WO1991019764A1 - Thermoplastic elastomer composition - Google Patents

Thermoplastic elastomer composition Download PDF

Info

Publication number
WO1991019764A1
WO1991019764A1 PCT/JP1991/000779 JP9100779W WO9119764A1 WO 1991019764 A1 WO1991019764 A1 WO 1991019764A1 JP 9100779 W JP9100779 W JP 9100779W WO 9119764 A1 WO9119764 A1 WO 9119764A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
thermoplastic elastomer
ethylene
copolymer rubber
Prior art date
Application number
PCT/JP1991/000779
Other languages
English (en)
French (fr)
Inventor
Terutaka Tanaka
Original Assignee
Monsanto Japan Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP15378590A external-priority patent/JP2837742B2/ja
Priority claimed from JP15378490A external-priority patent/JP2837741B2/ja
Application filed by Monsanto Japan Limited filed Critical Monsanto Japan Limited
Priority to US07/828,941 priority Critical patent/US5349005A/en
Priority to EP91910633A priority patent/EP0486700B1/en
Priority to DE69118662T priority patent/DE69118662T2/de
Publication of WO1991019764A1 publication Critical patent/WO1991019764A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/04Thermoplastic elastomer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof

Definitions

  • the present invention relates to a thermoplastic elastomer composition, and more particularly, is suitably used for automobile parts, industrial machine parts, and the like that require high performance, and has injection moldability, mechanical properties and low anisotropy thereof.
  • the present invention relates to a thermoplastic elastomer composition having improved shape recovery under high temperature (for example, compression set) and oil resistance with good balance.
  • the olefin thermoplastic elastomer composition comprising an olefin rubber and a crystalline olefin resin is excellent in flexibility, heat aging resistance, weather resistance and the like.
  • Type alkylphenol ⁇ A method using formaldehyde resin (hereinafter abbreviated as “funinol vulcanizing agent”) is known.
  • a vulcanizing agent is used by selectively reacting only double bonds in an ethylene-olefin-non-conjugated gen copolymer rubber by using a phenolic vulcanizing agent as a vulcanizing agent. It is to improve the degree. According to this method, it is possible to perform advanced vulcanization that cannot be achieved with a vulcanization system using an organic peroxide, and the resulting composition has oil resistance and shape recovery at high temperatures. It will be significantly improved.
  • the olefin-based thermoplastic elastomer composition can be used for chloroprene rubber, chloronosulfonated polyethylene rubber, and ethylene-propylene-generic rubber, which have been conventionally used in fields requiring functionality. It can be used in fields requiring high performance, such as automotive parts and industrial machine parts, mainly for the replacement of synthetic rubber such as polymer rubber and acrylonitrile-butadiene copolymer rubber. It was.
  • the olefin-based thermoplastic elastomer composition using a phenol-based vulcanizing agent has poor injection moldability due to insufficient flowability. There is a drawback of causing.
  • an injection molded article obtained from the above-mentioned thermoplastic elastomer composition has strong mechanical property anisotropy, and therefore, depending on the shape of the molded article, such as tensile strength and elongation at break. In some cases, the characteristics are remarkably inferior, resulting in practical problems.
  • An object of the present invention is to solve the above-mentioned problems and to provide a olefin-based thermoplastic elastomer composition having excellent physical properties.
  • the present invention provides, as a first aspect thereof,
  • An object of the present invention is to provide an olefin-based thermoplastic elastomer composition obtained by highly vulcanizing an ethylene-a ⁇ olefin-non-conjugated gen copolymer rubber by highly vulcanizing.
  • the present invention provides a thermoplastic elastomer composition comprising 100 parts by weight of a first component and 2 to 30 parts by weight of a second component as defined below. It is provided by Monozu.
  • composition comprising 3 to 300 parts by weight of a mineral oil-based softener is used, and 0.5 to 15 parts by weight of a reactive alkylphenol / formaldehyde resin is used as a vulcanizing agent.
  • thermoplastic elastomer composition according to the first aspect of the present invention (hereinafter abbreviated as composition ( ⁇ )) comprises ethylene ⁇
  • ⁇ olefin-unconjugated gen copolymer rubber (component (a)), crystalline ethylene-propylene block copolymer resin (component (b)), mineral oil softener (component (c)) and low It can be obtained by subjecting a composition composed of a propylene homopolymer resin (component (d)) having a molecular weight of propylene to dynamic vulcanization using a reactive alkylphenol-formaldehyde resin as a vulcanizing agent.
  • thermoplastic elastomer composition according to the second aspect of the present invention is a composition comprising the above components (a), (b) and (c). Is subjected to dynamic vulcanization using reactive alkyl phenol / formaldehyde resin as a vulcanizing agent to obtain highly vulcanized ethylene-one * olefin-non-conjugated A olefinic thermoplastic elastomer having a polymer rubber is prepared, and then this elastomer is mixed with a low molecular weight propylene homopolymer resin (component (d)). ⁇ I will be interrogated.
  • the * olefin in the ethylene- ⁇ '-olefin-nonconjugated gen copolymer rubber of the component (a) one having 3 to 15 carbon atoms is suitable.
  • the non-conjugated diene include dicyclopentadiene, 1,4-hexadiene, ethylidenenorbornene, methylidennorbornene, and the like.
  • propylene is suitable as the olefin and ethylidene nornorbornene is suitable as the non-conjugated gen. Therefore, as the copolymer rubber, ethylene-propylene-ethylidene norbornene copolymer ⁇ : rubber is preferable.
  • the weight ratio of ethylene to ⁇ * olefin in the copolymer rubber is in the range of 50 950 to 90 ⁇ 10, preferably in the range of 60/40 to 80 ⁇ 20. is there. Further, it is desirable that the amount of non-conjugated gen in the copolymer rubber is in the range of 5 to 30, particularly 10 to 20, in terms of iodine value.
  • the copolymer rubber needs to have a high molecular weight in order to obtain good mechanical properties.
  • a polymer rubber obtained by blending 10 parts by weight of a copolymer rubber with 75 parts by weight of a mineral oil-based softening agent has a Mooney viscosity [MLl + 4 (125 ° C)] of 40 or more. It must be a copolymer rubber.
  • methylolephate monolate (MFR) JISK 7210, 23 ° C, load 2.16 kg
  • MFR methylolephate monolate
  • the compatibility with the high molecular weight copolymer rubber of the component (a) is greatly improved, and the fluidity is significantly different. In any case, the mixing of the two polymers is achieved.
  • the MFR of the crystalline ethylene-propylene block copolymer resin is lower than 1 °, sufficient fluidity as the object of the present invention cannot be obtained. Conversely, if it is higher than 50, the mechanical properties are significantly reduced.
  • the crystalline ethylene-propylene block copolymer resin is used in an amount of 10 to 500 weight parts per 1 part by weight of the ethylene- ⁇ * olefin-non-conjugated diene copolymer rubber. Parts, preferably in the range of 20 to 400 parts by weight.
  • the use ratio is less than 10 parts by weight, the obtained thermoplastic elastomer composition has poor fluidity, and a good molded product cannot be obtained. If the amount is more than 500 parts by weight, the obtained thermoplastic elastomer has too high a hardness and lacks the characteristic flexibility.
  • a mineral oil-based softening agent (component (c)) is used in order to impart flexibility to the first-component thermoplastic elastomer and improve fluidity. From the viewpoint of heat resistance and weather resistance, Barraf One one
  • Binic mineral oils are preferred.
  • the mineral oil-based softener is used in an amount of 3 to 3 parts by weight based on 1 part by weight of ethylene- ⁇ * olefin-non-co-reactive gen copolymer rubber. If the use ratio is more than 3 ⁇ ⁇ parts by weight, the mechanical properties of the obtained composition are deteriorated and mineral oil oozes out, which is not practically preferable. Further, when the use ratio is less than 3 parts by weight, a sufficient fluidity improving effect is not recognized.
  • the mineral oil-based vulcanizing agent may be contained in the copolymer rubber in advance, or may be added at the time of dynamic vulcanization or before or after dynamic vulcanization.
  • the funinol vulcanizing agent used in the present invention which may be combined is a substance represented by the following general formula.
  • is an integer of 0 to 10
  • X is a hydroxyl group or a halogen atom
  • R is a saturated hydrocarbon group having 1 to 15 carbon atoms.
  • the above substances are commonly used as vulcanizing agents for rubber, as described in, for example, the specifications of U.S. Pat. Nos. 3,287,440 and 3,790,440. Used in Soshi
  • the vulcanizing agent is obtained by condensation polymerization of a substituted phenol and an aldehyde in an alkaline medium.
  • the amount of the vulcanizing agent to be used is in the range of 0.5 to 15 parts by weight based on 100 parts by weight of the ethylene monoolefin-non-co-reactive gen copolymer rubber.
  • the amount of the vulcanizing agent used is less than 5 parts by weight, the degree of vulcanization in dynamic vulcanization is low, and the resulting thermoplastic elastomer does not have sufficient oil resistance, shape recovery at high temperatures, and the like.
  • the amount is more than 15 parts by weight, the flexibility of the obtained thermoplastic elastomer is impaired.
  • the preferred amount of the vulcanizing agent used is in the range of 1 to 1 parts by weight, more preferably 3 to 8 parts by weight, per 10 parts by weight of the copolymer rubber.
  • the vulcanizing agent can be used alone, but can also be used in combination with a vulcanization accelerator to adjust the vulcanization rate.
