WO1991009161A1 - Process for forming epitaxial film - Google Patents

Process for forming epitaxial film Download PDF

Info

Publication number
WO1991009161A1
WO1991009161A1 PCT/JP1990/001633 JP9001633W WO9109161A1 WO 1991009161 A1 WO1991009161 A1 WO 1991009161A1 JP 9001633 W JP9001633 W JP 9001633W WO 9109161 A1 WO9109161 A1 WO 9109161A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
substrate
forming
atmosphere
frequency power
Prior art date
Application number
PCT/JP1990/001633
Other languages
English (en)
French (fr)
Inventor
Takeshi Ichikawa
Hidemasa Mizutani
Original Assignee
Canon Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Kabushiki Kaisha filed Critical Canon Kabushiki Kaisha
Priority to DE69027206T priority Critical patent/DE69027206T2/de
Priority to EP91902010A priority patent/EP0458991B1/en
Publication of WO1991009161A1 publication Critical patent/WO1991009161A1/ja
Priority to US08/468,233 priority patent/US5849163A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/002Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/08Epitaxial-layer growth by condensing ionised vapours
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Definitions

  • the present invention relates to a method for forming an epitaxy film useful for a semi-semiconductor device or the like by a spa-cutting method.
  • a semiconductor device that is, an integrated circuit generally has a multilayer structure in which thin films are stacked in a number of layers. Therefore, the quality of the thin film itself and the state of the interface of the stacked thin film are determined by the device.
  • High quality thin film formation technology is one of the most important technologies for providing high performance semiconductor devices because it has a significant effect on device performance.
  • thin-film technology for forming new high-quality crystals on crystals so-called epitaxy growth technology, is a film-forming technology that is indispensable to current semiconductor technology. Regardless of the scalp growth or heterologous scalp growth, a number of R & Ds are underway as technologies that greatly affect device characteristics.
  • CVD technology is the main focus.
  • this CVD technique is usually performed in a high-temperature process at 100,000 with respect to Si, for example.
  • MBE Molecular beam epi taxy
  • the gaseous raw material and the halogen-based oxidizing material are combined and chemically reacted to form a precursor as a supply source of a film-forming substance.
  • 0 CVD method US Patent 4,800,173
  • MBE requires high-temperature processes at 80 Ci or higher to obtain high-quality Si-Pitaxial thin films, and it is difficult to perform high-concentration doping. There is a point. Further, in the F0CVD method and the HRCVD method, since a chemical reaction is used, there is a problem that impurities may be taken into a film due to generation of by-products. Furthermore, in the so-called ion beam method such as the IBE method and the ICBD method, the energy of the ion used is too large, so that the substrate is damaged, and the high-quality ion beam used for the semiconductor device is used. At present, thin films have not been obtained. Summary of the Invention
  • the present invention has been completed based on the knowledge obtained as a result of the following experiments performed by the present inventors in view of the above-described conventional technology. It has good step coverage, few defects such as point defects, stacking defects, and dislocations.
  • the purpose of the present invention is to provide a method for forming a high-quality crystalline thin film having a small content of atoms other than a film-forming material such as argon (Ar).
  • the gist of the present invention that achieves the above object is as described below. That is, in the method of forming an epitaxy film of the present invention, a DC voltage and a high-frequency power for generating plasma are applied to a target, and the epitaxy film is formed on a substrate to which the DC voltage is applied.
  • a method for forming a epitaxial film by a sputtering method comprising the steps of: forming H 2 O, CO 2 in an atmosphere in a film forming space when forming the epitaxial film; and C 0 and 2 of the partial pressures of each 1. 0 X 1 0 8 Torr or less, in the range of the substrate temperature at 4 0 0 a to 7 0 0 characterized that you deposited.
  • the method of forming an epitaxial film of the present invention further includes applying a high-frequency power to the substrate as a more preferable form.
  • the partial pressures of H 20 , CO, and C 0z are reduced when the inside of the vacuum chamber of the bypass sputtering device is evacuated and depressurized, and when forming the film.
  • XI 0 is set to 8 Torr or less, and during the film formation, the substrate temperature is set at 400 to 700 e C to perform the epitaxial growth.
  • the following effects are obtained: (a) The adhesion coefficient of atoms such as Ar and He, which are plasma constituent atoms and not constitutive membrane constituent atoms, to the substrate surface is greatly reduced.
  • Fig. 11 shows the configuration of a device suitable for implementing the above-mentioned RF-DC coupled bias-snow / butter method.
  • This device is basically a magnetron-RF-DC coupled bias sputter device.
  • 91 is a vacuum chamber
  • 92 is a target
  • 93 is a permanent magnet
  • 94 is a silicon base
  • 95 is a base support
  • 96 is 100 1 ⁇ high frequency power supply
  • 97 is a matching surface
  • 98 is a DC power supply for determining the potential of the target
  • 99 is a DC power supply for determining the potential of the substrate
  • 1 0 and 101 are robust filters of the target and the substrate, respectively.
  • This equipment uses an ultra-clean gas supply system, adopts an oil-free ultra-high vacuum exhaust system, and uses a TiN core with a small amount of gas.
  • the amount of impurities in Ar when introduced into the chamber is less than a few ppb even for the most water, and the temperature of the substrate is reduced to 300 ° C.
  • the background vacuum before raising should be 2 X 10 — '. Torr level can be achieved.
  • a high frequency power supply of 100 MHz is provided in the target, high-density plasma can be generated.
  • a DC power supply for bias application is connected to the substrate via a low-pass filter, and the potential of the target and the substrate can be controlled.
  • It is possible to precisely control the film formation conditions such as Ar ion energy irradiated on the substrate and c) plasma density.
  • the present inventors have studied the above-described RF-DC coupled bias sputtering method through experiments. As a result, it was found that the RF-DC coupled bias sputtering method had the following problems. That is, (1) the gas used in the process, Ar, was used as the epitaxy method. More than 8 X 10 18 ⁇ is taken into the film, resulting in a film of poor quality, especially when the device formation process is performed at a temperature higher than the film formation temperature. (2) Step breakage occurs when depositing a film on a step (poor step coverage); and S i (1 1 1) In the epitaxial film formed on the substrate under different conditions such as the substrate, or in the epitaxial film formed on the Si substrate, such as the SiC film. Many defects, mainly stacking faults, occur in the film, and the state of the interface becomes inadequate.
  • film formation was performed using the RF-DC coupled bias sputter device described above with the base temperature kept at 300 to 80 ° C.
  • the relationship between the substrate temperature and the vacuum degree in the back ground was examined. As a result, the following was found. That is, as long as the substrate temperature is the temperature before heating, that is, about room temperature, the knock ground vacuum degree is 2.0 ⁇ 10 ⁇ 10 Torr, but the substrate temperature is 300 ° C. exceeding the backed graphene emissions de vacuum of 1. 0 X 1 0 - 8 T orr the Kamenri, 1 x 1 0 a 4 0 0 - want intends fall below 7 T orr.
  • an n-type FZ (100) 5 inch Si wafer having a P concentration of 1.8 x 10c was used as a target.
  • Patterning was performed on one side of the Si substrate in the order shown in FIG. 2 as follows.
  • H 2 : 0 2 was formed on the Si substrate 42 by the resistance heating method.
  • a thermal oxidation step of 540 minutes was performed at 100 ° C. to form a SiO 2 film 43 having a thickness of about 2000 A.
  • S i substrate having a S i O z film 4 3 would be formed by this was transferred to a scan bins co one te, registry of 1 jti m thick in ⁇ Ko within a coater (OFPR: Tokyo Ohka Co., Ltd. 4) was formed [Fig. 2 (B)].
  • the wafer After performing exposure and development by a conventional method, the wafer is transferred to a parallel flat type RIE (Reactive Ion Eching) apparatus, and etched under the following etching conditions to perform Si. 0 2 film was removed. Thus, a pattern was formed on the Si base 40. The pattern at this time is width 1
  • the pattern was a square pattern of various sizes with multiple turns of ⁇ ms height l ⁇ m and sizes of 1 O ⁇ mxl O ⁇ m to 1 MX1 ⁇ .
  • FIG. 2 (C) This substrate was washed by a known jet method, introduced into a chamber 91, and installed as shown in FIG. Backed Gras emissions de true Sorado when the substrate temperature in 3 0 0 'c is 9. Tsu der 6 X 1 0 9 T orr.
  • Ar gas was introduced from the gas supply system consisting of the ultra-lean gas supply system, and the pressure in the vacuum chamber was set to 1 OmTorr.
  • the substrate 16 DC voltage and the target 12 DC voltage are set to predetermined values described later, and low-frequency power is supplied to the chamber 91 to clear the substrate surface.
  • Jung went.
  • the substrate temperature was raised to 300 to 800'c (at 300, 400, 500, 600, 700, and 800), and the substrate side DC voltage,
  • the get-side DC voltage and the high-frequency power were set to predetermined values described later, and a 3i film having a thickness of about 1000 was formed at each substrate temperature.
  • the substrate cleaning conditions and film forming conditions in this experiment are shown below.
  • the frequency of the high-frequency power introduced from the target side was kept constant at 100 MHz.
  • Target-side high-frequency power 20W 200W
  • V P and V s at the time of cleaning the substrate are 15 V and 1.0 V, respectively, and the energy of the Ar ion irradiated on the substrate surface is 5 eV. Was. This value is suitable for removing surface adsorbed molecular debris centered on water molecules.
  • the evaluation of the formed thin film was performed by applying a K to the thin film on bare silicon and measuring the crystal plane by electron beam diffraction, resistance measurement by the four-point probe method, and Ar, C, and 0 by SIMS.
  • the impurity atom content was measured, the reverse current density of the p- ⁇ junction at the pattern-junction, and the step coverage by SEM observation were evaluated.
  • Fig. 1 shows an example of such a device. This device is a dual frequency excitation type bypass sputtering device. In FIG.
  • 11 is a vacuum chamber-12 is a target
  • 13 and 14 are electrostatic chucks
  • 15 is a permanent magnet
  • 16 is a permanent magnet
  • 16 is a base
  • 17 is 10 0 MH2 high-frequency power supply
  • 18 is a 190-MHz high-frequency power supply
  • 19 and 20 are matching circuits
  • 27 is a DC power supply for determining the DC potential of the target
  • 28 is the substrate DC power supply for determining the DC potential of the target
  • 21 and 22 are the target and substrate ports, respectively
  • the filters are 23 and 24, respectively.
  • Numeral 25 denotes a magnetic levitation tandem turbo
  • 26 denotes a drain pump
  • 29 denotes an Xe lamp for heating the substrate.
  • the vacuum chamber 11 is made of SUS316, and the inner surface of the chamber is electrolytically polished or electrolytically polished as a surface treatment, and the surface smoothness is defined as Rmax ⁇ 0.1.
  • a passive oxide film of high-purity oxygen is formed on the mirror-finished surface.
  • the surface of the electrostatic chuck is coated with a material having good gas properties and high heat resistance, for example, boron nitride (BN).
  • BN boron nitride
  • the above-mentioned material is merely an example, and any material may be used as long as impurity contamination can be suppressed as much as possible when the temperature of the substrate is increased.
  • For the gas exhaust system do not apply electropolishing or passive oxidation to all SUS316, including the mask port-controller filter. How- ever, when introducing the process gas into the chamber, the gas should be substantially free of impurities.
  • the exhaust system is configured as follows.
  • Reference numeral 25 denotes a tandem turbomolecular pump in which magnetically levitated tandem turbomolecular pumps are connected in series in two stages, and reference numeral 26 denotes a dry pump as an auxiliary pump. It is.
  • This exhaust system is an oil-free system, and the system is configured so that there is no impurity contamination to the vacuum chamber 11.
  • the second-stage molecular pump is a large-flow-type pump, and the pumping speed is maintained even at a vacuum of the order of 10 to 3 Torr during plasma generation.
  • the base 16 is introduced into the vacuum chamber 1.11, through a load lock chamber (not shown) provided in contact with the chamber, and the vacuum chamber is introduced. It is designed to achieve a vacuum of 11 1 to 10-11 Torr.
  • the substrate 16 was subjected to buttering in the same manner as in Experiment 1 described above.
  • a thermal oxidation process was performed for 54 minutes to form a SiO 2 film 43 having a thickness of about 200 OA.
  • the Si substrate having the Si0z film 43 thus formed was transferred to a spin coater, and a 1 ⁇ thick resist (OFPR: Tokyo Ohka Co., Ltd.) was formed in the coater. 4 was formed [Fig. 2 ( ⁇ )].
  • the substrate is transferred to a parallel plate type RIE (Reactive Ion Eching) apparatus S, and is etched under the following etching conditions. Was performed to remove the SiO 2 film 43.
  • RIE Reactive Ion Eching
  • FIG. 2 (C) This substrate was cleaned by a known jet method, introduced into a chamber 11 and placed on an electrostatic chuck 14 as shown in FIG.
  • the degree of background vacuum was 2.0 ⁇ 10 -10 Torr.
  • Ar gas was introduced from a gas supply system consisting of an ultra-clean gas supply system, and the pressure in the vacuum chamber was adjusted to 1 OmTorr.
  • the DC voltage on the base 16 and the DC voltage on the target 12 are set to predetermined values described later, and high-frequency power is applied to the chamber 11 to clear the surface of the base. Performed one jung.
  • the T substrate temperature was raised to 300 to 800-C (300, 380, 400, 420, 550, 550, 600, 680, 700). , 720 and 800), and set the substrate 16 DC voltage, target 12 DC voltage, and high-frequency power to the specified values described later.
  • a Si film of 00 A was formed.
  • the substrate cleaning conditions and film forming conditions in this experiment are shown below.
  • the frequency of the high-frequency power introduced from the target side was kept constant at 100 MHz.
  • Target-side high-frequency power 20 W 200 W Target-side DC voltage -25 V -250 V Ar gas pressure lOmTorr lOmTorr Substrate DC voltage +10 V + 5V-Substrate temperature '300 * c 300 to 800 Processing time 5 min 15 min Each Si film.
  • Plasma potential during deposition (V F ) was measured by the measurement method in the same way as in Experiment 1, and in each case, it was approximately
  • the potential (v s ) of the substrate was kept constant at 5 V because it was controlled by the DC power supply 28 on the substrate side.
  • the Ar ion of plasma ⁇ obtains the energy of the voltage difference of about 30 V (35 V-5 V) and irradiates the substrate with the energy of about 30 eV.
  • I was This value is a value that is used for performing epitaxial growth without giving a plasma damage to the substrate.
  • V P> V s at substrate click rie d in g was similar to that of experiment one 1.
  • the evaluation of the formed film was performed on the thin film on the Si substrate by crystal breaking by electron beam bending, resistance measurement by the four-point probe method, and contents of Ar, C, and 0 impurity atoms by SIMS. The measurement, the reverse current density of the pn junction at the padding part, and the evaluation of the step coverage by SEM observation were performed.
  • the resistivity of the formed Si film has a minimum value in the substrate temperature range of 50,000′c to 550 * c, and when it exceeds 700 * 0, It is understood that it increases rapidly.
  • the measured results of the impurity Ar content in the Si film by SIMS are graphed and shown in FIG.
  • the Ar content in the obtained Si film is small when the substrate temperature is in the range of 400 to 700, and gradually decreases as the substrate temperature increases. Tend to decrease,
  • the Ar content sharply increases at a substrate temperature exceeding 400 ° ⁇ (: ungrooved and 700 °.
  • the measurement results of the contents of C and O, which are impurities in the Si film, are graphed and shown in FIG.
  • the contents of C and 0, which are impurities in the formed Si film increase with the temperature of the substrate, especially when the temperature of the substrate exceeds 700. It is understood that the contents of C and 0 rapidly increase.
  • Figure 6 shows the measured results of the reverse current density of the P-II junction.
  • the reverse current density has a minimum value in the range of the substrate temperature of 500 ° C. to 550 ° C., and is less than 400 ° C. and 700 ° C. It is understood that the substrate temperature rapidly increases at a substrate temperature exceeding.
  • Table 1 shows the results of electron beam bending, step coverage, and the degree of vacuum in the background, together with these results.
