WO1991002971A1 - Ultrasonic flaw detector - Google Patents

Ultrasonic flaw detector Download PDF

Info

Publication number
WO1991002971A1
WO1991002971A1 PCT/JP1990/001054 JP9001054W WO9102971A1 WO 1991002971 A1 WO1991002971 A1 WO 1991002971A1 JP 9001054 W JP9001054 W JP 9001054W WO 9102971 A1 WO9102971 A1 WO 9102971A1
Authority
WO
WIPO (PCT)
Prior art keywords
flaw detection
axis
distance
ultrasonic probe
distance sensor
Prior art date
Application number
PCT/JP1990/001054
Other languages
English (en)
French (fr)
Inventor
Kichio Nakajima
Kazuo Honma
Yukio Sumiya
Takeshi Yamaguchi
Hiroshi Inamitsu
Eiji Minamiyama
Original Assignee
Hitachi Construction Machinery Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP1214365A external-priority patent/JP2720077B2/ja
Priority claimed from JP1263418A external-priority patent/JP2812737B2/ja
Application filed by Hitachi Construction Machinery Co., Ltd. filed Critical Hitachi Construction Machinery Co., Ltd.
Priority to US07/793,392 priority Critical patent/US5335547A/en
Publication of WO1991002971A1 publication Critical patent/WO1991002971A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/30Arrangements for calibrating or comparing, e.g. with standard objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Definitions

  • the present invention relates to an apparatus for flaw-detecting an object having a curved surface with an ultrasonic probe.
  • the device disclosed in Conventional Document 1 is capable of detecting an object with a flat surface, but when the surface is curved, the direction of the center axis of the ultrasonic beam can be matched with the normal direction of the object surface. Because of the difficulty of this method, it was not possible to detect a test object with a curved surface.
  • the device disclosed in Conventional Document 2 first measures the shape of the entire subject using a laser range finder, and then scans the ultrasonic probe using the shape data. Inspectors with arbitrary surface shapes can be detected.
  • This type of flaw detector is described in Japanese Patent Application Laid-Open No. Sho 63-309582 and Japanese Patent Application Laid-Open No. Sho 63-3-30953. Things are known.
  • the scanning mechanism needs to scan the surface of the object twice with laser and ultrasonic waves, which requires twice the time required for ultrasonic flaw detection.
  • An object of the present invention is to provide an ultrasonic flaw detection apparatus that performs accurate shape measurement and shortens flaw detection time.
  • the distance sensor means and the ultrasonic probe are integrally coupled so that the distance sensor means scans on a scanning line preceding the ultrasonic probe, and the distance sensor means
  • the shape measurement scanning by the probe and the flaw detection scanning by the ultrasonic probe are performed in parallel.
  • the distance measurement by the distance sensor is reliably performed, and as a result, the attitude of the ultrasonic probe with respect to the inspection point is accurately controlled.
  • the flaw detection of the subject can be performed by one scan, and the efficiency of the flaw detection work is improved.
  • the flaw detection area is divided into a plurality of small areas, a plurality of storage areas are set in a mesh shape in correspondence with each of the small areas, and the shape information in the corresponding flaw detection area is stored in each storage area.
  • the position and orientation of the ultrasonic probe at each flaw detection point are controlled based on the stored shape information.
  • shape information can be calculated for flaw detection points not measured by the distance sensor means, and it is not necessary to match the shape measurement scanning line with the flaw detection scanning line.
  • the flaw detection scanning line can be set freely.
  • a rotary table for rotating the subject is provided, and the flaw detection probe and the distance sensor unit integrally connected as described above are opposed to the peripheral surface of the subject. It is installed and scans while rotating the subject. As a result, it is possible to easily and accurately detect a flaw in a cylindrical object having a complicated peripheral surface.
  • the present invention obtains position command values of a plurality of control points based on shape information obtained in advance, and averages the position command values on each scanning line of the probe for a probe.
  • the speed command values of several control points are also obtained as the average value of the speed command values of each control point.
  • the present invention provides a method for measuring the shape of the surface of a subject while scanning while pointing the distance sensor in the normal direction of the surface of the subject, and when the output of the distance sensor is abnormal, At this time, the computed shape information of the object surface is not stored, and the scanning is advanced by one pitch with the distance sensor means oriented in the normal direction obtained previously. That is what we did. As a result, the subject table If there is a scratch on the surface, the data at that point is excluded.
  • FIG. 1 to 18 illustrate a first embodiment of the present invention
  • FIG. 1 is an overall configuration diagram of a control system.
  • FIG. 2 is a diagram showing details of a mounting structure of a sensor unit having an ultrasonic probe for flaw detection and a probe for distance detection.
  • FIG. 3 is a diagram showing the arrangement of the ultrasonic probe for flaw detection and the probe for distance detection.
  • FIG. 4 is a block diagram showing details of the distance detection circuit.
  • Figure 5 shows the main flow chart.
  • FIG. 6 is a perspective view showing the sensor unit and the subject at the initial position.
  • Fig. 7 is a flow chart showing the shape measurement flow 1.
  • FIG. 8 is a flowchart showing details of the shape measurement flow 2.
  • FIG. 9 is a view for explaining a flaw detection range and a storage area for shape information.
  • FIG. 10 is a perspective view showing the sensor unit during the shape measuring operation.
  • Fig. 11 is a perspective view showing the sensor unit at the start of the flaw detection operation. is there.
  • Fig. 12, Fig. 13 and Fig. 17 are flow charts showing flaw detection operation flows 1, 2, and 3.
  • FIG. 14 is a view for explaining a flaw detection scanning line in a small area in which shape information is stored.
  • FIG. 15 is a diagram for explaining a coefficient d when calculating position data of a control point from shape information of a small area.
  • FIG. 16 is a circuit diagram for explaining the position feedback control and the speed feedback control.
  • FIG. 18 is a diagram for explaining that the flaw detection operation and the shape measurement operation are performed in parallel.
  • FIG. 19 is a diagram showing another arrangement of the ultrasonic probe for flaw detection and the probe for distance detection.
  • FIG. 20 is a diagram for explaining a flaw detection scanning line in a small area in which shape information is stored.
  • FIG. 21 and FIG. 22 illustrate the second embodiment
  • FIG. 21 shows the mounting structure of an ultrasonic probe for flaw detection and another sensor unit having a probe for distance detection. It is a figure showing details.
  • FIG. 22 is a view for explaining a flaw detection scanning line in a small area in which shape information is stored.
  • FIG. 23 to FIG. 25 illustrate the third embodiment
  • FIG. 23 is a block diagram showing a shape measurement flow 1A.
  • Fig. 24 is a flow chart showing the shape measurement flow 2A.
  • Fig. 25 is an example of shape measurement while scanning the surface of the object.
  • FIGS. 26 to 38 illustrate a fourth embodiment of the present invention
  • FIG. 26 is an overall configuration diagram of a control system.
  • FIG. 27 is a diagram showing details of a mounting structure of a sensor unit having an ultrasonic probe for flaw detection and a probe for distance detection.
  • FIG. 28 is a diagram for explaining y o, r a, and D 1.
  • FIG. 29 is a perspective view showing the sensor unit and the subject at the initial position.
  • FIG. 3 is a diagram illustrating a storage area.
  • FIG. 33 is a perspective view showing the sensor unit during a shape measuring operation.
  • FIG. 34 is a perspective view showing the sensor unit at the start of the flaw detection operation.
  • Fig. 35, Fig. 36 and Fig. 38 are flow charts showing the flaw detection operation flow 1A, 2A, 3A.
  • FIG. 37 is a view for explaining a flaw detection scanning line in a small area in which shape information is stored.
  • FIGS. 39 to 41 illustrate a fifth embodiment of the present invention
  • FIG. 39 is a block diagram showing the hardware thereof.
  • FIG. 40 and FIG. 41 are flow charts showing the processing procedure.
  • FIGS. 42 to 47 illustrate the sixth embodiment of the present invention, and
  • FIG. 42 is an overall configuration diagram of a control system.
  • Figure 4.3 is a flowchart for detecting an abnormality in the distance signal.
  • Fig. 44 is a flow chart of the shape measurement flow a-1C.
  • Fig. 45 is a flow chart of the shape measurement flow 2C.
  • Fig. 46 is a flowchart of the distance undetectable compensation control process.
  • Fig. 47 is a flow chart showing the flaw detection operation flow 3C. BEST MODE FOR CARRYING OUT THE INVENTION
  • this flaw detector is, for example, a portal traveling body 2 that is driven by an X-axis driving device 1 in the X-axis direction.
  • a Z-axis arm 7 that moves up and down in the Z-axis direction by a Z-axis drive unit 6 is provided on a bracket 5 integrated with the Y-axis traveling body 4 .
  • the wrist 8 of the robot is attached to the lower end of the Z-axis arm 7.
  • the wrist portion 8 includes a bracket 8A fixed to the lower end of the Z-axis arm 7 and a driving device 8B for rotating the ⁇ -axis provided on the bracket 8A. And a bracket 8C provided on the rotating shaft of the ⁇ - axis driving device 8 mm, and attached to this bracket 8C.
  • a single ultrasonic probe that has a
  • the distance sensor units 10a and 10b can be constituted by, for example, ultrasonic probes, and their detection signals are input to a distance detection circuit 11 shown in FIG.
  • the distance detection circuit 11 is composed of a distance detection circuit 11A for the ultrasonic probe 10a and a distance detection circuit 11B for the ultrasonic probe 10b. Respective circuits 11 A and 1 IB have the same circuit configuration. Transmitter 11 a that transmits ultrasonic signals to ultrasonic probes 10 a and 10 b, and reflection from subject W Ultrasonic transmission
  • the receiver consists of a receiver lib that receives the signal and a timing circuit 11c.
  • the timing circuit 11c is the time between the transmitted signal from the transmitter 11a and the ultrasonic reflected signal from the surface of the subject W. The distance is measured, and the result is output to the control device 12 shown in FIG. 1 as distance detection signals SWA and SWB.
  • the distance M between the ultrasonic probe 10 a or 10 b and the surface of the subject W is
  • control device 12 is a micro processor including a CPU, a ROM, a RAM, and the like. Signals ST and SWA and SWB indicating the time interval from the distance detection circuit 11 are input, and X, ⁇ , Z, ⁇ , and
  • Each axis driving device has, for example, an electric motor.
  • FIG. 5 is a main flow chart of the arithmetic processing executed by the control device 12.
  • step S10 initial processing such as memory is performed in step S10, and then, in step S20, the ultrasonic probe 10a, Position 10b to the control start position.
  • Figure 6 shows the state in which the positioning operation has been completed.
  • the operation proceeds to the shape measurement operation of step S30, and the ultrasonic probes 10a, 10a are determined based on the surface shape data of the subject W known in advance from design specifications and the like.
  • the X-direction scanning is performed a plurality of times at a predetermined pitch in the Y-direction, and at least the actual surface shape data in the range of the distance L shown in Fig.
  • the surface shape of the subject W is Based on the signals SX, SY, sz, S ⁇ , S
  • step S40 the flaw detection operation procedure is started.
  • position information at a plurality of control points for causing the ultrasonic probe 9 to face the inspection point on the object W is described. Is calculated, and the ultrasonic probe 9 takes in the ultrasonic flaw detection signal from the ultrasonic probe 9 into the controller 12 at the timing controlled by each control point.
  • the ultrasonic probes 10a and 10b scan ahead by several lines (distance L in FIG. 3) ahead of the ultrasonic probe 9 by the ultrasonic probe 10a. Calculate the distance between a, 10b and the subject W.
  • the flaw detection point refers to a point at which an ultrasonic signal hits the subject
  • the control point refers to a point at which the ultrasonic probe 9 is positioned a predetermined distance in the normal direction on the flaw detection point.
  • the ultrasonic probe '9 is moved to the end position eight in step S50, and the process is completed.
  • the shape measurement operation and the flaw detection operation L will be described in detail.
  • FIG. 7 shows details of the shape measuring operation of step S30.
  • each axis command value a command value for one scan of each drive device or less (hereinafter referred to as each axis command value) is fetched and stored in memory.
  • Each axis command value for one scan is a data group shown in equations (2) to (6).
  • each axis command value does not require more precision than the command value for flaw detection operation described later, the position of the representative point on one scan line is obtained based on the design data of the subject W, and interpolation is performed between the positions. You can ask for it.
  • the variable N is set to 1 in step S33, and the process proceeds to step S34 to output a scan start command.
  • the system operates at regular intervals.
  • step S3401 it is determined whether or not a scan stop command has been issued in step S3401.
  • the signals SX, SY, SZ, and Sa indicating the current position of each axis described above are taken from each detector, and the current value X of each axis is obtained.
  • step S3343 the distances fia and fib between the ultrasonic probes 10a and 10b and the surface of the subject W are determined by the signals SWA and SWB from the distance detection circuit 11. take in.
  • the signal SX from the detector of each axis drive system in step S 3 4 4, SY, SZ , S ⁇ , the current value of each axis in Step S 3 4 5 takes in S (3: X D, Y D , Z., ct.,
  • FIG. 9 shows an area division for position storage.
  • This storage area is set corresponding to the XY coordinate plane, and the hatched area in the figure is the XY coordinate plane of the subject W.
  • Flaw detection range Position storage area is a little larger region Ri by the flaw detection region, the area (X-axis region Xtl ⁇ Xth 2, Y-axis surrounded by Y tl ⁇ Y th 2) in the X-axis direction (P + 1) Divide and divide in the Y-axis direction (S + 1) to make multiple small areas.
  • the detected position data is stored in the small area
  • the measurement interval by distance measurement is set to be smaller than the division interval of the small area, for example, the position information obtained within one small area can be obtained.
  • the measurement interval is made larger, on the other hand, the corresponding position information will not be stored within one small area, for example, it will be stored every other line.
  • any method can be selected.
  • the probe for flaw detection and the probe for shape measurement are physically driven. Therefore, if the flaw detection probe is oriented in the normal direction, the nearby shape measurement probe will also be directed in a direction close to the normal direction of the distance detection point, and the detected distance data will be reduced. It is easy to obtain it.
  • the ultrasonic probe for flaw detection and the distance sensor are integrally provided on a substrate controlled by three axes of X, ,, and Z, and the ultrasonic probe for flaw detection is provided. Is further controlled by two axes. If such a mechanism is used to measure the shape in parallel with the flaw detection operation, the attitude sensor is controlled independently of the distance sensor and the multiaxially controlled ultrasonic probe. Therefore, if the probe is oriented in the normal direction of the flaw detection point and the distance of the probe from the surface of the subject is controlled to be constant, the measurement point by the distance sensor that can only control three axes changes significantly. In some cases, the shape at a predetermined measurement point cannot be measured. On the other hand, in the present embodiment, such a problem can be solved.
  • step S35 Checks whether one scan in the X direction has been completed.
  • step S35 is repeated, during which the timer interrupt program in Fig. 8 operates at certain time intervals, and the ultrasonic probes 9, 1 As shown in Fig. 10, the bracket 8D combining 0a and 10b is scanned in the X-axis direction. ⁇ Along with this scanning, the storage method described above is used. The X, Y, and Z position coordinates of the surface shape of the subject W are stored.
  • the procedure of the retiming interrupt program shown in FIG. 8 proceeds to step S348, where the last command values in one scan, Xmax, Ymax, Zmax, It takes in ⁇ max and ⁇ max and performs a servo operation, and outputs the operation result to the servo amplifiers 13 X ⁇ l 3) 3.
  • the process proceeds to step S37 in FIG. 7, and it is determined whether the shape measurement operation is completed.
  • the ultrasonic probes 10a and 10b provide Y
  • the surface shape data of the X-direction scanning line preceding by the distance L in the direction is collected, and the scanning control points of the flaw-detecting ultrasonic probe 9 are calculated based on the results. Therefore, the ultrasonic probe 9 is sequentially driven and controlled to a plurality of control points on a certain scanning line in accordance with the position data obtained by such a shape measurement operation to perform the flaw detection of the subject W.
  • the ultrasonic probe 9 At least until the ultrasonic probe 9 reaches the first scanning line of the ultrasonic probe 10a1Ob, that is, the ultrasonic probe 9 is It is necessary to repeat scanning for shape measurement until it moves in the Y direction by the indicated L. Therefore, since one shape measurement scan is not completed, the program moves from step S37 to step S31, and fetches each axis position command for the next one scan, and steps S32 to 37 repeat.
  • the ultrasonic beam of the ultrasonic probe 9 reaches the flaw detection area where the surface shape data of the subject W is stored by the shape measuring operation shown in FIG. At this point, it is determined that the shape measurement operation has been completed, and the program proceeds from step S37 in FIG. 7 to the flaw detection operation in step S40 in FIG.
  • FIG. 12 is a detailed flowchart of the flaw detection operation procedure S40, which is similar to the flow chart of the shape measurement operation in FIG. First, in step S41, each axis position and speed command value for one scan are calculated. The calculation will be described in detail with reference to FIGS. 13 and 14.
  • Fig. 13 is a flow chart of the procedure for calculating each axis position command value for one scan in step S41.
  • Fig. 14 shows the stored values when calculating each axis position command value.
  • FIG. 7 is a diagram for explaining which data of position data on the surface of a subject W is used.
  • the thick solid line in FIG. 14 is a scanning line, and calculates the axis command value of each control point position indicated by O in FIG.
  • the normal vector of the surface of the lysate W near the control point position is calculated in step S411.
  • the control point position of chin in Fig. 14 it is as follows.
  • the normal vector is calculated from the data of the neighboring areas (1, 1), (1, 2), (2, 2), (2, 1) including the first Hata
  • the data of the four areas are obtained.
  • the data of the outer regions (0, 0), (0, 3), (3, 3), (3, 0) will be used.
  • the data of the area (0, 0) is XI, Y1, Zl
  • the data of the area (0, 3) is X2, Y2, ⁇ 2
  • the data of the area (3, 3) is ⁇ 3, ⁇ .
  • Nz ⁇ (Xi- X j) X (Y i + Y j)-(1 5)
  • step S412 the position of the control point is calculated in step S412. Assuming that the position of the control point reference in FIG. 14 is (Xk, Yk, Zk), Xk and Yk are values given for setting the storage area, and are known. Therefore, the position calculation of the control point position in step S412 is a calculation for obtaining Zk.
  • a plane PL including a control point position in a three-dimensional coordinate system is represented by the following plane equation.
  • the normal vector was calculated using the data stored in the areas (0, 0), (0, 3), (3, 3), and (3, 0) in FIG.
  • the stored data used for the calculation is closer to the true value near the control point position indicated by Hata. Therefore, the regions (1, 1),
  • step S413 the position command value of each axis is calculated and stored.
  • the distance between the ultrasonic probe 9 and the surface of the subject W is ⁇ .
  • the position command value (Xr, ⁇ r, Zr, ar, ⁇ r) of each axis is calculated and stored in the following (7. Equation).