  • a vulcanization accelerator metal halides such as stannous chloride and ferric chloride, and organic halides such as chlorinated polypropylene, butyl bromide rubber, and cross-linked plain rubber can be used. You. When a vulcanization accelerator is used in combination, it is more preferable to use a metal oxide such as zinc oxide.
  • the dynamic vulcanization means that the respective components are mixed and vulcanized to form a kneaded Rikikura ethylene * refin-nonconjugated gen copolymer rubber.
  • a crystalline ethylene-propylene block copolymer resin is mixed with an ethylene- ⁇ -olefin-non-conjugated gen copolymer rubber and, if necessary, a mineral oil-based softening agent.
  • the mixture is mixed at a temperature higher than the melting temperature of the crystalline ethylene-propylene block copolymer resin (usually at 160 to 250).
  • an alkylphenol-based vulcanizing agent is added while kneading is continued, and kneading is further continued to perform dynamic vulcanization.
  • a batch-type kneading apparatus such as a Banbury mixer, a heating nozzle or various kneaders, or a continuous kneading apparatus such as a single-screw extruder or a twin-screw extruder is used.
  • a continuous kneading apparatus such as a single-screw extruder or a twin-screw extruder is used.
  • the above-mentioned dynamic vulcanization highly vulcanizes the ethylene-olefin-non-conjugated gen copolymer rubber.
  • the term “highly vulcanized” means that the uncured rubber is extracted from the ethylene- ⁇ - olefin-non-conjugated gen copolymer rubber contained in the obtained thermoplastic elastomer composition by hot xylene. It means that the amount of ethylene sulfate-olefin-non-conjugated gen copolymer rubber is less than 5% by weight.
  • the degree of vulcanization is determined based on the vulcanized ratio of the ethylene thermoplastic resin of the olefin-based thermoplastic elastomer * the olefin-non-conjugated gen copolymer rubber. Therefore, the components extracted by this hot xylene are based on ethylene-one-olefin-non-conjugated gen copolymer rubber. It is not necessary to consider components such as additives other than the ethylene- ⁇ '-olefin-non-conjugated diene copolymer rubber.
  • a crystalline ethylene-propylene block copolymer resin and a mineral oil-based softener can be further added within the scope of the present invention.
  • fillers, antioxidants, copper damage, etc. such as inhibitors, coloring agents, UV inhibitors, and lubricants may be added.
  • the number average molecular weight is 200
  • composition (A) a component to be subjected to dynamic vulcanization together with the components (a) to (c) in the case of the low molecular weight propylene homopolymerized resin (component (d)) in the range of 2000
  • component (d) the components (a) to (c) are subjected to dynamic vulcanization.
  • the second components to be mixed are used as the second components to be mixed, respectively.
  • the use of the low-molecular-weight propylene homopolymer can further improve the fluidity during molding and achieve the effect of eliminating the anisotropy of the mechanical properties of the molded article.
  • the obtained thermoplastic elastomer may be used.
  • the bleeding phenomenon occurs in the mar composition, which is not preferable.
  • the number average molecular weight is larger than 2000 °, the effect of eliminating anisotropy is not sufficient.
  • the low molecular weight propylene homopolymer resin is used in an amount of 5 to 10 parts by weight based on 100 parts by weight of the ethylene- ⁇ -olefin-non-conjugated diene copolymer rubber. 0 parts by weight, preferably in the range of 10 to 50 parts by weight. If the use ratio is less than 5 parts by weight, the use of a low molecular weight propylene homopolymer resin will not exert an anisotropy eliminating effect. If the use ratio is more than 100 parts by weight, mechanical properties are significantly reduced.
  • the ratio of the low-molecular-weight propylene homopolymer resin to the crystalline ethylene-propylene block copolymer resin must be ⁇ 1.8 or less. If this ratio is greater than ⁇ 0.8, the difference in viscosity during dynamic vulcanization between the copolymer rubber and the low molecular weight propylene homopolymer resin-crystalline ethylene-propylene block copolymer resin mixture It becomes too large, causing poor dispersion of the copolymer rubber. As a result, a good thermoplastic elastomer composition cannot be obtained.
  • the low molecular weight propylene homopolymer resin is used in an amount of 2 to 30 parts by weight with respect to 1 ⁇ ⁇ part by weight of the first component of the olefinic thermoplastic elastomer. Use within the range. If the usage ratio is less than 2 parts by weight, The use of a low-molecular-weight propylene homopolymer resin does not exhibit the effect of improving fluidity and the effect of eliminating anisotropy. If the use ratio is more than 30 parts by weight, the mechanical properties will be significantly reduced.
  • the mixture of a olefin-based thermoplastic elastomer and a low-molecular-weight propylene homopolymer resin has significantly different viscosities, so high-shear types such as Banbury mixers, various 21- or twin-screw extruders are used.
  • the kneading apparatus is preferably used.c The kneading apparatus is kneaded at a temperature of 160 ° C. to 240 ° C. by using such a kneading apparatus to obtain a desired high-flowability thermoplastic elastomer composition. You can get things.
  • injection-molded flat plates for evaluation of appearance and physical properties were measured by the following methods.
  • Finorem gate type width 15 ram, thickness 5 ram
  • the conditions were 100 ° C x 22 hours and 25% compression in accordance with JIS K6301.
  • Menole Tofu mouth rate Based on JISK72010, the crystalline ethylene-propylene block copolymer resin was measured at 230 ° C and 2.16 kg.
  • the olefin-based thermoplastic elastomer composition was measured at 230 ° C and 5 kg.
  • the olefin-based thermoplastic elastomer composition is converted to a finale of less than 1 ram.
  • olefin-based thermoplastic elastomer composition Approximately 1.5 g of the olefin-based thermoplastic elastomer composition is precisely weighed (this weight is referred to as ⁇ ), placed in 100 mi of boiling xylene, and stirred for 30 minutes. The solution is cooled to room temperature and filtered using a 0.3 Teflon membrane filter.
  • crystalline propylene emissions based polymer W, and each weight corresponding to w 2 w 3, w 4) .
  • the weight percentage of the ethylene-a * olefin-non-conjugated copolymer rubber in the composition of the olefin-based thermoplastic elastomer is W D
  • the weight percentage of the crystalline propylene polymer is W p . I do.
  • oil-extended ethylene- ⁇ ⁇ olefin-non-conjugated gen copolymer rubber (ethylene- * olefin-non-conjugated gen- omer containing paraffinic mineral oil beforehand)
  • the base using polymer rubber is oil-extended ethylene- ⁇ '-olefin-paraffinic mineral oil in non-conjugated gen copolymer rubber is excluded and ethylene- ⁇ '-olefin the weight percentage of non-conjugated Jefferies down copolymer rubber only and w E.
  • the following samples were used.
  • Ethylene-1 * olefin-1 non-conjugated gen-copolymer rubber (hereinafter referred to as EPDM) is a * olefin with propylene as the non-conjugated gen and ethylidene nornorbornene as the non-conjugated gen.
  • the used copolymer rubber was used.
  • the iodine value is
  • the phenolic vulcanizing agent used was dimethylol-p-octylofene-l-formaldehyde resin.
  • thermoplastic elastomer composition (A)
  • Table A1-2 shows the physical properties of the obtained oil-based thermoplastic elastomer composition.
  • Table A1-2 shows the physical properties of the obtained oil-based thermoplastic elastomer composition.
  • thermoplastic thermoplastic elastomer composition has good fluidity.
  • Comparative Example A5 the appearance of the injection-molded product was almost good, and although the mechanical properties, shape recovery (compression set) and oil resistance were excellent, the mechanical properties were highly anisotropic and the fluidity was high. Inferior. In Comparative Example A6, the appearance of the injection-molded product was good, and although the shape recovery property (compression set) and the oil resistance were excellent, the mechanical properties were extremely poor.
  • Table A3-2 shows the physical properties of each composition obtained.
  • Comparative Example A8 the appearance of the injection-molded product was good, but the hardness was high and the flexibility was poor.
  • Comparative Examples A10 and A11 have excellent shape recovery (compression set) and oil resistance, but have poor elongation at break and poor fluidity, and the surface of the injection molded product is rough and has no practical value. It is a thing.
  • E PDM 100 100 100 100 100 100 100 100 100 100 blocks P P 1 40 40 150 250 450 40 blocks P P -2 40
  • Block PP— 4 40 Low molecular PP- 1 3 80 15 15 15 Low molecular P P- 3 15 15 Low fraction- PP-4 15
  • thermoplastic thermoplastic elastomer obtained by the following method was used.
  • the vulcanizing agent was added, kneading was continued for another 3 minutes, and then 75 parts by weight of a paraffin softener was added. Kneading was continued for 1 minute to obtain an ore-based thermoplastic elastomer.
  • Table B 1 shows the physical properties of the obtained olefin thermoplastic elastomer.
  • the mixture was kneaded at 170 ° to 19 ° C. at a screw rotation speed of 2 ° 0 rpm to obtain an olefin-based thermoplastic elastomer composition.
  • Table B2 shows the physical properties of the obtained oil-based thermoplastic elastomer composition.
  • thermoplastic elastomer composition has good fluidity.
  • Example B 1 Example B2 Example B3 Example B4 Formulation & M
  • Elastomer 1 100 100 100 100 Elastomer 2 100
  • thermoplastic elastomer composition according to the present invention has the following characteristics, and is extremely valuable in industrial use.
  • Molding can be performed by the usual thermoplastic resin molding method, and a molded article with good appearance can be easily obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Description

