0重量%、 芳香族ビニル化合物系樹脂 9 0〜 1 0重量 %, 好ましくは 8 0〜2 0重量%である。 ポリフエ二レンエーテル系樹 脂が 1 0重量%未満では、 十分な耐熱性が得られず、 9 0重量%を越え ると流動性が低下し、 射出成形がし難いため好ましくない。 また、 芳香 族ビニル化合物系樹脂が 1 0重量%未満であると成形性が低下し、 9 0 重量%を越えると耐熱性が低下し好ましくない。
また、 (B ) 成分の配合量は、 ポリフエ二レン系樹脂と芳香族ビニル 化合物系樹脂との合計 1 0 0重量部に対して 0. 5〜3 5重量部、 好ま しくは 2〜3 0重量部、 さらに好ましくは 5〜2 5重量部である。 (B ) 成分が 0. 5重量部未満では、 十分な衝撃強度の改善が得られず、 3 5 重量部を越えると耐衝撃強度が改善されるものの耐熱性が低下するので 好ましくない。
ポリフエ二レンエーテル系樹脂と芳香族ビニル化合物系樹脂およびポ リオレフイン系樹脂との混合物に (B ) 芳香族ビニル化合物単位および ィソブチレン単位を含有するプロック共重合体を配合することにより、 耐衝撃性、 耐熱性、 耐溶剤性等に優れ、 特に相溶性が改良されたポリフエ 二レンエーテル系一ポリオレフィン系熱可塑性樹脂組成物が得られる。 このとき、 ポリフエ二レンエーテル系樹脂、 芳香族ビニル化合物系樹 脂およびポリオレフイン系樹脂成分の配合量に関しては、 ポリフヱニレ ンエーテル系樹脂 1 0〜9 0重置%、 好ましくは、 2 0〜8 0重量%、 芳香族ビニル化合物系樹脂 9 0〜0重量%、 好ましくは 7 0〜1 0重量 %、 ポリオレフィン樹脂 1 0〜9 0重量%、 好ましくは 2 0〜8 0重量 %である。 ポリフヱニレンエーテル系樹脂が 1 0重量%未満では十分な 耐熱性が得られず、 9 0重量%を越えると流動性が低下し、 射出成形が しにくいため好ましくない。 芳香族ビニル化合物系樹脂が 9 0重量%を 越えると耐熱性が低下し好ましくない。 ポリオレフイン系樹脂が 1 0重 量%未满では耐溶剤性が不十分であり、 9 0重量 を越えると耐熱性が 低下し好ましくない。 さらに (B ) 成分の配合量は、 ポリフヱニレンエーテル糸樹脂、 芳杳 族ビニル化合物系樹脂およびポリオレフィン系樹脂成分の合計 1 0 0重 量部に対して 0. 5〜3 5重量部、 好ましくは 2〜3 0重量部、 さらに 好ましくは 5〜2 5重量部である。 (B ) 成分が 0. 5重量部未満では ポリフエニレンエーテル系樹脂とポリオレフィン榭脂との十分な相溶性 が得られず、 3 5重量部を越えると耐熱性が低下するので好ましくない。 本発明の熱可塑性樹脂組成物には、 本発明の効果を本質的に損なわな い範囲で、 充填剤、 難燃剤、 紫外線吸収剤、 酸化防止剤、 帯電防止剤、 滑剤、 顔料等の各種添加剤を必要に応じて配合することが出来る。
充填剤は、 熱可塑性樹脂組成物の機械的強度や耐久性の向上又は増量 を目的として配合されるものであり、 このようなものとしては、 例えば ガラス維維、 ガラスビーズ、 ガラスフレーク、 カーボンブラック、 硫酸 カルシウム、 炭酸カルシウム、 ゲイ酸カルシウム、 酸化チタン、 アルミ ナ、 シリカ、 アスベスト、 タルク、 クレー、 マイ力、 石英粉等が挙げら れる。
各種添加剤としては、 例えばヒンダ一ドフェノール系酸化防止剤;亜 リン酸エステル系、 リン酸エステル系等のリン系酸化防止剤;ァミン系 酸化防止剤等の酸化防止剤;ベンゾトリアゾール系、 ベンゾフユノン系 等の紫外線吸収剤;脂肪族カルボン酸エステル系、 パラフィン系等の外 部滑剤;有機スズ化合物、 有機鉛化合物等の有機化合物系安定剤; さら に難燃化剤、 離型剤、 帯電防止剤、 着色剤等が挙げられる。