  • Y r f s (k, Yk, Zk, Nx, Ny, Nz, ⁇ .)... (2 1)
  • Zr f 6 (Xk, Yk, Zk, x, Ny, Nz, ⁇ .)... (22)
  • step S414 it is determined whether the calculation for one scan is completed.
  • the process returns to step S 4 11 and returns to the vicinity of the next 0 control point. Perform normal vector calculation.
  • the processing up to the control point positions indicated by Hata to ® marks in FIG. 14 is performed by sequentially repeating the processing of steps S411 to 414.
  • each axis position command value for one scan is a data group represented by equations (25) and (29).
  • ⁇ r ( ⁇ rs, ⁇ ⁇ !, ⁇ ⁇ a m,... rma)--(2 8)
  • command values of the respective control points (X rs, Y rs, Z rs, rs, ⁇ rs), (X r x, Y ⁇ , ⁇ ⁇ , ⁇ ⁇ , ⁇ ⁇ ), « is a calculation error It contains some errors. Therefore, the position command values are averaged in step S415.
  • the averaging is performed, for example, by the following equation.
  • ⁇ n ( ⁇ rn-i + ⁇ m + ⁇ rn + 1 ) / 3
  • each axis position command value for one scan is represented by a data group of the same format as expressed by equations (2) to (6). Become.
  • position feedback control and velocity feedforward control are employed for the purpose of improving the trajectory accuracy of the ultrasonic probe 9. That is, as shown in Fig. 16, the deviation between the position command value Xins and the detected current position Xdet is calculated by the deviation device 21 and the speed command value is multiplied by the coefficient k by the coefficient device 22. Xerr. Further, the sum of the speed command values ins and ierr is calculated by the adder 23 and input to the servo amplifiers 13A to 13P.
  • step S416 in FIG. 13 the calculation and averaging of the speed command value for the above-mentioned speed feedforward are performed.
  • the speed command value is calculated by, for example, the following equations (35) to (39).
  • ⁇ rn ( ⁇ rn + 1 -Y rn) / ⁇ T... (3 6)
  • the speed command value is averaged as in the case of the position command value. The averaging is performed, for example, as in the following equations (45) to (49).
  • X n (rn-! + X rn + X rn + 1 ) / 3-(45)
  • Y n ( ⁇ rn-! + ⁇ rn + ⁇ rn + 1 ) / 3-(4 6)
  • Z n (Z rn-i + Z rn + Z rn +1 ) / 3-(4 7)
  • ⁇ n (ct rn-i -f- a rn + a rn + x ) / 3 ⁇ (4 8)
  • ⁇ n ( ⁇ rn-i + rn + ⁇ rn + 1 ) / 3-(9)
  • ⁇ r ( ⁇ rs, ⁇ rn,... ⁇ rmax) (54)
  • the averaging operation described above is performed in step S416 to complete the program in FIG. 1 2 Move to step S42 in the figure.
  • steps S415 and S416 may be omitted.
  • steps S42 to S45 in FIG. 12 is an averaged expression of the position and velocity obtained in steps S415 and S416 in FIG. This is performed using a data group of command values represented by (40) to (44) and equations (50) to (54). Then, in the same manner as the shape measurement operation, steps S42 and S43 are executed, and when a scan start command is output in step S44, the timer assignment in FIG. 17 is performed. Program is started.
  • step S444 of the program shown in Fig. 17 it is determined whether or not scanning has stopped. If the result is negative, in step S444, the N-th axis position command value is acquired. And a servo operation and output are performed. This is performed by the position feedback control and the speed feedback control shown in FIG. Then, the process proceeds to step S444, where the output of the ultrasonic probe 9 is acquired, and the flaw detection result is recorded as data of the control point position (Xm, YH!) To the recording device 15. output I do.
  • steps S444 to S448 similar to steps S344 to S347 in FIG. 8 are sequentially performed, and as shown in FIG. In parallel with the flaw detection operation, the shape of the preceding scanning line (indicated by the broken line) is measured.
  • step S45 the process advances from step S45 to S46 to output a travel stop command. If it is determined in step S441 that scanning is to be stopped, in step S449, the acquisition of the Nmax-th axis position command value, the servo operation, and the output are performed. Can go. Then, the process proceeds to step S47 to check whether the inspection operation is completed. That is, it is checked whether or not the entire area surrounded by the thick solid line in FIG. 9 has been scanned. If not, the process returns to step S41, and the next one scan, for example, 4 Calculate each axis position command value of the line marked with X in the figure.
  • step S47 After scanning the entire flaw detection area shown in FIG. 9, the program moves from step S47 to step S50 in FIG. Position each axis to the position and complete the control.
  • the measurement of the surface shape of the subject W and the flaw detection operation are performed as follows.
  • the position and orientation of the distance sensor unit are controlled based on the data of the surface shape of the object given in advance, and the ultrasonic wave signal for distance detection is emitted toward the object. Then, the distance from the reflected wave to the distance measurement point on the surface of the object is measured, and the distance data and the current position of the distance sensor unit are used to calculate the object distance.
  • the shape information of the upper measurement point that is, shape measurement data is calculated.
  • the shape measurement data is stored as data of any one of the small areas divided on the XY plane. However, only one data is stored in the small area.
  • the position command value (position and orientation of the probe) of the control point of the probe 9 is obtained from the surface shape data of the subject W stored in each small area.
  • the position command values of each control point are averaged by averaging a plurality of position command values.
  • an ultrasonic flaw detection signal is emitted from the flaw detection probe to detect the flaw in the subject.
  • the wound probe receives the reflected signal from the subject, performs a known signal processing on the received signal, and then obtains the data after the signal processing together with the control point position data. Recorded in the recording device 15.
  • the distance sensor unit A sound wave signal is emitted toward the subject, and the shape measurement data on the scanning line preceding the flaw detection probe by a distance L is collected.
  • the shape measurement data is used to control the position and attitude of the flaw detector when the flaw detector reaches or near the scanning line.
  • the attitude control can be performed by integrally connecting the probe for flaw detection and the probe as the distance sensor, the distance measurement by the distance sensor is reliably performed. Since the calculation in the normal direction is performed more accurately based on the data obtained, the flaw detection accuracy is improved overall.
  • the error of the position command value used for position feedback and the speed command value used for speed feedforward is reduced, and the ultrasonic probe 9 The sound beam is correctly directed to the normal direction of the surface of the test object W, and highly accurate flaw detection is performed.
  • velocity feedforward control is adopted, the time required for the ultrasonic probe to move to each control point is reduced, and the trajectory accuracy is high.
  • the position storage area including the flaw detection area is divided into small areas in the XY plane, and only one position data is stored in each area, and an arbitrary flaw detection scanning line can be stored based on the position data of each small area.
  • the control point of the probe is determined.
  • the memory capacity can be reduced. Mouth.
  • a scanning line different from the shape measurement scanning line can be freely set for flaw detection. As a result, the degree of freedom of the flaw detection operation is increased, and the arrangement of the flaw detection probe and the distance measurement probe is not restricted.
  • the surface of the subject is divided into regions and the surface positions are stored, so even if the surface is damaged at a certain location and the distance cannot be detected, the position cannot be calculated.
  • the position of the point can be interpreted from the current position data and is not affected by surface scratches.
  • the normal vector is calculated from four stored data including ⁇ and 0 in Fig. 14.
  • the normal vector may be obtained from three stored data as long as the area ⁇ 'data includes Hata ⁇ 0.
  • the normal vector may be obtained from four or more stored data.
  • the probe for flaw detection was directed in the direction of the normal to the surface of the test object.
  • the probe may be pointed and controlled to detect flaws.
  • the number of the ultrasonic probes (10a, 10b) for detecting the position of the surface of the subject W is two, as shown in FIG.
  • the same calculations as those of the equations (7) to (9) are only added, and it is clear that the present invention holds.
  • control point position is stored in the storage area. Although set at the boundary of the area, it may be set in the storage area as shown in FIG. However, in this case, the position calculation of the control point position in step S412 (FIG. 13) is performed using only the storage data of the area (2, 1) in the case of Hata in FIG. 20, for example.
  • At least two ultrasonic probes (10a, 10b) for detecting the position of the surface of the subject W are provided. Even when the ultrasonic probe 9 scans the line indicated by the thick solid line, the position of the surface of the subject W in the area of the 0, 1, P-1, P rows outside the flaw detection point is detected. it can.
  • FIGS. 21 and 22 show a second embodiment of the present invention.
  • Fig. 21 shows a side view of the wrist
  • Fig. 22 shows the stored position data of the surface of the subject W when calculating each axis position command value, as in Fig. 14. It is a figure for explaining what data is used.
  • one ultrasonic probe for shape measurement for detecting the position of the surface of the subject W is used, and other configurations are the same as those of the first embodiment.
  • the problem that arises when one ultrasonic contact is used to detect the position of the surface of the object W is that the axis position command value for one scan in step S41 (Fig. 12) is This is the operation part. That is, as described in the description of the first embodiment, if there are two (10 a, 10 b) ultrasonic probes for shape measurement, scanning of the ultrasonic probe 9 in the X direction ( Flaw detection) Even if the range is from ⁇ to ®, 0, 1, ⁇ — 1, The position of the surface of the subject W in the region of the P row can be detected.
  • rollers the shape measuring ultrasonic probe is a single, scratches ultrasonic sound Namisagu probe 9 probe from Xtl indicated by the second 2 Figure and; was assumed to Xth scanned between 2 (testing) At this time, the position data in the area outside the points B and E indicated by ⁇ cannot be obtained, and the calculation of the axis position command values for the control points indicated by ⁇ cannot be performed in the same manner as described above. Next, a method of calculating each axis position command value indicated by the mark ⁇ will be described.
  • the position ⁇ of the control point ⁇ can be obtained.
  • the position ⁇ of the control point B is calculated in the same manner as described above, using two pieces of storage data in the area (1, 0) and two pieces of data in the area (2, 0) as an operation to obtain the coefficient d. That is, the data of the areas (1, 0) and (2, 0) are put in the two areas on the left side of the control point B, and the coefficient d is obtained. This is called an extrapolation operation.
  • control points D and E can be calculated in the same way as the calculation order described above, as in the normal vector of control point C.
  • the number of ultrasonic probes for detecting the position of the surface of the subject W can be reduced to one, so that the apparatus is inexpensive.
  • FIGS. 23 to 25 show a third embodiment of the present invention.
  • each axis position command value used during the shape measurement operation is known in advance, but in the third embodiment, each axis position command value of the control start position is This is an example of a case where only the value is known and the shape measurement operation is performed while detecting the shape of the subject W.
  • the device configuration is the same as that of the first embodiment shown in FIGS. 1 to 4, and the control contents of the control device 12 are different.
  • FIG. 23 corresponds to the flowchart of the shape measuring operation of FIG. 7 of the first embodiment
  • FIG. 24 corresponds to the timer interrupt program of FIG.
  • FIG. 25 is a state diagram of the ultrasonic probes 10a and 10b for explaining the operation of the third embodiment.
  • step S31A the ultrasonic After positioning the probes 10a and 10b, the scan start command is output in step S34, and the timer interrupt program shown in Fig. 24 is started.
  • the positions of the surface of the subject W calculated in the same manner as described above are stored in steps S 341 to S 346. The above description is the same as in the first embodiment.
  • each axis position command value a method of calculating each axis position command value will be described. It is assumed that the surface of the subject W does not change its normal in the Y-axis direction orthogonal to the scanning direction (X-axis direction), and the X, Z, and ⁇ axes may be controlled. If the change in the normal in the X-axis direction is small, the scanning direction may be set to the ⁇ -axis direction.
  • the state I in FIG. 25 is, for example, a state in which the positioning to the scanning start point has been completed, and the distance between the ultrasonic probes 10a and 10b and the surface of the subject W is equal.
  • fi r (fi a 1 + fi b 1 ) / 2 ... (5 5).
  • fi r is the average of fi and fi bi, and is the control command value as the target value of the distance between the ultrasonic probes 10a and 10b and the surface of the subject W. . Therefore, in the state of I, the center line of the bracket 8D is correctly oriented in the normal direction, and the distance from the surface of the subject W is also in accordance with the control command value.
  • step S1347 the calculation of the angle ⁇ is first performed in step S1347.
  • ar is the ⁇ -axis position command value, ⁇ . Is the current position of the ⁇ axis.
  • step S35 in FIG. 23 the program procedure proceeds to step S35 in FIG. 23 to check whether one run has been completed.
  • This determination, X a or X b calculated in equation (7) or formula (1 0) is carried out in whether a value greater than X th 2 yo in Figure 9. However, when scanning in reverse, it is determined whether the value is smaller than Xtl.
  • the ⁇ -axis position command value (T ar can be obtained by the following equation.
  • the X and Z axes may be moved in the direction of arrow A in FIG.
  • the image is rotated by an angle ⁇ about the point 0.
  • the state of ⁇ in FIG. 25 is obtained. If this the correction amount ⁇ chi 3, and ⁇ ⁇ 3, X, position command value of the Zeta axis becomes the following equation.
  • step S 1 3 4 Process 7 and terminate the timer interrupt program.
  • the processing of the other parts is the same as in the first embodiment.
  • the present invention since it is not necessary to calculate in advance each axis position command value at the time of the shape measurement operation before shifting to the flaw detection / shape measurement operation, the present invention can be applied to an object having no design data. Becomes easier.
  • FIG. 26 is an overall configuration diagram of the fourth embodiment, and the same parts as those in FIG. 1 are denoted by the same reference numerals.
  • a columnar subject W is placed on a turntable TB that rotates around the center of cultivation in the Z-axis direction, and an ultrasonic probe 10 for distance detection and an ultrasonic probe 9 for flaw detection are placed. It is placed on the wrist 8 facing the peripheral surface of the subject W.
  • the wrist portion 8 includes a drive device 8 B for P-axis rotation provided in a housing 8 A fixed to the lower end of the Z-axis arm 7, and a (3-axis drive device).
  • a bracket 8C provided on the rotating shaft of the device 8B, an ⁇ -axis rotating device 8 ⁇ mounted on the bracket 8C, and a bracket 8D mounted on the ⁇ -rotating shaft
  • One ultrasonic probe 9 for flaw detection of the subject W on the bracket 8D and one distance sensor unit 10 for detecting the surface position of the subject W are provided.
  • reference numeral 16 denotes a driving device for rotating the turntable T B, which controls the rotation angle of the return table T B by a command signal from the control device 12.
  • Reference numeral 17 denotes an angle detector built in the damper 16, and the angle signal Sy is input to the controller 12.
  • the center position of the turn table TB is set as the coordinate origin 0, and yo, ya, and Dfi are defined as shown in FIG.
  • yo is the angle between the detection direction of distance sensor unit 10 at any time and the X axis
  • ya is the ultrasonic signal from distance sensor unit 10 at that time on the surface of subject W.
  • D fi is the measurement point and coordinates indicated by (Xa, Ya, Za). This is the distance from the origin.
  • the main flowchart of the arithmetic processing executed by the control device 12 is the same as that in FIG.
  • step S10 initial processing such as memory is performed in step S10, and then the ultrasonic probe 10 is positioned at the control start position in step S20.
  • the state where the positioning operation is completed is shown in Fig. 29.
  • the operation proceeds to the shape measurement operation of step S30, and the surface shape data of the subject W known in advance from design specifications and the like.
  • the ultrasonic probe 10 in the normal direction on the measurement point of the subject W based on Then, the turntable TB is rotated and the surface of the subject W is rotationally scanned. This rotational scanning is performed a plurality of times at a predetermined pitch in the Z direction, and at least the surface shape data in the range of the distance L shown in Fig. 27 is obtained in more detail than the design data given in advance prior to the flaw detection.
  • the surface shape of the subject W is determined based on the signals SX, SY, SZ, Sa, S from the position or angle detectors built in each axis driving device and the signal SW from the ultrasonic probe 10. Calculate for each scanning line. The detailed procedure is shown in Figure 30.
  • step S40 the procedure proceeds to the flaw detection operation procedure.
  • positions at a plurality of control points for causing the ultrasonic probe 9 to face a flaw detection point on the subject W are determined.
  • the position information is calculated, and the ultrasonic probe 9 receives the ultrasonic inspection signal from the ultrasonic probe 9 into the control device 12 at a timing controlled by each control point.
  • the ultrasonic probe 10 scanning several lines ahead of the ultrasonic probe 9 (the distance L in FIG. 27) and the ultrasonic probe 10 and the subject are scanned.
  • the distance to W is calculated, and the surface shape data of the pre-scanning line is collected together with the position data from the position or angle detector described above. Then, when the ultrasonic probe 9 reaches the area where the surface shape data is collected in parallel with the flaw detection operation, the position information of the control point of the ultrasonic probe 9 is calculated from the collected data. Perform flaw detection. The detailed procedure is shown in Figure 35.
  • the ultrasonic probe 9 is moved to the end position in step S50, and the process ends.
  • the narration measurement operation and the flaw detection operation will be described in detail. The description of the same procedure as in the first embodiment is omitted.
  • FIG. 30 shows details of the shape measuring operation of step S30 in the main flow shown in FIG.
  • each axis command value a command value for one till of each drive device is fetched and stored in memory.
  • Each axis command value for one rotation is a data group shown in the following equation corresponding to equations (2) to (6) in the first embodiment.
  • Xr (XS, XX,..., X ⁇ ,... ⁇ ⁇ , Xmax)... (63)
  • Z r ( ⁇ S, ⁇ 1 t..., z ⁇ , ... ⁇ , Z max)... (65)
  • ⁇ r ( ⁇ S, ⁇ 1,..., ⁇ ⁇ ,..., a max ).
  • ⁇ ⁇ ( ⁇ S, ⁇ 1 t..., ⁇ ⁇ ,... ⁇ , ⁇ max)... (67)
  • yr (ys, ⁇ XJ..., y ⁇ , ⁇ y max; ⁇ ⁇ (68) where yr is the angle command value of the turntable TB.
  • the variable N is set to 1 in step S33, and the process proceeds to step S34 to output the subject rotation command.
  • Embedded program runs at regular intervals. The difference between the timer interrupt program shown in Fig. 31 and Fig. 8 is that it is determined in step S341B whether rotation of the subject is stopped, and that the angular position ⁇ of the turntable TB is determined. about The point is that detection and arithmetic processing are performed.
  • step S3344 calculates the difference between the y D and the command value, performs Wayurusa Ichibo operation to be said that multiplying a coefficient in the deviation, the servo amplifier 1 the result of operation in the second 6 Figure 3 ⁇ to 13 ⁇ , output to 13 T.
  • This causes the distance sensor unit 10 to move to the commanded first position. In the normal direction of the surface of the measurement point on the object W.
  • step S3343 the distance ⁇ a between the ultrasonic probe 10 and the surface of the object W is determined in step S3344.
  • the signals SX, SY, SZ, Set, S ⁇ , and Sy from the detector of the axis driving device are fetched, and the current values X, ⁇ , ⁇ , ,, and ⁇ of each axis are obtained in step S345. 3.