一 一
明 細 書 熱可塑性エラ ス 卜マ ー組成物 技 術 分 野
本発明は熱可塑性エラス トマ一組成物に関するもので あり、 詳しく は、 高機能の要求される自動車部品、 工業 機械部品などに好適に使用され、 射出成形性、 機械物性 およびその低異方性、 高温下の形状回復性 (例えば、 圧 縮永久歪) 並びに耐油性をバラ ンス良く 改良した熱可塑 性エラス トマ一組成物に関する。
背 景 技 術
ォ レフィ ン系ゴムと結晶性ォ レフィ ン系樹脂からなる ォレフィ ン系熱可塑性エラ ス トマ ー組成物は、 柔軟性、 耐熱老化性および耐候性等の点で優れている。
しかし、 従来のォレフィ ン系熱可塑性エラ ス トマ一組 成物は、 有機過酸化物を用いて部分加硫したものが大部 分であり、 耐油性および高温下の形状回復性 (例えば、 圧縮永久歪) 等が不十分であるため、 高機能材料と して の使用は困難である。 更に、 有機過酸化物による加硫は、 ォレフィ ン系ゴムの加硫と同時に結晶性ォレフィ ン系榭 脂の架橋や分子切断を惹起し、 高度の加硫が難し く 、 ま た、 得られる組成物の機械的物性も劣るという欠点を有 している。 斯かる欠点を改良する方法として、 特公昭 5 8— 4 6 1 3 8号や特開昭 5 9— 9 1 1 4 2号公報に示されてい るように、 加硫剤と して、 反応型アルキルフ エ ノール ♦ ホルムアルデヒ ド樹脂 (以下、 「フニノール系加硫剤」 と略記する) を用いる方法が知られている。
すなわち、 上記方法は、 加硫剤としてフ ノール系加 硫剤を使用する ことにより、 エチレン一 ' ォレフィ ン —非共役ジェン共重合体ゴム中の二重結合のみを選択的 に反応させて加硫度を向上させるという ものである。 そ して、 この方法によれば、 有機過酸化物を用いた加硫系 では達成し得ない高度な加硫が可能となり、 得られる組 成物は、 耐油性や高温下の形状回復性が著しく 向上した ものとなる。
このようなことにより、 ォレフィ ン系熱可塑性エラス トマ一組成物は、 従来、 機能性を要求される分野に用い られていたク ロロプレンゴム、 ク ロノレスルホン化ポリ エ チレンゴム、' エチレン一プロ ピレン一ジェン共重合体ゴ ム、 ァク リ ロニ ト リル一ブタジエン共重合体ゴム等の合 成ゴムの代替を中心として、 自動車部品および工業機械 部品等の高機能が要求される分野に用いることが可能と なったのである。
しかるに、 フエノール系加硫剤を用いたォレフィ ン系 熱可塑性エラス トマ一組成物は、 流動性が不十分なため、 射出成形性が劣り、 特に、 薄肉成形品は充填不良現象を 惹起するという欠点がある。
また、 上記ォレフィ ン系熱可塑性エラス 卜マー組成物 から得られる射出成形品は、 機械物性の異方性が強く 、 それがために、 成形品の形状によつては引張強度や破断 伸び等の特性が著しく劣る部分ができて実用上問題とな 場合もある。
発 明 の 開 示
本発明は、 上記諸問題を解消し、 優れた物性を有する ォ レフィ ン系熱可塑性エラス トマ ー組成物の提供を目的 とする ものである。
すなわち、 本発明は、 その第一の態様と して、
( a ) エチレン一 な · ォレフイ ン一非共役ジェン共重 合体ゴムより成り、 その 1 0 0重量部に鉱物油系軟化剤 を 7 5重量部配合したもののム一ニー粘度 〔M L l + 4 ( 1 2 5 °C ) 〕 が 4 ◦以上の高分子量共重合体ゴム :
1 0 0重量部
( b ) メ ノレ 卜フロー レイ 卜力く 1 0〜 5 0の範囲である 結晶性ェチレン一プロ ピレンブロ ッ ク共重合樹脂 :
1 0〜 5 ◦ 0重量部
( c ) 鉱物油系軟化剤 : 3〜 3 0 0重量部
( d ) 数平均分子量が 2 0 0 0 ~ 2 0 0 0 0の範囲で ある低分子量プロ ピレ ン単独重合樹脂 :
5 - 1 0 0重量部 からなり、 結晶性エチレ ン一プロ ピレンプロ ッ ク共重合 樹脂に対する低分子量プロ ピレン単独重合樹脂の重量比 が 0. 8以下である組成物を、 0. 5 ~ 1 5重量部の反 応型アルキルフユノール ♦ ホルムアルデヒ ド樹脂を加硫 剤として使用し、 動的に加硫することにより、 エチレン - a ♦ ォレフィ ン一非共役ジェン共重合体ゴムを高度に 加硫させてなるォレフィ ン系熱可塑性エラス 卜マー組成 物を提供するものである。
更に、 本発明は第二の態様と して、 以下に定義される 第一成分 1 0 0重量部と第二成分 2〜 3 0重量部を含有 することを特徴とする熱可塑性エラス トマ一組成物杏提 供するものである。
第一成分 :
( a ) エチレン一 * ォレフィ ンー非共役ジェン共重 合体ゴムより成り、 その 1 0 ◦重量部に鉱物油系軟化剤 を 7 5重量部配合したもののムーニー粘度 〔M L l + 4
( 1 2 5。C) 〕 が 4 0以上の高分子量共重合体ゴム
1 0 0重量部
( b ) メ ル トフロー レイ トカ 1 0〜 5 0の範囲である 結晶性ェチレン—プロ ピレンブロ ッ ク共重合樹脂
1 〇〜 5 0 0重量部
( c ) 鉱物油系軟化剤 3〜 3 0 0重量部 からなる組成物を、 0. 5〜 1 5重量部の反応型アルキ ルフエノール · ホルムアルデヒ ド樹脂を加硫剤と して使 用し、 動的に加硫することにより、 エチレン一 · ォレ フィ ン -非共役ジェン共重合体ゴムを高度に加硫させて なるォレフィ ン系熱可塑性エラス トマ一
第二成分 :
( d ) 数平均分子量が 2 ◦ 0 0〜 2 0 0 0 0の範囲で ある低分子量プロ ピレン単独重合樹脂
発明を実施するための最良の形態 本発明の第一の態様による熱可塑性エラス トマ一組成 物 (以下、 組成物 (Α) と略記する) は、 エチ レ ン一 α
♦ ォ レフィ ンー非共役ジェ ン共重合体ゴム (成分 ( a ) ) 、 結晶性エチレン—プロ ピレンブロッ ク共重合樹脂 (成 分 ( b ) ) 、 鉱物油系軟化剤 (成分 ( c ) ) 及び低分子 量プロ ピレン単独重合樹脂 (成分 ( d ) ) からなる組成 物を、 反応型アルキルフエノ ール · ホルムアルデヒ ド樹 脂を加硫剤と して使用し、 動的加硫に付すことにより得 られる。
一方、 本発明の第二の態様による熱可塑性エラス トマ 一組成物 (以下、 組成物 ( B ) と略記する) は、 先ず上 記成分 ( a ) , ( b ) および ( c ) から成る組成物を、 反応型アルキルフ ノ ール · ホルムアルデヒ ド榭脂を加 硫剤と して使用して動的加硫に付すことにより、 高度に 加硫したエチ レ ン一 * ォレフィ ン—非共役ジェ ン共重 合体ゴムを有してなるォ レフィ ン系熱可塑性エラス トマ —を調製し、 次にこのエラス トマ一と低分子量プロピレ ン単独重合樹脂 (成分 ( d ) ) とを混合する こ とにより ί尋られる。
成分 ( a ) のエチ レ ン— α ' ォ レフィ ン—非共役ジェ ン共重合体ゴムにおける * ォレフィ ンは、 炭素数 3〜 1 5のものが適する。 非共役ジェンと しては、 ジシク ロ ペンタジェン、 1 , 4 一へキサジェン、 ェチリ デンノル ボルネ ン、 メ チリ デンノルボルネン等が挙げられる。 本 発明においては、 入手の容易さ及び加硫速度の観点から、 · ォレフィ ンと してはプロ ピレンが、 また非共役ジェ ンと してはェチリ デンノルボルネンが適する。 従って、 共重合体ゴムと してはエチレン—プロ ピレン—ェチリ デ ンノルボルネ ン共重合^:ゴムが好適である。
共重合体ゴム中のエチ レ ン Ζ α * ォレフィ ンの重量比 は、 5 0 Ζ 5 0〜 9 0 Ζ 1 0の範囲、 好適には 6 0 / 4 0〜 8 0 Ζ 2 0の範囲である。 また、 共重合体ゴム中 の非共役ジェン量は、 ヨウ素価にして、 5〜 3 0、 特に、 1 0〜 2 0の範囲とするのが望ま しい。
また、 前記の共重合体ゴムは、 良好な機械物性を得る ために、 高分子量である ことが必要である。 具体的には、 共重合体ゴム 1 0 ◦重量部に鉱物油系軟化剤を 7 5重量 部配合したもののムーニー粘度 〔M L l + 4 ( 1 2 5 °C ) 〕 が 4 0以上の高分子量共重合体ゴムである こ とが必要 である。
成分 ( b ) の結晶性エチ レ ン—プロ ピレンブロ ッ ク共 重合樹脂と しては、 メ ノレ ト フ 口一 レイ ト (M F R) ( J I S K 7 2 1 0 , 2 3 ◦ °C, 荷重 2 . 1 6 kg ) が 1 〇 ~ 5 0の範囲である高流動のものを用いる必要があ る。 このような特定の結晶性エチレン一プロ ピレンプロ ッ ク共重合樹脂を用いることにより、 成分 ( a ) の高分 子量共重合体ゴムとの相溶性が大いに向上するため、 流 動性が著しく異なつても二種のポリマ一の混和が達成さ れる。
そして、 結晶性エチレン一プロ ピレンブロ ッ ク共重合 樹脂の M F Rが 1 ◦より も低い場合は、 本発明の目的で ある十分な流動性が得られない。 逆に、 5 0より も高い 場合は、 機械物性の低下が著しい。
本発明においては、 結晶性エチレン一プロピレンプロ ッ ク共重合榭脂をエチレン— α * ォ レフィ ンー非共役ジ ェン共重合体ゴム 1 ◦ ◦重量部に対し、 1 0〜 5 0 0重 量部、 好ま しく は 2 0〜4 0 0重量部の範囲で使用する。 使用割合が 1 0重量部より少ない場合は、 得られる熱可 塑性エラス 卜マー組成物の流動性が劣り、 良好な成形品 が得られない。 5 0 0重量部より多い場合は、 得られる 熱可塑性エラス トマ一の硬度が高すぎ、 その特徴である 柔軟性に欠ける。
