WO1992011270A1 - Verfahren zur herstellung von alkoxylierten alkyl- und/oder alkenylglykosidpartialestern - Google Patents
Verfahren zur herstellung von alkoxylierten alkyl- und/oder alkenylglykosidpartialestern Download PDFInfo
- Publication number
- WO1992011270A1 WO1992011270A1 PCT/EP1991/002313 EP9102313W WO9211270A1 WO 1992011270 A1 WO1992011270 A1 WO 1992011270A1 EP 9102313 W EP9102313 W EP 9102313W WO 9211270 A1 WO9211270 A1 WO 9211270A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alkyl
- alkenyl
- glycosides
- esters
- solvent
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H15/00—Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
- C07H15/02—Acyclic radicals, not substituted by cyclic structures
- C07H15/04—Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
- C07H15/08—Polyoxyalkylene derivatives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H15/00—Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
- C07H15/02—Acyclic radicals, not substituted by cyclic structures
- C07H15/04—Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H15/00—Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
- C07H15/02—Acyclic radicals, not substituted by cyclic structures
- C07H15/04—Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
- C07H15/10—Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical containing unsaturated carbon-to-carbon bonds
Definitions
- the invention relates to a process for the preparation of alkoxylated alkyl and / or alkenyl glycoside partial esters with improved color quality, in which alkyl and / or alkenyl glycosides are treated with a reducing agent in a solvent, partially transesterified and then alkoxylated.
- Ethoxylated partial esters of long-chain aliphatic carboxylic acids and glycosides have surface-active properties and, because of their ecological and toxicological harmlessness, are used as emulsifiers in cosmetic and pharmaceutical products and in a large number of foods.
- glycosides for example methyl glucoside or allyl glucoside
- these are first reacted with fatty acids in the presence of basic catalysts and then the partial ester formed as an intermediate is ethoxylated.
- the disadvantage here is that the catalyst and fatty acid can react with one another and the intermediate yield in the esterification stage is therefore low.
- fatty acid esters especially methyl esters or triglycerides, which initially with the Transesterified glycosides in the presence of alkali carbonates [US 2,931,797, US 3,597,417, Carbohyd.Res. 21. 431 (1971)] and then alkoxylated.
- Ethoxylated glycoside partial esters which are accessible via this route, are indeed obtained in good yields at the level of the glycoside partial esters.
- the products are generally strongly discolored, so that their use in the named areas of application is severely restricted for aesthetic reasons.
- it is therefore necessary to take a bleaching stage into account when producing the ethoxylated glycoside partial esters.
- a technical embodiment of this consists, for example, in treating the crude, still basic transesterification product with hydrogen peroxide before the alkoxylation and then neutralizing it.
- the bleaching can also be carried out after the alkoxylation.
- the object of the invention was therefore to develop a new process for the preparation of alkoxylated glycoside partial esters with improved color quality, which is free from the disadvantages described.
- the invention relates to a process for the preparation of alkoxylated alkyl and / or alkenyl glycoside partial esters with improved color quality by transesterification of alkyl and / or alkenyl glycosides with fatty acid esters and subsequent alkoxylation, which is characterized in that
- Z represents a symbol for a glycose unit derived from a sugar with 5 or 6 carbon atoms
- n for numbers from 1 to 10
- R 1 for an alkyl radical with 1 to 22 or alkenyl radical with 2 to 18 carbon atoms
- the invention is based on the finding that light-colored alkoxylated glycoside partial esters are obtained if the residual content of free sugar, in particular glucose, in the reaction mixture before the transesterification is largely converted into a carbohydrate compound, for example sorbitol, by treatment with a reducing agent transferred, which has sufficient chemical stability under the conditions of the transesterification.
- Alkyl and alkenyl glycosides are known substances that are accessible by the relevant methods of preparative organic chemistry. Processes for their preparation are based, for example, on glucose or starch, which are reacted with alcohols either directly or via the intermediate stage of the butylglycosides [US 3,547,828, US 3,839,318, DE-A-3723826].
- Alkyl or alkenyl glycosides of the formula (I) which are suitable as component al) for the preparation of the ethoxylated glycoside partial esters can be derived from aldoses or ketoses. Because of the higher reactivity and the technical availability, primarily the glycosides of the reducing saccharides and especially glucose come into consideration. The alkyl and / or alkenyl glycosides which are preferably used as starting materials are therefore the alkyl and / or alkenyl glucosides.
- the index n in formula (I) indicates the degree of oligomerization, ie the distribution of mono- and oligoglycosides, and stands for a number between 1 and 10.
- Alkyl and / or alkenyl glycosides with an average degree of oligomerization n of 1 to 3 are preferably used. Those alkyl and / or alkenyl glycosides whose degree of oligomerization is less than 1.5 and in particular between 1.1 and 1.4 are particularly preferred.
- the alkyl radical Rl in formula (I) is derived from primary saturated or monounsaturated alcohols having 1 to 22, preferably one or 12 to 18, carbon atoms.
- Typical examples are methanol, ethanol, allyl alcohol, propanol, isopropyl alcohol, n-butanol, tert-butanol, capron alcohol, caprylic alcohol, capric alcohol, lauryl alcohol, myristyl alcohol, cetyl alcohol, palitoleyl alcohol, stearyl alcohol, elaidyl alcohol, oleyl alcohol, petyl alcohol, petyl alcohol Behenyl alcohol or erucyl alcohol and their technical mixtures.
- alkyl and / or alkenyl glycosides of the formula (I) in which Z is a glucose residue, n is a number from 1 to 3 and R * is a methyl group is particularly advantageous.
- the particularly preferred alkyl and / or alkenyl glycosides are therefore the methyl glucosides.
- the alkyl and / or alkenyl glycosides are selected in at least one solvent from the group consisting of water, aliphatic alcohols with 1 to 4 carbon atoms, ethylene glycol and glycerol is formed, dissolved or dispersed.
- the solvents can be used alone or in the form of mixtures, for example mixtures of water and alcohols in a weight ratio of 1:99 to 99: 1.
- the use of water as a solvent is preferred, since it can be separated off particularly easily from the reaction mixture later.
- the mixtures containing the alkyl and / or alkenyl glycosides and the solvent can be treated with a reducing agent over a period tl of 0.1 to 5 h at temperatures Tl of 50 to 100 ° C., for example that in the alkyl and / or Alkenylglucosiden contained portion of glucose, which can make up 1 to 10 wt .-% - based on the glucoside - is converted into sorbitol.