  • ⁇ 3 ( ⁇ ., Y D , ⁇ ., ⁇ ., Fi a)... (69)
  • Ya f 2 (X., Y., Z., a., Fi a)...
  • Z a fa (X., Y., Z., ct.,, ⁇ a)... (71)
  • ya f 4 (Xa, Ya, ⁇ 0- (72)
  • the length D fl from the Z-axis coordinate axis of the point on the surface of the subject W irradiated with the ultrasonic beam is calculated by the following equation. .
  • Fig. 32 shows the area division for position storage in the same way as Fig. 9, except that the horizontal axis is the angle y of the turntable TB and the vertical axis is the Z-axis coordinate. This is the point of the contents stored in each storage area.
  • the hatched area in the figure is the flaw detection range of the subject W at the Z coordinate.
  • Position storage area is a little larger region Ri by the flaw detection region, the region (y axis 0 ⁇ 3 6 0 °, Z-axis is a region surrounded by the Z tl ⁇ Z th 2) to the y-axis direction ( P + 1) division and (S + 1) division in the Z-axis direction into a plurality of small areas.
  • step S3477 in FIG. 31 adds 1 to the variable N, that is, ends as N-2.
  • step S35B It is determined whether or not one rotation scan has been completed based on whether (max + 1) or not, and step S35B is repeated until it is completed.
  • the timer interruption program operates, and the subject W is rotated and scanned by the turntable TB as shown in FIG. 33. Along with this scanning, D ⁇ , ⁇ , and ⁇ position coordinate forces of the surface shape of the subject W are recorded by the storage method described above.
  • step S36B the program moves from step S35B to step S36B, and outputs a rotation stop command.
  • step S37 in FIG. 31 determines whether or not the shape measuring operation has been completed.
  • the ultrasonic probe 10 collects surface shape data on the rotary scanning line preceding by the distance L in the Z direction, and based on the result, The scanning control point of the flaw detection ultrasonic probe 9 is calculated. Accordingly, the rotational scanning for shape measurement is repeated until the ultrasonic probe 9 moves downward by L in the Z direction shown in FIG. 27.
  • the ultrasonic beam of the ultrasonic probe 9 is used for the flaw detection in which the surface shape data of the subject W is stored by the shape measuring operation shown in FIG.
  • the program proceeds to the step shown in Fig. 30.
  • step S4 From S37, the main flow chart shown in Fig. 5, step S4
  • FIG. 35 is a detailed flowchart of the flaw detection operation processing procedure S40, which is a process similar to the flowchart of the shape measurement operation in FIG. First, in step S41A, each axis position command value for one rotation scan of the probe for flaw detection 9 is calculated. The calculation will be described with reference to FIGS. 36 and 37.
  • FIG. 36 shows one rotation scan at step S41A in Fig. 35.
  • the flowchart of the calculation procedure for each axis position command value for each minute is shown in FIG. 37.
  • FIG. 37 When calculating each axis position command value, which data among the stored position data on the surface of the subject w is used when calculating each axis position command value. It is a figure explaining whether to use. Each figure is equivalent to FIG. 13 and FIG. 14 of 1st Example.
  • the thick solid line in FIG. 37 is the scanning line for flaw detection by the ultrasonic probe 9, and the processing in FIG. 37 is for calculating each axis command value at the control point position indicated by Hata to ®. is there.
  • step S411 the normal vector on the surface of the subject W near the control point position is calculated in the same manner as in the first embodiment.
  • N x ⁇ (Y i- Y j) X (Z i + Z j)... (1 3)
  • Nz ⁇ (Xi- X j) X (Y i + Y j)... (15)
  • X1 to X4 and Y1 to Y4 were calculated from the angle Ya and the length Dfi by the following equation before calculating the normal vector.
  • step S412 the position of the control point is calculated in step S412.
  • the position of the control point in Fig. 37 be (Xk, Yk, Zk)
  • position Xk of Qin is the first control point is determined to cormorant good the next.
  • step S4 13 the procedure of the program shown in Fig. 36 shifts to step S4 13 to calculate and store the position command value of each axis.
  • the distance between the ultrasonic probe 9 and the table of the subject W is ⁇ .
  • the position command values ( ⁇ ,, ⁇ ⁇ , ⁇ ⁇ , ⁇ ⁇ , ⁇ ⁇ ) of each axis are calculated from the following relational expressions and stored.
  • each axis position command value for one rotation scan is a data group represented by equations (82) to (87).
  • steps S42 and S43 are executed, and when the object rotation command, that is, the scan start command is output in step S44A, the data shown in FIG. The ima interrupt program is started.
  • the difference between the timer interrupt program in Fig. 38 and Fig. 17 is that step S441A determines whether the rotation of the subject is stopped, and that step S4 4 3 flaw detection signal output by the A is the point is for the control point position (Z K, y ⁇ ).
  • step S4441A If it is determined in step S4441A that the rotation stop command has not been output in step S4441A of the program in FIG. And servo calculation and output are performed. Then, the process proceeds to step S444, where the output of the ultrasonic probe 9 is fetched, and the flaw detection result is output to the recording device 15 as data of the control point position ( ⁇ ⁇ , ⁇ ). I do.
  • steps S444 to S448 similar to steps S344 to S347 in Fig. 31 are sequentially performed, and in parallel with the flaw detection operation, The shape measurement of the scanning line preceding by the distance L in FIG. 27 is performed in the same manner as in the first embodiment.
  • step S45A When the rotation scanning of 1 ⁇ 1 is completed by repeating such a procedure, the process proceeds from step S45A to S46A, and a subject stop command is output. Then, if it is determined in step S441A that the scanning is to be stopped, in step S449, the Nmax-th axis position command values are fetched, and the servo calculation and output are performed. Then, the process proceeds to step S47 to check whether or not the flaw detection operation has been completed. That is, it is checked whether the entire area shown by the thick solid line in FIG. 32 has been scanned. If scanning has not been performed, the process returns to step S41A, and the next one scan is performed. 7 Calculate the position command value of each axis on the line marked X in the figure.
  • step S47 After scanning the entire flaw detection area shown in FIG. 32, the program moves from step S47 to step S50 in FIG. Control is completed by positioning each axis to a certain end position.
  • the measurement of the surface shape of the subject W and the flaw detection operation are performed as follows. .
  • the attitude of the distance sensor unit is controlled based on the data of the surface shape of the object given in advance, and the ultrasonic signal for distance detection is emitted toward the rotating object. Then, the distance from the reflected wave to the distance measurement point on the object surface is measured, and the shape information of the measurement point on the object, that is, the shape, is obtained from the distance data and the current position of the distance sensor unit. Measurement data is calculated.
  • the shape measurement data is stored as data of any of the small areas defined by the rotation angle of the turntable and the Z-axis coordinates. However, only one data is stored in the small area.
  • the position command value controls each axis driving device to control the position and orientation of the flaw-detecting probe so that the ultrasonic flaw detection signal is directed in the normal direction of the surface of the subject and at a predetermined distance.
  • the probe for flaw detection can always be accurately and accurately directed at a predetermined distance and normal direction from the surface of the rotating subject, and flaw detection of a rotating body with an irregular surface shape can be easily performed. Since the flaw detection operation and the shape measurement operation are performed in parallel, the measurement time can be shortened.
  • the position data storage area is divided into small areas by the rotation angle of the turntable and the Z coordinate, and only one position data is stored in each area, and the position data of each small area is stored. Since the control point of the probe on an arbitrary flaw detection scanning line is determined, the same effect as in the first embodiment can be obtained.
  • the position command value of each control point of the line scanning is calculated. Therefore, there is a loss time during which the ultrasonic probes 9 and 10 are stopped before the actual flaw detection operation starts. If the position command value for the next line scan is calculated in advance during each search operation, the ⁇ time can be eliminated.
  • Fig. 39 shows the hardware configuration when there are two central processing units.
  • 31 is a central processing unit, which is one run in the flaw detection operation.
  • the central processing unit 32 is responsible for the calculation processing of the axis command values for each axis.
  • 3 3 stores the position data on the surface of the object and a flag for starting the calculation of each axis command value for one scan, and the like, and 3 4 denotes each axis command value calculated by the central processing unit 31 and the completion of the calculation. This is the memory that stores the flags.
  • FIG. 40 is a detailed flowchart of the flaw detection operation (instead of FIG. 35) in the central processing unit 32
  • FIG. 41 is a flowchart of the central processing unit 31.
  • step S101 the scan counter CN is set to 1, and the command calculation start flag is set in memory 33. Then, wait until the operation completion flag is set in step S102.
  • step S201 the process waits until the operation start flag is set. Then, if the operation start flag is set in step S101 of FIG. 40, the processing proceeds to step S202, and the scanning counter counts. Read the count value and reset the operation start flag and operation completion flag in the next step S203. As a matter of course, the operation completion flag is initially reset.
  • step S204 the operation of the scan line corresponding to the value of CN, that is, the command value of each axis of the first scan line at first is calculated.
  • step S205 the obtained axis command values obtained are written to the memory 34, and the steps are executed.
  • step S206 the calculation completion flag is set in memory 34, and the flow returns to step S201 to wait for the next scan line command value calculation start command.
  • the program shown in Fig. 40 proceeds from step S102 to step S103 with the calculation completion flag set, and the command values for each axis are fetched from memory 34. Then, in step S104, the count value CN of the scanning force counter is increased by 1, and the command value calculation start flag is set. Further, the flaw detection operation of the first scanning line is performed in steps S105 to S109. During the flaw detection operation, the sub-processing device 31 performs a command value calculation for the second scanning line.
  • flaw detection and command value calculation can be performed in parallel, so that the time from the start to the completion of flaw detection can be further shortened.
  • FIGS. 42 to 47 the sixth embodiment provided with a distance monitoring circuit 16 for eliminating a detection signal from the distance detection sensors 10a and 10 when the detection signal is an abnormal value.
  • FIG. 42 shows the overall configuration of the control system.
  • the same parts as those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted.
  • the distance monitoring circuit 16 can be applied to other embodiments.
  • FIG. 43 is a flowchart showing the processing contents when the distance monitoring device 16 is configured by a computer.
  • FIG. 43 shows the processing for the output signal of the distance detection circuit 11A shown in FIG. 4, and the same applies to the processing for the output signal of the distance detection circuit 11B. It has a configuration.
  • step S301 the distance signal SWA (SWB) is fetched from the distance detection circuit 11 and the value at that time is set to Mi.
  • step S 3 again stearyl-up S 3 0 distance signal from the distance detecting circuit 1 1 2 S WA (S WB) captures the value at that time and M 2.
  • step S303 the three conditions shown in equations (88) to (90) are investigated.
  • M nin and M max are the minimum and maximum values of the distance that can be expected in the shape measurement operation and the flaw detection operation described later.
  • ⁇ M is the allowable value of the distance change amount. For example, if signal transmission fails when measuring M, the value of IM i—M 2 I becomes very large, and its outlier M ⁇ Can be eliminated.
  • the main flow chart is the same as that in FIG. 5 of the first embodiment, and a description thereof will be omitted.
  • Fig. 44 shows the details of the shape measurement operation of step S30 in the main flow chart.
  • step S32C the command value (hereinafter, referred to as each axis command value) of the scanning start point of each driving device, which is a data group represented by equations (91) to (95), is represented. Capture and position each axis>
  • step S34C when the process proceeds to step S34C and outputs a scan start command, the timer interrupt program shown in FIG. 45 operates at regular intervals. This is the same procedure as the flowchart in FIG. 24, and the steps having the same processing contents will be described with the same reference numerals.
  • step S3401 it is determined whether or not a scanning stop command is issued in step S3401.
  • step S 3 4 3 the distances fi a, fi b between the ultrasonic probes 10 a, 10 b and the surface of the subject W are signals Ma from the distance monitor 16. , M b.
  • the signals SX, SY, SZ, and Sa from the detectors of each axis driving device are also captured, and the signals are captured in step S32.
  • Xb f 1 (X t ,, Y ()> mu t ', a, 1, ⁇ 1, ⁇ b) (10)
  • step S3466 the surface position of the subject W obtained by the equations (7) to (12) is stored. The storage method of this position is as described with reference to FIG. 9 of the first embodiment. Next, the procedure of the program proceeds to step S1342 in FIG.
  • FIG. 46 is a detailed example of the control that makes it impossible to detect the distance in step S1342.
  • step S1342a it is checked whether or not the distance signals SWA and SWB are normal. This is the distance signal Ma sent from the distance monitoring device 16 to the control device 12. , M b. Is determined based on whether or not is 0, and if it is not 0, it is determined as a normal value.In step S1342b, the counter N1 is set to 0, this program ends, and the program ends. Jump to step S13347 in the figure.
  • ⁇ ⁇ is the target value of the distance between the ultrasonic probes 10a and 10b and the surface of the subject W.
  • the center line of the bracket 8D is correctly oriented in the direction of the normal to the surface of the subject, and the distance from the surface of the subject W is in accordance with the control command value.
  • step S1347 the calculation of the angle ⁇ is performed in step S1347.
  • a r is the position command value of the ⁇ axis, ⁇ . Is the current value of the ⁇ -axis.
  • the position command values of the X and ⁇ axes are calculated by the following formula.
  • the X and ⁇ axis position command values Xr and ⁇ ⁇ for shifting from the I state to the ⁇ state are X and ⁇ axis correction amounts of ⁇ ⁇ and ⁇ ⁇ . And can be expressed by the following equation.
  • step S35 in Fig. 44, and it is determined whether or not one scan has been completed. Find out. Repeat step S35 until one scan is completed.
  • step S1350 in FIG. 45 is processed, the bracket 8D is moved to the next position, and the timer interrupt program ends.
  • step S35 in FIG. 44 When step S35 in FIG. 44 is repeated in this way, the timer interrupt program in FIG. 45 operates at certain time intervals during that time.
  • the X, ⁇ , and Z position coordinates of the surface shape of the subject W for one scan in the X-axis direction are stored.
  • the program proceeds to the flaw detection operation in step S40 in FIG.
  • the flaw detection operation processing step S40 in the main flow chart of FIG. 5 is the same as that of the first embodiment, and is assumed to be the flaw detection operation flow 1 shown in FIG. Shown.
  • the details of step S41 of the flaw detection operation flow 11 are the same as those of the flaw detection operation flow 2 shown in FIG.
  • the flaw detection operation of this embodiment is different from that of the first embodiment in a flaw detection operation flow 3 activated through step S44 in FIG.
  • FIG. 47 shows a flaw detection operation flow 3C in this embodiment.
  • the same steps as those in the flaw detection operation flow 3 (FIG. 17) of the first embodiment are denoted by the same reference numerals and described.
  • step S444 of the program shown in Fig. 47 it is determined whether or not running is stopped. If the result is negative, in step S444, the N-th axis position command value is obtained. Including, servo operation and output are performed. This This is performed by the position feedback control and the velocity feed forward control shown in FIG. Then, the process proceeds to step S444, where the output of the ultrasonic probe 9 is fetched, and the flaw detection result is output to the recording device 15 as the data of the control point position (Xm, Ym).
  • steps S444 to S448 similar to steps S344 to S346 in Fig. 45 are sequentially performed to perform the flaw detection operation as shown in Fig. 18.
  • the shape measurement of the preceding scan line (indicated by the dashed line) is performed. That is, the positions where the beams from the ultrasonic probes 10a and 10b hit the surface of the subject are stored in the respective small areas in FIG. Also in this case, if the distance signal value is abnormal in step S449, the position data at that time is not stored.
  • the measurement of the surface shape of the subject W and the flaw detection operation are performed as follows.
  • the surface shape of the subject W is measured from the detection results of the preceding distance sensor units 10a and 10b. Specifically, the position coordinates of X, Y, and Z of the surface shape on which the ultrasonic beams of the distance sensors 10a and 10b are hit are obtained and stored. This is stored as data of any of the small areas partitioned on the XY plane. However, only one data is stored in the small area.
  • distance signals SWA and SWB are sampled at short sampling intervals to determine whether the distance signal is abnormal, and the position coordinates are not stored when abnormal.
  • a speed command value corresponding to the deviation is obtained from the difference between the averaged position command value and the actual position, and is added to the averaged speed command value, thereby controlling each axis driving device.