本発明では、 第一成分のォレフィ ン系熱可塑性エラス トマ一に柔軟性を付与し、 流動性を向上するために、 鉱 物油系軟化剤 (成分 ( c ) ) 使用するが、 該鉱物油系軟 化剤と しては、 耐熱性および耐候性の観点から、 バラフ 一 一
ィ ン系鉱物油が好ま しい。
鉱物油系軟化剤は、 エチレン— α * ォレフィ ン一非共 役ジェン共重合体ゴム 1 ◦ 0重量部に対し、 3〜 3 〇 〇 重量部の範囲で使用する。 使用割合が 3 ◦ ◦重量部より 多い場合は、 得られる組成物の機械物性の低下や鉱物油 の滲み出しが起り実用上好ま しく ない。 また、 使用割合 が 3重量部未満の場合は、 十分な流動性向上効果が認め られない。
鉱物油系软化剤は、 予め共重合体ゴム中に含有させて おいてもよいし、 動的加硫時あるいは動的加硫前後に添 加してもよく 、 また、 それらの処法を組合わせてもよい, 本発明に使用するフニノール系加硫剤は下記一般式で 表される物質である。
Figure imgf000010_0001
こ こで、 ηは 0〜 1 0の整数、 Xは水酸基またはハロ ゲン原子であり、 Rは炭素数 1〜 1 5の飽和炭化水素基 である。
上記物質は、 例えば、 米国特許 3 2 8 7 4 4 0号およ び同 3 7 0 9 8 4 0号の各明細書に記載されているよう に、 ゴム用加硫剤と して一般的に使用されている。 そし て、 この加硫剤は、 アルカ リ媒体中において、 置換フエ ノ ールとアルデヒ ドの縮重合により得られる。
加硫剤の使用量は、 エチレン一 ' ォレフィ ンー非共 役ジェン共重合体ゴム 1 0 0重量部に対し 0 . 5 〜 1 5 重量部の範囲である。 加硫剤の使用量が◦ . 5重量部よ り少ない場合は、 動的加硫における加硫度が低く 、 得ら れる熱可塑性エラス 卜マーの耐油性、 高温における形状 回復性等が十分ではなく 、 また、 1 5重量部より多い場 合は、 得られる熱可塑性エラス トマ一の柔軟性が損われ る。 加硫剤の好ま しい使用量は、 共重合体ゴム 1 0 〇重 量部に対し 1 〜 1 ◦重量部、 より好ま しく は 3 〜 8重量 部の範囲である。
加硫剤は単独でも使用できるが、 加硫速度を調節する ために、 加硫促進剤と併用すること もできる。 加硫促進 剤と しては、 塩化第一スズ、 塩化第二鉄等の金属ハロゲ ン化物、 塩素化ポ リ プロ ピレン、 臭化ブチルゴム、 ク ロ 口プレンゴム等の有機ハロゲン化物を用いることができ る。 加硫促進剤を併用する場合は、 酸化亜鉛のような金 属酸化物を一緒に用いるとより好ま しい。
本発明において、 動的加硫とは、 各成分を混合し、 混 練しな力くらエチ レン一 ひ * ォレフィ ンー非共役ジェン共 重合体ゴムを加硫する こ とを意味する。
この目的のために、 特公昭 5 5— 4 6 1 3 8号公報に 記載されている方法を用いることが望ま しい。 - -
すなわち、 結晶性エチ レ ン一プロ ピレ ンブロ ッ ク共重 合樹脂にエチ レ ン— α · ォ レフ ィ ンー非共役ジェ ン共重 合体ゴムと必要に応じて鉱物油系軟化剤を加え、 通常、 結晶性エチ レ ン—プロ ピ レ ンブロッ ク共重合樹脂が溶融 ' する温度以上の温度 (通常、 1 6 0 〜 2 5 0で) で混合 する。 その後、 混練を続けながらアルキルフヱノール系 加硫剤を加えて更に混練を続けて動的加硫を行なう。
混練装置と しては、 バンバリ一 ミ キサー、 加熱口ール 或いは各種ニーダ一のような回分式の混練装置、 または、 単軸押出機、 二軸押出機のような連铳式混練装置が 用 で る。
本発明においては、 上記の動的加硫により、 エチレン - · ォレフィ ン—非共役ジェン共重合体ゴムは高度に 加硫される。 ここで、 高度に加硫されるとは、 得られた 熱可塑性エラス ト マ一組成物に含まれるエチ レ ン一 α ♦ ォレフィ ンー非共役ジェン共重合体ゴムから熱キシレン によって抽出される未加硫ェチ レ ン一 * ォ レフ ィ ン 一 非共役ジェン共重合体ゴムの量が 5重量%未満であるこ とを意味する。
上記のように、 ォレフィ ン系熱可塑性エラス 卜マーの エチ レ ン一ひ * ォ レフ ィ ンー非共役ジェ ン共重合体ゴム の加硫された割合によつ て加硫度を判断するものであ る から、 この熱キシレンによって抽出される成分は、 ェチ レ ン一 · ォ レフィ ンー非共役ジェン共重合体ゴムにつ いてのみ注目 し、 エチレン一 α ' ォ レフィ ンー非共役ジ ェン共重合体ゴム以外の添加物等の成分については考慮 する必要はない。
なお、 熱キシレン抽出法の詳細は、 後記の実施例で説 明する。
本発明においては、 動的加硫以後に、 更に、 結晶性ェ チレン一プロ ピレンブロッ ク共重合樹脂および鉱物油系 軟化剤を本発明の範囲内で加えることができる。 また、 動的加硫の前後に、 または、 上記のよう に、 結晶性ェチ レン一プロ ピレンブロッ ク共重合樹脂などを追添加して 均一化する際に、 充填剤、 酸化防止剤、 銅害防止剤、 着 色剤、 紫外線防止剤、 滑剤等の加工助剤を加えてもよい。 本発明においては、 数平均分子量が 2 0 0 0 ~
2 0 0 0 0の範囲である低分子量プロ ピレン単独重合樹 脂 (成分 ( d ) ) 、 組成物 (A) の場合には成分 ( a ) 〜 ( c ) と共に動的加硫に付すべき成分と して、 他方、 組成物 ( Β )·の場合には成分 ( a ) 〜 ( c ) を動的加硫 に付すことに得られる第一成分と してのォレフィ ン系熱 可塑性エラス トマ一と混合すべき第二成分と して、 それ ぞれ用いられる。 いずれの場合も、 この低分子量プロ ピ レン単独重合体の使用により、 成形時のより一層の流動 性向上、 成形品機械物性の異方性解消効果が得られる。 低分子量プロ ピレン単独重合樹脂の数平均分子量が 2 0 0 0よ り小さい場合は、 得られる熱可塑性エラス 卜 - — —
マ ー組成物に滲み出し現象が起り好ま しく ない。 数平均 分子量が 2 0 0 0 ◦より大きい場合は、 異方性解消効果 が十分でない。
本発明の組成物 (A ) においては、 低分子量プロ ピレ ン単独重合樹脂をェチレン一 α * ォ レフ ィ ン—非共役ジ ェン共重合体ゴム 1 0 0重量部に対し、 5 〜 1 0 0重量 部、 好ま しく は 1 0 〜 5 0重量部の範囲で使用する。 使 用割合が 5重量部より少ない場合は、 低分子量プロ ビレ ン単独重合樹脂の使用による異方性解消効果が発揮され ない。 使用割合が 1 0 0重量部より多い場合は、 機械物 性が大幅に低下する。
また、 組成物 (Α ) の場合には、 低分子量プロ ピレ ン 単独重合樹脂 Ζ結晶性エチ レ ン一プロ ピレ ンブロ ッ ク共 重合樹脂の比が◦ . 8以下であることが必要である。 こ の比が◦ . 8より大きい場合は、 共重合ゴムと低分子量 プロピレ ン単独重合樹脂—結晶性ェチレ ン —プロ ピ レ ン プロッ ク共重合樹脂混合物の、 動的加硫時における粘度 差が大きく なりすぎ、 共重合ゴムの分散不良が起る。 こ のため良好な熱可塑性エラス トマ一組成物を得ることが できない。
—方、 本発明の組成物 (Β ) においては、 低分子量プ ロ ピレン単独重合樹脂を第一成分のォレフィ ン系熱可塑 性エラス トマ一 1 ◦ ◦重量部に対し、 2 〜 3 0重量部の 範囲で使用する。 使用割合が 2重量部より少ない場台は、 低分子量プロ ピレン単独重合樹脂の使用による流動性向 上効果および異方性解消効果が発揮されない。 使用割合 が 3 0重量部より多い場合は、 機械物性が大幅に低下す る c
ォレフィ ン系熱可塑性エラス トマ一と低分子量プロ ピ レン単独重合樹脂の混合は、 両者の粘度が著しく異なる ため、 バンバリ一ミ キサー、 各種二一ダ一あるいは二軸 押出機のような高剪断型の混練装置が好適に使用される c このような混練装置を用いて 1 6 0 °C〜 2 4 0 °Cの温度 条件下で混練することにより所望の良流動性熱可塑性ェ ラス トマ一組成物を得ることができる。
以下、 本発明を実施例に基づいて更に詳細に説明する が、 本発明は、 その要旨を越えない限り、 以下の実施例 に限定される ものではない。
以下の例における外観評価用射出成形平板作成および 物性測定は下記の方法で行なつた。
ぐ外観評価用射出成形平板作成〉
( 1 ) 形状
長さ 2 ◦ cm、 幅 1 5 cm、 厚み 2 ram
( 2 ) 金型
フ イ ノレムゲー ト式 (幅 1 5 ram、 厚み 5 ram )
( 3 ) 成形機
住友重機工業 (株) 製、 住友ネ スタールネオマ ツ
S G 1 5 0 (型締力 1 2 0 t ) 一 一
(4 ) 成形条件
シリ ンダ一温度 (後部) 1 8 〇 で
シリ ンダー温度 (中部) 1 9 0 °C
シリ ンダー温度 (前部) 2 0 0 °C
ノズル温度 2 0 0 °C
金型温度 4 〇 で
射出圧 最大射出圧の 9 0 %
射出速度 最大射出速度の 5 0 %
<物性測定 >
( 1 ) 硬度
A S TM D— 2 24 0に準拠し、 デュロメ一タ一 A タィプを使用した。
( 2 ) 引張試験
J I S K 6 3 0 1に準拠し、 射出成形板から、 流動 方向に対して平行方向および垂直方向に 3号ダンベルで 打抜いて使用した。 .
( 3 ) 圧縮永久歪
J I S K 6 3 0 1 に準拠し、 条件は 1 0 0 °C X 2 2 時間、 2 5 %圧縮とした。
(4 ) 耐油性