- the reducing agent can be used in amounts of 0.1 to 10, preferably 1 to 5% by weight, based on the alkyl and / or alkenyl glycosides.
- Suitable reducing agents are sodium hypophosphite or sodium boranate.
- the choice of solvent is influenced by the choice of reducing agent. While reductions with sodium hypophosphite are preferably carried out in aqueous solution, methanol is recommended as the solvent when using boranates. Products of particularly high color quality are obtained if the reduction is carried out with sodium hypophosphite.
- the solvent or the solvent mixture is separated off.
- the reaction mixture is heated immediately after the treatment with the reducing agent to temperatures of 80 to 120 ° C., optionally under reduced pressure of 850 to 100 mbar, the solvent being distilled off.
- the fatty acid lower alkyl esters which are used in the transesterification are compounds of the formula (II)
- R2C0 is an aliphatic, linear or branched, saturated or unsaturated acyl radical having 6 to 22 carbon atoms and 0, 1, 2 or 3 double bonds and R3 is an alkyl radical having 1 to 4 carbon atoms.
- Typical examples are the lower alkyl esters of caproic acid, caprylic acid, capic acid, lauric acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, linolenic acid, arachic acid, gadoleic acid, behenic acid or erucic acid.
- the esters can also be used in the form of technical cuts, such as those which occur in the transesterification of natural fats and oils.
- the use of methyl esters based on coconut oil, palm oil, palm kernel oil, rape oil, sunflower oil or beef tallow is preferred.
- the alkyl and / or alkenyl glycosides can be transesterified with the fatty acid lower alkyl esters in a molar ratio of 2: 1 to 1: 3.
- glycoside ester mixtures which predominantly contain mono- and diesters, it has proven to be optimal to choose application ratios from 1: 1 to 1: 2.5.
- Basic alkali metal or alkaline earth metal salts are suitable as catalysts for the transesterification.
- the alkali metal or alkaline earth metal salts can be used in amounts of 0.1 to 10, preferably 2 to 6% by weight, based on the sum of the amounts of glycosides and esters in the reaction mixture.
- Suitable emulsifiers are mono- and / or diesters of alkyl and / or alkenyl glycosides with fatty acids having 5 to 22 carbon atoms and 0, 1, 2 or 3 double bonds.
- the reaction mixture is added to the reaction mixture as an emulsifier.
- the emulsifiers can be used in amounts of 1 to 10, preferably 2 to 6% by weight, based on the sum of the amounts of glycosides and esters in the reaction mixture.
- the transesterification can be heated to a temperature T2 of 150 to 220, preferably 170 to 200 ° C., either at ambient pressure or at a reduced pressure of up to 400 mbar over a period t2 of 0.5 to 10 h. Under these conditions, the reaction is practically quantitative.
- the alcohol released from the fatty acid lower alkyl ester can be distilled off continuously and from the Reaction equilibrium are removed. At the same time, traces of unused sodium hypophosphite or sodium boranate - if present - are destroyed.
- the ester, catalyst and emulsifier can be added to the mixture containing the glycosides and the solvent not only afterwards but also before the reduction.
- the reduction of the alkyl and / or alkenyl glycosides in the solvent can thus also be carried out in the presence of the alkali metal or alkaline earth metal salts, emulsifiers and / or fatty acid lower alkyl esters.
- Mixtures of this type can have a total amount of solid substances of 20 to 80, preferably 50 to 70,% by weight.
- the reaction mixture can - as described above - be freed from the solvent and subjected to the transesterification.
- the resulting end product of the transesterification is a statistical mixture of different alkyl and / or alkenyl glycoside esters.
- the ratio of the mono- and poly-substituted products to one another is essentially determined by the choice of the molar ratio between the alkyl and / or alkenyl glycosides and the fatty acid lower alkyl esters certainly.
- glycoside partial esters are obtained practically exclusively; the formation of full esters which no longer have any free hydroxyl groups and are therefore no longer available for subsequent alkoxylation takes place only in negligible amounts.
- the alkoxylation of compounds with active hydrogen atoms is a large-scale process known per se.
- the basic transesterification product is transferred to an autoclave and at temperatures T3 of 100 to 180, preferably 120 to 150 ° C. and at pressures p from 1 to 10, preferably 1 to 5 bar over a period t3 of 0.5 to 20, preferably 5 to 10 h with 1 to 100 moles of ethylene and / or propylene oxide per mole of partial ester. Reactions of 1 mol of a transesterification product of methyl glucose with fatty acid methyl ester with 75 to 100 mol of ethylene oxide are preferred.
- Another advantage of the process according to the invention is that the basic alkali metal or alkaline earth metal salts still present in the crude transesterification product also catalyze the alkoxylation and thus the addition of a special alkoxylation catalyst is unnecessary.
- the end reaction products can be neutralized with acids, for example aqueous phosphoric, acetic or lactic acid.
- the alkyl and / or alkenyl glycoside partial esters can - if desired - be bleached in a manner known per se by adding hydrogen peroxide solution. Based on the alkoxylated glycoside partial esters, 0.2 to 2% by weight of hydrogen peroxide, calculated as a 100% by weight substance, are used. While the H2O2 treatment in the alkoxylated partial esters, which had been prepared by prior art methods, did not lead to any noticeable bleaching effect, the alkoxylated alkyl and / or alkenyl glycoside partial esters obtained by the process according to the invention showed a marked bleaching effect Color brightening observed. The resulting light-colored alkoxylated alkyl and / or alkenyl glycoside partial esters are suitable as surface-active substances, for example for use as emulsifiers in cosmetic or pharmaceutical products.
- Example 2 Analogously to Example 1, 146 g (0.2 mol) of the basic transesterification product of methyl glucoside with methyl stearate (starting product B) were ethoxylated with 1060 g (24 mol) of ethylene oxide. The crude alkoxylation product was treated twice at 90 ° C. with 0.5% by weight, calculated on the alkoxylation product, hydrogen peroxide in the form of a 33% by weight aqueous solution.