  • the substrate temperature at the time of film formation is 400 ° C. to 70 ° C. for the resistivity and the reverse current density of the P-n junction, which are the most important factors for semiconductor device fabrication. Good values are obtained when the substrate temperature is in the range of 500, more preferably when the substrate temperature is in the range of 500 ′ c to 600 °, and particularly when the substrate temperature is 50,000. (Ii) Even if the A film is present on the step coverage or the substrate, the S film is not damaged even if the A film is present.
  • the substrate temperature at the time of film formation is most preferably 500 to 550'c; and (iii) the substrate temperature at the time of film formation is 4
  • the substrate temperature at the time of film formation is 4
  • the Ar content increases due to the large adsorption of Ar ions on the surface of the substrate, and when the substrate temperature exceeds 700 ° C, the crystallinity of the obtained film is increased. Decrease Therefore, the Ar content increases.
  • the formation of the Si film in this experiment depends on the substrate temperature during the formation of the Si film.
  • the voltage was fixed at 500, and the substrate 16 side DC voltage was changed to change the potential of the substrate surface from ⁇ 10 V to 120 V in the same manner as in Experiment 1.2 described above. went.
  • the resistance of the Si film obtained in this way was measured by the four-point probe method and the content of impurity Ar in the Si film was measured by SIMS, and the results were graphed in Fig. 9. Indicated.
  • the resistivity of the obtained Si film decreases with the decrease in the potential when the potential on the substrate surface is in the range of 0 V to 20 V. It is understood that when the potential becomes lower than 0 V, the potential increases with the decrease in the potential.
  • the main component der Ru H 2 0 partial pressure of impurities contained in the film forming atmosphere during S i film formation was studied the effect on film.
  • a r quantity which is contained in (i) film, H 2 0 partial pressure during S i film formation is low Ku pressed is e in the following 1 0- 8 Torr, shows the good crystallinity but the H 2 0 partial pressure is increased to exceed 1 0- 8 Torr, crystalline adversely - to reduction; by its (ii) p - reverse current density of the n junction, when S i film forming H z 0 partial pressure of the low Ku pressed below 1 0- 8 T orr, exhibit good electrical properties, the H 2 0 partial pressure during S i film formation exceeds 1 0 "8 Torr reverse Current density increases and electrical properties worsen Detailed description of preferred embodiments
  • the present invention has been completed on the basis of the knowledge obtained through the above-described experiment, and has been improved in the method of forming an epitaxy film by a snow-ring method. I will provide a.
  • the method of forming an epitaxial film by the sputtering method of the present invention typically includes the following two embodiments.
  • a DC voltage and a high-frequency power for plasma generation are applied to a target, and an epitaxial film is formed on the substrate to which the DC voltage is applied.
  • spatter method derconnection of forming Ri by the-ring method, the E Pita key sheet H 2 0 'in the atmosphere of the film forming space for forming the catcher Le film> CO and C 0 2 of the respective partial pressures each and 1. 0 x 1 0- 8 T orr hereinafter, that you deposited in the range of the substrate temperature at 4 0 0 a to 7 0 0 E Vita carboxymethyl catcher Le film to Toku ⁇ It is a forming method.
  • a DC voltage and a high-frequency power for plasma generation are applied to a target, and an epitaxial film is formed on a substrate to which the DC voltage is applied.
  • the adhesion coefficient of atoms such as Ar and He which are plasma constituent atoms but not ferromagnetic film atoms to the substrate surface is greatly reduced;
  • the deposited film structure Opportunities for non-atomic plasma atoms (Ar, He, etc.) to enter the deposited film are greatly reduced;
  • the crystal growth is efficiently performed as in the step coverage, and the film is deposited. Is excellent in crystallinity, and becomes a film with good step canopy and edge. From the above, according to the present invention, a good erbital film can be efficiently and stably obtained.
  • the cormorants I was bright Rakani in the previous experiments, during the deposition, when the partial pressure of each of the H 2 0, CO and C 0 2 exceeds 1 X 1 0 "8 T orr , walk the substrate If the temperature is not grooved at 400 ° C. or exceeds 70 ° C., it is impossible to obtain a desired high-quality epitaxial film.
  • an ultra clean gas supply system as a gas supply system. It is desirable to use an ultra-free exhaust system, use a chamber made of low-gas materials, and to form a more stable brammer.
  • the substrate is more effective to apply high-frequency power (high-frequency energy) to the substrate, especially if the substrate is made of an insulated material. If it is formed, the potential on the surface of the substrate is adjusted by adjusting the high-frequency power (high-frequency energy) and frequency applied to the substrate. Is possible. It is desirable that the frequency of the high-frequency energy applied to the substrate be higher than the frequency of the high-frequency energy applied to the target.
  • DC voltage applied to the base in the present invention also includes the case of zero (0 V).
  • the gas introduced during the film formation may be an inert gas such as Ar or He, an active gas such as EC £ or F z, or a mixture thereof. However, it is desirable that these gases be of high purity. Their to, H 2 0, for CO and C 0 2 of each content, 1 ppm is rather to preferred or less, rather than to preferred Ri good arbitrariness desirable that it is an under 1 0 0 ppb or less.
  • the pressure in the vacuum chamber at the time of film formation may be maintained within a range in which discharge occurs.In a preferred embodiment, the pressure is in the range of 1 mTorr to 50 mTorr. Is done.
  • the high frequency power, the DC voltage, the gas pressure, etc. are controlled so that no damage is left on the surface, and the ion irradiation is performed. Surface cleaning is performed.
  • the substrate is made of silicon (Si)
  • the energy of one ion beam incident on the substrate be 40 eV or less. This value of 40 eV is equivalent to the ⁇ value at which silicon sputtering occurs, and the ion irradiation that does not damage the silicon substrate surface is performed. It is the upper limit of energy.
  • lamp light irradiation means such as a log lamp or resistance heating means.
  • the method of the present invention information on the crystal arrangement of a single crystal substrate used as a base is obtained, and a single crystal film of a substance constituting a target is formed by epitaxial growth. At that time, the dopant in the target is taken into the film formed at the same ratio.
  • the resistivity of the obtained silicon is as follows. It is about 100% to 120% of Balta's silicon, showing good characteristics. In particular, when the substrate temperature is in the range of 500 to 600, the resistivity of the formed film is about 100 to 110% of that of silicon of Balta, which is extremely good. Characteristics. Note that the resistivity of the formed film is the smallest when the substrate temperature is in the range of 500 to 550.
  • the formed epitaxial film is formed on the substrate surface of the constituent atoms or the deposited film. Since the surface migration on the surface is greatly increased, the problem of step breakage at the stepped portion seen in the prior art is remarkably improved. In addition, when the substrate temperature during film formation is set to 500 or more, the step disconnection problem is improved so as not to cause any problem in the formation of a semiconductor device. Further, according to the method of the present invention, there is very little chance that the process gas for generating plasma, such as Ar and He, is mixed into the epitaxial film formed with the plasma gas.
  • the process gas for generating plasma such as Ar and He
  • the substrate temperature exceeds 700-C
  • the crystallinity of the formed film decreases, so that process gas for plasma generation such as Ar or He is mixed into the film. Will be many.
  • the substrate temperature at the time of film formation is maintained at a high temperature of 400 to 700 ° C., but H 2 0, CO and C 0
  • the substrate temperature at the time of film formation is maintained at a high temperature of 400 to 700 ° C., but H 2 0, CO and C 0
  • the above-mentioned problem does not occur because the film is formed by setting the partial pressure of each to 1.0 ⁇ 10 8 Torr. ''
  • the obtained film has poor film characteristics and has a large aperture.
  • the requirement for steep profile and shallowness of the component profile will not be achieved.
  • the substrate temperature is maintained in a specific range, and the H level in the film formation atmosphere is maintained. It is characterized in that the film formation is carried out while maintaining the partial pressure of each of 20 , CO and C 02 at a specific value.
  • the substrate temperature in the method of the present invention is preferably in the range of 400 ° C. to 700 ° C., and more preferably in the range of 500 ° C. to 600 ° C. Range, optimally between 500 and 550.
  • the partial pressure of each of H 20 , CO and CO z in the film formation atmosphere is preferably 1.0 ⁇ 10 8 Torr or less, and more preferably H 2 0, CO and the partial pressure sum of the respective CO z is 1.
  • O x 1 0 8 Torr is desired arbitrary to or less.
  • Example 1 The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
  • Example 1
  • a bipolar transistor (BPT) was prepared according to the following procedure (see FIGS. 7 and 8). '
  • n-type region 33 having a thickness of 1.2 was formed on the buried region 32 of the Si substrate 31 by a conventional method of forming an epitaxial film.
  • n + -type region 34 for reducing the collector resistance of the BPT was formed by a normal diffusion method. .
  • ⁇ Masking is performed on the n-type region 33 by the same method as in Experiment 1, and a groove for forming the element isolation region 35 is formed by etching using a normal RIE method.
  • ions were implanted into the bottom of the groove by a conventional ion implantation method at a dose of 2 ⁇ 10 13 cm ⁇ 2 to form a channel stop region 36.
  • After removal of the Ma scan key in g. To form a S i 0 2 film element isolation region 35 for forming at RimakuAtsu 2 0 0 0 people by the normal CVD method, a device region 35 Formed.
  • an ion-implanted GaAs single crystal substrate with As at an acceleration voltage of 40 Kev and a dose of 1 ⁇ 10 15 cm ⁇ 2 was used.
  • the substrate 16 was irradiated with Xe lamp light from a heating stage 29 to be heated at a substrate temperature of 550.
  • Ar gas was introduced from the ultra-clean gas supply system in the same manner as in Experiment 1, and the pressure of the chamber gas was set to 10 mTorr, and the conditions were as follows. Cleaning of the substrate surface by ion irradiation and formation of a SiC film 38 with a thickness of 300 persons were performed.
  • the potential (Vs) of the substrate was adjusted to 8 V by adjusting the DC power supply.
  • the Ar ion in the plasma had an energy of about 37 V (45 V-8 V), which is the potential difference, and was irradiated to the substrate at about 37 eV. This value was suitable for performing the epitaxial growth without damaging the substrate.
  • the obtained SiC film was buttered in the same manner as in Experiment 12 described above to form a SiC emitter 38.
  • An insulating film 39 made of Si0z with a film thickness of 0.5 is deposited by a normal atmospheric pressure CVD method, and contacts for forming wiring electrodes are formed in the same manner as in Experiment 1. A hole was formed, and an aluminum film was deposited and then patterned to obtain a wiring electrode 40.
  • the SiC of the material which is a wide gap compared to the Si, is used as the material of the emitter.
  • the halls which is injected into the jitter region-flops Lock key in g, came in this transgression to obtain not the size of h FE Haitai Russia by port rat-run-g is te (HBT) '.
  • HBT te
  • a clean interface such as a natural oxide film due to the contamination of the interface between the emitter and the base by impurities that deteriorate the characteristics can be obtained.
  • the emitter area is Since it is a single crystal formed by scal growth, its emitter resistance is low-a high-speed, high-performance HBT can be formed.
  • a BPT having a thin film thickness which was conventionally used in a semiconductor process and could not be formed by the ion injection method, can be formed. That is, according to the present embodiment, the emitter 38 having a thickness of 3 000 can be formed by the SiC epitaxial film, and a high-performance BPT can be provided.
  • the aluminum wiring electrode 40 is provided directly on the SiC film 38, which is a material of the emitter, but the SiC film 38 and the aluminum When the p 1 y-Si film is interposed between the aluminum wiring electrode 40 and the conductor, the contact between the SiC film 38 and the aluminum wiring electrode 40 is formed. The cut resistance could be further reduced.
  • the base region can be further formed in addition to the emitter region.
  • the sputtering method according to the present invention since the film thickness can be easily controlled from a film thickness of about 5'0 A, the base region can be further formed in addition to the emitter region.
  • the sputtering method according to the present invention is used, the request for shallowing the base region, which has been increasingly demanded in recent years, could be sufficiently satisfied.
  • the films are formed at a relatively low temperature, the profile of the dopant in these films can take a very steep pattern. Is advantageous for the formation of Example 2
  • insufflation ⁇ i A (A 2 0 3) is a single crystal material of the insulator body 1
  • Si (100) single crystal film was formed on the 6 (1012) plane by hetero-vithal growth.
  • the substrate 16 is an insulator, the substrate irradiation energy of Ar ion, which is determined by the difference between the plasma potential and the substrate potential, depends only on the DC voltage applied to the substrate side. It is not determined by the frequency but by the frequency of the high-frequency energy introduced into the base 16 from the high-frequency power supply 18.
  • N-type as target 12 material (Lind 1.8 x 1018 cm)
  • the above-mentioned 31 (100) single crystal film having a thickness of 100000 was formed by a non-vitro growth method.
  • the cleaning conditions for the substrate surface and the conditions for forming the Si film are shown below.
  • Target side high frequency power 20W 200W Target side DC voltage -25 V-250 V
  • the potential (V s ) of the substrate was controlled to ⁇ 2 V by the high-frequency power supply 18 and the matching surface 20 on the substrate side.
  • the Ar ion in the plasma obtained an energy of about 37 V (35 V-(-2 V)), which is the voltage difference, and was irradiated on the substrate at about 37 eV. This value was suitable for performing the growth without damaging the substrate.
  • V P and V s during cleaning of the substrate are 15 V and 10 V, respectively, and the energy of the Ar ion irradiated on the substrate surface is 5 eV Met.
  • the obtained thin film was etched by a Wright etching method, which is an etching method that reveals crystal defects, and a stacking fault was observed by cross-sectional TEM observation. Observation of defect density such as dislocation was performed. As a result, the etch bit density and the defect density were 1.0 ⁇ 10 7 to: I.0 ⁇ 10 8 Zero- z , indicating good crystallinity.
  • This filtration and was SIMS measurement A Le mini-c-time 0 has failed is detected that is, the S i concentration of A Le mini U beam atoms in the film is a measurement limit 2 1 0 15 cm- 2 It was not grooved. '
  • V P at the base of the click rie two ring V S is Ri respectively 1 5 V, 1 0 V der ', A r b on-error Ne conservation over irradiating the substrate surface with 5 e V Ah.
  • FIG. 1 is a schematic explanatory view showing an example of a suitable device capable of implementing the present invention.
  • FIG. 2 is a schematic explanatory view of a pattern forming process.
  • FIG. 3 is a diagram showing the relationship between the substrate temperature and the resistivity during film formation in the obtained evitaxial film.
  • FIG. 4 is a diagram showing the relationship between the substrate temperature during film formation and the Ar content in the film in the obtained epitaxial film.
  • FIG. 5 is a diagram showing the relationship between the substrate temperature at the time of film formation and the C, 0 content in the film in the obtained epitaxial film.
  • FIG. 6 is a diagram showing the relationship between the substrate temperature and the reverse current density at the time of film formation in a pn junction formed of the obtained epitaxial film.
  • FIG. 7 is a schematic explanatory diagram for explaining a manufacturing process (first half) of a no-polar bipolar transistor.
  • FIG. 8 is a schematic explanatory view for explaining a manufacturing process (second half) of a bipolar transistor.
  • FIG. 9 is a diagram showing the relationship between the potential of the substrate during film formation and the resistivity of the obtained epitaxial film.
  • FIG. 4 is a diagram showing a relationship between a zero voltage division and a reverse current density.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Physical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