J I S K 6 3 0 1 に準拠し、 No.3試験油を使用し、 5 O ram X 2 5麵 X 2 mmの試験片で浸漬を行ない重量変化 を測定した。 浸漬条件は 7 0 °C X 2 2時間と した。
( 5 ) メ ノレ ト フ 口 一 レイ 卜 J I S K 7 2 1 0に準拠し、 結晶性エチ レ ン 一 プロ ピレ ンブロ ッ ク共重合樹脂は、 2 3 0 °C、 2. 1 6 kgの 条件で測定した。 ォレフィ ン系熱可塑性エラ ス 卜マー組 成物は、 2 3 0 °C、 5 kgの条件で測定した。
( 6 ) 低分子量プロ ピ レ ン単独重合体の数平均分子量は、 G P Cを用いて下記条件で測定した。 分子量はポ リ スチ レ ン換算した。
W a t e r s 1 5 0 C
カ ラ ム 東洋曹達 G MH - H T
溶媒 o —ジクロロベンゼン、 (安定剤と して
0. 2 %、 3 , 5— ジ— t ー ブチルー 4 — ヒ ドロキシー ト ルエ ン含有) 力 ラム温度 1 4 0。C
注入部 1 4 0。C
( 7 ) 熱キシレ ン抽出量は、 次の方法で測定した。
ォレフィ ン系熱可塑性エラス トマ一組成物をプレスを 用いて◦ . 1 ram以下のフ イ ノレムにする。
約 1. 5 gのォ レフィ ン系熱可塑性エラ ス トマ一組成 物を精秤し (この重量を ェ とする) 、 1 0 0 miの沸騰 キシレン中に入れて 3 0分攪拌する。 その液を室温まで 冷却し、 0. 3 のテフ ロ ン製メ ンブレ ンフ ィ ルタ ーを 用いてろ過する。
ろ液が約 5 ccになるまでろ液中のキシ レンを蒸発させ、 1 0 mlのシク 口へキサンを用いて遠心分離管に移す。 ァ 一 —
セ ト ン 1 0 mlを加え、 1 ◦ 0 ◦ 0 R P Mで 1 5分間遠心 分離を行なう。 上澄み液を除去し、 更にシクロへキサ ン Zァセ ト ン == 1 Z 1の溶媒にて洗浄する。
十分に溶媒を蒸発させた後の重量を測定する (この重 量を W。 とする) 。
上記と同様の操作を結晶性プロピレ ン系重合体につい ても行なう (W , w2 に対応する重量をそれぞれ w3 , w4 とする) 。 ォレフィ ン系熱可塑性エラス 卜マ 一組成物中のエチ レ ン一 a * ォレフィ ンー非共役ジェン 共重合体ゴムの重量百分率を WD , 結晶性プロ ピレ ン系 重合体の重量百分率を Wp とする。
熱キシレ ン抽出量 E ( % ) は、 次の式により算出され る o
W X W, X wp
w2
1 0 0 x W
Ε (%) = . X 10,000
Wl X WE
ただし、 油展エチ レ ン 一 α ♦ ォレフ ィ ン —非共役ジェ ン共重合体ゴム (予めパラ フ ィ ン系鉱物油を含有してい るエチ レ ン一 * ォ レフィ ン一非共役ジェ ン共重合体ゴ ム) を用いた場台は、 油展エチ レ ン — α ' ォレフィ ン— 非共役ジェン共重合体ゴム中のパラフィ ン系鉱物油は除 外し、 エチ レ ン一 α ' ォ レフィ ンー非共役ジェ ン共重合 体ゴムのみの重量百分率を wE とする。 以下の例では、 下記の試料を使用した。
( 1 ) エチ レ ン一 * ォ レフ イ ン一非共役ジェ ン共重 合体ゴム (以下 E P D Mと記す) は、 a * ォレフ ィ ンと してプロピレンを、 非共役ジェンと してェチリ デンノル ボルネンを用いた共重合体ゴムを使用した。 ヨウ素価は
1 5、 ムーニー粘度 CM L 1 + 4 ( 1 2 5 °C ) 〕 (共重 合体ゴム 1 0 0重量部に対しパラフ ィ ン系軟化剤を 7 5 重量部含有) は 64、 エチ レ ン含有量は 6 0 (重量%)
I?ある。
( 2 ) 結晶性エチ レ ン一プロ ピレ ンブロッ ク共重合樹 脂は次のものを使用した。 MR Fの単位は ( g / 1 0 〇 min ) である (以下、 同じ) 。
① M F R 2 0 「ブロ ッ ク P P — 1」
② M F R 4 0 「ブロ ック P P — 2」
③ M F R 5 「ブロ ッ ク P P — 3」
④ M F R 6 0 「ブロ ッ ク P P — 4」
( 3 ) 結晶性プロ ピレ ン単独重合樹脂は、 次のものを 使用した。
① M F R 2 0 「ホモ P P — 1」
② M F R 4 0 「ホモ P P — 2」
(4 ) 低分子量プロピレン単独重合樹脂は、 次のもの を使用した。
① 分子量 2 0 0 0 「低分子量 P P — 1 J
② 分子量 1 5 0 0 0 「低分子量 P P — 2 J -
③ 分子量 5 0 0 「低分子量 P P— 3」
④ 分子量 5 0 0 0 0 「低分子量 P P— 4」
C 5) 鉱物油系軟化剤は、 動粘度 1 0 0 ( c S t、 @ 4 0 °C) のパラフィ ン系軟化剤を使用した。
( 6 ) フヱノール系加硫剤は、 ジメ チロール一 p —ォ クチルーフエノ一ルーホルムアルデヒ ド樹脂を使用 した。
( 7) 加硫促進剤は、 塩化第一スズ ( S n C 1 2 ·
6 H2 0) 及び酸化亜鉛を使用した。
A : 熱可塑性エラス トマ一組成物 (A) の調製並びに評 価
実施例 A 1
4 0重量部のブロ ック P P— 1、 1 5重量部の低分子 量 P P— 1、 1 0 0重量部の E P D M、 2重量部の塩化 第一スズ、 2重量部の酸化亜鉛および 7 5重量部のパラ フィ ン系軟化剤からなる混合物を、 1 2 0 °Cに温調した 内容積 3£ のバンバリ 一 ミ キサーにて、 ローター回転数 1 5 0 R P Mで混練した。
混練物の温度が自己発熱により 1 7 ◦ °Cになった時点 で加硫剤を投入し、 更に、 3分間混練を続け、 その後に、
7 5重量部のパラフィ ン系软化剤を加えて 1分間混隸を 続け、 ォレフィ ン系熱可塑性エラス トマ一組成物を得た。
得られたォレフィ ン系熱可塑性エラス 卜マー組成物の 物性を表 A 1 - 2に示す。
表 A 1 — 2の結果から、 射出成形品の外観は良好であ - -
り、 機械物性、 形状回復性 (圧縮永久歪) 、 耐油性が優 れ、 機械物性の異方性が少ないことがわかる。 また、 メ ル トフロー レイ ト (M F R ) 力、ら、 得られたォ レフィ ン 系熱可塑性エラス トマ一組成物の流動性が良好であるこ とがわかる。
実施例 A 2〜 A 7
表 A 1 — 1 に示した配合量により、 実施例 A 1の方法 と同様の方法でォレフィ ン系熱可塑性エラ ス トマ一組成 物を得た。
得られたォレフィ ン系熱可塑性エラス トマ一組成物の 物性を表 A 1 - 2に示す。
表 A 1 — 2の結果から、 射出成形品の外観は良好であ り、 機械物性、 形状回復性 (圧縮永久歪) 、 耐油性が優 れ、 機械物性の異方性が少ないことがわかる。 また、 M F Rから、 得られたォレフィ ン系熱可塑性エラス 卜マ一 組成物の流動性が良好であることがわかる。
比較例 A 1 〜 A 7
表 A 2— 1 に示した配合量により、 実施例 A 1 と同様 の方法でォレフィ ン系熱可塑性エラス 卜マー組成物を得 た。
但し、 比較例 A 2においては、 自己発熱が少ないため、 混練物の温度が 1 6 0 °Cになつた時点で加硫剤を投入し た。
得られた各組成物の物性を表 A 2— 2に示す。 比較例 A 1では、 射出成形品の外観は良好であり、 機 械物性、 形状回復性 (圧縮永久歪) 、 耐油性が優れてい るものの、 機械物性の異方性が大き く 、 流動性も劣る。 比較例 A 2では、 E P D Mの分散不良が著しくォレフ ィ ン系熱可塑性エラス 卜マー組成物が得られなかった。 比較例 A 3では、 射出成形品の表面に滲み出しが起り、 得られたォレフィ ン系熱可塑性エラス トマ一組成物は実 用価値の無いものである。
比較例 A 4では、 射出成形品の外観は良好であり、 機 械物性、 形状回復性 (圧縮永久歪) 、 耐油性が優れてい る ものの、 機械物性の異方性が大きい。
比較例 A 5では、 射出成形品の外観はほぼ良好であり、 機械物性、 形状回復性 (圧縮永久歪) 、 耐油性が優れて いる ものの、 機械物性の異方性が大き く、 流動性も劣る。 比較例 A 6では、 射出成形品の外観は良好であり、 形 状回復性 (圧縮永久歪) 、 耐油性が優れている ものの、 機械物性が著しく劣る。
比較例 A 7では、 得られたォレフィ ン系熱可塑性エラ ス トマ一組成物は、 著しく脆く 、 射出成形不可能なもの である。
比較例 A 8〜A 1 1
表 A 3— 1 に示した配合量により、 実施例 A 1 と同様 の方法でォレフィ ン系熱可塑性組成物を得た。
得られた各組成物の物性を表 A 3 - 2に示す。 比較例 A 8では、 射出成形品の外観は良好である もの の、 硬度が高く柔軟性が劣る。
比較例 A 9では、 射出成形品表面の滲み出しが著しく 、 また機械物性も極めて低い。
比較例 A 1 0及び A 1 1では、 形状回復性 (圧縮永久 歪) 、 耐油性は優れている ものの、 破断伸び、 流動性が 劣り、 射出成形品の表面が粗れており実用価値の無いも のである。
表 A 1 — 雄例 A 1 雄例 A 2 m iA 3 実施例 A 4 棚 A 5 突細 A 6 綱 A 7 配合 ( 部)
E PDM 100 100 100 100 100 100 100 ブロック P P一 1 40 40 150 250 450 40 ブロック P P -2 40
低分子 SPP ― 1 15 30 25 30 4 ϋ 1