- the Velcro color number of the products was determined using a Velcro photometer (Model 800-3, Fa-Klett-Sum erson), 1 cm round cuvette, blue filter 400 - 465 nm) in a 10% by weight solution in xylene.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Saccharide Compounds (AREA)
- Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
Abstract
Hellfarbige alkoxylierte Alkyl- und/oder Alkenylglykosidpartialester werden erhalten, indem man (a) eine Mischung enthaltend ein Alkyl- und/oder Alkenylglykosid und ein Lösungsmittel mit einem Reduktionsmittel behandelt, (b) das Lösungsmittel abtrennt, (c) die verbleibende Reaktionsmischung in an sich bekannter Weise in Gegenwart von Alkali- und/oder Erdalkalisalze und Emulgatoren mit Fettsäureniedrigalkylestern partiell umestert, (d) das Umesterungsprodukt in an sich bekannter Weise mit Ethylen und/oder Propylenoxid alkoxyliert und (e) das Alkoxylierungsprodukt anschließend mit einer Säure neutralisiert.
Description
Verfahren zur Herstellung von alkoxylierten Alkyl- und/oder Alkenylglykosidpartialestern
Die Erfindung betrifft ein Verfahren zur Herstellung von alkoxy¬ lierten Alkyl- und/oder Alkenylglykosidpartialestern mit verbes¬ serter Farbqualität, bei dem man Alkyl- und/oder Alkenylglykoside in einem Lösungsmittel mit einem Reduktionsmittel behandelt, par¬ tiell umestert und anschließend alkoxyliert.
Ethoxylierte Partialester von langkettigen aliphatischen Carbon¬ säuren und Glykosiden weisen oberflächenaktive Eigenschaften auf und werden infolge ihrer ökologischen und toxikologischen Unbe¬ denklichkeit als Emulgatoren in kosmetischen und pharmazeutischen Produkten sowie einer Vielzahl von Lebensmitteln eingesetzt.
Zur Herstellung derartiger Produkte geht man von Glykosiden, bei¬ spielsweise Methylglucosid oder Allylglucosid aus, setzt diese zunächst in Gegenwart basischer Katalysatoren mit Fettsäuren um und ethoxyliert anschließend den als Zwischenprodukt gebildeten Partialester. Von Nachteil ist hierbei jedoch, daß Katalysator und Fettsäure miteinander abreagieren können und die Zwischenausbeute in der Veresterungsstufe somit gering ist.
Üblicherweise geht man daher von Fettsäureestern, insbesondere Methylestern oder Triglyceriden aus, die zunächst mit den
Glykosiden in Gegenwart von Alkalicarbonaten umgeestert [US 2,931,797, US 3,597,417, Carbohyd.Res. 21. 431 (1971)] und an¬ schließend alkoxyliert werden.
Ethoxylierte Gl kosidpartialester, die über diesen Weg zugänglich sind, werden zwar auf der Stufe der Glykosidpartialester in guten Ausbeuten erhalten, infolge ihres Restgehaltes an freiem Zucker, der unter den für die Umesterung erforderlichen hohen Reaktions¬ bedingungen verkohlt, sind die Produkte jedoch in aller Regel stark verfärbt, so daß ihre Verwendungsmöglichkeit in den genann¬ ten Einsatzgebieten aus ästhetischen Gründen stark eingeschränkt ist. Zur Verbesserung der Produktqual tät ist es somit erforder¬ lich, bei der Herstellung der ethoxylierten Glykosidpartialester eine Bleichstufe zu berücksichtigen. Eine technische Ausführungs¬ form hierzu besteht beispielsweise darin, das rohe, noch basische Umesterungsprodukt noch vor der Alkoxylierung mit Wasserstoffper¬ oxid zu behandeln und anschließend zu neutralisieren. Alternativ hierzu kann die Bleiche auch der Alkoxylierung nachgeschaltet werden. Beide Verfahren weisen jedoch in der Praxis Nachteile auf: im ersten Fall werden zwar aufgehellte Produkte erhalten, es be¬ steht jedoch die Gefahr einer partiellen Verseifung des gebil¬ deten Glykosidpartialesters, im zweiten Fall ist zwar eine Ester¬ spaltung nicht zu befürchten, dafür ist die Aufhellung der Pro¬ dukte in den meisten Fällen unbefriedigend. Demzufolge besteht ein starkes Bedürfnis nach alternativen Verfahren zur Herstellung von hellfarbigen alkoxylierten Glykosidpartialestern.
Die Aufgabe der Erfindung bestand somit darin, ein neues Verfahren zur Herstellung von alkoxylierten Glykosidpartialestern mit ver¬ besserter Farbqualität zu entwickeln, das frei von den geschil¬ derten Nachteilen ist.
Gegenstand der Erfindung ist ein Verfahren zur Herstellung von alkoxylierten Alkyl- und/oder Alkenylglykosidpartialestern mit verbesserter Farbqualität durch Umesterung von Alkyl- und/oder Alkenylglykosiden mit Fettsäureestern und anschließende Alkoxy¬ lierung, das sich dadurch auszeichnet, daß man
a) eine Mischung enthaltend
al) mindestens ein technisches Alkyl- und/oder Alkenylglykosid der Formel (I),
[Z]n-0-Rl (I)
in der Z ein Symbol für ein Glykose-Einheit darstellt, die sich von einem Zucker mit 5 oder 6 Kohlenstoffatomen ab¬ leitet, n für Zahlen von 1 bis 10 und R1 für einen Alkyl- rest mit 1 bis 22 oder Alkenylrest mit 2 bis 18 Kohlen¬ stoffato en steht, und
a2) mindestens ein Lösungsmittel
mit einem Reduktionsmittel behandelt,
b) das Lösungsmittel abdestilliert,
c) die zurückbleibende Reaktionsmischung in Gegenwart eines ba¬ sischen Alkali- oder Erdalkalisalzes und eines Emulgators in an sich bekannter Weise mit einem Fettsäureniedrigalkylester partiell umestert,
d) das Umesterungsprodukt mit in an sich bekannter Weise mit Ethylen- und/oder Propylenoxid umsetzt und
e) das Alkoxylierungsprodukt anschließend mit Säuren neutrali¬ siert.
Die Erfindung beruht auf der Erkenntnis, daß man zu hellfarbigen alkoxylierten Glykosidpartialestern gelangt, wenn man den Restge¬ halt an freiem Zucker, insbesondere Glucose, in der Reaktioπsmi- schung vor der Umesterung durch Behandlung mit einem Reduktions¬ mittel weitgehend in eine Kohlenhydratverbindung, beispielsweise Sorbit überführt, die unter den Bedingungen der Umesterung eine ausreichende chemische Stabilität besitzt.