明 細
ェ ピタキシ ャ ル膜の形成方法
発明の分野
本発明は、 半等体デバイ .ス等に有用なェ ピタ キ シ ャ ル膜のスパ 'ク- タ リ'ング法によ る形成方法に藺する。 発明の背景
半導体デバイ ス、 即ち一般にい う集積囬路は、 薄膜を何層に も積 み重ねた多層構造から構成されてい るため、 薄膜そ の も のの品質お よび積層薄膜の界面の状態は、 デバイ ス性能に大き な影響を及ぼす したがっ て、 高品質な薄膜の形成技術は髙性能半導体デバイ スを提 供するについて最も重要な技術の 1 つである。 特に結晶上に新たな 高品質結晶を形成する薄膜技術、 いわゆるェ ピタ キ シ ャル成县技術 は、 現在の半導体技術に欠 く こ と のでき ない成膜技術であ り、 ホモ ェ ビタ キ シ ャ ル成县、 ヘテ ロ ェ ピタ キ シ ャ ル成县を問わず、 デバイ ス特性を大き く 左右する技術と して多数の研究開発が進め られてい る。
従来のヱ ピタ キ シ ャ ル成县法の中では C V D技術が中心である。 しかしこ の C V D技術は、 例えば S i に関していえば 1 0 0 0 で 上の高温プロ セ スで行われるのが普通であ って、 高温であるがゆえ の プ ロ セ ス上の制約、 高 コ ス ト 化、 お よ び近年のデ バ イ ス髙集 積化、 デバイ ス の髙性能化に求め られる、 ド一パ ン ト プロ フ ァ イ ル の shallow 化、 急峻化の要求に答えるのが難し く な ってきている。 そのために最近で は M B E ( M olecular beam epi taxy)法 [ A . I sh i zaka , and Y . S hiraki, J . E lectrochem. S oc . 1 ύ 3 , 6 6 6 ( 1 9 8 6 ) ) , をはじめ と して、 ガス状原料とハロゲン系 酸化材 と を 合 して化.学的に反応を行い、. 成膜物質の供給源 と しての前駆体を形成して成膜する F 0 C V D法 ( U . S . P atent o.4, 800, 173) . 異なる活性化空間內で活性化したガス状原料を別々 に成膜空間に導入して成膜する H R C V D法 ( U. S . Patent Να 4, 835, 005)や、 イ オ ン ビーム プ ロ セ スを.利用 した P I V D (partially ionized vapor depos i tion) 法 〔Τ· I toh, T, N akamura , M . M uromach i , and T . S u.g i yama , J pn . J . A pp 1. P hys . 1 6 5 5 3 ( 1 9 7 7 ) 〕 - I B E (ion beam epitaxy) 法 〔 P , C . Z aim and J . B eckers, Appl. P hys. L ett. 1 , 1 6 7 ( 1 9 8 2 )〕 、 I C B D (> l on cluster beam deposition ) 法 〔 I , Y a mad a., F . W, Saris , T . T akagi S.K . Matsubara, H . Takaoka, and S . I shiyama , J pn. J . A pl. P hys. 1 9 , L 1 8 1 ( 1 9 8 0 ) ) などの低溘工 ピタキ シャ ル成县法がこれらの要求に合う ェ ビタ キシ ャル成县法と して報告されている。
しかしながら、 M B E法では高品質の S i ヱ ピタ キシ ャ ル薄膜を 得るためには、 8 0 Ci で以上の高温プロ セ スが必要であっ た り、 高 濃度 ド ー ピ ングが難しいな どの問題点がある。 また、 F 0 C V D法 および H R C V D法では、 化学反応を利用するため、 副生成物の発 生にと もな う膜中への不純物の取り込みが起こ る こ とがあるなどの 問題があ る。 さ ら に I B E法、 I C B D法な どのいわゆる イ オ ン ビ ー ム法では用いる イ オ ンのエネルギーが大きすぎるために基体にダ メ ージが生じて しまい、 半導体デバイ ス に使用する高品質の薄膜を 得るには至っていないのが現状である。 発明の要約
本発明は前述の従来技術に鑑みて、 本発明者らが下述する実験を 行い、 その結果得た知見に基づいて完成に至ったものであり、 ホモ ェ ビタギ シ ャ ル成县、 ヘテロェ ビタ キシ ャ ル成县を藺わず、 ステ ツ ブカ バ レ ッ ジが良好で点欠陥、 積曆欠陥、 転移などの欠陷が少な く 、 界面状態が良好で、 成膜中の雰囲気中に含まれるアルゴ ン (A r ) などの成膜材料以外の原子の含有量の少ない高品 ¾な結晶性薄膜を 形成する方法を提供する こ とを目的'とする。 上記目的を達成する本発明の骨子は、 下述する と こ ろにある。 即ち、 本発明のェ ピタ キ シ ャ ル膜の形成方法は、 タ ーゲッ ト に D C電圧と、 プ ラ ズマ生起のための高周波電力とを印加し、 D C電 圧の印加された基体上にェ ピタ キシ ャ ル膜をスパ ッ タ リ ング法によ り形成する方法であ って、 前記ェ ピタ キシ ャ ル膜を形成する際の、' 成膜空間内の雰囲気中の H 20 , C Oおよび C 02 の各分圧を各々 1. 0 X 1 0 8Torr 以下と し、 基体温度を 4 0 0 で乃至 7 0 0 で の 範囲に して成膜する こ とを特徴とする。
本発明のェ ピタ キ シ ャ ル膜の形成方法は、 更に前記基体に も高周 波電力を印 する こ とをよ り好ま しい形態と して包含する。
上記構成の本発明によれば、 バイ ァ ス スパ ッ タ装置の真空チ ヤ ンバー内を減圧排気する際、 および成膜の際の H 20 , C Oおよび C 0 z の各々 の分圧が、 ] X I 0 "8Torr 以下と し、 成膜の際、 基 体温度を 4 0 0 で乃至 7 0 0 eCの範囲に してヱ ビタ キ シ ャ ル成長を 行う ため、 代表的には、 つぎの効果が奏される。 即ち、 (a)プ ラ ズマ 構成原子であ って堆稜膜構成原子ではない A r , H e などの原子の 基体表面への付着係数が大巾に減少する ; (b)前記 )の結果、 堆稹膜 構成原子ではないプラ ズマ中の原子 (A r , H e など) が堆積され る膜中に混入する機会は大巾に少な く なる ; (c)堆積膜構成原子の基 体表面又は堆積膜表面での表面マイ グ レーシ ョ ンが大巾に増大する ; そ して(d)前記 (c)の結果、 結晶の成县がス テ ッ プカ バ レ ッ ジよ く 効 率的になされ、 堆穣する膜は結晶性に優れ、 およびス テ ッ プ力バ レ ッ ジのよい膜になる。 こ う した こ とから本発明によれば、 良質のェ ビタ キ シ ャ ル膜を効率的に安定して得る こ とができ る。
と こ ろで本発明の 2人の発明者の中の 1 人である市川武史は、 先 に他の研究者と共同で、 S i ェ ピタ キ シ ャル成县について研究を行 い、 下述する内容の S告を した' 〔 T . O hmi, T . I chikawa, et al. , J . Appl. P hys. vol. 6 6 PP 4 7 5 6 ( 1 9 8 9 ) 〕 。
即ち、 ィ ォ ンエネルギーによ るダメ 一ジを抑制する こ とが難しい ためェビタキシャル成县にはほとんど使用できないと されている も のの多 く の利点即ち、 大面積化が容易、 ; 装置構成が比較的簡単で ある ; 通常の半導体プロ セス との整合性がある ; 反応系を制御.しゃ すい、 などの利点があるスパ ッ タ法による成膜に注目 し、 こ う した 利点を生かし、 イ オ ンエネルギーを精密に制御する こ とにより基体 へのダメ ージを抑制しながら表面展を活性化する とい う方法を取り 入れた、 R F— D C結合バイ アス スパッ タ法 (R F— D C coupled mode bias sputtering system)によ る S i ェ ピタ キ シ ヤ ノレ成县につ いての研究を行い、 その報告を行.つた。 代表的なも の と して、 こ の R F— D C結合バイ ア ス スパッ タ法によ-る と、 基体温度 3 0 0 でで、 ある程度髙品黉の S i 薄膜の形成および表面ク リ ^"ユ ングによる清 浄界面が得られ、 ド一パ ン ト プロフ ァ イ ルの急峻化、 ドービ ング不 純物の in situでの活性化が可能である旨の報告'を行っ た。
上記の R F — D C結合バ イ ア ス ス ノ、 ' ッ タ法を実施する に適 した 装置の構成を第 1 1図に示す。 こ の装置は基本的にはマグネ ト ロ ン — R F — D C結合バイ ア ス スパ ッ タ装置である。 第 1 1図において、 9 1 は真空チャ ンバ一、 9 2 はタ 一ゲッ ト、 9 3 は永久磁石、 9 4 はシ リ コ ン基体、 9 5 は基体支持具、 9 6 は 1 0 0 1^ 高周波電 源、 9 7 はマ ッ チ ング面路、 9 8 はタ ーゲッ ト の電位を決定するた めの直流電源、 9 9 は基体の電位を決定す る ため の直流電源、 ; 1 0 0 , 1 0 1 はそれぞれタ ーゲッ トおよび基体のロ ーバスフ ィ ル グーであ る。 こ の装置においては、 ウ ル ト ラ ク リ ー ンガス供給シス - テムを使用 し、 オ イ ルフ リ ー超高真空排気シス テム の採用及び Α £ 真空チ ヤ ンバー朕ガス の少ない T i Nコ 一テ ィ ングの採用 によ り 、 チ ヤ ンバーに導入される際の A r 中の不純物量はも つ と も多い水 分でさえ数 ppb 以下で、 基体の温度を 3 0 0 'Cに上げる前のバッ ク グ ラ ウ ン ド真空度 して 2 X 1 0 —'。 Torr 程度が達成でき る。 ま た、 タ 一ゲッ ト には 1 0 0 M Hz の髙周波電源が設奮されてい る こ とから高密度のプラ ズマの発生が可能である他、 タ ーゲッ ト および 基体には、 ロ ーバス フ ィ ルタ 一を介してバイ ァス印加のための直流 電源が接続されていてタ 一ゲッ トおよび基体の電位を制御でき る こ. とから、 a ) 成膜速度、 b ) 基体に照射する A r イ オ ンのエネルギ ―、 c ) プラ ズマ密度などの成膜条件をそれぞれ独立に精密制御す る こ とが可能であ る。
本発明者ら は、 上述した R F — D C結合バイ ア ス スパッ タ法につ いて実験を介して検討を行っ た。 その結果、 該 R F — D C結合バイ' ァ ス スパ ッ タ法については、 下述する問題点がある こ とが判明した-, 即ち、 (1)プロ セスで用いるガスである A r がェ ピタ キ シ ャル膜中 に 8 X 1 0 1 8 αέ以上取り込.まれるため、 得られる膜は品質の悪い も のにな つて しま い、 特に成膜温度以上で行われるデバイ ス形成プロ セ スにおいてその劣化は著し く なる ; (2)段差部への膜堆積に際し、 段切れを起こ して しま う (ステ ッ プカ ヴァ レ ツ ジが悪い) ; そ して は) S i ( 1 1 1 ) 基体のよ う な条件の異なる基体上に形成されるェ ピタ キシ ャ ル膜中や、 S i 基体上に形成される S i C膜のよ う なへ テ ロェ ピタ キ シ ャ ル膜中には多 く の積層欠陥を中心と した欠陥が生 じ、 界面の状態も不十分なものにな って しま う。