  • the present invention can be used as an apparatus for detecting flaws and the like on the surface and inside of various works having curved surfaces by ultrasonic waves.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

明細書
超音波探傷装置
技術分野
本発明は、 曲面を有する被検体を超音波探触子で探傷する装 置に関する。
背景技術
従来から 日本機械学会誌 vol. 9 0, No.8 2 6, p 5〜 9 (従来文献 1 ) や非破壊検査第 3 7巻第 2号 p 1 5 2〜 1 5 3 (従来文献 2 ) に示された水浸自動探傷法が知られている。 こ れは、 精密な超音波探傷を 目的と して、 被検体が浸漬された水 中で超音波探触子を被検体表面上で走査して探傷する ものであ る。 この水浸自動探傷法においては、 傷 (欠陥) の大きさ およ び位置を正確に知るために、 超音波探触子と被検体と の距離を 一定に保ち、 かつ超音波ビームの中心軸の方向を被検体表面の 法線方向に一致させておく必要がある。
従来文献 1 に開示された装置は、 表面が平面の被検体の探傷 は可能であるが、 表面が曲面になる と超音波ビームの中心軸の 方向を被検体表面の法線方向に一致させる こ と が困難なため、 曲面を持つ被検体の探傷ができなかった。
一方、 従来文献 2 に開示された装置は、 まず被検体全面の形 状を レーザ距離計を使用 して計測 し、 次に、 その形状データ を 用いて超音波探触子を走査するもので、 任意の表面形状の被検 体を探傷でき る。 この種の探傷装置と して特開昭 6 3— 3 0 9 8 5 2号公報、 特関昭 6 3 — 3 0 9 8 5 3 号公報に記載さ れた ものが知られている。
しかしながら、 従来文献 2や特許公開公報に記載の従来技術 では、 次のような問題がある。
スキャ ナ機構が被検体表面を レーザと超音波で 2回走査する 必要があ り、 超音波探傷に要する時間の 2倍の時間を必要とす る。
さ らに、 レーザ距離計を用いた形状測定は空気中で行ない、 超音波探傷は水中で行なう必要があ り、 その段取に大掛かりな 装置を必要と した り、 多く の時間を费やす。
本発明の目的は、 正確な形状測定を行う と ともに、 探傷時間 の短縮化を図った超音波探傷装置を提供する こと にある。
発明の開示
本発明は、 超音波探触子よ り も先行する走査ラ イ ン上を距離 センサ手段が走査するよう に距離センサ手段と超音波探触子と を一体的に結合すると とも に、 距離センサ手段による形状測定 走査と超音波探触子による探傷走査を並行して行なう よう にし たものである。 これによ り、 距離センサによる距離測定が確実 になされ、 その結果、 探傷点に対する超音波探触子の姿勢が精 度よ く制御される。 また、 探傷しながら形状も測定でき るから 被検体の探傷を 1 回の走査で行なう こ と ができ、 探傷作業の効 率が向上する。
また本発明は、 探傷領域を複数の小領域に分割し、 各小領域 に対応させて複数の記憶領域をメ ッシュ状に設定し、 各記憶領 域には対応する探傷領域における形状情報を 1 つだけ記憶する ものである。 そ して、 この記憶さ れた形状情報によ り各探傷点 での超音波探触子の位置と姿勢と を制御するものである。 これ によ リ、 メモ リ容量の低減が図れる と ともに、 距離センサ手段 で測定していない探傷点についての形状情報が演算でき、 形状 測定走査ライ ンと探傷走査ライ ン と を一致させる必要がな く 、 探傷走査ライ ン を 自由に設定でき る。
さ らに本発明は、 被検体を回転する回転テーブルを設け、 上 述したよ う に一体的に結合された探傷用探触子と距離センサ手 段と を被検体の周面と対向 して設置し、 被検体を回転しながら 走査するものである。 これによ り 、 周面形状が複雑な円柱状の 被検体の探傷も簡単にかつ精度よ く ft なう こ と ができ る。
さ ら にまた本発明は、 予め得られている形状情報に基づいて 複数の制御点の位置指令値を求め、 その平均値を探塲用探触子 の各走査ライ ン上の各位置指令値とする と と も に、 数の制御 点の速度指令値も各制御点の速度指令値の平均値と して求める ものである。 これによ り、 各制御点で探触子が被 ^体表面の所 望の方向、 例えば法線方向に精度よ く 向 く こ と にな り 、 探傷精 度が向上する と ともに、 探触子がスムーズに動作する。
さ らに本発明は、 被検体表面の法線方向に距離センサ手段を 向けながら倣い走査しつつ被検体表面の形状を測定する際、 距 離センサ手段の出力が異常である と き には、 その と き演算さ れ た被検体表面の形状情報を記憶しないよ う にする と と も に、 距 離セ ンサ手段を前回得られた法線方向に向けたまま 1 ピッ チだ け走査を進める よ う に したものである。 これによ り 、 被検体表 面に傷などがあるとその点のデータ が排除される。 したがって、 このよう に して異常値が排除された形状情報に基づいて探触子 を姿勢制御する ときに、 ( a ) 探触子を正確に所望の方向に向 けながら走査できる、 ( b ) 探触子がスムーズに動作する、 ( c ) 被検体に衝突するなどの問題も解決される といった効果 が得られる。
図面の箇単な説明
第 1 図〜第 1 8図は本発明の第 1 の実施例を説明するもので、 第 1 図は制御系の全体構成図である。
第 2図は探傷用超音波探触子と距離検出用探触子を有するセ ンサュニッ 卜の取付構造の詳細を示す図である。
第 3図は探傷用超音波探触子と距離検出用探触子の配置を示 す図である。
第 4図は距離検出回路の詳細を示すブロ ッ ク図である。
第 5図はメ イ ンフ ローチャー トである。
第 6図は初期位置にあるセンサュニッ 卜 と被検体を示す斜視 図である。
第 7 図は形状測定フ ロー 1 を示すフ ローチャ ー トである。
第 8図は形状測定フ ロー 2の詳細を示すフ ローチャ ー トであ る。
第 9 図は探傷範囲と形状情報の記憶領域を説明する図である。 第 1 0図は形状測定動作中のセンサュニッ トを示す斜視図で める。
第 1 1 図は探傷動作開始時のセンサュニッ トを示す斜視図で ある。
第 1 2図, 第 1 3 図および第 1 7 図は探傷動作フ ロー 1 , 2 , 3 を示すフ ローチャ ー トである。
第 1 4図は形状情報が記憶されている小領域内での探傷走査 ライ ンを説明する図である。
第 1 5 図は小領域の形状情報から制御点の位置データ を演算 する際の係数 d を説明する図である。
第 1 6 図は位置フィ ードバッ ク制御と速度フ ィ ー ド フォーヮ — ド制御を説明する回路図である。
第 1 8図は探傷動作と形状測定動作が並行して行われている こと を説明する図である。
第 1 9 図は探傷用超音波探触子と距離検出用探触子の他の配 置を示す図である。
第 2 0図は形状情報が記憶されている小領域内での探傷走査 ライ ンを説明する図である。
第 2 1 図および第 2 2 図は第 2の実施例を説明するもので、 第 2 1 図は探傷用超音波探触子と距離検出用探触子を有する他 のセンサュニッ 卜の取付構造の詳細を示す図である。
第 2 2図は形状情報が記憶されている小領域内での探傷走査 ライ ンを説明する図である。
第 2 3図〜第 2 5 図は第 3 の実施例を説明するも ので、 第 2 3 図は形状測定フ ロ ー 1 A を示すフ □一チヤ 一 卜であ る。
第 2 4 図は形状測定フ ロー 2 Aを示すフ ローチャ ー トである, 第 2 5 図は被検体の表面を倣い走査しながら形状測定する例 を説明する図である。
第 2 6図〜第 3 8図は本発明の第 4 の実施例を説明するもの で、 第 2 6図は制御系の全体構成図である。
第 2 7図は探傷用超音波探触子と距離検出用探触子を有する センサュニッ 卜の取付構造の詳細を示す図である。
第 2 8図は y o , r a , D 1 を説明する図である。
第 2 9 図は初期位置にあるセンサュニッ 卜 と被検体を示す斜 視図である。
第 3 0図は形状測定フロー 1 B を示すフ ローチャ ー トである t 第 3 1 図は形状測定フ ロー 2 B を示ずフ ローチャー トである < 第 3 2図は探傷範囲と形状情報の記憶領域を説明する図であ る。
第 3 3図は形状測定動作中のセンサュニッ トを示す斜視図で ある。
第 3 4図は探傷動作開始時のセンサュニッ トを示す斜視図で ある。
第 3 5図, 第 3 6 図および第 3 8 図は探傷動作フ ロー 1 A , 2 A , 3 Aを示すフ ローチャ ー トである。
第 3 7 図は形状情報が記憶されている小領域内での探傷走査 ライ ンを説明する図である。
第 3 9 図〜第 4 1 図は本発明の第 5 の実施例を説明するもの で、 第 3 9 図はそのハー ドウェアを示すブロ ッ ク図である。
第 4 0図および第 4 1 図は処理手順を示すフ ローチャ ー トで ある。 第 4 2図〜第 4 7図は本発明の第 6 の実施例を説明するもの で、 第 4 2 図は制御系の全体構成図である。
第 4. 3図は距離信号の異常を検出する フ ローチャ ー トである。 第 4 4図は形状測定フ a— 1 Cのフ ローチャー トである。
第 4 5図は形状測定フロー 2 Cのフ ローチャー トである。
第 4 6図は距離検出不能補償制御処理のフ ローチャー トであ る。
第 4 7図は探傷動作フ ロー 3 C を示すフ ローチャ ー トである。 発明を実施するための最良の形態
一第 1 の実施例一
〔装置全体の説明〕
第 1 図〜第 4 図によ り本発明が適用された探傷装置全体の説 明を行なう。
この探傷装置は第 1 図に示すよ う に、 例えば X軸方向に X軸 駆動装置 1 によ り走行する門形走行体 2 と、 この門形走行体 2 で Υ軸方向に Υ軸駝動装置 3 によ り走行する Υ軸走 体 4 と を有し、 Y軸走行体 4 と一体のブラケッ ト 5 に Z軸駆動装置 6 で Z軸方向に昇降する Z軸アーム 7 が設けられている。 Z軸ァ —ム 7 の下端にはロボッ トの手首部 8 が取付けられている。
第 2図に示すよ う に、 手首部 8 は、 Z軸アーム 7 の下端に固 設されたブラケ ッ ト 8 Aと、 このブラケッ ト 8 Aに設けられた α軸回転用の駆動装置 8 B と、 この α軸駆動装置 8 Β の回転軸 に設けられたブラケ ッ ト 8 C と、 このブラケ ッ ト 8 Cに取付け られた |3軸回転用駆動装置 8 E と、 その |3回転軸に取付けられ たブラケッ ト 8 D と を有し、 ブラケッ ト 8 Dに被検体 Wの探傷 を行なう 1本の超音波探触子 9 と、 被検体 Wの Z軸方向の位置 を検出する一対の距離センサユニ ッ ト 1 0 a , 1 0 b とが第 3 図のよう な位置関係で取付けられている。 距離センサユニッ ト 1 0 a , 1 0 b は例えば超音波探触子で構成でき、 その検出信 号は第 4図に示す距離検出回路 1 1 に入力される。
第 4図に示すよう に距離検出回路 1 1 は、 超音波探触子 1 0 a用の距離検出回路 1 1 Aと超音波探触子 1 0 b用の距離検出 回路 1 1 B と から成リ、 各回路 1 1 A, 1 I B はそれぞれ同じ 回路構成であ り、 超音波探触子 1 0 a , 1 0 b に超音波信号を 送信する送信器 1 1 a と、 被検体 Wから反射して く る超音波信
I
号を受信する受信器 l i b と、 計時回路 1 1 c から成っている , 計時回路 1 1 c は送信器 1 1 a からの送信信号と被検体 Wの表 面からの超音波反射信号との時間間隔の測定を行ない、 その結 果を距離検出信号 S WA, S WB と して第 1 図に示す制御装置 1 2へ出力する。
こ こで、 時間間隔を t D、 水中を伝幡する超音波の音速を V とする と、 超音波探触子 1 0 a あるいは 1 0 b と被検体 Wの表 面との距離 Mは、
M = V t。 / 2 … ( 1 ) で求め られる。
さ らに第 1 図において、 制御装置 1 2 は C P U , R O M , R A Mなどから成るマイ ク ロプロセッサであ り 、 超音波探触子 9 からの検出信号 S T と、 距離検出回路 1 1 からの時間間隔を示 す S W A , S W B と が入力される と ともに、 X, Υ , Z , α , |3軸用駆動装置 1 , 3, 6 , 8 Β , 8 Ε に内蔵された位置また は角度の検出器、 例えばポテンショ メ ー タ (不図示) からの信 号 S X , S Υ , S Z, S α , も入力される。 1 3 Χ, 1 3
Υ , 1 3 Ζ , 1 3 α , は各軸用駆動装置 1, 3 , 6, 8 Β , 8 Ε の駆動用のサ一ボアンプ、 1 4 は探傷用範囲な どを入 力する入力装置、 1 5 は探傷結果を記録する記録計である 。 な お、 各軸用駆動装置は例えば電気モータ を有する。
〔制御装置 1 2 の演算処理〕
①メ イ ン フ ローチャ ー ト
第 5 図は制御装置 1 2で実行される演算処理の メイ ン フ ロー チヤ 一 卜である。
まず、 テッ プ S 1 0でメモ リ などの初期処理を行ない、 次 に、 ステ ッ プ S 2 0で第 1 図に示した各軸用駆動装置によ り超 音波探触子 1 0 a, 1 0 b を制御開始位置へ位置決めする 。 そ の位置決め動作が完了 した状態を第 6図に示す。 そ して、 次に ステ ッ プ S 3 0の形状測定動作に移 り 、 予め設計仕様な どから 分かっ ている被検体 Wの表面形状データ に基づいて超音波探触 子 1 0 a, 1 0 b が被検体 Wの法線上を向 く よ う に しながら被 検体 Wに沿って X方向に所定距離だけ走査する。 この X方向走 査を Y方向に所定ピッチづら して複数回行なって少な く と も第 3 図に示す距離 Lの範囲の実際の表面形状データ を探傷に先行 して採取する。 すなわち、 被検体 Wの表面形状を各軸駆動装置 に内蔵の位置または角度の検出器からの信号 S X, S Y, s z, S α , S |3 と超音波探触子 1 0 a, 1 0 b からの信号 S WA , S W B.に基づいて各走査ラインごとに演算する。 その詳細手順 は第 Ί 図に示す。
次に、 この形状測定動作が終了する とステップ S 4 0 に進ん で探傷動作手順に移る。 こ こでは、 ステップ S 3 0で求められ た被検体 Wの表面形状データ に基づいて、 被検体 W上の探傷点 に超音波探触子 9 を対向させるための複数の制御点における位 置情報を演算し、 超音波探触子 9 が各制御点に制御されたタ イ ミ ングで超音波探触子 9 から超音波探傷信号を制御装置 1 2 に 取り込む。 またこの探傷動作中、 超音波探触子 9 よ り も数ライ ン (第 3 図の距離 L ) 先を走査する超音波探触子 1 0 a , 1 0 bで超音波探触子 1 0 a, 1 0 b と被検体 Wとの距離を演算し . 先に述べた位置または角度検出器からの位置データ と ともにそ の先行走査ライ ンの表面形状データ を探傷動作に並行して採取 する。 そして、 超音波探触子 9 が、 その探傷動作に並行して表 面形状データ を採取した領域に到達する と、 この採琅データ か ら超音波探触子 9 の制御点の位置情報を演算して探傷を行なう その詳細手順は第 1 2図に示す。
なお、 探傷点とは被検体上に超音波信号が当たる点をいい、 制御点とは、 探傷点上の法線方向に所定距離だけ超音波探触子 9 を位置せしめる点をいう。
この探傷動作が終了する とステ ップ S 5 0で超音波探触子' 9 を終了位置八移動させて処理が終了する。 次に、 形状測定動作と探傷動作 L詳細に説明する。
②形状測定動作の フ ローチヤ一ト
第 7 図はステ ップ S 3 0 の形状測定動作の詳細を示す。
まず、 ステ ッ プ S 3 1 において、 各駆動装置の 1 走査分の指 令値 以下、 各軸指令値と称す) を取り込み、 メモ リへ記憶す る。 この 1走査分の各軸指令値は式 ( 2 ) 〜 ( 6 ) に示すデー タ群となっ ている。
Xr= ( XS, X: X η, X max) ( 2 )
Y r= ( Y s, Y: Υ η; Υ max) ( 3 )
Z r= ( Ζ s, Ζ; Ζ η Ζ max) ( ) α r = ( α s > α α η α max) ( 5 )
β Γ = { β s, β β η β max) ( 6 )
この各軸指令値は 後述する探傷動作時の指令値〜よ り も精度 を必要と しないから 被検体 Wの設計データ に基づいて 1 走査 ライ ン上の代表点の位置を求め、 その間を補間 して求める こ と ができ る。
次に、 ステ ップ S 3 2 で走査開始点へ位置決めする。 すなわ ち、 Xr= Xs, Y r= Y s, Z r= Z s, a r= a s, P r= |3 sと し 各軸を位置決めする。 この位置決めが完了後、 ステ ッ プ S 3 3 で変数 N を 1 に し、 ステ ッ プ S 3 4 に進んで走査開始指令を出 力する と、 第 8 図に示す ϊ イマ割 り込みプロ グラ ムが一定の間 隔で動作する。
第 8 図においてまず、 ステ ッ プ S 3 4 1 で走査停止指令か.ど う か判定する 。 最初は走査開始指令である から ステ ッ プ S 3 4 2 に移り、 N番目の指令値、 すなわち N = l の指令値である X r= X s, Y r= Y s, Z r= Z s, a r= a s , P r= |3 sを取り込む ' そ して、 上述した各軸の現在位置を示す信号 S X, S Y , S Z , S a , を各検出器から取り込んで各軸の現在値 X。, Y。,
Ζ ο , α。, |3。を求め、 指令値と各軸の現在値 X D, Y o , Ζ。, α。, β。との差を計算し、 その偏差にある係数を乗じる といつ たいわゆるサ一ボ演算を行ない、 その演算結果を第 1 図におけ るサーボアンプ 1 3 Χ〜 1 3 に出力する。 これによ リ距離セ ンサユニッ ト 1 0 a, 1 0 b は指令された第 1番目の位置に移 動する。 この と き、 超音波探触子 1 0 a , 1 0 b は被検体 W上 における測定点の表面の法線方向を向く 。 そして、 ステップ S 3 4 3で超音波探触子 1 0 a , 1 0 b と被検体 Wの表面との距 離 fi a, fi b を距離検出回路 1 1 からの信号 S W A, S W B に よ り取り込む。 次に、 ステップ S 3 4 4 において各軸駆動装置 の検出器からの信号 S X, S Y , S Z , S α , S (3 を取り込み ステップ S 3 4 5で各軸の現在値: X D, Y D, Z。, ct。, |3。を 求めて超音波探触子 1 0 a, 1 0 b の超音波ビームが当たって いる被検体 Wの表面の点の位置 ( X a, Y a, Z a) 、 ( X b, Y b, Z b) を演算する。 こ こで、 X a〜 Z bは次の関係式から演算 される。