Alkyl- und Alkenylglykoside stellen bekannte Stoffe dar, die nach den einschlägigen Verfahren der präparativen organischen Chemie zugänglich sind. Verfahren zu ihrer Herstellung gehen beispiels¬ weise von Glucose oder Stärke aus, die entweder direkt oder über die Zwischenstufe der Butylglykoside mit Alkoholen umgesetzt wer¬ den [US 3,547,828, US 3,839,318, DE-A-3723826].
Alkyl- oder Alkenylglykoside der Formel (I), die sich als Kompo¬ nente al) für die Herstellung der ethoxylierten Glykosidpartial¬ ester eignen, können sich von Aldosen oder Ketosen ableiten. Wegen der höheren Reaktivität und der technischen Verfügbarkeit kommen primär die Glykoside der reduzierend wirkenden Saccharide und insbesondere der Glucose in Betracht. Die als Ausgangsstoffe be¬ vorzugt einzusetzenden Alkyl- und/oder Alkenylglykoside sind daher die Alkyl- und/oder Alkenylglucoside.
Der Index n in Formel (I) gibt den Oligomerisierungsgrad, d. h. die Verteilung von Mono- und Oligoglykosiden an und steht für eine Zahl zwischen 1 und 10. Während n in einer gegebenen Verbindung stets ganzzahlig sein muß und hier vor allem die Werte n = 1 bis 6 annehmen kann, ist der Wert n für ein bestimmtes Alkyl- oder Alkenylglykosid eine analytische ermittelte rechnerische Größe, die meistens eine gebrochene Zahl darstellt. Vorzugsweise werden Alkyl- und/oder Alkenylglykoside mit einem mittleren Oligomeri¬ sierungsgrad n von 1 bis 3 verwendet. Besonders bevorzugt sind solche Alkyl- und/oder Alkenylglykoside, deren Oligomerisie¬ rungsgrad kleiner als 1,5 ist und insbesondere zwischen 1,1 und 1,4 liegt.
Der Alkylrest Rl in Formel (I) leitet sich von primären gesättig¬ ten oder einfach ungesättigten Alkoholen mit 1 bis 22, vorzugs¬ weise einem oder 12 bis 18 Kohlenstoffatomen ab. Typische Bei¬ spiele sind Methanol, Ethanol, Allylalkohol, Propanol, Isopropyl- alkohol, n-Butanol, tert.-Butanol, Capronalkohol, Caprylalkohol, Caprinalkohol, Laurylalkohol, Myristylalkohol, Cetylalkohol, Pal- itoleylalkohol, Stearylalkohol, Elaidylalkohol, Oleylalkohol, Petroselinylalkohol, Behenylalkohol oder Erucylalkohol sowie ihre technischen Gemische.
Unter den genannten Glykosiden ist die Verwendung von Alkyl- und/ oder Alkenylglykosiden der Formel (I), in der Z für einen Gluco- serest, n für Zahlen von 1 bis 3 und R* für eine Methylgruppe steht, besonders vorteilhaft. Die besonders bevorzugten Alkyl- und/oder Alkenylglykoside sind daher die Methylglucoside.
Die Alkyl- und/oder Alkenylglykoside werden in mindestens einem Lösungsmittel ausgewählt aus der Gruppe, die von Wasser,
aliphatischen Alkoholen mit 1 bis 4 Kohlenstoffatomen, Ethylenglykol und Glycerin gebildet wird, gelöst oder dispergiert. Dabei können die Lösungsmittel alleine oder aber auch in Form von Gemischen, beispielsweise Mischungen von Wasser und Alkoholen im Gewichtsverhältnis 1 : 99 bis 99 : 1 zum Einsatz kommen. Bevorzugt ist die Verwendung von Wasser als Lösungsmittel, da es sich später aus der Reaktionsmischung besonders leicht abtrennen läßt.
Die Mischungen enthaltend die Alkyl- und/oder Alkenylglykoside und das Lösungsmittel können über einen Zeitraum tl von 0,1 bis 5 h bei Temperaturen Tl von 50 bis 100°C mit einem Reduktionsmittel behandelt werden, wobei beispielsweise der in den Alkyl- und/oder Alkenylglucosiden enthaltene Anteil an Glucose, der 1 bis 10 Gew.-% - bezogen auf das Glucosid - ausmachen kann, in Sorbit überführt wird. Das Reduktionsmittel kann in Mengen von 0,1 bis 10, vorzugsweise 1 bis 5 Gew.-% - bezogen auf die Alkyl- und/oder Alkenylglykoside - eingesetzt werden.
Als Reduktionsmittel kommen beispielsweise Natriumhypophosphit oder Natriumboranat in Betracht. Die Auswahl des Lösungsmittels wird durch die Auswahl des Reduktionsmittels beeinflußt. Während man Reduktionen mit Natriumhypophosphit vorzugsweise in wäßriger Lösung durchführt, empfiehlt sich bei Verwendung von Boranaten Methanol als Lösungsmittel. Produkte besonders hoher Farbqualität werden erhalten, wenn man die Reduktion mit Natriumhypophosphit durchführt. Zur Behandlung reicht es aus, die Alkyl- und/oder Al¬ kenylglykoside im Lösungsmittel zu erwärmen, das Reduktionsmittel einzurühren und über den angegebenen Zeitraum einwirken zu lassen.
Im Anschluß an die Reduktion wird das Lösungsmittel beziehungs- weise das Lösungsmittelgemisch abgetrennt. In einer bevorzugten
Ausführungsform der Erfindung wird die Reaktionsmischung unmit¬ telbar nach der Behandlung mit dem Reduktionsmittel auf Tempera¬ turen von 80 bis 120°C, gegebenenfalls unter vermindertem Druck von 850 bis 100 mbar, erhitzt, wobei das Lösungsmittel abdestil¬ liert.
Bei den Fettsäureniedrigalkylestern, die in die Umesterung einge¬ setzt werden, handelt es sich um Verbindungen der Formel (II)
R2CO-OR3 (II),
in der R2C0 für einen aliphatischen, linearen oder verzweigten, gesättigten oder ungesättigten Acylrest mit 6 bis 22 Kohlenstoff- ato en und 0, 1, 2 oder 3 Doppelbindungen und R3 für einen Alkyl- rest mit 1 bis 4 Kohlenstoffatomen steht. Typische Beispiele sind die Niedrigalkylester der Capronsäure, Caprylsäure, Capinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Palmitoleinsäure, Stearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Arachinsäure, Gadoleinsäure, Behensäure oder Eruca- säure. Bevorzugt ist der Einsatz von Fettsäureniedrigalkylestern der Formel (II), in der R2CO für einen gesättigten oder einfach ungesättigten Acylrest mit 6 bis 18, insbesondere 6 bis 12 Koh- lenstoffatomen und R2 für einen Methylrest steht.