本発明者 ら は、 こ れ ら の問題点を生起す る原因を多角的に検 討した と こ ろ、 ( i ) A r の基体への付着係数が上述した 3 0 0 で とい う温度では大き い、 ( ii ) ェ ピタ キ シ ャル成县する原子 (例え ば S i ) の持つヱネルギ一が小さ く 、 表面マイ グ レー シ ョ ンが不足 している こ とが主な原西である こ とを見い出すに至っ た。 こ う した ( i ) および ( ii ) の原因事項を排除する こ と について本発明者ら は、 成膜時の基体温度を上昇させる こ とを以下の実験一 1 を介 して 試みた。 実験— 1
成膜時の基体温度を上昇させる場合、 上述した R F — D C結合バ ィ ァススバ ッ 夕法によ り形成される膜にどのよ う な影響を与えるか について検討した。 .
まず、 上述した R F — D C結合バイ ア ス スパッ タ装置を用いて基 体温度を 3 0 0 〜 8 0 O 'C と して成膜を行っ た。 成膜に先立って、 基体温度とバッ ク ダラ ン ド真空度の関係を調べた。 その結果つぎの こ とが判明した。 即ち、 基体温度が加熱前の温度即ち、 室温程度で ある限り においては、 ノ ッ ク グラ ン ド真空度は 2. 0 X 1 0 - 10 T orr であるが、 基体温度が 3 0 0 'Cを越える とバッ ク グラ ン ド真空度は 1. 0 X 1 0 - 8 T orr を下面り、 4 0 0 ででは 1 x 1 0 - 7 T orr 以下 になって しま う。
またその際成膜室(チ ヤ ンバ^")内のバッ ク ダラ ン ド排気状態での 雰囲気の成分を観察したと こ ろ、 主と して H 20 , C Oおよび C 02 が存在'していた。
成膜するに当た って、 タ ーゲッ ト と して P濃度が 1. 8 x l 0 c の n型 F Z ( 1 0 0 ) 5 イ ンチ S i ウ ェハ一を用いた。 基体と しては. 4 イ ン チサ イ ズの !)型 F Z ( 1 0 0 ) S i ウ ェ ハ ー ( B濩度 1. O x
1 0 15 on 3 ) を用いた。
この S i 基体の片面について第 2 図に示す頓序で以下のよ う に し てパタ ーユ ングを行った。
まず、 第 2 ( A ) 図に示すよ う に S i 基体 4 2上に抵抗加熱法に よ り H 2 : 02
Figure imgf000008_0001
の雰囲気中 1 0 0 0 でで、 5 4分藺の熱酸化工程を行って約 2 0 0 0 A厚の S i 0 z 膜 4 3 を 形成した。
こ う して形成した S i O z 膜 4 3 を有する S i 基体をス ビ ン コ 一 タ ーに移し、 該コ 一ター内で 1 jti m厚の レジス ト ( O F P R : 東京 応化株式会社製) 4 4 を形成した 〔第 2 ( B ) 図〕 。
これに、 常法によ り露光および現像を行った後、 平行平扳型 R I E (Reactive I on E ching ) 装置に移して、 下記のエ ッ チ ング 条件でエ ッ チ ングを行って S i 02 膜を除去した。 こ う して S i 基 体 4 0上にパタ ー ンを形成した。 こ の時のパタ ー ンと しては、 巾 1 μ m s 高さ l 〃 mのサイ ズの複数の回部と、 1 O ^ m x l O ^ mの サイ ズから 1 M X 1 βのサイ ズの多種の大き さの正方形のパター ン と した。
ガス流量 C H F 3 02 = 3 0 sccm : 5 sccm r ΐ パ — 7 0 0 W
圧 力 0. 1 3 Torr
時 間 3 分間
このよ う に してパタ ーニ ングされた基体よ り レ ジ ス トを剝鑼し実 験用の基体を形成した 〔第 2 ( C ) 図〕 。 こ の基体を公知のゥエ ツ ト法によ り洗浄処理し、 チヤ ンバー 9 1 内に導入し第 1 1 図に示す よ う に設置した。 基体温度を 3 0 0 'c にした時のバッ ク グラ ン ド真 空度は 9. 6 X 1 0 9 T orr であ っ た。 次に A r ガスをウル ト ラ タ リ ー ンガス供給シ ス テ ムからなるガス供給系から導入 し、 真空チ ヤ ン バー内の圧力を 1 O m T orr と した。 基体 1 6 側 D C電圧、 タ ーゲ ッ ト 1 2側 D C電圧を後述する所定値に設定し、 髙周波電力をチ ヤ ンバー 9 1 内に投入する こ とによ り基体表面のク リ 一ユ ングを行つ た。
続いて基体温度を 3 0 0 〜 8 0 0 'c ( 3 0 0 , 4 0 0 , 5 0 0 , 6 0 0 , 7 0 0 および 8 0 0 で) に上げ、 基体側 D C電圧、 タ ーゲ ッ ト側 D C電圧、 高周波電力を後述する所定値に設定し、 それぞれ の基体温度で膜厚約 1 0 0 0 人 の 3 i 膜の成膜を行っ た。 本実験 における、 基体ク リ ー ニ ン グ条件、 および成膜条件を以下に示す。 こ こ でタ ーゲ ッ ト 側か ら導入さ れる高周波電力の周波数は 1 0 0 M H z で一定と した。
基体表面のクリ-こング時 S i 成膜時 タ ーゲッ ト側高周波電力 20W 200W
ターゲッ ド側 D C電圧. -25V -250V
A r ガス圧 lOmTorr lOraTorr 基体側 D C電圧 +10V +5V 基体温度 300 *c 300 〜800で 処理時閭 5分 15分
S i膜成膜時のプラ ズマポテ ン シャル ( V P ) は、 通常のラ ング ミ ュアプロ ーブ法によ り測定したと こ ろ、 約 3 5 Vであった。 基休 のポテ ン シ ャ ル ( Vs ) は > 基体側の D C電源 2 8で制御されてい るため 5 Vで一定であった。 プラ ズマ中の A r イ オ ンは、 その電圧 差である約 3 0 V ( 3 5 V - 5 V) のエネルギ ーを得て約 3 0 e V'- のエネルギーで基体に 射されていた。 こ の値は、 基体にプラ ズマ ダメ ージを与えず、 ェ ピタ キ シ ャ ル成县を行う のに適した値であつ た。
一方基体のク リ ーニ ング時の VP , V s は、 同様にそれぞれ 1 5 Vおよび 1.0 Vであり、 基体表面に照射される A r イ オ ンのェネル ギ一は 5 e Vであっ た。 こ の値は水分子を中心とする表面吸着分子 屑を除去する のに適した値である。
形成された薄膜の評価は、 ベア シ リ コ ン上の薄膜に Kして電子 線回折によ る結晶面 、 四探針法によ る抵抗測定、 S I M Sによ る A r , C , 0各不純物原子の含有量測定、 パタ — ユ ング部での p — η接合の逆電流密度、 および S E M観察によ るス テ ッ プカバレ ツ ジ の評価を行っ た。
結果と して、 袅ぃ結果は得られなかっ た。 即ち基体温度を 3 0 0 •C以上にする場合、 いずれの場合にあ つて も上述の報告にあるよ う な程度の膜繋のェ ピタ キ シ ャ ル膜でさえも得られなかった。 即ち、 基体温度が 4 0 0 で以上になる と得られる膜については電子線 Μ折 による面折像からはス ト リ ーク さえ も観察されず、 多結晶 S i が成 县してい く こ とが分かっ た。 また、 抵抗測定、 p — n接合の逆電流 密度測定から も好ま しい結果は得られなかった。 こ の原因は、 '基体 も し く は堆穣膜表面に付着しその後に堆積される膜のマイ グ レー シ ョ ンを抑制する不純物による もの と考え られる。 その根拠と して次 のこ とがある。 即ち、 S I M Sによ り膜中に取り込まれた 0、 およ び Cの量を測定する と、 基体温度を 4 0 0 で又はそれ以上とする場 合、 それらの量は、 5 x l 0 18/cd以上であ っ た。
以上述べた こ とから明 らかなよ う に、 基体温度を単に上げてみた と こ ろで問題解決にはな らない こ とが分かっ た。 なお実験結果から、 基体温度が 4 0 0 で又はそれ以上だとス テ ッ プカ バ レ ッ ジが改善さ れる傾向がある こ とが分かった。
そ こで本発明者ら は更に考察を進め、 種々検討の結果、 基.体温 ίϊ· *上昇させて もバッ ク グラ ン ド真空度 (これは、 ほぼ Η 20 , C O , C 0 z に対応) を上昇させない装置構成を成膜装置に持たせる必要 性を見い出 した。 以下に こ の必要性を満たす装置について記述する。 第 1 図はそ う した装置の一例である。 該装置は、 2 周波励起型バ ィ ァ ス スパ ッ タ装置である。 第 1 図において、 1 1 は真空チ ャ ンバ ― 1 2 はタ ーゲッ ト、 1 3 , 1 4 はそれぞれ静電チ ャ ッ ク、 1 5 は永久磁石、 1 6 は基体、 1 7 は 1 0 0 M H2 高周波電源、 1 8 は 1 9 0 M Hz 高周波電源、 1 9 , 2 0 はマ ッ チ ング回路、 2 7 はタ ーゲッ ト の直流電位を決定するため の直流電源、 2 8 は基体の直流 電位を決定するための直流電源、 2 1 , 2 2 はそれぞれタ ーゲ ッ ト および基体の 口— 'ス フ ィ ルタ ー、 2 3 , 2 4 は ' ン ·ス フ ィ ル タ ー、 2 5 は磁気浮上型タ ンデム タ ーボ、 2 6 は ド ラ イ ポ ンプ、 2 9 は基体加熱用の X e ラ ンプをそれぞれ示す。
真空チ ャ ンバ一 1 1 は、 S U S 3 1 6製で、 チ ャ ンバ一内面は表 面処理と して電解複合研磨、 電解研磨を施した、 表面の平滑度と し て Rmax < 0. 1 の鏡面加工された表面に髙純度酸素によ る不動 態酸化膜が形成されてい る。 ま た静電チ ヤ ッ ク の表面は朕ガス特性 がよ く 、 耐熱性の高い材料、 例えば窒化硼素 ( B N ) でコ ーテ イ シ グされている。 前'記材料は一例であり、 基体温度を上昇した ときに 不純物汚染が極力押さえ られるな らば何れのものであ って もよい。 ガス排気系はマス フ 口 —コ ン ト ロ ー ラ ーゃフ ィ ルタ ー も含めてすべ て S U S 3 1 6製の も のに電解研磨および不動態酸化処理を施すな ど して、 チ ヤ ンバー内へのプロ セ ス のガス め導入時の該ガス は不純 物量を実質的に含まないよ う にする。
排気系は以下のよ う に構成されている。 2 5 は磁気浮上型のタ ン デムターボ分子ポ ンプを 2段直列に結合させたタ ンデム型タ ーボ分 子ポ ンプであ り 、 2 6 は補助ポ ンプと しての ド ラ イ ポ ンプであ る。 こ の排気系はオ イ ルフ リ ー シス テムであ り 、 該シス テ ム は、 真空チ ヤ ンバー 1 1 への不純物汚染がないよ う に構成されてい る。 なお 2 段目のタ 一ボ分子ポ ンブは大流量型のポ ンプであつて、 ブラ ズマ発 生中の 1 0— 3Torr オーダ一の真空度に対して も排気速度は維持さ れる。 なお、 基体 1 6 の真空チ ャ ンバ一.1 1 への導入は、 該チ ャ ン バーに接して設けられた ロ ー ド ロ ッ ク室 (不図示) を介して行われ 該真空チ ャ ンバ一 1 1 內の真空度が 1 0— 11 Torr に達成されるよ う に構成されている。
以上説明の第 1図に示した装置を用いて以下の実験を行っ た。 実験一 2
上述の実験一 1 によ り 得 られた結果に鑑みて、 S i 膜形成時の H 20 , C 0および C 02 の各分圧が膜の特性に与える影響を検討 した。
前述の実験一 1 と同様に して基体 1 6 にバタ ーニ ングを行っ た。 まず、 第 2 (A) 図に示すよ う に S i基体 4 2上に抵抗加熱法によ り H2 : 02 = 2 £ /rain : 4 £ノ1^ 11 の雰囲気中 1 0 0 0 でで、 5 4分間の熱酸化工程を行って約 2 0 0 O A厚の S i 02 膜 4 3を 形成した。