X a = f X ( 0 , , Y c 1 > c 1 f a t ) t β t ,, β a) -' " ( 7 )
Y a = f z ( t ,, Y c 1 t ム c 1 j a , 1, β t ,, β a) - - ( 8 )
Z a = f 3 ( c Y ( ) t z t ! , a , 1, β ( ,, β a) - - ( 9 )
X b = f ! ( t , , Y t ) > z t 1 , a! 〕, β , i, β b) - ·· ( 1 0 ) Y b = f 2 ( X0 , Y 0 , Ζ ο , α„ β ο , fi b) ■■ ( 1 1 ) Ζ b = f a ( X ο , Υ ο , Ζ ο » α α β ο , β b) ·· ( 1 ) 次に、 ステ ジ プ S 3 4 6 において 式 ( 7 ) へ ( 1 2 ) で求 めた被検体 Wの表面位置を記憶する この位置の記憶方式の一 例を第 9 図を用いて説明する。
第 9 図は位置記憶用の領域分割について示したもので、 この 記憶領域は X— Y座標平面に対応して設定され、 同図において 斜線で示した領域が被検体 Wの X— Y座標平面における探傷範 囲である。 位置記憶用領域はその探傷領域よ り少し大きい領域 と し、 その領域 ( X軸は Xtl 〜 Xth2 , Y軸は Y tl 〜 Y th2で 囲まれた領域) を X軸方向に ( P + 1 ) 分割、 Y軸方向に ( S + 1 ) 分割して複数の小領域とする。
そ して、 式 ( 7 ) , ( 8 ) で得られた X a, Y aが第 9 図の ど の小領域に属するかを調べ、 所属する小領域の位置データ と し て: a, Y a, Z aおよび記憶完了を意味する フ ラ グを記憶して おく 。 式 ( 1 0 ) 〜 ( 1 2 ) で得られた値についても ^様の処 理を行な う 。
なお、 検出された位置データ を上記小領域に記憶する際に、 例えば小領域の区分間隔よ り距離測定によ る測定間隔を小さ く とれば、 小領域 1個の範囲内に得られる位置情報は密にな り 、 逆に測定間隔を よ り大き く とれば、 小領域 1個の範囲内には相 当する位置情報が記憶されない こ と にな り 、 例えば 1 行おき に 記憶さ れる等、 その方法はいずれでも選択でき る。
また、 探傷用探触子と形状測定用探触子と がー体的に駆動さ れるため、 探傷用探触子を法線方向に向ける と、 近く にある形 状測定用探触子も距離検出点の法線方向に近い方向に向 く こ と にな り 、 検出距離データ が確実に得られ易 く なる。
すなわち、 上記公報に記載の装置では、 X , Υ , Z の 3軸制 御される基板に探傷用超音波探触子と距離センサを一体に設け る と とも に、 探傷用超音波探触子は更に 2軸制御される よ う に なっている。 も し、 このよ う な機構を用いて、 探傷動作に並行 して形状測定を行おう とする場合、 距離セ ンサと多軸制御さ れ る超音波探触子と は独立に姿勢制御されるため、 探触子を探傷 点の法線方向に向ける と とも に探触子の被検体表面からの距離 を一定に制御する と、 3軸制御しかできない距離センサによ る 測定点が大き く変化する場合がぁ リ 、 所定の測定点における形 状を測定できないこ と がある。 これに対して本実施例では、 こ のよ う な不具合が解消できる。
こ こで、 形状測定動作における X軸方向の順次の走査におい て、 今回の走査 (例えば N = 2 の と きの走査) で求め られた位 置データ が前回の走査 (例えば N = l のと きの走査) で既に位 置データ を記憶している小領域に属する と判定された場合は、 各小領域には 1 つの位置データ のみが記憶される必要があるの で、
( 1 ) 今回得られた新しい位置データ を記憶データ と して記 憶内容を更新する。
( 2 ) 既に得られている古い位置データ をそのま ま記憶デー タ と して記憶内容は更新 しない。 ( 3 ) 新しいデータ と古いデータ の平均値を新たな記憶デー タ と して記憶内容を更新する。
な どの方式を用いてもよい。
次に、 プロ グラムの丰順は第 8 図のステ ップ S 3 4 7 に移 り 、 変数 Nに 1 を加えて、 すなわち N = 2 と して終了する。
第 8図のタ イ マ割 り込みプロ グラムの動作が完了する と、 プ ロ グラム手順は第 7 図のステ ッ プ S 3 5 に苠 リ、 が ( max + 1 ) か否かによ り X方向の 1走査が完了 したかどう かを調べる。 この段階では N = 2なので、 ステ ッ プ S 3 5 を繰返し行ない、 その間に、 ある一定の時間間隔で第 8図のタ イマ割 り込みプロ グラムが動作し、 超音波探触子 9, 1 0 a , 1 0 b を結合した ブラケ ジ 卜 8 Dが第 1 0 図に示すよ う に; X軸方向に走査される < こ の走査と と も に、 先に説明 した記憶方式によ り 、 被検体 Wの 表面形状の X, Y , Z位置座標が記憶される。
X方向の 1走査が終了 して N == max + 1 となる とプロ グラム はステ ッ プ S 3 5 からステ ップ S 3 6 に移 り 、 走査停止指令を 出力する。 この停止指令によ リ タ イマ割 り込みプロ グラムの第 8 図の手順はステ ッ プ S 3 4 8 に進み、 1 回の走査における最 後の指令値である Xmax, Y max , Z max , α max , β maxを取り 込んでサ一ボ演算を行ない、 その演算結果をサ一ボア ンプ 1 3 X〜 l 3 )3 へ出力する。
このよ う に して X方向の 1 回の走査が終了する と第 7 図のス テ ツ プ S 3 7 に進み、 形状測定動作が完了 したかどう か判定す る。 こ の実施例では、 超音波探触子 1 0 a , 1 0 b によ り 、 Y 方向に距離 Lだけ先行する X方向走査ライ ンの表面形状データ を採取し、 その結果に基づいて探傷用超音波探触子 9 の走査用 制御点を演算するよ う に している。 したがって、 このよ う な形 状測定動作にょ リ得られた位置データ に従って超音波探触子 9 をある走査ライ ン上の複数の制御点に順次に駆動制御して被検 体 Wの探傷を行なうためには、 少なく とも超音波探触子 1 0 a 1 O b の第 1番目の走査ライ ン上に超音波探触子 9 が到達する まで、 すなわち超音波探触子 9 が第 3図で示す Lだけ Y方向に 移動するまで形状測定のための走査を繰り返す必要がある。 従 つて、 1 回の形状測定走査では完了しないので、 プログラムは ステップ S 3 7 からステップ S 3 1 に移り、 次の 1走査分の各 軸位置指令の取り込みを行ない、 ステップ S 3 2〜 3 7 を繰り 返す。
そして、 第 1 1 図に示すよう に、 超音波探触子 9 の超音波ビ —ムが、 第 8図による形状測定動作によって被検体 Wの表面形 状データ が記憶されている探傷領域に達した時点で形状測定動 作が完了したと判断され、 プログラムは第 7 図のステップ S 3 7 から第 5図のステップ S 4 0 の探傷動作へ移る。
以上説明 した探傷動作前の形状測定のみの動作によ り、 第 1 1 図の一点鎮線で示した領域の被検体 Wの表面の位置座標は第 9 図で示した記憶方式によ り記憶される。
③探傷動作のフ ロ ーチヤ 一 卜
次に、 第 5 図のステッ プ S 4 0 における探傷動作処理につい て説明する。 第 1 2図は、 探傷動作処理手順 S 4 0 の詳細な フ Π —チヤ 一 卜であ り 、 第 7 図の形状測定動作のフ ローチャ ー ト と同様な処 理である。 まずステ ッ プ S 4 1 において、 1走査分の各軸位置 および速度指令値を演算する。 第 1 3図および第 1 4図によ り その演算について詳細に説明する。
第 1 3 図はステ ッ プ S 4 1 における 1走査分の各軸位置指令 値の演算手順の フ ローチャ ー ト、 第 1 4図は、 各軸位置指令値 を演算する と き に、 記憶した被検体 Wの表面の位置データ のう ち どのデータ を使用するかを説明する図である。 第 1 4図にお ける太い実線が走査ライ ンであ り 、 第 1 3 図の処理はき と Oで 示した制御点位置の各軸指令値を演算するものである。
第 1 3図において、 ステ ップ S 4 1 1で制御点位置近傍にお ける被渙体 Wの表面の法線ベク トルを演算する。 例えば、 第 1 4図の拿の制御点位置の場合は次のよ う になる。
第 1番目 の秦 を含む近傍の領域 ( 1 , 1 ) 、 ( 1 , 2 ) 、 ( 2 , 2 ) 、 ( 2 , 1 ) のデータ から法線ベク トルを演算する と、 4つの領域のデータ がすべて秦のごく 近傍にある場合に被 検体 Wの表面位置の検出誤差がある と法線べク トルの 算誤差 が大き く な り好ま し く ない。 そこで、 その外側の領域 ( 0 , 0 ) 、 ( 0 , 3 ) 、 ( 3 , 3 ) 、 ( 3 , 0 ) のデータ を用いる こ と にする。 領域 ( 0 , 0 ) のデータ を X I , Y 1 , Z l 、 領域 ( 0 , 3 ) のデータ を X 2 , Y 2 , Ζ 2、 領域 ( 3 , 3 ) のデ —タ を Χ 3 , Υ 3 , Ζ 3 、 領域 ( 3 , 0 ) のデータ を Χ 4 , Υ 4 , Ζ 4 とする と 、 被検体 Wの表面における制御点位置であ る 秦近傍の法線ベク トル N ( = Nx, Ny, N z) は次式によって 求め られる。
Νχ= ∑ ( Y i- Y j) X ( Z i+ Z j) ··· ( 1 3 )
Ny ( Z i- Z j) X ( Xi+ X j) ( 1 4 )
Nz= ∑ ( Xi- X j) X ( Y i+ Y j) - ( 1 5 )
ただし、 i ≠ 4な ら j = i + i = 4な ら j = lである。
次に、 ステ ップ S 4 1 2で制御点位置の位置演算を行なう 。 第 1 4 図における制御点參の位置を ( Xk, Yk, Zk) とする と、 Xk, Y kは記憶領域を設定するために与えた値であ り 、 既 知である。 従って、 ステ ップ S 4 1 2 の制御点位置の位置演算 は Zkを求める演算である。
今、 第 1 5 図に示すよ う にある三次元座標系において制御点 位置が含まれる平面 P Lは次の平面式で表わされる。
NxX + NyY + NzZ + d = 0 … ( 1 6 ) したがって、 ( 1 3 ) 式〜 ( 1 5 ) 式で法線ベク トル N ( = N X , Ny, N z) が求まれば、 第 1 4 図の參の周囲に存在する位 置の座標 ( Xm, Y m, Z m) から、 上記平面 P Lの平面式の係 数 d は次式となる。
d = - ( Nx ra+ NyY m+ NzZ m) … ( 1 7 ) この係数 d を用いる こ と によ り 、 1番目 の制御点である參の位 置 Z kは次のよ う に求ま る。
Z k =— ( d + NxXk+ yY k) /N z- ( 1 8 ) 次に、 係数 d の演算に使用する ( Xm, Y m, Z m) について 説明する。
法線ベク トルの演算は第 1 4図における領域 ( 0 , 0 ) 、 ( 0 , 3 ) , ( 3 , 3 ) 、 ( 3 , 0 ) の記憶データ を用いて行 なっ たが、 係数 d の演算に使用する記憶データ は秦で示した制 御点位置の近傍の方が真の値に近い。 従って、 領域 ( 1, 1 ) 、
( 1 , 2 ) . ( 2 , 2 ) , ( 2 , 1 ) の記憶データ を用いる。 すなわち、 領域 ( 1 , 1 ) の記憶データ と式 ( 1 3 ) 〜 ( 1 5 ) で得られた法線ベク トルを式 ( 1 7 ) に代入して演算し、 その 値を とする。 同様の方法で領域 ( 1, 2 ) の記憶データ か ら計算した値を d 2、 領域 ( 2, 2 ) の記憶データ から計算し た値を d 3、 領域 ( 2, 1 ) の記憶データ から計算した値を d 4 と し、 次式によ り平均値と して 数 d を求める。
d = ( <1 χ+ (12 + (13 + <14) / 4 - ( 1 9 ) このよ う に、 4つの領域から求めた係数を平均化する こ と によ り 、 秦制御点の係数 d は真の値に近いもの と なる。
以上の説明によ り 制御点位置の法線ベク トル N ( = Nx, Ny, Nz) と位置 ( Xk, Y k, Z k) が求まっ た。
第 1 3図のプロ グラ ムの手順は次にステ ッ プ S 4 1 3 に移り 、 各軸の位置指令値の演算と記憶を行な う 。 こ こで、 超音波探触 子 9 と被検体 Wの表面と の距離が β。になる よ う に設定する と 、 各軸の位置指令値 ( Xr, Υ r, Z r, a r, β r) は次 (7. 係式 から演算されて記憶される。
Xr= f 4 (Xk, Yk, Zk, Nx, Ny, Nz, β。) … ( 20)
Y r= f s ( k, Yk, Zk, Nx, Ny, Nz, β。) … ( 2 1 ) Zr= f 6 (Xk, Yk, Zk, x, Ny, Nz, β。) … ( 2 2 )
ar= f 7 (Nx, Ny, Nz) … ( 2 3 )
i3r= f 8 (Nx, Ny, Nz) … ( 2 )
次に、 ステ ッ プ S 4 1 4 に移 り 、 1走査分の演算が完了 した か否かを判定する。 当然のこ とであるが、 上述した説明では第 1 4 図の參で示された制御点し か演算していないのでステ ップ S 4 1 1 に戻 り 、 次の 0制御点の近傍の法線ベク トル演算を行 なう 。 このよ う に してステ ッ プ S 4 1 1〜 4 1 4 の処理を順次 繰 り返し行なう こ と によ リ第 1 4 図の秦〜 ®印の制御点位置ま での演算を行ないステ ッ プ S 4 1 5 に移る。 この時、 1走査分 の各軸位置指令値は式 ( 2 5 ) ( 2 9 ) で表おされたデータ 群と なっている。
X r = ( X rs, … rn , … X rmax) · • ( 2 5 )
Y r = ( Υ rs, … Υ rn , … Y rmax) · ■ ( 2 6 )
Z r = ( ζ rs, Ζ rx, … Z rn, … Z rmax) - ■ ( 2 7 )
α r = ( α rs, α Γ!, ··■ a m, … rma ) - - ( 2 8 )
|3 Γ = ( β rs, β Γχ, … β rn, ··■ β rmax) - ·· ( 2 9 )
こ こで、 各制御点の指令値 ( X rs, Y rs, Z rs, rs, β rs) 、 ( X rx , Y Γχ , Ζ Γι, α Γι , β Γι) 、 ……は演算誤差な どに よ り多少の誤差を含んでいる。 そ こで、 ステ ッ プ S 4 1 5で位 置指令値の平均化を行な う 。 その平均化は、 例えば、 次式で行 なわれる。
Χ η = ( X rn-i + X rn + X rn + 1 ) / 3 - ( 3 0 ) ' Y n= ( Υ rn_a + Υ rn + Υ rn + 1 ) / 3 - ( 3 1 ) Z n= ( Z rn-i + Z rn+ Z rn+1 ) / 3 ··· ( 3 2 )
a n = ( a rn- + a rn + a rn + 1 ) / 3 ··· ( 3 3 )
β n= ( β rn-i + β m+ β rn + 1) / 3 ·■· ( 3 4 )
これは、 任意の制御点と その前後の制御点における計 3点の指 令値を算術平均するものである。 なお、 スタ ー ト点と終了点は 平均化しない。
全制御点について式 ( 3 0 ) 〜 ( 3 4 ) の演算を行なう と、 1 走査分の各軸位置指令値は式 ( 2 ) 〜 ( 6 ) で表わされるの と 同 じ形式のデータ群と なる。
と こ ろで、 本発明の探傷動作においては超音波探触子 9 の軌 跡精度を向上させ 目的で位置の フィ ー ドバッ ク制御と、 速度 のフィ ー ド フォーワー ド制御を採用 している。 すなわち第 1 6 図に示すよ う に、 位置指令値 X insと検出されている現位置 Xd etとの偏差を偏差器 2 1 でと り 、 係数器 2 2で係数 k を掛けて 速度指令値 Xerrとする。 さ ら に、 速度指令値 insと ierrと の和を加算器 2 3で演算しサ一ボアンプ 1 3 A〜 1 3 Pへ入力 する。
第 1 3 図のステ ッ プ S 4 1 6では、 上述の速度の フィ ー ド フ ォ一ワー ドのための速度指令値の演算と平均化を行なう 。 速度 指令値は例えば次式 ( 3 5 ) 〜 ( 3 9 ) で演算さ れる。
X rn= ( X rn+1 - X rn) / Δ T … ( 3 5 )
Υ rn= ( Υ rn + 1 - Y rn) / Δ T … ( 3 6 )
Ζ rn= ( Z rn + 1— Z rn) / Δ T … ( 3 7 ) ά rn = ( a rn + 1 - m) / Δ T … ( 3 8 ) β rn= ( β rn + 1 - β rn) / Δ Τ ··· ( 3 9 ) こ こで、 Δ Τはタ イ マ割 り込みプロ グラムのサンプリ ング時間 間隔である。 全制御点について式 ( 3 5 ) 〜 ( 3 9 ) の演算を 行なう と、 1 走査分の各軸の速度指令値は次式 ( 4 0 ) 〜 ( 4
Γ
4 ) で表わされるデータ群と なる。
Xr = ( X rs , X r1 , - rn, - X rmax) … ( 4 0 )
Y r = ( Υ rs, Υ Γ: ·· Ϋ rn , … Υ rmax) … ( 1 ) Ζ r = ( Ζ rs , Ζ Γ· ·· Z rn , … Z rmax) … ( 4 2 ) α r = ( α rs, α Γ· '·· a rn , ·■· ά rmax ) … ( 4 3 ) β = ( β rs , ·· β rn, -·· β rmax) ·-· ( 4 ) 次に、 位置の指令値の場合と同様に速度指令値の平均化を行 なう 。 その平均化は例えば次式 ( 4 5 ) 〜 ( 4 9 ) のよ う に行 なわれる。
X n = ( rn-! + X rn + X rn + 1 ) / 3 - ( 4 5 ) Y n = ( Υ rn-! + Υ rn + Υ rn + 1 ) / 3 - ( 4 6 ) Z n= ( Z rn-i + Z rn + Z rn+1 ) / 3 - ( 4 7 ) ά n = ( ct rn-i -f- a rn+ a rn + x) / 3 ■·■ ( 4 8 ) β n = ( β rn-i + rn + β rn + 1 ) / 3 - ( 9 ) これは、 任意の制御点と その前後の制御点における 3点の指令 値を算術平均するものである。 なお、 ス タ ー ト点と終了点は平 均化 しない。
全制御点について式 ( 4 5 ) 〜 ( 4 9 ) の演算を行なう と、 1 走査分の各軸の速度指令値は式 ( 5 0 ) 〜 ( 5 4 ) で表わさ れるデータ 群と なる 。 Xr = ( rs, Xrn, … rraax) … ( 5 0 )