低分了- £1PP ―つ 1 パラフィン系钦化剂 1 0 150 150 150 150 150 150 フエノール系加硫剂 5 5 5 5 5 5 5
S 11 C 1 n ♦ 2H2 0 つ 2 2 2 2 9 つ
Z 110 2 2 2 2 2 2 つ,
表 A 1 — 2 雄例 A 1 実施例 A 2 突施例 A 3 実施例 A 4 実施例 A 5 纖例 A 6 卖施例 A 7 硬度 (SHORE) 60 A 65 A 9 OA 4 ID 49D 59 A 61 A 引張強度 (kg/cnf) 42 44 100 120 155 39 40
(平行方向)
引! ¾¾¾ (kg/cn?) 52 49 103 121 1 50 49 58 ui ai方向)
破断仲ひ (%) 320 350 500 540 600 330 320
(平行方向)
破断仲び (%) 410 390 550 570 610 390 430
(垂 ΪΙ方向)
圧縮永久歪 (%) 22 20 43 48 61 24 21 耐汕性 (遠量%) 115 120 73 55 41 121 111 熱キシレン抽出 S 2. 3 2. 5 3. 1 4. 1 4. 8 3. 0 2. 1
MFR (g-/10iiiin ) 4 26 42 51 68 .15 2 表面外観 良 好 良 好 良 好 良 好 良 好 β 好 良 好
o 表 A 2
t 比蛟例 A 1 比蛟例 A 2 比蛟例 A 3 比蛟例 A 4 比蛟例 A 5 比蛟例 A 6 比蛟例 A 7 配合 c量部)
O
E PDM 100 100 100 100 100 100 100 ブロック PP— 1 50 40 40 40 5 プロック P P— 3 40
ブロック PP— 4 40 低分子 PP- 1 3 80 15 15 15 低分子 P P- 3 15 15 低分了- PP-4 15
パラフィン系欠化剂 1 0 150 150 150 150 150 1 0 フ ノール系加硫剂 5 5 5 5 5 5 5
2 2 2 2 2 2 2
Z n 0 2 2 2 2 2 2 2
表 A 2 2
上匕1 Ρ Λ
交^ J A 1 レ ί/ ,ΊΙ Λ •t UL-ii又A/Sil A Λ 1-レ ΑΛ/Α'ιΙ
3 上じ1 Rxfタ! jA ίじ1 P乂 1 J A D i卜レじホ' R t^ ΊJΙA Δ 7 ί 物性等- ii (SHORE) 58A X 59 A 62A 60A 59 A 50A
5l S kg/ ciff Λ Λ
づ z X つ D Q づ y ^\ ^ 5.ゥ 八 :^一卜 rinヽ
j 1 jJ . It I . X 45 6 o 7〇 35 X
(藤方向)
破断仲び (%) 260 X 310 310 300 110 X
(平行方向)
破断仲び (%) 450 X 390 450 410 1 0 X
(垂 fl!i方向)
縮永久 iP (い0'6" 20 X 22 9 17 25 X 瞧性 110 X 118 110 91 121 X 熱キシレン抽出 2. 4 X
(3ίΜ%)
MFR (g-/10iiiiii ) 0. 4 X 7 2 0. 8 8 X 衷面外観 ほぼ 好 成形不可能 不 良 1) 良 好 良 好 良 好 成形不可能
X 測定不「 能
311淀せず
1) にじみ出しが著しい
表 A 3 比蛟例 A 8 比較例 A 9 比蛟例 A 10 比蛟例 A 11 配合 ( 部)
E PDM 100 100 100 100 プロック P P一 1 600 40
ホ モ P P一 1 40
ホ モ P P —2 4〇 低分子 SPP一 1 50 1 5 15 1 . パラフィ ン系砍化剂 150 400 150 150 フエノール系加硫剂 5 5 5 5
S n C 12 ♦ 2H2 0 2 2 2 2
Z n 0 2 2 2 2
表 A 3 2
比蛟例 A 8 比較例 A 9 比較例 A 0 比蛟例 A 11 物性等
硬度 ( S H 0 R F, ) ( つ D 1 Δ f, , A Ό Ό r 引' jk'j¾ i£ (kg/cnf) 182 6 38 35
(平ィ Γ 向)
日 1 l?'jk L¾UIS3L (\ Kigt η c^mゾΛ 丄 / 丄 ◦ 49 41
(垂 ii方向)
破断仲び (%) 620 210 250 220
(平行方向)
破断仲び {%) 450 270 310 290
(垂直方向)
騰永久歪 (%) 8 Q 9
耐油性 (ffi %) 30 81 83 熟キシレン抽出量
MFR (gr/10inin ) 70 〇. 6 0. 8 表面外観 ほぼ良好 不 良 2) 不 良 3) 不 良 3) せず
2) にじみ出し著しい
3) ¾而祖れ¾:しい
一 —
B : 組成物 ( B ) の調製並びに評価
以下の実施例において、 第一成分のォレフィ ン系熱可 塑性エラス トマーは次の方法により得たものを使用した。
1 0 ◦重量部の E P D NK 表 B 1 に示した割台のプロ' ッ ク P P又はホモ P P、 2重量部の塩化第一スズ、 2重 量部の酸化亜鉛および 7 5重量部のパラフ ィ ン系軟化剤 からなる混合物を、 1 2 0 °Cに温調した内容積 3 のバ ンノく リ ー ミ キサーにて、 ロー ター回転数 1 5 0 R P Mで
OXt し 7 。
混練物の温度が自己発熱により 1 7 0 °Cになった'時点 で加硫剤を投入し、 更に、 3分間混練を続け、 その後に、 7 5重量部のパラフ ィ ン系軟化剤を加えて 1分間混練を 続け、 ォレフィ ン系熱可塑性エラ ス トマ一を得た。
得られたォレフィ ン系熱可塑性エラス トマ一の物性を 表 B 1 に示す。
実施例 B 1 〜 B 4
表 B 2に示した配合量により、 ォレフィ ン系熱可塑性 エラス トマ一と低分子量 P Pを同方向二軸押出機 (ス ク リ ュー径 4 0 ram、 L / D = 3 2 ) を用いて樹脂温度
1 7 0〜 1 9 ◦ °C、 スク リ ュー回転数 2 ◦ 0 rpm 、 で混 練してォレフィ ン系熱可塑性エラス トマー組成物を得た。
得られたォレフィ ン系熱可塑性エラス トマ一組成物の 物性を表 B 2に示す。
表 B 2の結果から、 射出成形品の外観は良好であり、 機械物性、 形状回復性 (圧縮永久歪) 、 耐油性が優れ、 機械物性の異方性が少ないことがわかる。 また、 M F R から、 得られたォレフィ ン系熱可塑性エラス トマ一組成 物の流動性が良好であることがわかる。
比較例 B 1 〜 B 5
表 B 3に示した配合量により、 実施例 B 1 と同様の方 法でォレフィ ン系熱可塑性エラス トマ一組成物を得た。 得られた各組成物の物性を表 B 3に示す。
比較例 B 1及び B 3では、 射出成形品の外観は良好で あり、 機械物性、 形状回復性 (圧縮永久歪) 、 耐油性が 優れている ものの、 機械物性の異方性が大き く 、 流動性 も劣る。
比較例 B 2では、 機械物性が低く 、 成形品の表面が粗 く 、 実用価値のないものである。
比較例 B 4及び B 5では、 射出成形品の外観は良好で あり、 機械物性、 形状回復性 (圧縮永久歪) 、 耐油性が 優れている ものの、 機械物性の異方性が大きい。
- - 表 B
Figure imgf000032_0001
1) 表面粗れ著しい 一 3
表 B2
実施例 B 1 実施例 B2 錢例 B3 実施例 B4 配合 &M)
エラストマ一 1 100 100 100 エラストマ一 2 100
低分子量 PP— 1 5 10 5
低分子量 PP— 2 5 物性等
硬度 (SHORE) 60 A 65A 42D 6 OA 引張 (kgZci) 43 41 120 41 (平行方向) 引張 (kg/ci) 50 48 120 59 (垂直方向) 破断伸び (%) 320 340 540 320 (平行方向) 破断伸び (%) · 410 380 580 430 (垂直方向) 圧縮永久歪 (%) 22 21 49 21 耐油性 (重量%) 116 121 50 110
MFR (gZlOrain ) 4 25 50 2 表面外観 良 好 良 好 良 好 良 好 — —
表 B3 比較例 B 1 比較例 B 2 比較例 B 3 ΗΊνβίΙ Β 4 比較例 β 5 配合 (章量部)
エラストマ一 1 100 ion 1 Π 0 エラストマ一 3 100
エマフ — y
\ Is 一一 t 1 U U
低分子量 P P - 1 1 50 5 5
rr
D
物性等
ιΐκκ ^ ο η υ リ A Δ η O U A ο 4 A fc>丄 A 引張 (kg/cii) 31 17 45 38 37 (平行方向) 引張 (teZc ) 60 20 68 门 1
(垂直方向) 破断伸び (%) 260 9 η 3门 n A C) 门 u n u (平行方向) 破断伸び (%) 450 110 400 290 450 (垂直方向) 圧縮永久歪 (%) 20 18 20 19 耐油性 (重量%) 105 90 SO 1 OS
MFR (g/10min) 0. 8 1. 2 〇. 8 3. 0 表面外観 良 好 不良 1) 良 好 不良 1) 良 好 l) 表面粗 fi^しい 産業上の利用可能性
本発明に係る熱可塑性エラス トマ一組成物は、 次のよ うな特性を有し、 産業上の利用価値は極めて大である。
( 1 ) 通常の熱可塑性榭脂成形法による成形が可能であ り、 外観良好な成形品が容易に得られる。
( 2 ) 射出成形時の機械物性異方性が少ないため種々の 形状の成形品に応用できる。
( 3 ) 機械物性、 形状回復性、 耐油性等の点で俊れてお り、 これらの性能を要求される分野、 特に自動車部品、 工業機械部品等の高機能が要求される分野に好適に使用 し 1守る。