こ う して形成した S i 0 z 膜 4 3 を有する S i 基体をス ピ ンコ^ ターに移し、 該コ 一タ ー内で 1 πι厚の レジス ト (O F P R : 東京 応化株式会社製) 4 4を形成した 〔第 2 ( Β ) 図〕 。 こ れに、 常法 によ り露光および現像を行つだ後、 平行平板型 R I E (Reactive I on Eching)装 Sに移して、 下記のエ ッ チ ング条件でエ ッ チ ング を行って S i O 2 膜 4 3 を除去した。 こ う して S i 基体 4 0上にパ タ ー ンを形成 した。 こ の時のバタ 一 ン と しては、 巾 、 高さ 1 z^ mのサイ ズの複数の凹部と、 1 0 m x 1 0 mのサイ ズから I M X I Mのサイ ズの多種の大き さ の正方形のパタ ー ンと した。
ガス流量 C H F 3 : 02 = 3 0 sccm : 5 sccm r f ノ、 'ヮ ー 7 0 0 W
圧 力 0. 1 3 Torr
時 藺 3 分間
こ のよ う に してバタ 一ユ ングされた基体よ り レ ジ ス ト を剝離し実 験用の基体を形成した 〔第 2 ( C ) 図〕 。 こ の基体を公知のゥエ ツ ト 法によ り 洗浄処理 し、 チ ャ ン バ一 1 1 內に導入 し静電チ ャ ッ ク 1 4上に第 1 図に示すよ う に設置した。 基体温度を 3 0 0 で に した 時のバッ ク グラ ン ド真空度は 2. 0 X 1 0 - 10 Torr で あ っ た。 次に A r ガスをウ ル ト ラ ク リ ー ンガ ス供給シ ス テ ムからなるガ ス供給系 から導入 し、 真空チ ャ ン バ一内の圧力を 1 O m Torr と した。 基体 1 6側 D C電圧、 タ一ゲッ ト 1 2 側 D C電圧を後述する所定値に設 定 し、 髙周波電力をチ ャ ンバ一 1 1 内に投入する こ と によ り基体 表面のク リ 一ユ ングを行っ た。 続い T基体温度を 3 0 0〜 8 0 0 -C ( 3 0 0 , 3 8 0 , 4 0 0 , 4 2 0 , 5 0 0 , 5 5 0 , 6 0 0 , 6 8 0 , 7 0 0 , 7 2 0 および 8 0 0 で) に上げ、 基体 1 6側 D C 電圧、 タ —ゲッ ト 1 2 側 D C電圧、 高周波電力を後述する所定値に 設定し、 それぞれの基体温度で膜厚約 1 0 0 0 Aの S i 膜の成膜を 行った。
本実験における、 基体ク リ ー ニ ン グ条件、 および成膜条件を以下 に示す。 こ こ でタ ーゲッ ト側から導入される高周波電力の周波数は 1 0 0 M Hz で一定と した。
基体表面のク' Xング時 S i 成膜時 タ ーゲ ッ ト側高周波電力 20W 200W タ ーゲッ ト側 D C電圧 -25 V -250 V A r ガス圧 lOmTorr lOmTorr 基体側 D C電圧 +10 V + 5V - 基体温度 ' 300 *c 300〜 800 処理時間 5分 15分 それぞれの S i 膜.成膜時のプラ ズマポ テ ン シ ャ ル ( V F ) は、 実 験一 1 と同様 測定^法によ り測定したと こ ろ、 いずれの場合も約
3 5 Vであった。 基体のポ テ ン シ ャ ル (vs ) は、 基体側の D C電 源 2 8で制御されているため、 5 Vで一定であった。
ま た、 プラ ズマ Φの A r イ オ ンは、 その電圧差で あ る約 3 0 V ( 3 5 V - 5 V ) のエネルギーを得て約 3 0 e Vのエネルギーで基 体に照射されていた。 こ の値は、 基体にプラ ズマダメ ージを与えず して、 .ェ ピタキ シ ャ ル成县を行う のに通した値である。
一方、 基体のク リ ー ニ ン グ時の V P > V s は、 実験一 1 の場合と 同様であっ た。
形成された膜の評価は、 S i 基体上の薄膜に関して電子線面折に よ る結晶解折、 四探針法によ る抵抗測定、 S I M Sによる A r , C, 0各不純物原子の含有量測定、 パダ一 二 ン グ部での p — n接合の逆 電流密度および S E M観察によるステ ッ プカバレ ッ ジの評価を行つ た。
抵抗率の測定結果をグラ フ化して第 3図に示した。 第 3図から明 らかなよう に、 形成された S i 膜の抵抗率は 5 0 0 'c乃至 5 5 0 *c の基体温度範囲で極小値をと り、 7 0 0 *0を越える と急激に增加す る こ とが理解される。
S I M Sによる S i 膜中の不純物 A r含有量の測定結果をグラ フ 化して第 4図に示した。 第 4図から明らかなよ う に、 得られた S i 膜中の A r含有量は、 基体温度が 4 0 0 で乃至 7 0 0 での範囲では 少な く 、 かつ基体温度の增加に伴い緩やかに減少する傾向にあるが、
4 0 0 ·(:未溝お び 7 0 0 でを越える基体温度では、 前記 A r含有 量が急激に增加する こ とが理解される。 S i 膜中の不純物である Cおよび O含有量の測定結果をグラ フ化 して第 5 図に示した。 第 5 図から明 らかなよ う に、 形成された S i 膜中の不純物である Cおよび 0含有量は、 基体温度の上昇と と もに 増加し、 特に基体温度が 7 0 0 でを越える と Cおよび 0含有量が急 激に增加する こ とが理解される。
P — II接合の逆電流密度の測定結果をダラ フ化 して第 6 図に示 した。 第 6 図から 明 らかなよ う に、 前記逆電流密度は、 基体温度 5 0 0 'C乃至 5 5 0 'c の範囲で極小値をと り、 4 0 0 'c未満および 7 0 0 でを越える基体温度では急激に增加する こ とが理解される。 更に こ れ ら の結果と合わせて、 電子線面折、 ス テ ッ プカ バ レ ッ ジ , バッ ク グラ ン ド真空度を合わせて第 1 表に示した。
以上の実験結果から、 以下の こ とが判明した。
即ち、 ( i ) 半導体デバイ ス作成に閧して最も重要な要素である 電気特性を表す抵抗率および P - n接合の逆電流密度において、 成 膜時の基体温度が 4 0 0 'c乃至 7 0 0 で の範囲の時に良好な値が得 られ、 該基体温度が 5 0 0 'c乃至 6 0 0 で の範囲である場合よ り良 好であ り、 特に該基体温度が 5 0 0 で乃至 5 5 0 'c の範囲で最も良 好である ; ( ii ) ステ ッ プカ バ レ ッ ジや基体上に A 膜が存在して いて も該 A £ 膜に損傷を与える こ とな く S i 膜を形成し得る こ とを 考えあわせる と成膜時の基体温度は 5 0 0 で乃至 5 5 0 'cの範囲が 最も好ま しい ; そ して ( iii ) 成膜時の基体温度が 4 0 0 'c未満の場 合には A r ィ ォ ンの基体表面への吸着が多いため A r 含有率が增加 し、 該基体温度が 7 0 0 'cを越える と得られる膜の結晶性が低下す るため A r 含有率が增加する。 実験— 3
S i 膜形成時の A r イ オ ン 1 個の持つエ ネルギーが膜に与える影 響を検討した。
本実験にお け る S i 膜の形成は、 S i 膜成膜時の基体温度を 5 0 0 でに固定し、 基体 1 6側 D C電圧を変化させて、 基体表面の 電位を— 1 0 V〜十 2 0 Vまで変化させた以外は上述した実験一 . 2 と同様の手法で行っ た。 こ う して得られた S i 膜について、 四探針 法による抵抗測定および S I M S による S i 膜中の不純物 A r含有 量の測定を行いそ の結果をダ ラ フ化 して第 9 図に示 した。 第 9 図 から明 らかなよ う に、 得 られた S i 膜の抵抗率は、 基体表面の電 位が 0 V乃至 2 0 Vの範囲では上記電位の減少と と もに低下し、 上 記電位が 0 Vよ り低 く なる と、 該電位の減少と と もに增加する こ と がわかる。 なお、 第 9 図に示したよ う に、 基体の電位を— 1 0 V〜 + 2 0 Vまで変化させる こ とは、 換言すれば、 A r イ オ ン 1 個の持 つ i ネ ルギ一 ( V p - V s に相当) を 1 5 e Vから 4 5 e Vまで変 化させた とにな る。 即ち、 A r イ オ ン 1 個の待つエ ネルギーが 4 0 e Vになる と得.られた S i 膜の抵抗率は増加する。
本実験によ り以下の こ とが判明 した。
即ち、 ( i ) 基体に照射される A r イ オ ン 1 個の持つエ ネルギー が シ リ コ ン基体の A r イ オ ン に対するス パ ッ タ リ ン グの閻値 (約 4 0 e V ) を越える と.、 基体はダメ ージを受け、 堆積される薄膜の 結晶性が悪化し、 抵抗率が増加する ; そ して ( ii ) 逆に基体に照射 される A r イ オ ン 1 個の持つエネルギーが足り ない と得られる結晶 性が悪化する。 実験一 4
S i 膜形成時の成膜雰囲気中に含有される不純物の主な成分であ る H 2 0分圧が膜に与える影響を検討した。
本実験にお け る S i 膜の形成は、 S i 膜成膜時の基体温 ¾を 5 0 0 ¾ に固定し.、 H 2 0分圧を変化させた以外は実験一 2 と同様 の手法で行っ た。 得られた膜について、 膜中に含有された A r量と P — n逆電流密度を実験 2 と同様の手法で測定した。 得られた結 果を第 1 0 図にま とめてグ ラ フ化して示した。 第 1 0 1¾か ら明 ら かなよ う に、 膜中に含有された A r量と p — n逆電流密度は共に、 S i 膜成膜時の H 20分圧が 1 0— 8Torr を越える と急激に增加す る こ とが理解される。
本実験によ り以下の こ とが判明 した。
即ち、 ( i ) 膜中に含有される A r量は、 S i 膜成膜時の H 20 分圧が 1 0— 8Torr 以下で は低 く 押さ え られ、 良好な結晶性を示 すが、 該 H 20分圧が 1 0— 8Torr を越える と増加し、 結晶性が悪 - 化する ; そ して ( ii ) p — n接合の逆電流密度は、 S i 膜成膜時の H z 0分圧が 1 0— 8 T orr 以下で低 く 押さえ られ、 良好な電気特性 を示すが、 S i 膜成膜時の H 20分圧が 1 0 "8Torr を越える と逆 電流密度が増加し、 電気特性が悪化する。 好ま しい態様の詳細な説明
本発明ば、 上述した実験を介して得られた知見に基づいて完成し た ものであ り、 ェ ピタ キ シ ャ ル膜のス ノヽ ' ッ タ リ ング法によ る改善さ れた形成方法を提供する。
本発明のスパ ッ タ リ ング法によ るェ ピタキ シ ャ ル膜の形成方法は 代表的には以下に述べる 2 つの態様を包含する。
即ち、 本発明の 1 つの態様は、 タ 一ゲッ ト に D C電圧と、 ブラ ズ マ生起のための高周波電力とを印加し、 D C電圧の印加された基体 上にェ ビタ キ シ ャ ル膜をスパッ タ リ ング法によ り形成する方法であ つて、 前記ェ ピタ キ シ ャ ル膜を形成する際の成膜空間内の'雰囲気中 の H 20 > C Oおよび C 02 の各分圧を各々 1. 0 x 1 0— 8T orr 以 下と し、 基体温度を 4 0 0 で乃至 7 0 0 で の範囲に して成膜する こ とを特徵とするェ ビタ キシ ャ ル膜の形成方法である。