Y r = ( Y rs, Y Y rn, … Y rmax) … ( 5 .1 )
Z r = ( Z rs, Z ΓΧ Z rn, ■·■ Z rraax) ·■■ ( 5 2 ) ά r = a rs , a rx a m, ·■· ά rmax ) … ( 5
β r = ( β rs, β rn, … β rmax) … ( 5 4 ) 以上説明 した平均化演算をステ ッ プ S 4 1 6 で行なっ て第 1 3 図のプロ グラムを完了 し、 処理は第 1 2 図のステ ッ プ S 4 2 へ移る。
なお、 ステ ッ プ S 4 1 5 と S 4 1 6 の平均化処理を省略 して も よい。
第 1 2 図のステ ッ プ S 4 2〜 S 4 5 の処理は、 第 1 3 図のス テ ツ プ S 4 1 5 , S 4 1 6で得られた位置および速度の平均化 された式 ( 4 0 ) 〜 ( 4 4 ) , 式 ( 5 0 ) 〜 ( 5 4 ) で表され る指令値のデータ群を用いて行なわれる。 そ して、 形状測定動 作と 同様に、 ステ ッ プ S 4 2 , 4 3 を実行し、 ステ ッ プ S 4 4 で走査開始指令が出力される と、 第 1 7 図のタ イ マ割 り込みプ ロ グラ ムが起動さ れる。
第 1 7 図のプロ グラムのステ ッ プ S 4 4 1 では走査停止か否 かを判定し、 否定さ れる と ステ ッ プ S 4 4 2で N番目 の各軸位 置指令値の取 り込みとサ一ボ演算および出力が行なわれる。 こ れは、 第 1 6 図に示 した位置フ ィ ー ドバ ッ ク制御と速度フ ィ 一 ド フ ォ一ワー ド制御で行なわれる。 その後、 ステ ッ プ S 4 4 3 に進み、 超音波探触子 9 の出力 を取 り 込み、 その探傷検出結果 を制御点位置 ( X m, Y H!) のデータ と して記録装置 1 5 へ出力 する。 次に、 第 8図のステ ッ プ S 3 4 3〜 S 3 4 7 と同様なス テ ツ プ S 4 4 4〜 S 4 4 8 を順次に実行して、 第 1 8図に示す よ う に探傷動作に並行して、 先行する走査ライ ン (破線で示す) の形状測定が行なわれる。
このよ う な手順を繰り返して 1 回の走査を完了する と ステ ツ プ S 4 5 から S 4 6 に進み、 走行停止指令を出力する。 そ して、 ステ ッ プ S 4 4 1で走査停止と判定される と、 ステ ッ プ S 4 4 9 で Nmax番目 の各軸位置指令値の取 り込みとサ一ボ演算およ び出力が行なおれる。 そ して、 ステッ プ S 4 7 に移 り 、 探傷動 作が完了 したかどう か調べる。 すなわち、 第 9 図の太い実線で 囲まれた範囲をすベて走査したかどう か調べ、 走査していない 場合はステ ッ プ S 4 1 に戻 り、 次の 1走査分、 例えば、 第 1 4 図の X印のラ イ ンの各軸位置指令値の演算を行な う 。
第 9 図で示された探傷範囲をすベて走査したな らば、 プロ グ ラムはステ ッ プ S 4 7 から第 5図のステ ップ S 5 0へ移 り 、 あ る決め られた終了位置へ各軸を位置決め し、 制御は完了する。 以上のよ う に、 第 1 図〜第 1 8 図によ り説明 した実施例では、 次のよ う に して被検体 Wの表面形状の測定と探傷動作が行なわ れる。
( a ) 予め与え られた被検体表面形状のデータ に基づいて距 離センサユニ ッ トの位置と姿勢が制御され、 距離検出用超音 波信号が被検体に向けて発射される。 そ して、 その反射波か ら被検体表面上の距離測定点までの距離が測定され、 その距 離データ と距離セ ンサユニ ッ トの現在の位置と から、 被検体 上の測定点の形状情報、 すなわち形状測定データ が演算され る。
( ) その形状測定データ を、 X Y平面に区画 した小領域の いずれかの領域のデータ と して記憶する。 ただし小領域内に は 1 つのデータ のみを保存する。
( c ) ( a ),(b ) の手順を第 3 図の距離 L分だけ行なう 。
( d ) ( a ) 〜 ( c ) で各小領域に保存されている被検体 W の表面形状データ から探触子 9 の制御点の位置指令値 (探触 子の位置および姿勢) を求め、 複数の位置指令値を平均化し て各制御点の位置指令値とする。
( e ) 平均化された位置指令値から制御点への速度指令値を 演算し、 複数の制御点への速度指令値から各制御点への速度 指令値を平均化して各制御点への速度指令値とする。
( f ) 平均化された位置指令値と実位置との偏差から偏差分 の速度指令値を求め、 平均化された速度指令値と加算し、 こ れで各軸駆動装置を制御して探傷用探触子の位置および姿勢 を制御し、 超音波探傷信号が被検体表面の法線方向および所 定の距離を向 く よ う にする。
( ε ) その位置および姿勢で探傷用探触子から超音波探傷信 号を発 して被検体を探傷する。 この と き被検体からの反射 信号を 傷用探触子が受信 し、 その受信信号に対 して周知の 信号処理を施した後、 制御点位置デー タ と と も に信号処理後 のデータ が記録装置 1 5 に記録される。
( h ) こ の探傷動作に並行して、 距離セ ンサユニ ッ ト から超 音波信号を被検体に向けて発射し、 探傷用探触子よ り も距離 Lだけ先行する走査ライ ン上の形状測定データ を採取する。 この形状測定データ は、 探傷用探触子がその走査ライ ン上ま たは近傍に達したと きの位置および姿勢制御に使用される。 以上の実施例によれば、 探傷用探触子と距離センサと しての 探触子と を一体的に結合して姿勢制御でき るので、 距離センサ によ る距離測定が確実になされ、 その結果得られるデー タ を基 に法線方向の演算がよ り正確に行われるため、 総合的に探傷精 度が上がる。
また、 探傷しながら被検体表面の形状も測定できる こ と から, 曲面を有する被検体の探傷を 1 回の走査で実行可能であ り、 作 業時間が短縮される。
さ ら に、 位置フィ ー ドバッ ク に使用される位置指令値や速度 フィ ー ド フォーワー ドに使用される速度指令値の誤差が小さ く な り 、 各制御点において超音波探触子 9 の超音波ビームが被検 体 Wの表面の法線方向を正し く 向 く こ と にな り 、 精度の高い探 傷が行なわれる。 また、 速度フ ィ ー ド フォーワー ド制御を採用 しているから、 超音波探触子の各制御点への移動時間も短縮化 される と と も に軌跡精度も高い。
また、 探傷領域を含む位置記憶領域を X Y平面内で小領域に 分割 し各領域には 1 つだけ位置データ を記憶し、 各小領域の位 置データ によ り任意の探傷走査ラ イ ン上の探触子の制御点を決 定する よ う に している から、
ィ . メモ リ 容量の低減が可能となる。 口 . 形状測定走査ラ イ ン と異なっ た走査ラ イ ン を 自 由に設定 して探傷でき る 。 その結果、 探傷操作の 自 由度が広がる と と もに、 探傷用探触子と距離測定用探触子の配置が制約されな い
また、 本発明は被検体表面を領域分割して表面位置を記憶し ているので、 ある一ヶ所で表面に傷があ り、 距離を検出 し得な いためにその位置を計算できな く とも、 その回 り の位置デー タ からその点の位置を内揷でき、 表面の傷に影響を受けに く い。
なお、 ステ ップ S 4 1 1 (第 1 3 図) の法線ベジ トル演算の 説明においては、 第 1 4図の ·や 0を含む 4個の記憶デー タ か ら法線ベク トルを演算したが、 秦ゃ 0を含むよ う な領域 σ'デー タ であれば、 3個の記憶デー タ から法線べク トルを求めても よ い。 また、 4個以上の記憶データ から法線ベク トルを求めても よい。
さ ら に、 以上の例はすべて探傷用探触子を被検体表面の法線 方向に向けるものであつ たが、 法線方 に対してある角度をも たせて、 例えば表面波臨界角方向に探触子を向けて探傷する よ う に制御しても よ い。
上記実施例の説明では、 被検体 Wの表面の位置を検出するた めの超音波探触子が 2個 ( 1 0 a , 1 0 b ) であっ たが、 第 1 9 図に示すよ う に、 2個以上取 り付けても、 式 ( 7 ) 〜 ( 9 ) の計算と 同 じ計算が増すだけであ り 、 本発明が成立する こ と は 明 ら かである 。
また、 第 1 4 図 を用 いた説明においては制御点位置を記憶領 域の境に設定したが、 第 2 0 図に示すよう に記憶領域の中に設 定しても良い。 ただし、 この時のステップ S 4 1 2 (第 1 3 図) の制御点位置の位置演算は、 例えば第 2 0図の秦の場合は領域 ( 2, 1 ) の記憶データだけを用いて行う。
本実施例によれば、 被検体 Wの表面の位置を検出するための 超音波探触子を少な く とも 2個 ( 1 0 a, 1 0 b ) 有している ので、 第 1 4図の太い実線で示すライ ンを超音波探触子 9 が走 査しても、 探傷点よ り外にある 0, 1, P— 1, P列の領域に おける被検体 Wの表面の位置を検出できる。
一第 2 の実施例一
第 2 1 図および第 2 2図に本発明の第 2実施例を示す。 第 2 1 図は手首部の側面図を示し、 第 2 2図は第 1 4図と同様に、 各軸位置指令値を演算する ときに、 記憶した被検体 Wの表面の 位置データ のう ちどのデータ を使用するかを説明するための図 である。
第 2実施例では被検体 Wの表面の位置を検出するための形状 測定用超音波探触子を 1個と したものであ り、 その他の構成は 第 1 の実施例と同 じである。
被検体 Wの表面の位置を検出するための超音波接触子を 1個 と した場合に生じる問題点はステ ップ S 4 1 (第 1 2図) の 1 走査分の各軸位置指令値の演算部分である。 すなわち、 第 1 の 実施例の説明で述べたよう に、 形状測定用超音波探触子が 2個 ( 1 0 a , 1 0 b ) ある と、 超音波探触子 9 の X方向の走査 (探傷) 範囲が ·〜®であってもその外側にある 0, 1, Ρ — 1 , P列の領域における被検体 Wの表面の位置を検出でき る。 と ころが形状測定用超音波探触子が 1個である と、 探傷用超音 波探触子 9 が第 2 2図で示す Xtl から; Xth2の間を走査 (探傷) するもの と したと き◎印で示す B点, E点の外側の領域におけ る位置データ が得られず、 ©印で示す制御点の各軸位置指令値 の演算が前述と 同 じ方法ではできない。 そ こで、 次に◎印にお ける各軸位置指令値の演算方法について説明する。
まず、 第 2 2 図の制御点秦の近傍における法線ベク トル N ( = N x , N y , N z ) を、 領域 ( 0 , 0 ) , ( 0 , 3 ) , ( 3 , 3 ) , ( 3 , 0 ) の記憶デー タ を用い、 式 ( 1 3 ) 〜 ( 1 5 ) と 同様の演算を行い求める。 そ して、 第 2 2図の制御 点 A, B は制御点 と法線ベク トルが同 じである と して、 以下 の演算を実行する。
すなわち、 制御点 Aについては、 領域 ( 1 , 0 ) の記憶デー タ と上述の法線ベク トル Nを式 ( 1 7 ) に代入 して演算した結 果の値を とする。 同様の方法を用い領域 ( 1 , 1 ) の記憶 デー タ から計算 した値を d 2、 領域 ( 2 , 1 ) の記憶デー タ.か ら計算した値を d 3、 領域 ( 2 , 0 ) の記憶デー タ から計算し た値を d 4とする。 そ して、 式 ( 1 9 ) を演算する と、 係数 d が得られる。
次に、 この係数 d と制御点搴の近傍における法線べク トル N
( = N X , N y , N z ) と制御点 Aの位置 Χκ, と を式 ( 1 8 ) 式に代入する と、 制御点 Αの位置 Ζ κを求め る こ と ができ る。 制御点 B の位置 Ζ κは、 係数 d を.求める演算と して、 領域 ( 1 , 0 ) と領域 ( 2 , 0 ) の記憶データ をそれぞれ 2つづつ用 いて上述と同様に行う。 つま り、 制御点 Bの左側の 2つの領域 に領域 ( 1 , 0 ) , ( 2 , 0 ) のデータ をいれて、 係数 d を求 める。 これを外挿演算と呼ぶ。
制御点 D, E についても、 制御点 Cの法線ベク トルと同じ と して上述の計算順序と同じ方法で演算できる。
第 2の実施例によれば、 被検体 Wの表面の位置を検出するた めの超音波探触子を 1個にできるので、 装置が安価となる。
一第 3 の実施例一
第 2 3 図〜第 2 5 図に本発明の第 3の実施例を示す。 本発明 の第 1 の実施例においては、 形状測定動作時に用いる各軸位置 指令値が予めわかっているものであつたが、 第 3の実施例にお いては、 制御開始位置の各軸位置指令値しかわからず、 被検体 Wの形状を検出しながら形状測定動作を行う場合についての一 例である。 装置構成は第 1 図〜第 4図までの第 1実施例と同一 であ り、 制御装置 1 2の制御内容が異なる。 第 2 3図が第 1 の 実施例の第 7 図の形状測定動作のフ ローチャー トに対応し、 第 2 4図が第 8 図のタ イマー割り込みプログラムに対応する。 そ して、 第 2 5 図は第 3 の実施例の動作を説明するための超音波 探触子 1 0 a , 1 0 b の状態図である。
以下、 第 2 3図〜第 2 5図を用いて、 本発明の第 3の実施例 の動作について説明する。
第 2 3 図において、 ステップ S 3 1 Aで走査開始点に超音波 探触子 1 0 a , 1 0 b を位置決め した後、 ステ ッ プ S 3 4で走 査開始指令を出力 して第 2 4 図のタ イマー割 り込みプロ グラム を起動する。 まず、 ステ ッ プ S 3 4 1 から S 3 4 6 によって、 上述したと 同様に演算された被検体 Wの表面の位置を記憶して おく 。 以上の説明までは、 第 1 の実施例と同 じである。
次に、 各軸位置指令値の演算方法について説明する。 なお、 被検体 Wの表面は、 走査方向 ( X軸方向) と直交する Y軸方向 の法線の変化はあま り ないもの と し、 X, Z , α の各軸を制御 すればよい。 X軸方向の法線の変化が少ない場合には走査方向 を Υ軸方向にすればよい。
第 2 5 図の I の状態は、 例えば、 走査開始点への位置決めが 完了 した状態であ り 、 超音波探触子 1 0 a , 1 0 b と被検体 W の表面との距離 と が等し く 、 かつ、
fi r = ( fi a 1+ fi b 1) / 2 …… ( 5 5 ) である とする。 こ こで、 fi r は と fi b iの平均値であ り 、 超音波探触子 1 0 a , 1 0 b と被検体 Wの表面と の距離の 目標 値と しての制御指令値である。 したがって、 I の状態は、 ブラ ケ ッ ト 8 Dの中心線が正確に法線方向に向いており 、 しかも被 検体 Wの表面と の距離も制御指令値通 り になっ ている。
I の状態において、 ステ ッ プ S 1 3 4 7で、 まず角度 δ の演 算を行う 。 こ こで、 δ はブラケ ッ ト 8 Dの中心線と法線方向 と のずれ量である。 したがって、 I の状態では、 δ = 0である。 次に、 ステ ッ プ S 1 3 4 8で α軸の位置指令値を演算する 。 δ = 0 なので、 α r = α o ( 5 6 ) である。 こ こで、 a rは α軸の位置指令値、 α。は α軸の現在 位置である。
次にステ ッ プ S 1 3 4 9で X, Ζ軸の位置指令値を演算する c 1 回のタ イマー割 り込みプロ グラムでブラケ ッ ト 8 Dを進め る距離を と し、 その方向は被検体 Wの表面の接線方向とす る。 このよ う に定義する と、 第 2 5図に示すよ う に、 X, Ζ軸 の位置指令値は次式と なる。
X r = X 0 + Δ X r
= X。 + 厶 D cos a r ( 5 7 )
Z r = Ζ ο + Δ Ζ χ
= Ζ。 + 厶 D sin α r ( 5 8 ) 次に、 式 ( 5 6 ) から ( 5 8 ) によ り求めた各軸位置指令値 と現在位置と を用い、 サーボ演算及びその出力 を行い、 第 2 4 図のタ イマ割 り込みプロ グラム を終了する。
第 2 4図のタ イマー割 り込みプロ グラムの動作が完了する と プロ グラム手順は第 2 3図のステ ップ S 3 5 に苠 り 、 1 回の走 查が完了 したかどう か調べる。 この判定は、 式 ( 7 ) または式 ( 1 0 ) で演算した X a または X b が、 第 9 図における X th2 よ り大きい値となっ たかどう かで行う 。 ただし、 逆に走査する と きは X tl よ り小さ い値と なっ たかどう かで判定する。 この 段階では X a , X b がと も に X th2以下なので、 ステ ッ プ S 3 5 を繰 り返 し行う こ と になる。
そ して、 再びタ イ マ一割 り 込みプロ グラムに処理が移る と、 まず、 ステ ッ プ S 3 4 1 から S 3 4 6 によっ て被検体 Wの表面 の位置を記憶する。
この時、 ブラケ ッ ト 8 Dが第 2 5 図の Πの状態になっていた とする と、 角度 δ は次式となる。
δ = tan-1 { ( β b z— β a 2 ) / D } …… ( 5 9 ) こ こで、 Dは探触子 1 0 a , 1 0 b 間の距離である。
したがって、 α軸の位置指令値(T a r は次式によ り 、 求める こ と ができ る。
a r = a。 + S …… ( 6 0 ) 次に、 X, Ζ軸の位置指令値 X r , Ζ Γ を求める。 今回は a r が変化し、 かつ fi r と ( fi b z + fi a 2) / 2 が等し く ないの で、 この補正量も計算する必要がある。
まず、 β Γ = ( fi a 2 + 12 b 2) / 2 と なる よ う にする には、 第 2 5図の矢印 A方向に X, Z軸を動かせばよい。 この時の補 正量を Δ ΧΖ, Δ Ζ 2とする。 次に、 点 0 を中心に角度 δ 回転す る。 その結果、 第 2 5図の ΙΠの状態と なる。 この の補正量を 厶 Χ3, Δ Ζ 3とする と、 X, Ζ軸の位置指令値は次式となる。
X r = X0 + 厶 Χ^ + Δ Χζ 厶 Χ3 …… ( 6 1 ) Z r Z o + A Zi+ A Z z 厶 Ζ3 …… ( 6 2 ) そ して、 ステ ッ プ S 1 3 4 7 を処理し、 タ イ マ一割 り込みプ ロ グラム を終了する 。 その他の部分の処理については、 第 1 の 実施例と同 じである。
なお、 上述の説明では、 走査方向に直交する方向の法線の変 化はあま り ない こ と を前提と し、 走査方向に 2つの距離検出用 超音波探触子を設けた。 しかしながら、 走査方向と直交する方 向に新たに距離検出用の超音波探触子を取り付け、 その出力信 号と前記 2個の距離検出用超音波探触子の出力信号を用いて、 走査方向と直交する方向にある面の法線方向にブラケッ ト 8 D を向けるよう にしてもよい。