ヒンダードフ ノール系酸化防止剤としては、 例えば、 2 , 6 —ジ第 三プチルー p —クレゾール、 n—才クタデシルー 3— ( 4 ' ーヒ ドロキ シルー 3 ' , 5 ' ージ第三プチルフヱニル) プロピオネート等が好まし 用いられる。 また、 リン系酸化防止剤としては、 トリ (ノニルフエ二 ル) ホスファイト等が用いられ、 これらをヒンダードフエノール系酸化 防止剤と併用してもよい。
本発明の熱可塑性樹脂組成物は、 必須成分として (A) 熱可塑性樹脂 および (B ) 芳香族ビニル化合物単位およびイソブチレン単位を含有す るプロック共重合体を所定の割合で配合し混練することにより調製する ことができる。 混練は通常用いられている方法、 例えばリボンブレンダ 一、ヘンジエルミキサー、 バンバリ一ミキサー、 ドラムタンブラ一、 単 軸スクリユー押出機、 二軸スクリユー押出機、 コニ一ダ、 多軸スクリュ 一押出機等を用いる方法により行うことができる。 混練に際しての加熱 温度は、 通常 2 5 0〜3 0 0 °Cの範囲が適当である。
かくして本発明によれば、 従来技術に比較して、 耐熱安定性、 耐溶剤 性および相溶性が改善され、 低温時の耐衝撃性に優れた熱可塑性樹脂組 成物を得ることができる。
産業上の利用可能性
このようにして得られた熱可塑性樹脂組成物は、 既知の種々の成形方 法、 例えば射出成形、 押出成形、 圧縮成形、 カレンダー成形、 回転成形 等を適用して自動車用バンパー等自動車分野の成形品、 家電分野の成形 品、 O A機器分野の成形品、 ハウジング部材、 光学機器部剤、 建材等を 製造することができる。
発明を実施するための最良の形態
以下に実施例を挙げて本発明をさらに具体的に説明する。 なお、 実施 例、 比較例及び参考例中の部及び%はとくに断りのないかぎり重量基準 である。 ノロック共重合体の製造例
3リッ トルの反応器に塩化メチレン 5 4 0ミ リリツ トル、 n —へキサ ン 5 4 0ミ リリッ トル、 1, 4一ビス (2—クロ口一 2—プロピル) ベ ンゼン 0. 7 6グラム、 トリェチルァミン 0. 8 3グラム、 四塩化チタ ン 7. 6グラムおよび表 1の実験番号に示す量のィソプチレンをそれぞ れ加え、 一 6 5 °Cで 4時間重合後、 表 1の実験番号に示す量のスチレン をそれぞれ添加し、 さらに 2時間重合反応を継続した後、 4種類のスチ レン一イソブチレン一スチレンプロック共重合体をそれぞれ合成した。 プロック共重合体の収率はいずれも実質的に 1 0 0 %であった。 得られ たプロック共重合体の結合スチレン含量と平均分子量および分子量分布 の不均一度指数 (数平均分子量に対する重量平均分子量の比) を表 1に 示す。
Figure imgf000019_0001
なお各プロック共重合体の結合スチレン含量は NMRによって測定し、 重量平均分子量および分子量分布は、 高速液体クロマトグラフィー (H LC_802A、 東ソー (株) 製) を用いて測定された分子量分布曲線 から、 分子量既知の標準ポリスチレンの分析結果より予め求められた検 量線をもとに算出した。 測定にはポリスチレンゲルを充填したカラム G — 4000Hと G— 5000Hを組合わせて用い、 カラム温度 40°C、 キャリア (テトラヒ ドロフラン) 流量 1. 3 (ミ リ リツ トル Z分) 、 試 料濃度 0. 6 (グラム リッ トル) の条件で測定した。
また、 熱可塑性樹脂組成物の評価を下記の方法で行った。