Claims

請 求 の 範 囲
1. ( a ) エチ レ ン一 ォレフィ ン一非共役ジェ ン共重合体ゴムより成り、 その 1 0 0重量部に鉱物油系 軟化剤を 7 5重量部配合したもののムーニー粘度 〔M L 1 + 4 ( 1 2 5 °C) 〕 が 4 0以上の高分子量共重合体ゴ ム : 1 0 0重量部
( b ) メル トフ口 一レイ ト力 1 0〜 5 0の範囲である 結晶性ェチレ ン一プロ ピレ ンブロ ッ ク共重合樹脂 :
1 ◦〜 5 0 ◦重量部
( c ) 鉱物油系軟化剤 : 3〜 3 0 0重量部
( d ) 数平均分子量が 2 0 0 0〜 2 0 ◦ ◦ 0の範囲で ある低分子量プロピレン単独重合樹脂 :
5〜 1 ◦ 0重量部 からなり、 結晶性エチレン一プロ ピレンプロ ッ ク共重合 樹脂に対する低分子量プロピレ ン単独重合樹脂の重量比 が 0. 8以下である組成物を、 0. 5〜 1 5重量部の反 応型アルキルフエノール ♦ ホルムアルデヒ ド樹脂を加硫 剤として使用し、 動的に加硫するこ とによ り 、 エチ レ ン - · ォレフィ ン—非共役ジェン共重合体ゴムを高度に 加硫させてなるォレフィ ン系熱可塑性エラ ス トマ一組成 物。
2. 以下に定義される第一成分 1 0 0重量部と第二 成分 2〜 3 0重量部を含有することを特徴とする熱可塑 性エラス トマ一組成物。
第一成分 :
( a ) エチレン一 * ォ レフイ ン一非共役ジェン共重 合体ゴムより成り、 その 1 0 0重量部に鉱物油系軟化剤 を 7 5重量部配合したもののム一二一粘度 〔M L l + 4
( 1 2 5 °C ) 〕 が 4 0以上の高分子量共重合体ゴム
1 0 0重量部
( b ) メノレ トフ口 一 レイ ト力く 1 0〜 5 〇の範囲である 結晶性ェチレン—プロ ピレンブロ ッ ク共重合樹脂
1 0〜 5 0 0重量部
( c ) 鉱物油系軟化剤 3 ~ 3 0 0重量部 からなる組成物を、 ◦ . 5〜 1 5重量部の反応型アルキ ルフヱノール · ホルムアルデヒ ド樹脂を加硫剤と して使 用し、 動的に加硫することにより、 エチレン一ひ · ォレ フィ ン—非共役ジェン共重合体ゴムを高度に加硫させて なるォレフィ ン系熱可塑性エラス トマ一
第二成分 :
( d ) 数平均分子量が 2 0 0 0〜 2 0 0 0 0の範囲で ある低分子量プロ ピレン単独重合樹脂
3. 成分 ( a ) のエチ レン一 α * ォ レフィ ンー非共 役ジェン共重合体ゴムがエチ レン—プロ ピレンーェチ リ デンノルボルネ ン共重合体ゴムである、 請求の範囲第 1 項または第 2項に記載の熱可塑性エラス トマ—組成物。
4. 成分 ( a ) の共重合体ゴム中のエチレン/ α ♦ ォレフィ ンの重量比が 6 0 / 4 0 〜 8 0 / 2 0の範囲で ある、 請求の範囲第 1項または第 2項に記載の熱可塑性 エラス トマ ー組成物。
5 . 成分 ( a ) の共重合体ゴム中の非共役ジェン量 が、 ヨウ素価にして 1 0 〜 2 0の範囲となるような量で ある、 請求の範囲第 1項または第 2項に記載の熱可塑性 エラス トマ一組成物。
6 . 加硫剤と しての反応型アルキルフユノ ール ♦ ホ ルムアルデヒ ド樹脂を、 成分 ( a ) の共重合体ゴム 1 〇 〇重量部に対し 3 〜 8重量部の量で使用する、 請求の範 囲第 1項または第 2項に記載の熱可塑性エラス トマ一組 成物。
7 . 有機ハロゲン化物を加硫促進剤として前記加硫 剤と併用することにより動的加硫を行う、 請求の範囲第 1項または第 2項に記載の熱可塑性エラス トマー組成物,
8 . 有機ハロゲン化物が、 塩化第一スズ、 塩化第二 鉄、 塩素化ポリ プロピレン、 臭化ブチルゴム、 およびク ロロプレンゴムからなる群から選択される、 請求の範囲 第 1項または第 2項に記載の熱可塑性エラス トマ一組成 物。
9 . 第一成分のォレフィ ン系熱可塑性エラス トマ一 と、 第二成分の低分子量プロ ピレン単独重合樹脂とを 1 6 0 〜 2 4 0ての温度条件下で混練することにより得 られる、 請求の範囲第 3項に記載の熱可塑性エラス 卜マ 組成物,
PCT/JP1991/000779 1990-06-12 1991-06-11 Thermoplastic elastomer composition WO1991019764A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US07/828,941 US5349005A (en) 1990-06-12 1991-06-11 Thermoplastic elastomer composition
EP91910633A EP0486700B1 (en) 1990-06-12 1991-06-11 Thermoplastic elastomer composition
DE69118662T DE69118662T2 (de) 1990-06-12 1991-06-11 Thermoplastische elastomerzusammensetzung

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2/153785 1990-06-12
JP15378590A JP2837742B2 (ja) 1990-06-12 1990-06-12 熱可塑性エラストマー組成物
JP15378490A JP2837741B2 (ja) 1990-06-12 1990-06-12 熱可塑性エラストマー組成物
JP2/153784 1990-06-12