本発明の他の態様は、 タ ーゲッ 卜 に D C電圧と、 プラ ズマ生起の ための高周波電力とを印加し D C電圧の印加された基体上にェ ビ タ キシ ャ ル膜をスバ ツ タ リ ン グ法によ り形成する方法であ って、 前 記ェ ビタ キ シ ャ ル膜を形成する際の成膜空藺内の雰囲気中の H20 , C Oおよび C O の各分圧を各々 1. 0 X 1 0 — 8 T orr 以下と し、 基 体温度を 4 0 0.で乃至 7 0 0 で の範囲と し、 該基体に高周波電力を 印加して成膜する こ とを特徵とするェ ピタキシ ャ ル膜の形成方法で ある。
本発明によれば、 上述した従来技術における問題点が排除されて 下述する効果が奏される。
即ち、 )プラ ズマ構成原子であって堆穰膜構成原子ではない A r , H e などの原子の基体表面への付着係数が大巾に減少する ; (b)前記 )の結果、 堆積膜構成原子ではないプラ ズマ中の原子 ( A r , H e など) が堆積される膜中に混入する機会は大巾に少な く なる ; (c)堆 辏膜構成原子の基体表面または堆積膜表面での表面マイ グ レ ー シ ョ ンが大巾に増大する ; そ して(d)前記 (c)の結果、 結晶の成县がステ ツ プカバレ ッ ジよ く 効率的になされ、 堆積する'膜は結晶性に優れ、 お よびステ ッ プカ ノ、'レ ツ ジのよい膜になる。 こ う したこ とから本発明 によれば、 良 ¾のェ ビタキシ ャ ル膜を効率的に安定して得る こ とが でき る。
なお、 前述の実験で明 らかに したよ う に、 成膜時、 H 2 0 , C O および C 0 2 の各々 の分圧が 1 X 1 0 " 8 T orr を越える場合、 或い は基体温度が 4 0 0 で未溝または 7 0 0 でを越える場合、 高品質な 所望のェ ビタ キ シ ャ ル膜が得られな く なる。 ' 本発明においては、 成膜の際.に堆積膜構成原子以外のプラズマ搆 成原子などが膜中に混入するのを防止するためには、 ガ ス の供給系- と してウ ル ト ラ ク リ ー ンガス供袷シ ス テ ム の使用、 オ イ ルフ リ ー超 髙真声排気シ ス テ ム の使用、 朕ガ ス の少ない材料によ り形成された チ ャ ンバ一を使用するのが望ま しい。 また、 よ り安定したブラ マ の形成のためには、 基体にも高周波電力 (高周波エ ネ ルギ ー) ^印 加する のがよ り効果的である。 特に、 基体が絶緣性の材料で搆成さ れている場合には、 基体に印加する高周波電力(高周波エネルギー) 及び周波数を調整する こ とによ り、 基体表面の電位を調整する こ と が可能である。 基体に印加する高周波エ ネ ルギ ー の周波数について は、. タ ーゲッ 卜 に印加する高周波エ ネ ルギ ー の周波数よ り も高い周 波数である こ とが望ま しい。
なお、 本発明におけ る基体に印加す る D C電圧はゼ ロ ボ ル ト ( 0 V ) の塌合も含む。
成膜の際に導入す る ガス は、 A r , H e な ど の不活性ガス や E C £ , F z などの活性ガス も し く はこれらの混合物で もよいが、 いずれの場合にあ っても、 それらのガス は、 髙純度の ものである こ.. とが望ま しい。 そ して、 H 20 , C Oおよび C 02 の各々 の含有率 については、 好ま し く は 1 ppm 以下、 よ り好ま し く は 1 0 0 ppb 以 下である こ とが望ま しい。
成膜の際の真空チ ヤ ン バ一内の圧力については、 放電が起こ る範 囲内に保たれればよ く 、 好ま しい態様においては、 1 m T orr 乃至 5 0 m T orr の範囲と される。
成膜時の基体表面は清浄な表面が露出されて い る こ とが望ま しい。 したがって、 例えば、 前記真空チ ヤ.ンバ一內に配した基体について、 その表面にダメ ージが残らないよ う に高周波電力、 D C電圧、 ガ ス 圧などを制御してィ ォ ン照射によ る表面ク リ 一 二 ングが施される。
ま た、 成膜の際には、 チ ャ ンバ一内のガス圧、 タ ーゲッ ト に投入 する高周波電力、 タ ーゲッ ト に印加する D C電圧、 基体に印加する D C電圧、 必要に応じて基体に印加する高周波電力を制御して基体 に入射する ィ ォ ン 1 個の持つエ ネ ルギ ーを基体にダメ 一ジを与えな い範囲内に制御する こ とが望ま しい。 基体がシ リ コ ン ( S i ) で構 成された も のであ る場合に は、 基体に入射する ィ ォ ン 1 個の持つ エネルギーを 4 0 e V以下とする こ とが望ま しい。 なお、 こ の 4 0 e Vなる値は、 シ リ コ ン のスバ ッ タ リ ングの起こ る閟値に相当 し、 シ リ コ ンからなる基体表面にダメ ージを与えないィ ォ ン照射エネル ギ一 の上限である。
基体の加熱手段と しては、 不純物の発生の少ない X e ラ ン プ、 ハ ロゲンラ ンプなどのラ ンプ光照射手段、 または抵抗加熱手段などを 用 い る のが望ま しい。
本発明の方法においては、 下地と して用いる単結晶基体の結晶配 列の情報を得て、 タ ーゲッ トを構成する物質の単結晶膜がェ ビタキ シ ャル成县する。 その際、 該タ ーゲッ ト中の ド一パ ン ト はそのまま の割合で形成される膜中に取り込まれる。
例えば、 ド ーパ ン トを所定の割合で含有する シ リ コ ンタ 一ゲッ ト を使用 してシ リ コ ン ェ ピタキシ ャ ル膜を形成する場合、 得られる腠 の特性と して抵抗率はバルタ の シ リ コ ン の 1 0 0 〜 1 2 0 %程度で あ り良好な特性を示す。 特に、 基体温度が 5 0 0 で乃至 6 0 0 で の 範囲である場合には、 形成される膜の抵抗率はバルタ の シ リ コ ン の 1 0 0 〜 1 1 0 %程度であり極めて良好な特性を示す。 なお、 形成 される膜の抵抗率については、 基体温度を 5 0 0 て乃至 5 5 0 での 範面に して形成される ものが最も小さ く なる。
また、 本発明の方法によれば、 成膜時基体温度を 4 0 0 でま たは それ以上にする こ とがら、 形成されるェ ピタ キシ ャ ル膜を構成原子 の基体表面ま たは堆積膜表面での表面マイ グ レー シ ョ ンが大巾に增 大する こ とから、 従来技術に見られる段差部での段切れの問題は著 し く 改善される。 に、 成膜時基板温度を 5 0 0 てまたはそれ以上 にする場合、 前記段切れ問題は、 半導体デバイ ス の形成上全 く 問題 にな らないよ う に改善される。 ま た本発明の方法によれば、 A r , H e などのプラ ズマ生起用のプ ロ セ スガス の形成される ェ ビタ キ シ ャ ル膜中に混入する機会は極めて少ない。
なお、 基体温度が 7 0 0 -Cを-越える と形成される膜の結晶性が低 下する ため、 A r や H e などのプラ ズマ生起用のプロ セ スガス ό膜 中への混入する機会は多 く なつて しま う。
一般に、 基体温度を上昇させる場合、 基体温度の上昇につれて成 膜雰囲気中の H 2 0, C Oおよび C O z の各々 の分圧が上昇する こ とから、 不純物と しての Cおよび 0 の膜中に混入する機会が多 く な り 、 得 ら れる膜は特性の不十分な も の に な っ て しま う 。 と こ ろが、 本発明の方法において は、 成膜時の基体温度を 4 0 0 で乃至 7 0 0 •C と高温に保持す る も のの、 成膜時 H 20 , C Oおよび C 02 の各 々 の分圧を 1. 0 X 1 0 8 Torr に し'て成膜する こ と か ら、 上述の問 題は生 じない。 ' '
なお、 成膜時基体温度を 7 0 0 で を越え た も の にす る場合、 いず れに し ろ、 得 られる膜は膜特性の悪い も のに な る と と も に、 ド ーパ ン ト のプロ フ ァ ィ ルの急峻化、 S hallow化の要求が達成で έ な く な る。
以上述べたよ う に、 本発明によ る スパ ッ タ リ ング法に よ る ェ ピタ キ シ ャ ル膜の形成方法は、 基体温度を特定の範囲の温度に保持 し、 成膜雰囲気中の H 20 , C Oおよび C 02 の各々 の分圧を特定の値 に保持 して成膜を行う こ と を特徵 とす る も のであ る。
本発明の方法にお ける上記基体温度と して は、 好ま し く は 4 0 0 'c乃至 7 0 0 °c の範囲、 よ り 好ま し く は 5 0 0 で乃至 6 0 0 で の範 囲、 最適に は 5 0 0 で乃至 5 5 0 で の範囲で あ る。
ま た、 成膜雰囲気中の H 20 , C Oおよび C O z の各々 の分圧に ついて は、 好ま し く は 1. 0 X 1 0 8 Torr 以下 と し、 よ り 好ま し く は前記 H 20 , C Oおよ び C O z の各々 の分圧の和が 1. O x 1 0 8 Torr 以下 と する のが望ま しい。
〔実施例〕
本発明を以下の実施例に よ り 更に詳 し く 説明するが、 本発明は れ ら の実施例によ り 何 ら限定さ れる も ので はな い。 実施例 1
バイ ポー ラ ト ラ ン ジ ス タ ( B P T ) を下記の手頗に従っ て作成 し た (第 7 図および第 8 図参照) 。 '
① 抵抗率 4 Ω ηの p型 S i 基体 3 1 に n + 型の埋め込み領域 3 2 を通常の拡散法によ り形成した。
② 常法のェ ヒ'タ キ シ ャ ル膜形成方法によ り前記 S i 基体 3 1 の埋 め込み領域 3 2上に腠厚 1.2 の n- 型領域 3 3を形成した。
③ B P Tのコ レク タ抵抗を下げるための n + 型の領域 3 4を通常 の拡散法にて形成した。.
④ n- 型領域 3 3 に実験一 2 と同様の手法により マ ス キ ン グを託 し、 素子分離領域 3 5形成用の溝を通常の R I E法によるエ ッ チ ングによ り形成し 。 該溝の底部に通常の ィ ォ ン注入法によ り A s イオ ンを 2 x 1 0 13cm— 2の ドーズ量で注入し、 チ ャ ンネ ルス ト ッ プ領域 3 6 を形成 した。 前記マ ス キ ン グを除去した後、. 素 子分離領域 3 5形成用の S i 02 膜を通常の C V D法によ り膜厚 2 0 0 0 人で形成し、 素子領域 3 5を形成した。
⑤ 通常のイ オ ン注'入法によ り p型不純物と してボ ロ ン (B ) を ド ーズ量 8 x 1 0 13cm- 2で前記素子分離領域形成用の s i 02 膜を 介して n— 型領域 3 3 に イ オ ン注入し、 ベー ス領域 3 7を形成し た。 続いて通常の' R I E法によ り、 エ ミ ッ タ 3 8形成用のコ ン タ ク ト ホールを形成し.、 p + 型の単結晶からなるベー ス領域 3 7を 露出させ、 本発明のェ ビタ キシ ャ ル膜の形成方法を施すための基 体 1 6 を形成した。 基体 1 6 は、 通常のゥエ ツ ト法によ り洗浄し、 第 1図に示す装置の真空チ ャ ンバ一 1 1 内に設置した。 タ一ゲッ . ト 1 2 と して S i C単結晶基板に A s を加速電圧 4 0 K e v、 ド ーズ量 1 X 1 015cm-2で イ オ ン注入した も のを用いた。 加熱丰段 2 9 よ り X e ラ ンプ光を基体 1 6 に照射し、 基体温度 5 5 0 で に 加熱した。
実験一 2 と 同様に して A rガスをウ ル ト ラ ク リ ー ンガス供給シ ステムから導入しチ ャ ンバ一 1 1 內のガスの圧力を 1 0 m Torr と し、 以下に示す条件でィ オ ン照射による基体表面のク リ 一二 ン グおよび膜厚 3 0 0 0 人の S i C膜 3 8 の形成を行った。