[アイゾッ ト衝撃強度]
ASTM D— 256、 または、 J I S K— 7110に準拠して求 めた (測定温度:— 40°C、 一 30°C、 23°C) 。
[シャルビー衝撃強度]
J I S K— 6745、 K— 7111に準拠して求めた (測定温度: 23で) 。
[曲げ強度]
ASTM D-790に準拠して求めた。
[熱安定性]
メルトインデクサ一内に 300°Cで 15分間辯留させたのち、 押出し たストランドの状態を目視で判定した。
〇: 良好
△: 発泡、 変色が若干ある。
X : 発泡、 変色が激しい。
[耐溶剤性]
1Z4楕円法 (中辻他、 色材、 39巻、 455頁、 1966年) に準 拠して求めた。 トルエンノイソオクタン メタノール =42. 5X42. b/15 (容量%) の混合溶剤に 5分間浸潰した後の限界歪みを示す。 耐溶剤性が低下すると数値が大きくなる。
[層状剥離現象の観察]
ASTM D-638 t y p e I I Iのダンベル型試験片を、 引張試 験を行って試験片の切断状態を評価した。
〇: 層状剥離なし
Δ: 層状剥離が認められる。
X : 層状剥離が激しい。
実施例 1〜 5および比較例 1〜 2
(A) ポリスチレン (数平均分子量 100, 000) と (B) 表 1に 示したスチレン一イソブチレン一スチレンプロック共重合体とを、 表 2 に示す量で配合し、 押出機を用いてペレツ ト化の後試験片を作成し、 ァ ィゾッ ト衝撃強度 (― 30°C、 23 °C: J I S K- 7110) を測定 した。 また、 (C) 水添 (スチレン一ブタジエン一スチレン) ブロック 共重合体を配合した樹脂組成物についても同様にアイゾッ ト衝撃強度を 測定した。 結果を表 2に示す。
O
表 2
I o
Figure imgf000022_0001
実施例 6 2および比較例 3〜4
(A- 1) ポリ (2, 6—ジメチルー 1, 4—フヱニレン) エーテル
15
(数平均分子量 50000) と (A— 2) ハイインパクトポリスチレン と (B) 表 1に示したスチレン一イソブチレン一スチレンブロック共重 合体とを、 表 3に示す量で配合し、 押出機を用いてペレツ ト化の後試験 片を作成し、 アイゾッ ト衝撃強度 (一 40°C、 23 : ASTM D- 256) を測定した。 また、 (C) 水添 (スチレン一ブタジエン一スチ
20 レン) ブロック共重合体を配合した樹脂組成物についても同様にアイゾッ ト衝撃強度を測定した。 結果を表 3に示す。 表 3
Figure imgf000023_0001
破壊しない 実施例 13〜20および比較例 5〜6
(A— 1) ポリ (2, 6—ジメチルー 1, 4一フエ二レン) エーテル (数平均分子量 50000) と (A— 2) ハイインパク トポリスチレン と (A— 3) ポリプロピレンと (B)表 1に示したスチレン一イソプチ レン一スチレンブロック共重合体とを、 表 4に示す量で配合し、 押出機 を用いてペレツ ト化の後試験片を作成し、 アイゾッ ト衝撃強度 (23°C : ASTM D— 256) を測定した。 また、 層状剥離現象を観察した。 また、 (C) 水添 (スチレン一ブタジエン一スチレン) ブロック共重合 体を配合した樹脂組成物についても同様に評価した。 結果を表 4に示す。 表 4
Figure imgf000024_0001
実施例 2 24および比較例 7 0