Wie in der Fettchemie üblich, können die Ester auch in Form tech¬ nischer Schnitte eingesetzt werden, wie sie beispielsweise bei der Umesterung von natürlichen Fetten und Ölen anfallen. Bevorzugt ist der Einsatz von Methylestern auf Basis von Kokosöl, Palmöl, Palm- kernöl, Rüböl, Sonnenblumenöl oder Rindertalg.
In Abhängigkeit davon, ob die Herstellung von Glykosidestern mit einer oder mehreren Estergruppen angestrebt wird, können die Al¬ kyl- und/oder Alkenylglykoside mit den Fettsäureniedrigalkylestern im molaren Verhältnis von 2 : 1 bis 1 : 3 umgeestert werden. Für die Herstellung von Glykosidestergemischen, die vorwiegend Mono- und Diester enthalten, hat es sich als optimal erwiesen, Einsatz¬ verhältnisse von 1 : 1 bis 1 : 2,5 zu wählen.
Als Katalysatoren für die Umesterung kommen basische Alkali- oder Erdalkalisalze in Betracht. Bevorzugt ist hierbei die Verwendung von Alkalicarbonaten, -hydroxiden oder -alkoholaten, insbesondere von Kaliumcarbonat. Die Alkali- oder Erdalkalisalze können in Mengen von 0,1 bis 10, vorzugsweise 2 bis 6 Gew.-% - bezogen auf die Summe der Mengen an Glykosiden und Estern in der Reaktionsmi¬ schung - eingesetzt werden.
Als Emulgatoren kommen Mono- und/oder Diester von Alkyl- und/oder Alkenylglykosiden mit Fettsäuren mit 5 bis 22 Kohlenstoffatomen und 0, 1, 2 oder 3 Doppelbindungen in Betracht. In einer bevor¬ zugten Ausführungsform der Erfindung wird der Reaktionsmischung das Reaktionsendprodukt als Emulgator zugesetzt. Die Emulgatoren können in Mengen von 1 bis 10, vorzugsweise 2 bis 6 Gew.-% - be¬ zogen auf die Summe der Mengen an Glykosiden und Estern in der Reaktionsmischung - eingesetzt werden.
Die Umesterung kann entweder bei Umgebungsdruck oder einem ver¬ minderten Druck von bis zu 400 mbar über einen Zeitraum t2 von 0,5 bis 10 h auf eine Temperatur T2 von 150 bis 220, vorzugsweise 170 bis 200°C erhitzt werden. Unter diesen Bedingungen ist die Reak¬ tion praktisch quantitativ. Der aus dem Fettsäureniedrigalkylester freigesetzte Alkohol kann kontinuierlich abdestilliert und aus dem
Reaktionsgleichgewicht entfernt werden. Zugleich werden Spuren von nichtu gesetzte Natriumhypophosphit oder Natriumboranat - falls vorhanden - zerstört.
Ester, Katalysator und Emulgator können der Mischung, die die Glykoside und das Lösungsmittel enthält, nicht erst im Anschluß, sondern auch bereits vor der Reduktion zugesetzt werden. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens kann die Reduktion der Alkyl- und/oder Alkenylglykoside im Lösungsmit¬ tel somit auch in Gegenwart der Alkali- oder Erdalkalisalze, Emulgatoren und/oder Fettsäureniedrigalkylester durchgeführt wer¬ den. Hierzu empfiehlt es sich, zunächst eine Mischung aller Kom¬ ponenten herzustellen, die Mischung zu erwärmen und mit dem Re¬ duktionsmittel zu behandeln. Derartige Mischungen können eine Ge¬ samtmenge an festen Stoffen von 20 bis 80, vorzugsweise 50 bis 70 Gew.- aufweisen. Nach der Reduktion kann die Reaktionsmischung - wie oben beschrieben - vom Lösungsmittel befreit und der Umeste¬ rung unterworfen werden.
Das resultierende Reaktionsendprodukt der Umesterung stellt ein statistisches Gemisch verschiedener Alkyl- und/oder Alkenylglyko- sidester dar. Das Verhältnis der mono- und mehrfach substituierten Produkte untereinander wird im wesentlichen durch die Wahl des molaren Einsatzverhältnisses zwischen den Alkyl- und/oder Alkenylglykosiden und den Fettsäureniedrigalkylestern bestimmt. Innerhalb der genannten Einsatzverhältnisse werden praktisch aus¬ schließlich Glykosidpartialester erhalten; die Bildung von Voll- estern, die über keine freien Hydroxylgruppen mehr verfügen und somit für eine anschließende Alkoxylierung nicht mehr zur Verfü¬ gung stehen, findet nur in zu vernachlässigenden Mengen statt.
Die Alkoxylierung von Verbindungen mit aktiven Wasserstoffatomen stellt ein an sich bekanntes großtechnisches Verfahren dar. Im Sinne des erfindungsgemäßen Verfahrens, wird das basische Umeste¬ rungsprodukt in einen Autoklaven überführt und bei Temperaturen T3 von 100 bis 180, vorzugsweise 120 bis 150°C sowie bei Drücken p von 1 bis 10, vorzugsweise 1 bis 5 bar über einen Zeitraum t3 von 0,5 bis 20, vorzugsweise 5 bis 10 h mit 1 bis 100 mol Ethylen- und/oder Propylenoxid pro Mol Partialester umgesetzt. Bevorzugt sind Umsetzungen von 1 mol eines Umesterungsproduktes von Methyl- glucose mit Fettsäuremethylester mit 75 bis 100 mol Ethylenoxid.
Ein weiterer Vorteil des erfindungsgemäßen Verfahrens besteht da¬ rin, daß die im rohen Umesterungsprodukt noch enthaltenen basi¬ schen Alkali- oder Erdalkalisalze gleichzeitig auch die Alkoxy¬ lierung katalysaieren und somit der Zusatz eines speziellen Alkoxylierungskatalysators überflüssig ist. Im Anschluß an die Alkoxylierung können die Reaktionsendprodukte mit Säuren, bei¬ spielsweise wäßriger Phosphor-, Essig- oder Milchsäure neutrali¬ siert werden.