基-体表面のクリ- t '時 S i C成膜時 タ ーゲ ッ ト 側高周波電力 20W 350W タ ーゲ ッ ト 側 D C電圧. - 25 V - 200 V
A rガス圧 lOmTorr lOmTorr 基体側 D C電圧 + 10 V + 8 V 基体温度 550 °c 550 -c 処理時間 5分 60分 実験 1 と同様の手法で測定 し た S i C膜の成膜時のプラ ズマ 'ポ テ ン シ ャ ル ( V P ) は、 約 4 5 Vであ っ た。 基体のポ テ ン シ ャ ル ( V s ) は D C電源を調整 し 8 V と した。 プラ ズマ中の A r ィ ォ ン はそ の電位差であ る約 3 7 V ( 4 5 V - 8 V ) の エ ネ ルギ ーを 得て約 3 7 e Vで基体に照射さ れて いた。 こ の値は基体にダメ 一 ジを与え る こ と な く ェ ビタ キ シ ャ ル成县を行う に適 し た値であ つ た。
得 られた S i C膜を前述 した実験一 2 と同様の手法でバタ 一二 ング し、 S i Cェ ミ ッ タ 3 8を形成 した。
⑥ 膜厚 0. 5 の S i 0 z か ら な る 絶緣膜 3 9 を通常 の 常圧 C V D法によ り 堆積 し、 実験一 2 と同様の手法で配線電極形成用 の コ ン タ ク ト ホ ー ルを形成 し、 ア ル ミ ニ ウ ム膜を堆積後パタ ー 二 ング して配線電極 4 0を得た。
⑦ S i 02 か ら な る絶縁膜 4 1 を堆積 し、 通常の半導体プロ セ ス を用 いて外部取 り 出 し口を加工 した。
以上が本実施例の構造プロ : feス の概略であ るが、 そ の Ψで最も重 要なのが B P Tの特性を左右する ヱ ミ ッ タ の形成工程で あ る。 本実 施例によれば、 S i と比べて ワ イ ドギ ャ ッ プであ る材料の S i Cを ェ ミ ッ タ の材料 とする こ と によ り 、 ベ ー ス領域か ら ェ ミ ッ タ領域に 注入さ れる ホ ールをプ ロ ッ キ ン グ し、 h F Eの大き い ヘテ ロ バイ ポー ラ ト ラ ン ジ ス タ (H B T)' を得る こ とがで き た。 さ ら に ェ ミ ッ タ と ベース と の界面に特性を低下させ る不純物の混入に よ る 自然酸化膜 な どのない清浄な界面が得 られる。 しかも.エ ミ ッ タ領域がェ ビタ キ シ ャル成县によ り形成された単結晶である 'ため'ェ ミ ッ タ抵抗が低く - 高速高性能な H B Tの形成がで き た。
従来、 半導体プ ロ セ ス において通常用 い られてい た、 イ オ ン注 入法では形成し得なかったよ う な-薄い膜厚の B P Tを本発明によ り 形成でき た。 即ち、 本実施例によれば、 膜厚 3 0 0 0 人のエミ ッ タ 3 8を S i Cェ ピタキシャ ル膜で形成でき、 高性能の B P Tを提供 で き た。
なお、 本実施例はエ ミ ッ タ の材料である S i C膜 3 8上に直接ァ ルミ 二ゥ ム の配線電極 4 0を設けたが、 前記 S i C膜 3 8 と前記ァ ル ミ 二ゥ ム の配線電極 4 0 と の間に p 1 y - S i 膜をはさんだ場 合に は、 前記 S i C膜 3 8 と前記アル ミ ニ ウ ム の配線電極 4 0 と の コ ンタ ク ト抵抗を更に低下する こ とができた。
本発明のバイ ァススパッ タ法によれば、 5' 0 A程度の膜厚から膜 厚の制御が容易にでき るため、 エ ミ ッ タ領域の形成に加えて更にべ ース領域の形成をも本発明のスパ ッ タ法にて行う場合、 近年盛んに 要求されているベー ス領域の S hallow化の要求に十分答える こ とが できた。 更に比較的低温で膜を形成するため、 これらの膜中の ド一 ノヽ ' ン 卜 のプロ フ ァ イ ルは、 非常に急峻なパタ ー ンを取る こ とができ るため、 髙性能デバイ スの形成に有利である。 実.施例 2
- 本実施例においては、 前述の実験一 2 で用いた装置 (第 1 図参. 照) および手法を用いて、 絶縁物の単結晶材料で あるサフ ァ イ ア (A 203 ) 基体 1 6 ( 1 0 1 2 ) 面上に S i ( 1 0 0 ) 単結晶膜 をへテロェ ビタ キシ ャル成县によ り形成した。 基体 1 6が絶縁物で あるためプラ ズマポテ ン シ ャ ルと基体電位との差によ って決定され る A r ィ ォ ンの基体照射エ ネルギーは基体側に印加する D C電圧の みによ り決定される も ので はな く 、 髙周波電源 1 8 よ り基体 1 6 に 導入される高周波エネ ルギーの周波数によ り決定される。 タ ーゲッ ト 1 2 の材料と して n型 (リ ン ド一プ 1. 8 X 1 01 8 cm )
F Z S i ( l l l ) を用いて、 膜厚 1 0 0 0 人の前記 3 1 ( 1 0 0 ) 単結晶膜をヱ ビタ キ シ ャル成县によ り形成した。 基体表面のク リ ー ユ ング条件および. S i 膜の成膜条件を以下に示す。
基体表面のクリ-ニンク'時 S i 成膜時 タ ーゲッ ト側高周波電力 20W 200W タ ーゲッ ト側 D C電圧 -25 V 一 250 V
A rガス圧 lOmTorr lOmTorr 基体側高周波周波数 190M H z 190M H z 基体側高周波電力 10W 15 W タ —ゲツ ト側高周波周波数 100M H z 100M H z 体温度 - 500 -c 500 -c 処理時間 5分 15分 実験一 1 と同様の手法で測定した S i 膜の形成時のプラ ズマポテ ン シ ャ ル ( V P ) は約 3 5 Vであ っ た。 基体のポ テ ン シ ャ ル ( V s ) は、 基体側の高周波電源 1 8およびマ ッ チ ング面路 2 0 で— 2 Vに 制御 した。 プラ ズマ中の A r ィ ォ ン はその電圧差であ る約 3 7 V ( 3 5 V - ( - 2 V ) ) のエネルギーを得て約 3 7 e Vで基体に照 射されていた。 こ の値ば、 基体にダメ ー ジを与える こ とな く ェ ビタ キ シ ャル成县を行う に適した値であ っ た。
一方、 基体の ク リ ー ニ ン グ時の V P , V s はそれぞれ 1 5 V , 1 0 Vであ り 、 基体表面に照射さ れる A r イ オ ン の エ ネ ルギ ー は 5 e Vであ っ た。
得られた薄膜について、 結晶欠陥顕在化エ ッ チ ングである ラ イ ト エ ッ チ ング (Wright etching ) 法によ り エ ッ チ ピ ッ ト密度観察と、 断面 T E M観察によ る積層欠陥、 転移などの欠陥密度の観察を行つ た。 そ の結果、 エ ッ チ ビ ッ ト密度および欠陥密度と も 1. 0 X 1 0 7 〜: I. 0 X 1 0 8 個 Zero- zであり、 良好な結晶性を有していた。 また、 アルミ ニ ゥ ム'原子の S i 膜中への拡散導入の度合いを調べるた め S I M S測定を行っ た と こ ろ、 ア ル ミ ニ ウ ム は検出されなかつ た 0 即ち、 前記 S i 膜中のア ル ミ ニ ウ ム原子の濃度は、 測定限界である 2 1 015 cm— 2未溝であ っ た。 '
更に、 フ ァ ンデア バゥ法を用いて電子および正?1 (ホール) の移 勤度を測定した と こ ろ、 該移動度は 3 0 0 Kの常温において ハ*ノレク の S i とほぼ同等の値である 2 4 0 cm2 / V - sec であつ た。
以上の結果から明 らかなよ う に優れた結晶性およびキャ リ ア モ ビ リ テ ィ を有する S ◦ S ( S ilicon on Saphaire)膜が得られた。 ま た、 通常の C V D技術で問題と されているサ フ ァ ィ ァ と シ リ コ ン と の熱膨張係数 (それぞれ、 9.5 X 1 0 - 6ノ' cおよび 4.2 X 1 0 "6/ "C ) の差で生じる S i 膜中の弾性圧縮歪みの問題も、 本発明によれ ば、 臏の形成温度が比較的低い (本実施例においては 5 0 0 で) た め、 1 08 dyn / cm 2 以下に押さえる こ とができ大巾に改善された 実施例 3
基体と して P型 ( B 1.0 x 1 015 cm— 3 ドープ) S i ( 1 1 1 ) ( < 2 1 1 >方向に 4 ' オフセ ッ ト) F Z ウ ェハーを用いた こ とを 除き実験— 2 と同様に して膜厚 1 0 0 0 Aの S i 膜を形成した。 基 体表面ク リ 一ニ ング条件および成膜条件を以下に示す。
基体表面のクリ -ニンク'時 S i 成膜時 タ ーゲッ ト側高周波電力 20W 200W タ ーゲッ ト側 D C電圧 -25V - 250 V A rガス圧 lOmTorr lOmTorr 基体側 D C電圧 +10 V + 2 V 基体温度 300-C 500 -c 処理時間 5分 25分 実験一 1 と同様の手法によ り測定した S i 膜成膜時のプラ ズマポ テ ン シ ャ ル ( V F )は約 3 7 Vで あ っ た。 基体のポ テ ン シ ャ ル( V s ) は 2 Vであっ た。 プラ ズマ中の A r イ オ ンは、 その電位差である約 3 5 V ( 3 7 V - 2 V ) のエネルギーを得て基体に照射されていた。 こ の値は、 基体にダメ ー ジを与えずェ ピタ キ シ ャ ル成县を行う に適 した値であ っ た。
一方、 基体のク リ ーニ ング時の VP, V Sはそれぞれ 1 5 V , 1 0 V であ'り、 基体表面に照射される A r イ オ ン エ ネ ルギ ーは 5 e Vであ . つ た。
S i 薄膜の物性およびス テ ッ プカ バ レ ッ ジに関しては、 実験一 2 で示した基体温度 5 0 0 'C の もの とほぼ同一の性質を示す非常に良 好なものが得られた。
表 (その 1 )
Figure imgf000028_0001
m : ◎··'非常に チ ひ A- χ…悪い
*···ί¾¾ί生がやや悪いため量力侈くなつた
第 表 (その 2)
Figure imgf000029_0001
: ©···非常に ί 0·_¾δϊ χ…悪い
ネ…結謝生がやや悪いため量力 くなつた
f
X
X 図面の簡単な説明
第 1 図は、 本発明を実施し得る好適な装置の一例を示す模式的説 明図である。
第 2図は、 パタ ー ン形成の工程の模式的説明図である。
第 3図は、 得られたェビタキ シ ャ ル膜における膜形成時の基体温 度と抵抗率との関係を示す図である。
第 4図は、 得られたェ ピタ キシ ャ ル膜における膜形成時の基体温 度と膜中への A r 含有量との関係を示す図である。
第 5図は、 得られたェ ビタキシ ャ ル膜における膜形成時の基体温 度と膜中の C , 0含有量との関係を示す図である。
第 6 図は、 得られたェ ピタキ シ ャ ル膜で形成した p — n接合にお ける膜形成時の基体温度と逆電流密度との関係を示す図である。 第 7図は、 ノヽ' イ ポ ー ラ ト ラ ン ジ ス タ の製^工程 (前半) を説明す るための模式的説明図である。
第 8 図は、 バイ ポーラ ト ラ ン ジ ス タ の製造工程 (後半) を説明す るための模式的説明図である。
第 9 図は、 得られたェ ピタキ シ ャ ル膜における膜形成時の基体の ポテ ンシャルと該ェ ピタ キシャル膜の抵抗率との関係を示す図であ る。
第 1 0 図は、 得 ら れたヱ ピタ キ シ ャ ル膜にお け る膜形成時の' H 2 0分圧と膜中への A r含有量との関係および膜形成時の H 2 0分 圧と逆電流密度との関係を示す図である。
第 1 1 図は、 従来のスパ ッ タ リ ング装置を示す模式的説明図であ る c