(A) ポリカーボネート (数平均分子量 30000) と (B) 表 1に 示したスチレン一イソブチレン一スチレンプロック共重合体とを、 表 5 に示す量で配合し、 押出機を用いてペレツト化の後試験片を作成し、 ァ ィゾッ ト衝撃強度 (一 30°C: ASTM D— 256) 、 曲げ強度、 熱 安定性、 耐溶剤性を測定した。 また、 (C一 1) 水添 (スチレンーブタ ジェン一スチレン) ブロック共重合体、 (C— 2) スチレン一メタクリ ル酸メチルグラフトァクリルゴムをそれぞれ配合した樹脂組成物につい ても同様に評価した。 結果を表 5に示す。 表 5
Figure imgf000025_0001
実施例 25〜26および比較例 11
(A-1) ポリ塩化ビニル (数平均分子量 30000) と (A— 2) スチレン一メタクリ レートーアタリロニトリル共重合体と (B) 表 1に 示したスチレン一ィソブチレン一スチレンブロック共重合体とを、 表 6 に示す量で配合し、 押出機を用いてペレツ ト化の後試験片を作成し、 耐 候性試験の各時間におけるシャルピー衝撃強度 (23°C) を測定した。 また、 (C) ェチルァクリ レートースチレンーメチルメタクリ レート共 重合体を配合した樹脂組成物についても同様に評価した。 結果を表 6に 示す。 表 6
Figure imgf000026_0001
実施例 27〜28および比較例 12〜13
(A) メチルメタクリレート一スチレン共重合体 (数平均分子量 60, 000) と (B) 表 1に示したスチレン一イソブチレン一スチレンブロッ ク共重合体とを、 表 7に示す量で配合し、 押出機を用いてペレツ ト化の 後試験片を作成し、 アイゾット衝撃強度 (一 30°C、 23°C: J I S K— 7110) 、 引張強度、 伸びを測定した。 また、 (C) 水添 (スチ レン一ブタジエン一スチレン) ブロック共重合体を配合した樹脂組成物 についても同様に評価した。 結果を表 7に示す。 表 7
ァィゾッ ト
(Α) (Β) (C) 衝撃強度 引張強度 伸び
成分 成 分 成分 (kg* cm/cm; (kg/cm2) (¾) a d 23V -30V 実施例 27 100 20 4.2 3.3 370 20
28 100 10 3.8 3.0 360 30 比較例 12 100 1.5 1.0 580 2
13 100 10 2.8 2.0 350 20 実施例 29〜30および比較例 14〜1 5
(A) アタリロニトリル一スチレン共重合体 (組成比 30 70、 数 平均分子量 50, 000) と (B) 表 1に示したスチレン一イソブチレ ン—スチレンブロック共重合体とを、 表 8に示す量で配合し、 押出機を 用いてペレツ ト化の後試験片を作成し、 アイゾッ ト衝撃強度 (一 30°C、 23 °C: J I S K— 7 1 10) 、 引張強度、 伸びを測定した。 また、 (C) 水添 (スチレン一ブタジエン一スチレン) ブロック共重合体を配 合した樹脂組成物についても同様に評価した。 結果を表 8に示す。 表 8
Figure imgf000027_0001
実施例 31〜35および比較例 16〜20
(A) 表 9に示した各種熱可塑性樹脂と (B) 表 1に示したスチレン 一イソブチレン一スチレンブロック共重合体の aとを、 表 9に示す量で 配合し、 押出機を用いてペレツ ト化の後試験片を作成し、 アイゾッ ト衝 撃強度 (― 3 Ot:: J I S K 71 10) を測定した。 結果を表 9に示 す。 表 9
Figure imgf000028_0001
* Ρ Ρ: ポリプロピレン
ΡΒΤ : ポリブチレンテレフタレート PMMA: ポリメチルメタクリレート P P S: ポリフエ二レンスルフイ ド