Die Alkyl- und/oder Alkenylglykosidpartialester können - falls dies gewünscht wird - in an sich bekannter Weise durch Zusatz von Wasserstoffperoxidlösung gebleicht werden. Dabei werden - bezogen auf die alkoxylierten Glykosidpartialester - 0,2 bis 2 Gew.-% Wasserstoffperoxid, berechnet als 100 gew.-%ige Substanz einge¬ setzt. Während die H2θ2-Behandlung bei den alkoxylierten Partial¬ estern, die nach Verfahren des Stands der Technik hergestellt worden waren, keine nennenswerten Bleichwirkung führte, wurde bei den alkoxylierten Alkyl- und/oder Alkenylglykosidpartialestern, die nach dem erfindungsgemäßen Verfahren erhalten worden waren, eine deutliche Farbaufhellung beobachtet.
Die resultierenden hellfarbigen alkoxylierten Alkyl- und/oder Al- kenylglykosidpartialester eignen sich als oberflächenaktive Stoffe beispielsweise zum Einsatz als Emulgatoren in kosmetischen oder pharmazeutischen Produkten.
Die folgenden Beispiele sollen den Gegenstand der Erfindung näher erläutern, ohne ihn darauf einzuschränken.
Beispiele
Herstellung der als Ausqanosstoffe:
Methylglucosid-distearat, Ausgangsprodukt A) 20 kg Methylglucosid (n = 1) wurden unter Erwärmen in 8,3 kg Wasser gelöst, mit 0,47 kg Kaliumcarbonat, 0,47 kg Natriumhypophosphit, 3,1 kg Methylgluco- sid-di-stearat sowie 58,6 kg Stearinsäuremethylester versetzt und 1 h bei 80 bis 90°C gerührt. Danach wurde das Wasser unter ver¬ mindertem Druck (100 mbar) abdestilliert, wobei die Temperatur im Verlauf der Destillation von 80 auf 100°C gesteigert wurde. An¬ schließend wurde das Vakuum aufgehoben und die Reaktionsmischung für 8 h auf eine Temperatur von 190 bis 200°C erhitzt. Das bei der Umesterung freiwerdende Methanol wurde kontinuierlich abdestil¬ liert. Nach Beendigung der Reaktion wurde die Reaktionsmischung auf 90°C abgekühlt.
Methylglucosid-distearat, Ausgangsprodukt B) Eine Mischung aus 20 kg Methylglucosid (n = 1), 0,47 kg Kaliumcarbonat und 58,6 kg StearinsäuremethyTester wurde unter vermindertem Druck (100 mbar) auf 190 bis 200°C erhitzt. Nach 8 h Rühren wurde die Reaktions¬ mischung auf 90°C abgekühlt.
Bei spiel 1 :
146 g (0,2 mol) des basischen U esterungsproduktes von Methylglu¬ cosid mit Stearinsäuremethylester (Ausgangsprodukt A) wurden in einen Autoklaven überführt. Es wurde mit Stickstoff gespült und 30 min bei 100°C evakuiert. Anschließend wurden bei 120°C und 5 bar 1060 g (24 mol) Ethylenoxid innerhalb von 9 h portionsweise auf¬ gedrückt. Nach Beendigung der Ethylenoxidzugabe ließ man 30 min nachreagieren. Das rohe Alkoxylierungsprodukt wurde bei 90°C mit 85 gew.-%iger Phosphorsäure neutralisiert.
Kenndaten des Produktes:
Vergleichsbeispiel 1:
Analog Beispiel 1 wurden 146 g (0,2 mol) des basischen Umeste¬ rungsproduktes von Methylglucosid mit Stearinsäuremethylester (Ausgangsprodukt B) mit 1060 g (24 mol) Ethylenoxid ethoxyliert. Das rohe Alkoxylierungsprodukt wurde zweimal bei 90°C mit 0,5 Gew.-% - berechnet auf das Alkoxylierungsprodukt - Wasserstoff¬ peroxid in Form einer 33 gew.-%igen wäßrigen Lösung behandelt.
Kenndaten des Produktes:
Die Bestimmung der Klettfarbzahl der Produkte erfolgte mit einem Klettphotometer (Modell 800-3, Fa-Klett-Sum erson), 1 cm Rundkü- vette, Blaufilter 400 - 465 nm) in einer 10 gew.-%igen Lösung in Xylol.
Claims
1. Verfahren zur Herstellung von alkoxylierten Alkyl- und/oder Alkenylglykosidpartialestern mit verbesserter Farbqualität durch Umesterung von Alkyl- und/oder Alkenylglykosiden mit Fettsäureestern und anschließende Alkoxylierung, dadurch ge¬ kennzeichnet, daß man
a) eine Mischung enthaltend
al) mindestens ein technisches Alkyl- und/oder Alkenyl- glykosid der Formel (I),
[Z]n-0-Rl (I)
in der Z ein Symbol für ein Glykose-Einheit darstellt, die sich von einem Zucker mit 5 oder 6 Kohlenstoff¬ atomen ableitet, n für Zahlen von 1 bis 10 und R für einen Alkylrest mit 1 bis 22 oder Alkenylrest mit 2 bis 18 Kohlenstoffatomen steht, und
a2) mindestens ein Lösungsmittel
mit einem Reduktionsmittel behandelt,
b) das Lösungsmittel abdestilliert,
c) die zurückbleibende Reaktionsmischung in Gegenwart eines basischen Alkali- oder Erdalkalisalzes und eines Emulga- tors in an sich bekannter Weise mit einem Fettsäurenie¬ drigaIkylester partiell umestert, d) das Umesterungsprodukt in an sich bekannter Weise mit Ethylen- und/oder Propylenoxid alkoxyliert und
e) das Alkoxylierungsprodukt anschließend mit Säuren neutra¬ lisiert.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man Alkylglykoside der Formel (I) einsetzt, in der Z für einen Glucoserest, n für Zahlen von 1 bis 3 und R* für eine Methyl¬ gruppe steht.
3. Verfahren nach mindestens einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß man mindestens ein Lösungsmittel ausge¬ wählt aus der Gruppe, die von Wasser, aliphatischen Alkoholen mit 1 bis 4 Kohlenstoffatomen, Ethylenglycol und Glycerin ge¬ b ldet wird, einsetzt.
4. Verfahren nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß man das Reduktionsmittel in Mengen von 0,1 bis 10 Gew.-% - bezogen auf die Alkyl- und/oder Alkenylglykoside - einsetzt.