Claims

請 求 の 範 画
(1) タ ーゲッ ト に D C電圧と、 プラ ズマ生起のための高周波電力と を印加し、 D C電圧の印加された基体上にヱ ピタ キ シ ャ ル膜をス バ ッ タ リ ング法によ り形成する方法であって、
前記ェ ビタ キ シ ャ ル膜を形成する際の成膜空間内の雰囲気中の H 20 , C Oおよび C 02 の分圧を各々 1. 0 X 1 0— 8Torr 以下- . と し、 基体温度を 4 0 0 で乃至 7 0 0 で の範西に して成腠する こ とを特徴とするェ ビタ キ シ ャ ル膜の形成方法。
(2) 前記ェ ピタキ シ ャ ル膜の成县は、 ウ ル ト ラ ク リ ー ンガス供袷シ ステムから導入する雰囲気中で行う請求項(1)に記載のヱ ビタ キ シ ャ ル膜の形成方法。
(3) 前記ヱ ピタ キ シ ャ ル膜の成县は、 オ イ ルフ リ ー超髙真空排気シ ステムによ り減圧した雰囲気中で行う請求項(I)および(2)に記載の ェ ビタ キ シ ャ ル膜の形成方法。
(4) 前記基体に も高周波電力を印加する請求項(1)に記載の !: ピタ キ シ ャ ル膜の形成方法。
(5) 前記基体に印加する高周波電力は、 前記タ ーゲッ ト に印加する 高周波電力よ り髙ぃ周波数の高周波電力である請求項 (4)に記載の ェ ピタ キ シ ャ ル膜の形成方法。
(6) 前記ウ ル ト ラ ク リ ー ンガ ス供給シ ス テ ム か ら導入する雰囲気は、 A r及びノ又は H e を主な成分とする請求項 (2)に記載のェ ピタ キ シ ャ ル膜の形成方法。
(7) 前記雰囲気と して供給する A r及び 又は H e は不純物と して の H20, C Oおよび C 02 の濃度がそれぞれ l p p m以下であ る請求項 (6)に記載のヱ ピタ キ シ ャ ル膜の形成方法。
(8) タ 一ゲッ ト に D C電圧と、. プラ ズマ生起のための高周波電力と を印加し、 D C電圧の印加され'た基体上にェ ピタ キシ ャ ル膜をス ノ、'ッ タ リ ン.グ法によ り形成する方法であ って、 前記ェ ピタ キシ -ャル膜を形成する際の成膜空間內の雰囲気中の E z 0 , C 0および C 02 の分圧を各々 1. 0 X 1 0— 8Torr 以下 と し、 基体温度を 4 0 0 で乃至 7 0 0 での範囲と した前記基体に 高周波電力を印加して成膜する こ とを特徴とするェ ピタキシ ャ ル 膜の形成方法。
(9) . 前記ヱ ビタ キ シ ャ ル膜の成县は、 ウ ル ト ラ ク リ ー ンガス供袷シ ステムから導入する雰囲気中で行う請求項 (8)に記載のヱ ビタキシ ャル膜の形成方法。
αο) 前記ヱ ピタキシ ャ ル膜の成县は、 .オ イ ルフ リ一超高真空排気シ ステムによ り減圧した雰囲気中で行う請求項(8)および(9)に記載の ェ ピタ キ シ ャ ル膜の形成方法。
αΐ) 前記ウ ル ト ラ ク リ 一 ンガス供給シ ス テ ム か ら導入する雰囲気は
A r 及び 又は H e を主な成分とする請求項 (9)に記載のェ ピタキ シャ ル膜の形成方法。
02) 前記雰西気と して供袷する A r及び/"又は H e は不純物と して の H 20 , C Oおよび C 02 の濃度がそれぞれ I p p m以下であ る請求項 ωに記載のヱ ビタ キ シ ャ ル膜の形成方法。
PCT/JP1990/001633 1989-12-15 1990-12-14 Process for forming epitaxial film WO1991009161A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69027206T DE69027206T2 (de) 1989-12-15 1990-12-14 Verfahren zur bildung von epitaxialschichten
EP91902010A EP0458991B1 (en) 1989-12-15 1990-12-14 Process for forming epitaxial film
US08/468,233 US5849163A (en) 1989-12-15 1995-06-06 Process for formation of epitaxial film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1/325442 1989-12-15
JP1325442A JP2758948B2 (ja) 1989-12-15 1989-12-15 薄膜形成方法

Publications (1)

Publication Number Publication Date
WO1991009161A1 true WO1991009161A1 (en) 1991-06-27

Family

ID=18176908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1990/001633 WO1991009161A1 (en) 1989-12-15 1990-12-14 Process for forming epitaxial film

Country Status (5)

Country Link
US (1) US5849163A (ja)
EP (1) EP0458991B1 (ja)
JP (1) JP2758948B2 (ja)
DE (1) DE69027206T2 (ja)
WO (1) WO1991009161A1 (ja)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653137A (ja) * 1992-07-31 1994-02-25 Canon Inc 水素化アモルファスシリコン膜の形成方法
JPH06177039A (ja) * 1992-12-07 1994-06-24 Canon Inc エピタキシャル膜の形成方法
US6022458A (en) * 1992-12-07 2000-02-08 Canon Kabushiki Kaisha Method of production of a semiconductor substrate
JP3351843B2 (ja) * 1993-02-24 2002-12-03 忠弘 大見 成膜方法
JPH06349746A (ja) * 1993-06-11 1994-12-22 Tadahiro Omi 半導体装置及びその製造方法
US7469558B2 (en) 2001-07-10 2008-12-30 Springworks, Llc As-deposited planar optical waveguides with low scattering loss and methods for their manufacture
US7404877B2 (en) 2001-11-09 2008-07-29 Springworks, Llc Low temperature zirconia based thermal barrier layer by PVD
US7378356B2 (en) 2002-03-16 2008-05-27 Springworks, Llc Biased pulse DC reactive sputtering of oxide films
US6884327B2 (en) 2002-03-16 2005-04-26 Tao Pan Mode size converter for a planar waveguide
US8431264B2 (en) 2002-08-09 2013-04-30 Infinite Power Solutions, Inc. Hybrid thin-film battery
US7993773B2 (en) 2002-08-09 2011-08-09 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8394522B2 (en) 2002-08-09 2013-03-12 Infinite Power Solutions, Inc. Robust metal film encapsulation
US8445130B2 (en) 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8236443B2 (en) 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
US8404376B2 (en) 2002-08-09 2013-03-26 Infinite Power Solutions, Inc. Metal film encapsulation
US20070264564A1 (en) 2006-03-16 2007-11-15 Infinite Power Solutions, Inc. Thin film battery on an integrated circuit or circuit board and method thereof
US8021778B2 (en) 2002-08-09 2011-09-20 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US7826702B2 (en) 2002-08-27 2010-11-02 Springworks, Llc Optically coupling into highly uniform waveguides
WO2004077519A2 (en) 2003-02-27 2004-09-10 Mukundan Narasimhan Dielectric barrier layer films
JP4581332B2 (ja) * 2003-03-31 2010-11-17 Tdk株式会社 ベータ鉄シリサイド領域の作製方法
US7238628B2 (en) 2003-05-23 2007-07-03 Symmorphix, Inc. Energy conversion and storage films and devices by physical vapor deposition of titanium and titanium oxides and sub-oxides
US8728285B2 (en) 2003-05-23 2014-05-20 Demaray, Llc Transparent conductive oxides
KR101021536B1 (ko) 2004-12-08 2011-03-16 섬모픽스, 인코포레이티드 LiCoO2의 증착
US7959769B2 (en) 2004-12-08 2011-06-14 Infinite Power Solutions, Inc. Deposition of LiCoO2
US7244344B2 (en) * 2005-02-03 2007-07-17 Applied Materials, Inc. Physical vapor deposition plasma reactor with VHF source power applied through the workpiece
US7838133B2 (en) 2005-09-02 2010-11-23 Springworks, Llc Deposition of perovskite and other compound ceramic films for dielectric applications
JP4142705B2 (ja) 2006-09-28 2008-09-03 富士フイルム株式会社 成膜方法、圧電膜、圧電素子、及び液体吐出装置
EP1905867A1 (en) * 2006-09-28 2008-04-02 Fujifilm Corporation Process for forming a film, piezoelectric film, and piezoelectric device
US8062708B2 (en) 2006-09-29 2011-11-22 Infinite Power Solutions, Inc. Masking of and material constraint for depositing battery layers on flexible substrates
US8197781B2 (en) 2006-11-07 2012-06-12 Infinite Power Solutions, Inc. Sputtering target of Li3PO4 and method for producing same
US8268488B2 (en) 2007-12-21 2012-09-18 Infinite Power Solutions, Inc. Thin film electrolyte for thin film batteries
TWI441937B (zh) 2007-12-21 2014-06-21 Infinite Power Solutions Inc 形成用於電解質薄膜之濺鍍靶材的方法
KR101606183B1 (ko) 2008-01-11 2016-03-25 사푸라스트 리써치 엘엘씨 박막 배터리 및 기타 소자를 위한 박막 캡슐화
US20090220801A1 (en) * 2008-02-29 2009-09-03 Brian Wagner Method and apparatus for growth of high purity 6h-sic single crystal
EP2266183B1 (en) 2008-04-02 2018-12-12 Sapurast Research LLC Passive over/under voltage control and protection for energy storage devices associated with energy harvesting
JP5088792B2 (ja) * 2008-04-02 2012-12-05 富士フイルム株式会社 Zn含有複合酸化物膜の成膜方法
JP5290610B2 (ja) * 2008-04-09 2013-09-18 富士フイルム株式会社 圧電膜の成膜方法
EP2319101B1 (en) 2008-08-11 2015-11-04 Sapurast Research LLC Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
KR101613671B1 (ko) 2008-09-12 2016-04-19 사푸라스트 리써치 엘엘씨 전자기 에너지에 의해 데이터 통신을 하는 통합 도전성 표면을 가진 에너지 장치 및 그 통신 방법
US8508193B2 (en) 2008-10-08 2013-08-13 Infinite Power Solutions, Inc. Environmentally-powered wireless sensor module
EP2474056B1 (en) 2009-09-01 2016-05-04 Sapurast Research LLC Printed circuit board with integrated thin film battery
TW201110831A (en) * 2009-09-03 2011-03-16 Chunghwa Picture Tubes Ltd Plasma apparatus and method of fabricating nano-crystalline silicon thin film
WO2011156392A1 (en) 2010-06-07 2011-12-15 Infinite Power Solutions, Inc. Rechargeable, high-density electrochemical device
JP2012229490A (ja) * 2012-07-12 2012-11-22 Fujifilm Corp 成膜方法
JP7148874B2 (ja) * 2017-07-14 2022-10-06 戸田工業株式会社 ニッケル酸リチウム複合酸化物の正極活物質粒子粉末及び非水電解質二次電池
US10964590B2 (en) * 2017-11-15 2021-03-30 Taiwan Semiconductor Manufacturing Co., Ltd. Contact metallization process

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3429899A1 (de) * 1983-08-16 1985-03-07 Canon K.K., Tokio/Tokyo Verfahren zur bildung eines abscheidungsfilms
EP0202572B1 (en) * 1985-05-13 1993-12-15 Nippon Telegraph And Telephone Corporation Method for forming a planarized aluminium thin film
US4800173A (en) * 1986-02-20 1989-01-24 Canon Kabushiki Kaisha Process for preparing Si or Ge epitaxial film using fluorine oxidant
JPH0798521B2 (ja) * 1986-08-20 1995-10-25 澁谷工業株式会社 回転式重量充填装置
US4756810A (en) * 1986-12-04 1988-07-12 Machine Technology, Inc. Deposition and planarizing methods and apparatus
JP2602276B2 (ja) * 1987-06-30 1997-04-23 株式会社日立製作所 スパツタリング方法とその装置
JPH06326024A (ja) * 1993-05-10 1994-11-25 Canon Inc 半導体基板の製造方法及び非晶質堆積膜の形成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S. Kinbara and another, "Applied Physics Compilation No. 3, Thin Membrane", October 30, 1982 (30. 10. 82), Shokabo p. 18-19. *
See also references of EP0458991A4 *

Also Published As

Publication number Publication date
EP0458991A4 (en) 1993-12-22
DE69027206T2 (de) 1996-10-31
US5849163A (en) 1998-12-15
JP2758948B2 (ja) 1998-05-28
JPH03187996A (ja) 1991-08-15
EP0458991A1 (en) 1991-12-04
EP0458991B1 (en) 1996-05-29
DE69027206D1 (de) 1996-07-04

Similar Documents

Publication Publication Date Title
WO1991009161A1 (en) Process for forming epitaxial film
US7449395B2 (en) Method of fabricating a composite substrate with improved electrical properties
WO2020098401A1 (zh) 一种氧化镓半导体结构及其制备方法
TW201707051A (zh) 以可控制薄膜應力在矽基板上沉積電荷捕捉多晶矽薄膜之方法
JP3027951B2 (ja) 半導体装置の製造方法
US7749863B1 (en) Thermal management substrates
US20100221895A1 (en) Surface treatment apparatus and surface treatment method
Ohmi et al. Low‐temperature silicon epitaxy by low‐energy bias sputtering
TW201705382A (zh) 用於絕緣體上半導體結構之製造之熱穩定電荷捕捉層
US20070015373A1 (en) Semiconductor device and method of processing a semiconductor substrate
JP2017041503A (ja) 半導体装置、および、その製造方法
US6638833B1 (en) Process for the fabrication of integrated devices with reduction of damage from plasma
JPH06177039A (ja) エピタキシャル膜の形成方法
CN115295404A (zh) Ga2O3基异质集成pn结的制备方法
CN112038213B (zh) 一种SiC衬底双面生长SiC外延层的方法及应用
JP3241155B2 (ja) 半導体基板の製造方法
JP3216078B2 (ja) 半導体基材及び半導体基材の製造方法
Hultman et al. Growth and electronic properties of epitaxial TiN thin films on 3C-SiC (001) and 6H-SiC (0001) substrates by reactive magnetron sputtering
JP2002270801A (ja) 半導体基板の製造方法及び半導体基板
CN110854062A (zh) 氧化镓半导体结构、mosfet器件及制备方法
JPH03250622A (ja) 半導体薄膜の形成方法
Ghezzo et al. Laterally sealed LOCOS isolation
US5094964A (en) Method for manufacturing a bipolar semiconductor device
CN116013961B (zh) 一种表面自氧化的氮化镓自旋注入结制备方法
KR20200026836A (ko) 반도체 온 절연체 구조의 제조 방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

WWE Wipo information: entry into national phase

Ref document number: 1991902010

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991902010

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1991902010

Country of ref document: EP