Claims

請求の範囲
1 . (A ) 熱可塑性樹脂 1 0 0重量部および (B ) 芳香族ビニル化合 物単位およびイソブチレン単位を含有するブロック共重合体 0. 5〜 3 5重量部から成ることを特徴とする熱可塑性樹脂組成物。
5 2. 熱可塑性樹脂がポリカーボネート系樹脂、 ポリフユ二レンエーテ ル系樹脂、 芳香族ビニル化合物系樹脂またはポリオレフィン系樹脂であ る請求の範囲第 1項記載の組成物。
3. 熱可塑性樹脂がポリフ 二レンエーテル系樹脂 1 0〜9 0重量% と芳香族ビニル化合物系樹脂 9 0〜1 0重量%との混合物である請求の
1 0 範囲第 1項記載の熱可塑性樹脂組成物。
4 . 熱可塑性樹脂がポリフ 二レンエーテル系樹脂 1 0〜9 0重量% と芳香族ビニル化合物系樹脂 9 0〜0重量%とポリオレフィン系樹脂 1 0〜 9 0重量%との混合物である請求の範囲第 1項記載の熱可塑性樹脂 組成物。
i ^ - 5. ブロック共重合体が 5〜5 0重量%の芳香族ビニル化合物単位及 び 9 5〜5 0重量%のイソブチレン単位を含有し、 3 0 , 0 0 0〜5 0 0, 0 0 0の数平均分子量を有するものである請求の範囲第 1項記載の 組成物。 0
新たな用紙 要約書
(A) 熱可塑性樹脂 100重量部および (B) 芳香族ビニル化合物単 位およびイソブチレン単位を含有するブロック共重合体 0. 5〜35重 量部から成ることを特徵とする、 耐熱安定性、 耐衝撃性および耐溶剤性 に優れ、 相溶性が改善された熱可塑性樹脂組成物が提供される。 好まし い組成物の具体例としては、 (A) 熱可塑性樹脂ポリカーボネート 10 0重量部および (B) スチレン単位含量が 10〜45重量%で平均分子 量 50, 000〜 400, 000のスチレン一イソブチレンブロック共 重合体 5〜20重量部から成る組成物が挙げられる。
PCT/JP1992/000166 1991-02-19 1992-02-19 Composition de resine thermoplastique WO1992014790A1 (fr)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP4536791 1991-02-19
JP4532091 1991-02-19
JP3/45501 1991-02-19
JP3/45320 1991-02-19
JP4550191 1991-02-19
JP3/45367 1991-02-19

Publications (1)

Publication Number Publication Date
WO1992014790A1 true WO1992014790A1 (fr) 1992-09-03

Family

ID=27292186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/000166 WO1992014790A1 (fr) 1991-02-19 1992-02-19 Composition de resine thermoplastique

Country Status (3)

Country Link
EP (1) EP0572667A1 (ja)
CA (1) CA2104382A1 (ja)
WO (1) WO1992014790A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003027183A1 (fr) * 2001-09-25 2003-04-03 Bridgestone Corporation Composition de resine et element comprenant cette composition de resine
JP2013198761A (ja) * 2004-12-02 2013-10-03 Kaneka Corp チューブ用樹脂組成物およびチューブ
WO2023047827A1 (ja) * 2021-09-24 2023-03-30 帝人株式会社 樹脂組成物およびその成形品

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUP9900573A3 (en) * 1995-05-03 1999-11-29 Exxon Chemical Patents Inc Bay Compatibilized blends of polypropylene and poly(phenylene ether) polymers
CA2181604C (en) * 1995-07-20 2008-02-05 Kenji Shachi Closure and sealing element
CA2183694C (en) * 1995-08-28 2003-01-07 Kenji Shachi Resin composition and molded article of the same
EP0814126B1 (en) 1996-06-18 2000-09-13 Kuraray Co., Ltd. Ethylene-vinyl alcohol polymer compositions and use thereof
EP0866096A4 (en) * 1996-10-04 1999-10-20 Kuraray Co THERMOPLASTIC POLYMER COMPOSITION
US6410109B1 (en) 1997-01-10 2002-06-25 Kuraray Co., Ltd. Resin composition and usage thereof
JP3618527B2 (ja) * 1997-09-25 2005-02-09 株式会社クラレ ブロック共重合体とその製造方法及び樹脂組成物
US6458893B1 (en) * 2000-07-24 2002-10-01 Riken Vinyl Industry Co., Ltd. Thermoplastic resin composition
FR2954336B1 (fr) * 2009-12-23 2013-01-04 Michelin Soc Tech Objet pneumatique pourvu d'une couche etanche aux gaz a base d'un elastomere thermoplastique styrenique et d'un polyphenylene ether
FR2954335B1 (fr) * 2009-12-23 2013-01-11 Michelin Soc Tech Objet pneumatique pourvu d'une couche etanche aux gaz a base d'un melange d'un elastomere thermoplastique et d'un caoutchouc butyl partiellement reticule
FR2954334B1 (fr) * 2009-12-23 2013-01-25 Michelin Soc Tech Objet pneumatique pourvu d'une couche etanche aux gaz a base d'un melange d'un elastomere thermoplastique et d'un caoutchouc butyl