第 3の実施例によれば、 探傷 · 形状測定動作に移行する前の 形状測定動作時の各軸位置指令値を予め演算する必要がないの で、 設計データ がない被検体にも適用するのが容易となる。
一第 4 の実施例一
第 2 6 図〜第 3 8 図によ り、 円柱状の被検体を探傷する装置 に適用 した第 4 の実施例を説明する。
第 2 6図は第 4 の実施例の全体構成図であ り、 第 1 図と同様 な箇所には同一の符号を付している。 Z軸方向の回耘中心回 り に回転するターンテーブル T B上には円柱状被検体 Wが载置さ れ、 距離検出用超音波探触子 1 0 と探傷用超音波探触子 9 とが 被検体 Wの周面と対向して手首部 8 に設置されている。
第 2 7図に示すよう に、 手首部 8は、 Z軸アーム 7の下端に 固設されたハウジング 8 A内に設けられた P軸回転用の駆動装 置 8 B と、 この (3軸駆動装置 8 B の回転軸に設けられたブラケ ッ ト 8 Cと、 このブラケ ッ ト 8 Cに取付けられた α軸回転用騸 動装置 8 Ε と、 この α 回転軸に取付けられたブラケッ ト 8 D と を有し、 ブラケッ ト 8 D に被検体 Wの探傷を行なう 1本の超音 波探触子 9 と、 被検体 Wの表面位置を検出する 1本の距離セ ン サュニッ ト 1 0 とが Ζ軸方向に Lだけ離間した位置関係で取付 け られている。
また第 2 6 図において、 1 6はタ ーンテーブル T B を回転さ せる駆動装置であ り 、 制御装置 1 2 からの指令信号によ リ タ 一 ンテーブル T B の回転角を制御する。 1 7は駝動装置 1 6 に内 蔵の角度検出器であ り 、 その角度信号 S yは制御装置 1 2 に入 力される。
〔制御装置 1 2の演算処理〕
本実施例ではタ ーンテーブル T Bの中央位置を座標原点 0 と し、 y o, y a , D fi を第 2 8 図のよ う に定義する。 こ こで y o は任意の時刻における距離センサュニ ッ ト 1 0 の検出方向と X軸と のなす角度、 y a は、 その と き距離センサユニ ッ ト 1 0 からの超音波信号が被検体 Wの表面にあたっ ている測定点およ び座標原点 0を結ぶ線と距離センサュニ ッ ト 1 0の検出方向 と のなす角度、 D fi は(X a, Y a , Z a )で示される上記測定点 と座標原点と の距離である。
①メ イ ン フ ローチヤ一卜
制御装置 1 2で実行される演算処理のメ イ ンフ ローチャ ー ト は第 5 図 と 同様である。
まず、 ステ ッ プ S 1 0でメモ リ な どの初期処理を行ない、 次 に、 ステ ッ プ S 2 0で超音波探触子 1 0 を制御開始位置へ位置 決めする。 その位置決め動作が完了 した状態を第 2 9 図に示す そ して、 次にステ ッ プ S 3 0 の形状測定動作に移 り 、 予め設計 仕様な どから分かっ ている被検体 Wの表面形状データ に基づい て超音波探触子 1 0 を被検体 Wの測定点上で法線方向に向けつ つタ ーンテーブル T B を回転させて被検体 Wの表面を回転走査 する。 この回転走査を Z方向に所定ピッチづら して複数回行な つて少な く とも第 2 7 図に示す距離 L の範囲の表面形状データ を探傷に先行して予め与えられた設計データ よ り詳細に採取す る。 すなわち、 被検体 Wの表面形状を各軸駆動装置に内蔵の位 置または角度の検出器からの信号 S X , S Y , S Z, S a , S と超音波探触子 1 0 からの信号 S Wに基づいて各走査ライ ン ごと に演算する。 その詳細手順は第 3 0 図に示す。
次に、 この形状測定動作が終了する と ステッ プ S 4 0 に進ん で探傷動作手順に移る。 こ こでは、 ステ ップ S 3 0で求め られ た被検体 Wの表面形状データ に基づいて、 被検体 W上の探傷点 に超音波探触子 9 を対向させるための複数の制御点における位 置情報を演算し、 超音波探触子 9 各制御点に制御されたタ イ ミ ングで超音波探触子 9 から超音波探傷信号を制御装置 1 2 に 取 り込む。 またこの探傷動作中、 超音波探触子 9 よ り も数ライ ン (第 2 7 図の距離 L ) 先を走査する超音波探触子 1 0で超音 波探触子 1 0 と被検体 Wとの距離を演算し、 先に述べた位置ま たは角度検出器からの位置データ と とも にその先行走査ラ イ ン の表面形状データ を採取する。 そ して、 超音波探触子 9 がその 探傷動作に並行 して表面形状データ を採取した領域に到達する と、 この採取データ から超音波探触子 9 の制御点の位置情報を 演算して探傷を行なう 。 その詳細手順は第 3 5 図に示す。
この探傷動作が終了する と ステ ッ プ S 5 0 で超音波探触子 9 を終了位置へ移動させて処理が終了する。 次に、 ナレ状測定動作と探傷動作を詳細に説明する。 第 1 の実 施例と同様の手順の説明は省略する。
②形状測定動作の フ ローチャ ー ト
第 3 0図は第 5図に示したメ イ ン フ ロ ー におけるステ ッ プ S 3 0 の形状測定動作の詳細を示す。
まず、 ステ ッ プ S 3 1 B において、 各駆動装置の 1 回耘分の 指令値 (以下、 各軸指令値と称す) を取 り込み、 メモ リへ記憶 する。 この 1 回転分の各軸指令値は第 1 の実施例における式 ( 2 ) 〜 ( 6 ) と対応する次式に示すデータ群と なっ ている。
Xr = ( X S, X X, …, X η ,… ··■ , X max)… ( 6 3 )
Y r = ( Υ s , Υ 1, …, Y η,… … , Y max) ··■ ( 6 4 )
Z r = ( ζ S , Ζ 1 t …, z η,… ■··, Z max )… ( 6 5 ) α r = ( α S, α 1, …, α η,… ··· , a max)… ( 6 6 ) β τ = ( β S, β 1 t …, β η,… ·-·, β max)… ( 6 7 ) y r = ( y s , Υ X J … , y η , ■· •… y max;■·· ( 6 8 ) こ こで、 y rはタ ーンテーブル T B の角度指令値である。
次に、 ステ ッ プ S 3 2で Xr= Xs, Y r= Y s, Zr= Zs, α r= a s, β r = β s, y r= y s ( = 0 ° ) と し、 各軸を走査開始 点に位置決めする。 この位置決めが完了後、 ステ ッ プ S 3 3で 変数 Nを 1 に し、 ステ ッ プ S 3 4 に進んで被検体回転指令を出 力する と、 第 3 1 回に示すタ イ マ ' り込みプロ グラムが一定の 間隔で動作する 。 この第 3 1 図の ノ イ マ割 り込みプロ グラムが 第 8図 と異なるのは、 ステ ッ プ S 3 4 1 Bで被検体回転停止か を判断する点と、 タ ーンテーブル T B の角度位置 γ についての 検出と演算処理を行う点である。
第 3 1 図のステップ S 3 4 1 Bで被検体停止指令が出力され ていないと判定されるとステップ S 3 4 2 に移り、 N = l の指 令値である X r- X , Y r= Y X , Z r= Z ! , a r = a l f β r = β l f y r y tを取り込む。 また上述した各軸の現在位置を示 す信号 S X , S Y , S Z , S a , S β , S y を各検出器から敢 り込んで各軸の現在値 X。, Y。 , Z Q, a。, (3 D , y Dと上記指 令値との差を計算し、 その偏差にある係数を乗じるといっ たい わゆるサ一ボ演算を行ない、 その演算結果を第 2 6図における サーボアンプ 1 3 Χ〜 1 3 β , 1 3 Tに出力する。 これによ り 距離セ ンサュニッ ト 1 0 は指令された第 1番目の位置に移動す る。 このと き 、 超音波探触子 1 0 は被検体 W上における測定点 の表面の法線方向を向く 。 ステップ S 3 4 3で超音波探触子 1 0 と被検体 Wの表面との距離 β a を、 ステップ S 3 4 4 におい て各軸駆動装置の検出器からの信号 S X , S Y , S Z , S et , S β , S y を取り込み、 ステップ S 3 4 5で各軸の現在値 X。, Υ。, Ζ。, α。, |3。, y。を求めて超音波探触子 1 0の超音波 ビームが当たっている被検体 Wの表面の点の位置 ( X a, Y a, Z a) と、 超音波ビームが当っている点のターンテーブル T B の角度 y aを演算する。 ここで、 X a〜 Z aおよび y aは次の関係 式から演算される。
Χ 3= ( Χ。, Y D, Ζ。, α。, fi a) … ( 6 9 ) Y a = f 2 ( X。, Y。, Z。, a。, fi a) … ( 7 0 ) . Z a= f a ( X。, Y。, Z。, ct。, , β a) … ( 7 1 ) y a= f 4 ( Xa, Y a, γ 0 - ( 7 2 ) また、 超音波ビームが当っ ている被検体 Wの表面の点の Z軸 座標軸からの長さ D fl は次式で演算される。
D β = V a2 + Ύ a2 … ( 7 3 ) 次に、 ステ ッ プ S 3 4 6 において、 式 ( 6 9 ) 〜 ( 7 3 ) で 求めた被検体 Wの表面位置を記憶する 。 この位置の記憶方式の 一例を第 3 2 図に示す。
第 3 2 図は位置記憶用の領域分割を第 9 図と同 じよ う に示し たもので、 異なる点は横軸を タ ーンテーブル T B の角度 y 、 縦 軸を Z軸座標と した点と、 各記憶領域に記憶する内容の点であ る。 また、 同図において斜線で示した領域が被検体 Wの Z座標 における探傷範囲である。 位置記憶用領域はその探傷領域よ り 少し大きい領域と し、 その領域 ( y軸は 0 〜 3 6 0 ° , Z軸は Z tl 〜 Z th2で囲まれた領域) を y軸方向に ( P + 1 ) 分割、 Z軸方向に ( S + 1 ) 分割して複数の小領域とする。
そ して、 式 ( 7 1 ) , ( 7 2 ) で得られた Z a, y aが第 3 2 図のどの小領域に属する かを調べ、 所属する小領域の位置デー タ と して Z a, D β , および記憶完了を意味する フ ラ グを記 憶しておく 。
こ こで、 形状測定動作における 1 回転の各走査において、 y 軸方向の走査ピッチ角度よ り も ( P + 1 ) 分割 した小領域の y 軸方向の角度が大き いので、 各走査ごと に測定データ を記憶し よ う とする と各小領域に 2以上のデータ が格納さ れて し まい、 小領域を区画した意味がな く なっ て し ま う 。 そ こで、 第 1 の実 施例と同様に今回の走査 (例えば N = q の と きの走査) で求め られた位置データ が前回の走査 (例えば N = q — 1 の と きの走 査) で既に位置データ を記憶している小領域に属する と判定さ れた場合は、 各小領域には 1つの位置データ のみを記憶する。
次に、 プロ グラムの手順は第 3 1 図のステ ッ プ S 3 4 7 に移 リ、 変数 Nに 1 を加えて、 すなわち N - 2 と して終了する。
第 3 1 図のタ イ マ割 り込みプロ グラムの動作が完了する と、 プロ グラム手順は第 3 0図のステ ップ S 3 5 B に戻 り 、 Nが
( max + 1 ) か否かによ り 1 回転走査が完了 したかどう かを調 ベ、 完了するまでステップ S 3 5 B を繰返し行ない、 その間に、 ある一定の時間間隔で第 3 1 図のタ イ マ割 り込みプロ グラムが 動作し、 被検体 Wがターンテーブル T B によ り第 3 3 図に示す よ う に回転して走査される。 この走査と と もに、 先に説明した 記憶方式によ り 、 被検体 Wの表面形状の D β , Ζ , γ位置座標 力、記 される。
1 回転走査が終了 して N = max + 1 となる と プロ グラムはス テ ジ プ S 3 5 B からステ ッ プ S 3 6 B に移り 、 回転停止指令を 出力する。 この停止指令によ リ タ イマ割 り込みプロ グラムの第 3 1 図の手順はステ ッ プ S 3 4 8 に進み、 1 回の走査における 最後の指令値である X max, Y max , Z max , max , β max , Y m ax ( = 3 6 0 ° ) を取 り込んでサ一ボ演算を行ない、 その演算 結果をサ一ボアンプ 1 3 Χ〜 1 3 β, 1 3 Tへ出力する。
このよ う に して 1 回転の走査が終了する と第 3 1 図のステ ツ プ S 3 7 に進み、 形状測定動作が完了 したかどう か判定する。 この実施例でも第 1 の実施例と 同様に、 超音波探触子 1 0 によ り 、 Z方向に距離 Lだけ先行する回転走査ライ ン上の表面形状 データ を採取し、 その結果に基づいて探傷用超音波探触子 9 の 走査用制御点を演算する よ う に している。 したがっ て、 超音波 探触子 9 が第 2 7 図で示す Lだけ Z方向に下に移動するまで形 状測定のための回転走査を繰り返す。
そ して、 第 3 4 図に示すよ う に、 超音波探触子 9 の超音波ビ —ムが、 第 3 1 図による形状測定動作によって被検体 Wの表面 形状データ が記憶されている探傷領域に達した時点で形状測定 動作が完了 したと判断され、 プロ グラムは第 3 0 図のステ ッ プ
S 3 7 から メ イ ン フ ローチャ ー トである第 5 図のステ ッ プ S 4
0 の探傷動作へ移る。
以上説明 した探傷動作前の形状測定のみの動作によ り 、 第 3
4 図の一点鎖線で示した領域の被検体 Wの表面の位置座標は第
3 2 図で示した記憶方式によ リ記憶される。
③探傷動作の フ ローチヤ一卜
次に、 第 5 図のステ ッ プ S 4 0 における探傷動作処理につい て説明する。
第 3 5 図は、 探傷動作処理手順 S 4 0 の詳細な フ ロ一チヤ一 トであ り 、 第 3 0 図の形状測定動作の フ ローチャ ー ト と 同様な 処理である。 まずステ ッ プ S 4 1 Aにおいて、 探傷用の探触子 9 の 1 回転走査分の各軸位置指令値を演算する。 第 3 6 図およ び第 3 7 図によ り その演算について説明する 。
第 3 6 図は第 3 5 図のステ ッ プ S 4 1 Aにおける 1 回転走査 分の各軸位置指令値の演算手順の フ ローチャ ー ト、 第 3 7図は , 各軸位置指令値を演算する と き に、 記憶した被検体 wの表面の 位置データ の う ちどのデータ を使用するかを説明する図であ り . それぞれの図は第 1 の実施例の第 1 3 図および第 1 4 図に相当 する。 第 3 7図における太い実線が超音波探触子 9 による探傷 走査ライ ンであ り 、 第 3 6図の処理は秦〜 ®で示した制御点位 置の各軸指令値を演算するものである。
第 3 6 図において、 ステ ッ プ S 4 1 1で制御点位置近傍にお ける被検体 Wの表面の法線べク トルを第 1 の実施例と同様に演 算する。 例えば、 第 3 7図の拿の制御点位置近傍の法線べク ト ル N ( = Nx, Ny, Nz) は第 1 の実施例で示した次式によつ て求め られる。
N x= ∑ ( Y i- Y j) X ( Z i+ Z j) … ( 1 3 )
Ny= ∑ ( Zi— Z j) X ( Xi+ X j) … ( 1 4 )
i:
Nz= ∑ ( Xi- X j) X ( Y i+ Y j) … ( 1 5 )
ただし、 i ≠ 4 な ら j = i + l, i = 4 な ら j = l である。
なお、 X 1〜X 4, Y 1〜Y 4は、 法線べク 卜ルを演算する 前に角度 Y aと長さ D fi から、 次式によ り換算して求めたもの である。
X l = D fi sin ( y a- y ) … ( 7 4 )
Y l = D fi cos ( y a- y ) -" ( 7 5 )
次に、 ステ ッ プ S 4 1 2で制御点位置の位置演算を行な う 。 第 3 7 図における制御点きの位置を ( Xk, Y k, Z k) とする と、 Z kは記憶領域を設定するために与えた値であ り 、 既知で ある。 また、 タ ーンテーブル T B の中心座螵を ( 0, 0, 0 ) と している から、 Y k= 0 と な り Y kも既知である。 従って、 ス テ ツ プ S 4 1 2 の制御点位置の位置演算は Xkを求める演算で ある。
第 3 7 図の參の周囲に存在する位置の座標 ( Xm, Y m, Z m) から、 第 1 5 図に示した平面 P Lの平面式の係数 d は次式とな る。
d = - ( xX Di+ N y Y m+ N z m) … ( 1 7 )
この係数 d を用 ώ こ と によ り 、 1番目 の制御点である秦の位 置 Xkは次のよ う に求まる。
X k= - ( d + NyY K+ NzZ k) / Ν χ ·■· ( 7 6 )
次に、 係数 d の演算に使用する ( Xm, Y m, Z ra) について は第 1 の実施例と同様である。
以上の説明によ り制御点位置の法線ベク トル N ( = N X, Ny, Nz) と位置 ( Xk, Y k, Z k) が求まっ た。
第 3 6 図のプロ グラムの手順は次にステ ッ プ S 4 1 3 に移 り . 各軸の位置指令値の演算と記憶を行な う 。 こ こで、 超音波探触 子 9 と被検体 Wの表 と の距離が β 。になる よ う に設定する と 、 各軸の位置指令値 ( Χ Γ , Υ Γ, Ζ Γ, α Γ , β Γ) は次の関係式 から演算さ れて記憶さ れる。
X r= f s ( X k, Y k, Z k, N x , N y , N z, β 。) … ( 7 7 )
Y r = f ε ( X k, Y k, Z k, N x , Ny, N z, β 。) … ( 7 8 ) Z r= f 7 ( X k, Y k, Z k, N x, N y , N z, β 。) … ( 7 9 ) a r= f 8 ( Ν χ, N y , Ν ζ) - ( 8 0 ) β r= f 3 ( Ν χ, Ν y, Ν ζ) ··· ( 8 1 ) このと き同時にき制御点におけるタ ーンテーブル Τ Β の角度指 令値 7 rも記憶しておく 。
次に、 ステ ッ プ S 4 1 4 Aで 1 回転走査分の演算が完了 した と判定される までステップ S 4 1 1〜4 1 4 Aの処理を順次繰 リ返し行なう こ と によ り、 第 3 7 図の參〜 ®印の制御点位置ま での演算を行ない、 第 3 6 図の手順を終了 して第 3 5 図のステ ッ プ S 4 2 に移る。 この時、 1 回転走査分の各軸位置指令値は 式 ( 8 2 ) 〜 ( 8 7 ) で表わされたデ一タ群となっている。
X r = ( rs , X r] … X rn, ■ ·' X rma ) · ( 8 2 )
Y r = ( Υ rs , Υ Γ】 … γ rn , · ·· Y rma ) · ( 8 3 )