5. Verfahren nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß man als Reduktionsmittel Natriumhypophos¬ phit einsetzt.
6. Verfahren nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man die Behandlung mit dem Reduktionsmit¬ tel über einen Zeitraum tl von 0,1 bis 5 h bei einer Tempera¬ tur Tl von 50 bis 100°C durchführt.
7. Verfahren nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß man das Lösungsmittel beziehungsweise Lö¬ sungsmittelgemisch bei Temperaturen von 80 bis 120°C gegebe¬ nenfalls unter vermindertem Druck abdestilliert.
8. Verfahren nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß man die Umesterung mit Fettsäureniedrig¬ alkylestern der Formel (II) durchführt,
R C0-0R3 (II),
in der R2C0 für einen aliphatisehen, linearen oder verzweig¬ ten, gesättigten oder ungesättigten Acylrest mit 6 bis 22 Kohlenstoffatomen und 0, 1, 2 oder 3 Doppelbindungen und R3 für einen Alkylrest mit 1 bis 4 Kohlenstoffatomen steht.
9. Verfahren nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß man die Alkyl- und/oder Alkenylglykoside mit den Fettsäureniedrigalkylestern im molaren Verhältnis von 2 : 1 bis 1 : 6 umestert.
10. Verfahren nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß man als basische Alkali- oder Erdalkali¬ salze Alkalihydroxide oder -carbonate einsetzt.
11. Verfahren nach mindestens einem der Ansprüche 1 bis 10, da¬ durch gekennzeichnet, daß man die Alkali- oder Erdalkalisalze in Mengen von 0,1 bis 10 Gew.-% - bezogen auf die Summe der Mengen an Glykosiden und Estern in der Reaktionsmischung - einsetzt.
12. Verfahren nach mindestens einem der Ansprüche 1 bis 11, da¬ durch gekennzeichnet, daß man als Emulgatoren Mono- und/oder Diester von Alkyl- und oder Alkenylglykosiden mit Fettsäuren mit 6 bis 22 Kohlenstoffatomen und 0, 1, 2 oder 3 Doppelbin¬ dungen einsetzt.
13. Verfahren nach mindestens einem der Ansprüche 1 bis 12, da¬ durch gekennzeichnet, daß man die Emulgatoren in Mengen von 1 bis 10 Gew.-% - bezogen auf die Summe der Mengen an Glykosi¬ den und Estern in der Reaktionsmischung - einsetzt.
14. Verfahren nach mindestens einem der Ansprüche 1 bis 13, da¬ durch gekennzeichnet, daß man die Umesterung über einen Zeit¬ raum t2 von 0,5 bis 10 h bei einer Temperatur T2 von 150 bis 220°C durchführt.
15. Verfahren nach mindestens einem der Ansprüche 1 bis 14, da¬ durch gekennzeichnet, daß man die Alkyl- und/oder Alkenylgly¬ koside in Gegenwart der basischen Alkali- oder Erdalkalisalze reduziert.
16. Verfahren nach mindestens einem der Ansprüche 1 bis 15, da¬ durch gekennzeichnet, daß man die Alkyl- und/oder Alkenylgly¬ koside in Gegenwart der Emulgatoren reduziert.
17. Verfahren nach mindestens einem der Ansprüche 1 bis 16, da¬ durch gekennzeichnet, daß man die Alkyl- und/oder Alkenylgly¬ koside in Gegenwart der Fettsäureniedrigalkylester reduziert.
18. Verfahren nach mindestens einem der Ansprüche 1 bis 17, da¬ durch gekennzeichnet, daß man Mischungen, enthaltend Alkyl- und/oder Alkenylglykoside, Lösungsmittel sowie gegebenenfalls Alkali- oder Erdalkalisalze, Emulgatoren und/oder Fettsäure¬ niedrigaIkylester mit Reduktionsmitteln behandelt, deren Ge¬ samtmenge an festen Stoffen 20 bis 80 Gew.-% beträgt.
19. Verfahren nach mindestens einem der Ansprüche 1 bis 18, da¬ durch gekennzeichnet, daß man die Mischungen nach der Umeste¬ rung mit Ethylen- und/oder Propylenoxid alkoxyliert.
20. Verfahren nach mindestens einem der Ansprüche 1 bis 19, da¬ durch gekennzeichnet, daß man die Alkoxylierung mit 1 bis 100 Mol Ethylen- und/oder Propylenoxid pro Mol Alkyl- und/oder Alkenylglykosidpartialester durchführt.
21. Verfahren nach mindestens einem der Ansprüche 1 bis 20, da¬ durch gekennzeichnet, daß man die Alkoxylierung bei Tempera¬ turen T3 von 100 bis 180°C durchführt.
22. Verfahren nach mindestens einem der Ansprüche 1 bis 21, da¬ durch gekennzeichnet, daß man die Alkoxylierung bei Drücken p von 1 bis 10 bar durchführt.