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4847931A (ja) * 1971-10-15 1973-07-07
JPS5490391A (en) * 1977-12-20 1979-07-18 Anic Spa Preparation of block terpolymer
JPH03287606A (ja) * 1990-04-03 1991-12-18 Nippon Zeon Co Ltd 重合体の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136561A (ja) * 1984-12-06 1986-06-24 Sumitomo Electric Ind Ltd 熱溶融型接着剤

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4847931A (ja) * 1971-10-15 1973-07-07
JPS5490391A (en) * 1977-12-20 1979-07-18 Anic Spa Preparation of block terpolymer
JPH03287606A (ja) * 1990-04-03 1991-12-18 Nippon Zeon Co Ltd 重合体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0572667A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003027183A1 (fr) * 2001-09-25 2003-04-03 Bridgestone Corporation Composition de resine et element comprenant cette composition de resine
JP2013198761A (ja) * 2004-12-02 2013-10-03 Kaneka Corp チューブ用樹脂組成物およびチューブ
WO2023047827A1 (ja) * 2021-09-24 2023-03-30 帝人株式会社 樹脂組成物およびその成形品

Also Published As

Publication number Publication date
CA2104382A1 (en) 1992-08-20
EP0572667A4 (ja) 1994-02-02
EP0572667A1 (en) 1993-12-08

Similar Documents

Publication Publication Date Title
US4304881A (en) Alkenyl aromatic resin composition having an excellent impact strength
WO1992014790A1 (fr) Composition de resine thermoplastique
US6239218B1 (en) Hydrogenated block copolymer and composition of the same
TW200406464A (en) Reactive blend polymer compositions with thermoplastic polyurethane
JPH07316416A (ja) ポリフェニレンエーテル系樹脂組成物
JPWO2002094932A1 (ja) ブロック共重合体組成物
EP1031586B1 (en) Hydrogenated block copolymer
JP3185193B2 (ja) 樹脂組成物
JPH11199667A (ja) ポリエーテルエステルアミド、帯電防止剤および熱可塑性樹脂組成物
US11661514B2 (en) Polyphenylene ether composition, method for the manufacture thereof, and articles comprising the composition
JPH07100763B2 (ja) 熱可塑性樹脂組成物
EP0649873B1 (en) Oil-resistant resin composition
JP2011094074A (ja) 発泡体用変性ブロック共重合体及びその組成物
JPH03185058A (ja) 熱可塑性樹脂組成物
JPH0445143A (ja) 難燃熱可塑性樹脂組成物
JPH05186676A (ja) 高流動性ポリカーボネート
JP4545269B2 (ja) ウレタンの組成物
JP2001253979A (ja) ウレタン系エラストマー組成物
JPH0665466A (ja) 熱可塑性樹脂組成物
JP4049912B2 (ja) 成形材料及び成形品
JP2000086836A (ja) ポリプロピレン系樹脂組成物
JP2971514B2 (ja) 新規組成物
JPH01182361A (ja) 熱可塑性樹脂組成物
JPH1149944A (ja) 熱可塑性樹脂組成物
KR20230036250A (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 1993 107664

Country of ref document: US

Date of ref document: 19930813

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1992905331

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2104382

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 1992905331

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1992905331

Country of ref document: EP