Publications (1)

Publication Number Publication Date
WO1991019764A1 true WO1991019764A1 (en) 1991-12-26

Family

ID=26482304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/000779 WO1991019764A1 (en) 1990-06-12 1991-06-11 Thermoplastic elastomer composition

Country Status (6)

Country Link
US (1) US5349005A (ja)
EP (1) EP0486700B1 (ja)
AT (1) ATE136568T1 (ja)
DE (1) DE69118662T2 (ja)
ES (1) ES2084817T3 (ja)
WO (1) WO1991019764A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7947786B2 (en) 2004-10-13 2011-05-24 Exxonmobil Chemical Patents Inc. Elastomeric reactor blend compositions

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5468808A (en) * 1994-09-12 1995-11-21 Exxon Chemical Patents Inc. Reduction of flow marks in rubber modified polypropylene
TW319775B (ja) * 1995-06-13 1997-11-11 Mitsui Petroleum Chemicals Ind
DE69827510T2 (de) 1997-08-28 2005-11-24 Mitsui Chemicals, Inc. Thermoplastische olefinelastomer zusammensetzung
MY122989A (en) 2000-06-01 2006-05-31 Sumitomo Rubber Ind Thermoplastic elastomer composition and rubber roller composed thereof
JP3835313B2 (ja) 2002-03-08 2006-10-18 住友電装株式会社 オレフィン系熱可塑性エラストマー組成物および被覆電線
US6780936B1 (en) * 2003-02-11 2004-08-24 Exxonmobil Chemical Patents Inc. Diene-modified propylene polymer nucleating agents
US7737221B2 (en) * 2003-07-29 2010-06-15 Dsm Ip Assets B.V. Polymer composition
US20070010641A1 (en) * 2003-08-07 2007-01-11 Ashok Adur Catalyst systems for elastomeric compositions
US7964670B2 (en) * 2003-09-05 2011-06-21 Teknor Apex Company Film comprising an ethylene/alpha-olefin copolymer and its use in medical or hygienic applications
WO2005048052A2 (en) * 2003-11-05 2005-05-26 Dipsie, Inc. Identifying cataloging and retrieving web pages using client-side scripting and web forms
US7579408B2 (en) * 2004-03-17 2009-08-25 Dow Global Technologies Inc. Thermoplastic vulcanizate comprising interpolymers of ethylene/α-olefins
ITVR20040074A1 (it) * 2004-05-03 2004-08-03 So F Ter S P A Composizioni plasto-elastomeriche a base di poliolefine e terpolimeri epdm addizionate di cariche minerali.
US7294675B2 (en) * 2004-06-09 2007-11-13 Advanced Elastomer Systems, L.P. Soft thermoplastic vulcanizate compositions
US7326471B2 (en) * 2004-10-15 2008-02-05 Advanced Elastomer Systems, L.P. Corner molding compositions for automotive sealant systems
US7964672B2 (en) * 2004-11-05 2011-06-21 Exxonmobil Chemical Patents Inc. High strength thermoplastic elastomers with high filler loading
US7829623B2 (en) * 2004-11-05 2010-11-09 Exxonmobil Chemical Patents Inc. Thermoplastic vulcanizates having improved fabricability
US8653170B2 (en) * 2005-06-27 2014-02-18 Exxonmobil Chemical Patents Inc. Dynamic vulcanization process for preparing thermoplastic elastomers
JP5552544B2 (ja) * 2009-12-30 2014-07-16 エクソンモービル・ケミカル・パテンツ・インク 熱可塑性加硫物を形成する方法
CN104387678B (zh) * 2014-11-17 2016-08-24 杭州麦迪凯医疗科技有限公司 一种医用热塑性弹性体组合物及其医用管材的制备方法
CN113316611B (zh) * 2019-02-22 2023-06-06 三井化学株式会社 烯烃系聚合物组合物及其成型体
CN110511491A (zh) * 2019-08-27 2019-11-29 天津星耀五洲硅橡胶制品科技股份有限公司威县分公司 一种耐老化型密封条及其制作工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535419B2 (ja) * 1977-12-30 1980-09-13
JPS59221346A (ja) * 1983-05-31 1984-12-12 Mitsui Petrochem Ind Ltd 表面光沢の優れた熱可塑性エラストマ−組成物及びその製造方法
JPS61247747A (ja) * 1985-04-26 1986-11-05 Mitsui Petrochem Ind Ltd 熱可塑性エラストマ−状組成物

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3402140A (en) * 1964-12-28 1968-09-17 Mc Donnell Douglas Corp Ethylene-propylene rubber compounding
US4059651A (en) * 1970-03-11 1977-11-22 Exxon Research & Engineering Co. Curable blends of EPDM and polypropylene
US3709848A (en) * 1971-01-29 1973-01-09 Exxon Research Engineering Co High temperature cure systems for ethylene propylene diene monomers
US4130535A (en) * 1975-07-21 1978-12-19 Monsanto Company Thermoplastic vulcanizates of olefin rubber and polyolefin resin
ATA674777A (de) * 1976-09-25 1980-11-15 Stamicarbon Thermoplastisches elastomergemisch
US4311628A (en) * 1977-11-09 1982-01-19 Monsanto Company Thermoplastic elastomeric blends of olefin rubber and polyolefin resin
US4220579A (en) * 1978-04-17 1980-09-02 Uniroyal, Inc. Thermoplastic elastomeric blend of monoolefin copolymer rubber, amorphous polypropylene resin and crystalline polyolefin resin
US4251646A (en) * 1979-07-27 1981-02-17 Exxon Research & Engineering Co. Thermoplastic blend of polypropylene, EPM and propylene-ethylene copolymer
JPS58213043A (ja) * 1982-06-04 1983-12-10 Mitsui Toatsu Chem Inc ポリプロピレン樹脂組成物
US4480074A (en) * 1982-10-20 1984-10-30 Monsanto Company Process for preparing elastoplastic compositions
US4650830A (en) * 1983-05-31 1987-03-17 Mitsui Petrochemical Industries, Ltd. Thermoplastic elastomer composition and process for preparation thereof
DE3532357A1 (de) * 1985-09-11 1987-03-19 Bayer Ag Thermoplastische elastomere
CA1285084C (en) * 1986-03-18 1991-06-18 Chisso Corporation Molding elastomeric resin composition for soft bumpers
US5116902A (en) * 1990-01-30 1992-05-26 Hewlett-Packard Company Elastomer for use with aqueous inks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535419B2 (ja) * 1977-12-30 1980-09-13
JPS59221346A (ja) * 1983-05-31 1984-12-12 Mitsui Petrochem Ind Ltd 表面光沢の優れた熱可塑性エラストマ−組成物及びその製造方法
JPS61247747A (ja) * 1985-04-26 1986-11-05 Mitsui Petrochem Ind Ltd 熱可塑性エラストマ−状組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7947786B2 (en) 2004-10-13 2011-05-24 Exxonmobil Chemical Patents Inc. Elastomeric reactor blend compositions

Also Published As

Publication number Publication date
EP0486700B1 (en) 1996-04-10
ATE136568T1 (de) 1996-04-15
DE69118662D1 (de) 1996-05-15
US5349005A (en) 1994-09-20
EP0486700A1 (en) 1992-05-27
ES2084817T3 (es) 1996-05-16
DE69118662T2 (de) 1996-09-19
EP0486700A4 (en) 1992-07-22

Similar Documents

Publication Publication Date Title
WO1991019764A1 (en) Thermoplastic elastomer composition
JP6976862B2 (ja) 超高分子量ポリエチレンを含んでいる熱可塑性エラストマー組成物および同をつくる方法
EP1453912B1 (en) Thermoplastic elastomer with improved properties
JP2018511682A (ja) 熱可塑性加硫物をつくる方法およびそれからつくられた熱可塑性加硫物
JP2005068430A (ja) 熱可塑性エラストマー組成物及びその製造方法
TW201323529A (zh) 交聯組合物、交聯組合物之製造方法、成形體
KR20190140577A (ko) 올레핀계 열가소성 실리콘 엘라스토머 조성물 및 이로부터 형성된 성형품
WO2015175117A1 (en) Thermoplastic vulcanizates and method of making the same
EP1408076B1 (en) Thermoplastic elastomer composition
CN111918920A (zh) 热塑性硫化橡胶组合物
CN111757909B (zh) 热塑性硫化橡胶
JP6839597B2 (ja) 熱可塑性エラストマー組成物、並びにその用途及び製造方法
JP2837741B2 (ja) 熱可塑性エラストマー組成物
JP2837742B2 (ja) 熱可塑性エラストマー組成物
JP2896784B2 (ja) 熱可塑性エラストマー組成物
JP4177186B2 (ja) 熱可塑性エラストマー組成物
JP3735096B2 (ja) オレフィン系熱可塑性エラストマー組成物
JP2004204180A (ja) 熱可塑性エラストマー組成物
CN113316611A (zh) 烯烃系聚合物组合物及其成型体
JP2006152030A (ja) 熱可塑性エラストマー組成物の製造法
JP2003528961A (ja) 低温特性が改良された熱可塑性エラストマー
JP4038874B2 (ja) ポリプロピレン系樹脂組成物およびその射出成形体
JPH0463851A (ja) 熱可塑性エラストマー組成物
CN114410053B (zh) 一种热塑性弹性体材料及其制备方法与应用
CA2051322C (en) Thermoplastic elastomer composition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1991910633

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991910633

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1991910633

Country of ref document: EP