23. Verfahren nach mindestens einem der Ansprüche 1 bis 22, da¬ durch gekennzeichnet, daß man die alkoxylierten Alkyl- und/ oder Alkenylglykosidpartialester mit Wasserstoffperoxiod bleicht.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19904040655 DE4040655A1 (de) | 1990-12-19 | 1990-12-19 | Verfahren zur herstellung von alkoxylierten alkyl- und/oder alkenylglycosidpartialestern |
DEP4040655.5 | 1990-12-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1992011270A1 true WO1992011270A1 (de) | 1992-07-09 |
Family
ID=6420728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1991/002313 WO1992011270A1 (de) | 1990-12-19 | 1991-12-04 | Verfahren zur herstellung von alkoxylierten alkyl- und/oder alkenylglykosidpartialestern |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE4040655A1 (de) |
WO (1) | WO1992011270A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994026757A1 (de) * | 1993-05-18 | 1994-11-24 | Henkel Kommanditgesellschaft Auf Aktien | Verfahren zur herstellung hellfarbiger alkyl- und/oder alkenyloligoglykoside |
WO1998049175A1 (de) * | 1997-04-28 | 1998-11-05 | Cognis Deutschland Gmbh | Verfahren zur herstellung von kohlenhydratpartialestern |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19726785B4 (de) * | 1997-06-24 | 2006-03-23 | Beiersdorf Ag | Kosmetische und dermatologische Lichtschutzformulierungen mit einem Gehalt an s-Triazinderivaten und Alkylglukosiden und ihre Verwendung |
DE19805918A1 (de) | 1998-02-13 | 1999-08-19 | Beiersdorf Ag | Lipidreduzierte Zubereitungen |
DE102004008302A1 (de) * | 2004-02-20 | 2005-09-01 | Cognis Deutschland Gmbh & Co. Kg | Verfahren zur Alkoxylierung von Alkyl- und/oder Alkenylpolyglykosiden |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3640998A (en) * | 1969-06-18 | 1972-02-08 | Richard C Mansfield | Alkylene oxide adducts of alkyloligosaccharides and their mixtures with alkylene oxide adducts of bord alkyl glucosides and alkanols |
EP0077167A1 (de) * | 1981-10-08 | 1983-04-20 | Rohm And Haas France, S.A. | Verfahren zur Herstellung von oberflächenaktiven Glykosiden und ihre Verwendung in kosmetischen, pharmazeutischen und Haushaltsprodukten |
EP0349221A2 (de) * | 1988-06-30 | 1990-01-03 | The Procter & Gamble Company | Herstellung von Polyolpolyestern mit vermindertem Farbgehalt |
EP0388857A2 (de) * | 1989-03-22 | 1990-09-26 | Kao Corporation | Verfahren zur Herstellung von farbstabilem Alkylglykosid |
-
1990
- 1990-12-19 DE DE19904040655 patent/DE4040655A1/de not_active Withdrawn
-
1991
- 1991-12-04 WO PCT/EP1991/002313 patent/WO1992011270A1/de active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3640998A (en) * | 1969-06-18 | 1972-02-08 | Richard C Mansfield | Alkylene oxide adducts of alkyloligosaccharides and their mixtures with alkylene oxide adducts of bord alkyl glucosides and alkanols |
EP0077167A1 (de) * | 1981-10-08 | 1983-04-20 | Rohm And Haas France, S.A. | Verfahren zur Herstellung von oberflächenaktiven Glykosiden und ihre Verwendung in kosmetischen, pharmazeutischen und Haushaltsprodukten |
EP0349221A2 (de) * | 1988-06-30 | 1990-01-03 | The Procter & Gamble Company | Herstellung von Polyolpolyestern mit vermindertem Farbgehalt |
EP0388857A2 (de) * | 1989-03-22 | 1990-09-26 | Kao Corporation | Verfahren zur Herstellung von farbstabilem Alkylglykosid |
Non-Patent Citations (1)
Title |
---|
CHEMICAL ABSTRACTS, vol. 95, no. 23, 7. Dezember 1981, Columbus, Ohio, US; abstract no. 204322, KRUSTEV P: 'Study of the reducing action of phosphine on sugars.' Seite 721 ;Spalte 1 ; * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994026757A1 (de) * | 1993-05-18 | 1994-11-24 | Henkel Kommanditgesellschaft Auf Aktien | Verfahren zur herstellung hellfarbiger alkyl- und/oder alkenyloligoglykoside |
US5756694A (en) * | 1993-05-18 | 1998-05-26 | Henkel Kommanditgesellschaft Auf Aktien | Process for the production of light-colored alkyl and/or alkenyl oligoglycosides |
WO1998049175A1 (de) * | 1997-04-28 | 1998-11-05 | Cognis Deutschland Gmbh | Verfahren zur herstellung von kohlenhydratpartialestern |
US6706877B1 (en) | 1997-04-28 | 2004-03-16 | Cognis Deutschland Gmbh & Co. Kg | Method for producing carbohydrate partial esters |
Also Published As
Publication number | Publication date |
---|---|
DE4040655A1 (de) | 1992-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE68927205T2 (de) | Herstellung von Polyolpolyestern mit vermindertem Farbgehalt | |
DE2546716C3 (de) | Verfahren zur Herstellung eines oberflächenaktiven Produktes | |
EP0633244B1 (de) | Verfahren zur kontinuierlichen Herstellung von Polyhydroxyfettsäureamiden aus N-Alkylpolyhydroxyaminen und Fettsäurealkylestern | |
DE2051766B2 (de) | Verfahren zur Herstellung von Saccharose-Fettsäureestern | |
DE69612745T2 (de) | Verfahren zur herstellung von hydroxyalkylamiden | |
DE3881503T2 (de) | Verfahren zur herstellung von polyol-fettsaeure-estern. | |
DE2905295C2 (de) | ||
DE3889722T2 (de) | Verfahren zur Herstellung von Polyol-Fettsäure-Estern. | |
DE3889084T2 (de) | Verfahren zur Herstellung von Polyol-Fettsäureester. | |
DE2905252C2 (de) | ||
EP1436306A2 (de) | Verfahren zur herstellung von tensidgemischen | |
DE68927618T2 (de) | Verfahren zur Herstellung von Polyol-Fettsäure-Polyestern | |
EP0885898B1 (de) | Verfahren zur Herstellung von Saccharosefettsäureestern | |
DE69226445T2 (de) | Verfahren zur Herstellungvon Polyol-Fettsaurepolyestern | |
WO1992011270A1 (de) | Verfahren zur herstellung von alkoxylierten alkyl- und/oder alkenylglykosidpartialestern | |
EP0249013B1 (de) | Verfahren zur Herstellung von Alkyloligoglycosiden | |
DE69805061T2 (de) | Verfahren zur herstellung von alkylpolyglykosiden | |
EP0889023B1 (de) | Verfahren zur Herstellung von Mischungen aus Sorbitmonoestern, Sorbitdiestern und Partialglyceriden | |
EP0728176B1 (de) | Verfahren zur herstellung von fettsäureniedrigalkylestern | |
EP0108999B1 (de) | Verfahren zur Herstellung von Carbonsäureestern von Hexiten | |
DE69226450T2 (de) | Verfahren zur verbesserung der oxidative stabilität von polyol-fettsäure-polyester | |
DE19717968A1 (de) | Verfahren zur Herstellung von Kohlenhydratpartialestern | |
DE4040656A1 (de) | Verfahren zur herstellung von alkyl- und/oder alkenylglycosidestern mit verbesserter farbqualitaet | |
DE102004054432A1 (de) | Verfahren zur Herstellung von Kohlenhydratpartialestern | |
AT263975B (de) | Vefahren zur Herstellung von oberflächenaktiven Stoffen aus organischen Hydroxylverbindungen, Fettsäureestern und Alkylenoxyden |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): BR CA JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: CA |