Z r = ( Ζ rs, Ζ Γ3 … ζ rn , ' '· Z rmax) - ( 8 4 ) α r = ( α rs , α Γ3 m , ' ·· rma ) · ( 8 5 ) β r = ( β rs, β Γ: … β rn , ■■ β rmax) - ( 8 6 ) y r = ( y rs , y r: rn , ·· y rmax ) - ( 8 7 ) 第 3 5 図のステ ッ プ S 4 2〜 S 4 5 Aの処理は、 第 3 6 図の ステ ッ プ S 4 1 2で得られた式 ( 8 2 ) 〜 ( 8 7 ) で表される 位置指令値のデータ群を用いて行なわれる。 形状測定動作と 同 様に、 ステ ッ プ S 4 2 , 4 3 を実行し、 ステ ッ プ S 4 4 Aで被 検体回転指令、 すなわち走査開始指令が出力される と、 第 3 8 図のタ イマ割 り込みプロ グラムが起動される。 この第 3 8 図の タ イマ割 り込みプロ グラムが第 1 7 図 と異なるのは、 ステ ッ プ S 4 4 1 Aで被検体回転停止かを判断する点と、 ステ ッ プ S 4 4 3 Aで出力する探傷信号が制御点位置 ( Z K, y κ) について のものである点である。
第 3 8図のプロ グラムのステ ッ プ S 4 4 1 Aで回転停止指令 が出力されていない と判定される と、 ステ ッ プ S 4 4 2で Ν番 目 の各軸位置指令値の取 り込みとサーボ演算および出力が行な われる。 その後、 ステ ッ プ S 4 4 3 に進み、 超音波探触子 9 の 出力 を取り込み、 その探傷検出結果を制御点位置 ( Ζ ι·, γ Γ) のデータ と して記録装置 1 5へ出力する。 次に、 第 3 1 図のス テ ツ プ S 3 4 3〜 S 3 4 7 と同様なステ ッ プ S 4 4 4〜 S 4 4 8 を順次に実行 して、 探傷動作に並行して、 第 2 7 図の距離 L だけ先行する走査ライ ンの形状測定が第 1 の実施例と 同様に行 なわれる。
このよ う な手順を繰り返して 1 ^1の回転走査を完了する と ス テ ツ プ S 4 5 Aから S 4 6 Aに進み、 被検体停止指令を出力す る。 そ して、 ステ ッ プ S 4 4 1 Aで走査停止と判定される と、 ステ ッ プ S 4 4 9で N max番目 の各軸位置指令値の取り込みと サーボ演算および出力が行なわれる。 そ して、 ステ ッ プ S 4 7 に移り 、 探傷動作が完了 したかどう か調べる。 すなわち、 第 3 2図の太い実線で示された範囲をすベて走査したかどう か調べ 走査していない場合はステ ッ プ S 4 1 Aに戻 り 、 次の 1走査分 例えば、 第 3 7 図の X印のラ イ ンの各軸位置指令値 演算を行 なう 。
第 3 2図で示された探傷範囲 をすベて走査し たな らば、 プロ グラムはステ ッ プ S 4 7 から第 5 図のステ ッ プ S 5 0へ移 り 、 ある決め られた終了位置へ各軸を位置決めし、 制御は完了する。 以上のよ う に、 第 2 6 図〜第 3 8 図によ り説明 した第 4 の実 施例では、 次のよ う に して被検体 Wの表面形状の測定と探傷動 作が行なわれる。
( a ) 被検体が回転される。
( b ) 予め与え られた被検体表面形状のデータ に基づいて距離 センサユニッ トの姿勢が制御され、 距離検出用超音波信号が回 転する被検体に向けて発射される。 そ して、 その反射波から被 検体表面上の距離測定点までの距離が測定され、 その距離デー タ と距離センサユニッ トの現在の位置と から、 被検体上の測定 点の形状情報、 すなわち形状測定データ が演算される。
( c ) その形状測定データ を、 タ ーンテーブルの回転角度と Z 軸座標とで区画した小領域のいずれかの領域のデータ と して記 憶する。 ただ し小領域内には 1 つのデータ のみを保存する。
( d ) ( b ) , ( c ) の手順を第 2 7 図の距離 L分だけ行な う 。
( e ) ( b ) 〜 ( d ) で各小領域に保存されている被検体 Wの 表面形状データ から探傷用探触子の制御点の位置指令値 (探触 子の位置および姿勢) を求める。
( f ) その位置指令値で各軸駆動装置を制御して探傷用探触子 の位置および姿勢を制御 し、 超音波探傷信号が被検体表面の法 線方向および所定の距離を向 く よ う にする。
( g ) その位置および姿勢で探傷用探触子から超音波探傷信号 を発射して被検体を探傷する 。
( h ) この探傷動作に並行 して、 距離センサユニ ッ トから超音 波信号を被検体に向けて発射し、 探傷用探触子よ り も距離 Lだ け先行する走査ライ ン上の形状測定データ を採取する。 この形 状測定データ は、 探傷用探触子がその走査ライ ン上または近傍 に達したと きの位置および姿勢制御に使用される。
したがって、 回転する被検体に対して探傷用探触子をいつも 精度よ く被検体表面から所定の距離および法線方向に向ける こ と ができ、 表面形状が不規則な回転体の探傷が容易に行なえる , また、 探傷動作と形状測定動作が並行して行われるので、 測定 時間が短縮化される。
さ らに、 位置データ を記憶する ^域を タ ーンテ一ブルの回転 角度と Z座標で小領域に分割し、 各領域には 1 つだけ位置デー タ を記憶し、 各小領域の位置データ によ り任意の探傷走査ライ ン上の探触子の制御点を決定する よ う に している から、 第 1 の 実施例と 同様の効果が得られる。
一第 5 の実施例一
以上説明 した各実施例においては、 任意のラ イ ンの探傷走査 の開始時に、 そのラ イ ン走査の各制御点の位置指令値を演算し ている。 そのため、 実際の探傷動作が開始される までの間に超 音波探触子 9 , 1 0 が停止している ロ ス時間が存在する。 各探 動作中に次のライ ン走査の位置指令値を前もって演算すれば α ス時間 を解消でき る。
第 3 9 図〜第 4 1 図によ り その例を説明する 。
第 3 9 図に中央処理装置を 2台と した場合のハ一ド ウ ヱ ァ構 成を示す。 3 1 は中央処理装置であ り 、 探傷動作における一走 查分の各軸指令値の演算処理を受け持ち、 他の処理は中央処理 装置 3 2 が行な う 。 3 3 は被検体表面の位置データ および一走 査分の各軸指令値の演算開始フ ラグ等を記憶する メモ リ 、 3 4 は中央処理装置 3 1 によって演算された各軸指令値および演算 完了フ ラ グを記憶する メモ リ である。
第 4 0図は中央処理装置 3 2 における探傷動作 (第 3 5 図の 代わ り) の詳細なフ ローチヤ一卜で、 第 4 1 図は中央処理装置 3 1 の フ ローチヤ一卜である。
次に、 この実施例の動作を説明する。
まず、 ステ ップ S 1 0 1 で走査カ ウ ンタ C Nを 1 にセ ッ 卜 し , 指令演算開始フ ラ グを メモ リ 3 3 にセ ッ トする。 そ して、 ステ ップ S 1 0 2で演算完了フラ グがセ ッ 卜される まで待つ。
第 4 1 図の処理は、 まず、 ステッ プ S 2 0 1 で演算開始フ ラ グがセ ッ トされるまで待つ。 そ して、 第 4 0図のステ ッ プ S 1 0 1 で演算開始フ ラ グがセ ッ トされたな らば、 処理はステ ッ プ S 2 0 2 に進んで走査カ ウ ンタ のカ ウ ン ト値を読み、 次のステ ッ プ S 2 0 3で演算開始フ ラ グと演算完了フ ラ グを リ セ ッ 卜す る。 なお、 当然の こ とである が、 最初、 演算完了フ ラ グは リ セ ッ 卜 されている。
そ してステ ップ S 2 0 4 に移 り 、 C Nの値に相当する走査ラ イ ンの、 すなわち、 最初は第 1走査ライ ンの各軸指令値の演算 を行なう 。 この演算は、 第 3 6 図のステ ッ プ S 4 1 1〜 S 4 1 4 Aの演算と全く 同 じである。 そ してステッ プ S 2 0 5でそ.の 得られた各軸指令値を メモ リ 3 4 に書き込む と とも に、 ステ ツ プ S 2 0 6で演算完了 フ ラ グを メモ リ 3 4 にセ ッ 卜 してステ ツ プ S 2 0 1 に戻 り 、 次の走査ライ ンの指令値演算開始指令を待 つ。
演算完了フ ラ グのセ ッ トによ リ第 4 0 図のプロ グラムはステ ッ プ S 1 0 2 からステ ッ プ S 1 0 3 に進み、 各軸指令値を メモ リ 3 4 から取り込む。 そ して、 ステ ッ プ S 1 0 4では、 走査力 ゥ ンタ のカ ウ ン ト値 C Nを 1増加させて指令値演算開始フ ラ グ をセ ッ トする。 さ ら にステ ッ プ S 1 0 5〜 S 1 0 9 によっ て第 1走査ライ ンの探傷動作を行な う 。 この探傷動作の間に屮央処 理装置 3 1では第 2走査ラ イ ンの指令値演算を行なう 。
以上、 述べたよ う に この実施例によれば, 探傷と指令値演算 を並行して行なう こ と ができ るので、 探傷の開始から完了まで の時間を更に短く する こ と ができ る。
一第 6 の実施例一
第 4 2図〜第 4 7図によ り 、 距離検出センサ 1 0 a, 1 0 からの検出信号が異常値の と きにそれを排除する距離監視回路 1 6 を設けた第 6 の実施例を説明する。 第 4 2図はその制御系 の全体構成を示し、 第 4 2 ¾において第 1 図 と同一の部分には 同一の符号を付して説明 省略する。 なお、 この距離監視回路 1 6 は他の実施例にも適用でき る。
第 4 3 図は距離監視装置 1 6 を コ ン ピュータ で構成した場合 の処理内容を表したフ ロ一チャ ー トである。 また、 第 4 3図は 第 4 図に示す距離検出回路 1 1 Aの出力信号に対 しての処理で あ り 、 距離検出回路 1 1 B の出力信号に対しての処理も同様の 構成となっている。
まず、 ステ ップ S 3 0 1で距離検出回路 1 1 から距離信号 S W A ( S WB ) を取り込みその時の値を Miとする。 次に、 再 度ステ ップ S 3 0 2で距離検出回路 1 1 から距離信号 S WA ( S WB ) を取り込みその時の値を M2とする。 ステッ プ S 3 0 3で式 ( 8 8 ) 〜 ( 9 0 ) に示す 3条件を調査する。
Mmin<M1< Mmax … ( 8 8 )
M min< M 2 < M max … ( 8 9 )
Figure imgf000052_0001
式 ( 8 8 ) 〜 ( 9 0 ) の条件がすべて満足したな らば、 距離 信号値は正常である と判断し、 プロ グラムはステ ップ S 3 0 4 に進み、 M と M2の平均値を距離信号 MD (第 4 2 図で示す M a。または M b。) と して制御装置 1 2へ出力する。 ステ ップ S 3 0 3で式 ( 8 8 ) 〜 ( 9 0 ) に示す 3条件の う ち 1式でも満 足しない場合は距離信号値は異常である と判断し、 プロ グラム はステ ッ プ S 3 0 5へ進み、 距離検出不能信号、 例えば、 距離 信号値 M。 = 0 と して制御装置 1 2へ出力する。
このよ う に式 ( 8 8 ) 〜 ( 9 0 ) の条件を調査する こ と によ り 、 被検体 Wの表面の傷などに起因する距離の異常値や、 信号 伝達の失敗によ る異常値を排除する こ と ができ る 。 なお、 M ni n, M maxは後で述べる形状測定動作と探傷動作において予想で き る距離の最小値と最大値であ る。 また、 Δ Mは距離変化量の 許容値である。 例えば、 Mェの計測時に信号伝達が失敗したと する と I M i— M 2 I の値が非常に大き く な り 、 その異常値 M丄 を排除する こ と ができ る。
〔制御装置 1 2の演算処理〕
①メ イ ン フ ロ ーチヤ一卜
メ イ ンフ ローチャ ー トは第 1 の実施例の第 5 図のもの と 同一 であ り その説明を省略する。
次に、 形状測定動作と探傷動作を詳細に説明する。
②形状測定動作の フ ロ ーチヤ一ト
第 4 4図はメ イ ン フ ローチャ ー トのステ ッ プ S 3 0 の形状測 定動作の詳細を示す。
まず、 ステ ッ プ S 3 2 Cにおいて、 式 ( 9 1 ) 〜 ( 9 5 ) に 示すデータ群となっ ている各駆動装置の走査開始点の指令値 (以下、 各軸指令値と称す) を取 り込み、 各軸を位置決 >する
Xr= Xs- ( 9 1 )
Y r= Y s〜 ( 9 2 )
Ζ r= Ζ s- ( 9 3 )
α r = a s— ( 9 4 )
β r= β s〜 ( 9 5 )
次に、 ステ ッ プ S 3 4 Cに進んで走査開始指令を出力する と 第 4 5図に示すタ イ マ割 り込みプロ グラムが一定の間隔で動作 する。 これは、 第 2 4 図の フ ローチャ ー ト と同様の手順であ り 同一処理内容の手順には同一の符号を付して説明する。
第 4 5 図において、 まず、 ステ ッ プ S 3 4 1 で走査停止指令 かどう か判定する。 最初は走査開始指令であ る か ら ステ ッ プ S 3 4 3 に移り、 超音波探触子 1 0 a , 1 0 b と被検体 Wの表面 との距離 fi a , fi b を距離監視装置 1 6 からの信号 M a。, M b。によ り取 り込むと と もに、 各軸駆動装置の検出器からの信 号 S X, S Y , S Z , S a , を取り込み、 ステ ップ S 3 2
4で各軸の現在値 XD, Y。, Z。, a D, P。を求めて超音波探 触子 1 0 a , 1 0 b の超音波ビームが当たっている被検体 Wの 表面の点の位置 ( Xa, Y a, Z a) 、 ( X b, Y b, Z b) を演算 する。 こ こで、 Xa〜 Z bは第 1 の実施例で示したと同 じ次の関 係式から演算される。
Xa = f ( e ', Y c 1 Z。, a t β c ,, β a) ( 7 )
Y a = f z ( o , , Y t 1 » Z c > , a t 1, β t ', β a) ( 8 )
Z a = f 3 ( Xc , , Y t ] > c 1, a ( 1, β t ,, β a) ( 9 )
Xb = f 1 ( Xt ,, Y ( ) > ム t ', a , 1, β 1 ,, β b) ( 1 0 )
Y b = f 2 ( Xt > , Y , ) » z t ) , a 1 】, β ( ,, β b) ( 1 1 )
Z b = f 3 ( Xc ,, Y , i > z t ) > a , ,, β 1 ], β b) ( 1 2 ) こ こで、 距離監視装置 1 6 からの信号 M a。, M b。が異常 値 0 を出力 したと きは X a 〜 Z b = 0 と演算される。 そ こで、 次に、 ステ ッ プ S 1 3 4 1 において、 X a = Y a = 0 または X b = Y b= 0 か否かを判定し、 否定される と、 換言する と X a 〜 Y b が正常の場合にはステ ッ プ S 3 4 6 に進み、 肯定される と、 換言する と X a 〜 Y b が異常の場合にはステ ッ プ S 1 3 4 2 に進む。 ステ ップ S 3 4 6 において、 式 ( 7 ) 〜 ( 1 2 ) で 求めた被検体 Wの表面位置を記憶する。 この位置の記憶方式は 第 1 の実施例の第 9 図で説明 した通 り である。 次に、 プロ グラムの手順は第 4 5図のステ ッ プ S 1 3 4 2 に 進む。
第 4 6 図はステ ップ S 1 3 4 2 における距離検出不能補僂制 御の詳細例である。
まずステ ッ プ S 1 3 4 2 a において、 距離信号 S WA, S W B が正常かどう か調査する。 これは、 距離監視装置 1 6 から制 御装置 1 2 に送られる距離信号 M a。 , M b。が 0 か否かで判定 され、 0でなければ正常値と判定さ れ、 ステ ッ プ S 1 3 4 2 b でカ ウ ンタ N 1 を 0 に してこのプロ グラムは終了 して第 4 5 図 のステ ッ プ S 1 3 4 7 にジャ ンプする-。
ステ ップ S 1 3 4 2 aで距離信号 S W Aまたは S W B が異常 値であ り M a。 = 0 または M b。 = 0 と判断される と、 ステ ップ S 1 3 4 2 c で距離信号 fi a = fi b = fl r> とする。 そ して、 ス テ ツ プ S 1 3 4 2 d でカ ウ ンタ N 1 のカ ウ ン ト値が N l maxと 等しいかどう か調査する。 初めはステ ッ プ S 1 3 4 2 bで N 1 を零と しているので N 1 max以下であ り 、 処理はステ ッ プ S 1 3 4 2 e に進みカ ウ ンタ N 1 のカ ウ ン ト値を 1増加 して このプ ロ グラムを終了 して第 4 5図のステ ジ s S 1 3 4 7 にジャ ンプ する。
次に、 第 4 5 図のステ ッ プ S 1 3 4 7以降の ¾理を説明する が、 まず、 第 4 6図の 2において距離信号 S W A, S W B が 正常 (M a D≠ 0 , M b。≠ 0 ) である と判定されている場合に ついて説明する。
今、 走査開始点での位置決めが完了 した状態を先の第 2 5 図 の I 状態とする。 この と き、 上述した通り 、
fi r = ( j2 a 1+ fi b 1) / 2 - ( 5 5 ) である とする。 こ こで、 β Γ は超音波探触子 1 0 a , 1 0 b と 被検体 Wの表面との距離の 目標値である。 ブラケ ッ ト 8 Dの中 心線が正確に被検体表面の法線方向に向いており 、 かつ被検体 Wの表面との距離も制御指令値通 り になっ ている。
I の状態において、 ステップ S 1 3 4 7で角度 δ の演算を行 なう 。 こ こで、 δ はブラケ ッ ト 8 Dの中心線と法線方向 と のず れ量である。 したがって、 I 状態では δ == 0である。 次に、 ス テ ツプ S 1 3 4 8で α軸の位置指令値を演算する。 今、 δ = 0 なので、
a r = α 0 ·■· ( ο 6 )
である。 こ こで、 上述の通 り a r は α軸の位置指令値、 α。は α軸の現在値である。 さ ら にステ ッ プ S 1 3 4 9 で X, Ζ軸の 位置指令値を次式によ り演算する。
第 2 5図に示すよ う に、 I 状態から Π の状態に移行するため の X, Ζ軸の位置指令値 X r , Ζ Γ は、 X, Ζ軸補正量を Δ Χ , Δ Ζ とする と次式で表せる。
X r = X 0 + Δ X!
= X 0 + Δ D cos a r … ( 5 7 )
Z r = Ζ α + Δ Ζ!
= Ζ。 + Δ D sin α r -" ( 5 8 )
次に、 式 ( 5 6 ) 〜 ( 5 8 ) によ り求めた各軸位置指令値と 現在位置を用いてステ ッ プ S 1 3 5 0でサーボ演算およびその 出力 を行ない、 第 4 5 図のタ イ マ割 り込みプロ グラム を終了す る。 この と き、 ブラケ ッ ト 8 Dは第 2 5図の Π の状態となる。 第 4 5 図のタ イ マ割 り込みプロ グラムの動作が完了する と、 プロ グラム手順は第 4 4図のステ ッ プ S 3 5 に戾 り 、 1 回の走 査が完了 したかどう か調べる。 1 回の走査が完了する までステ ッ プ S 3 5 を繰り返し行なう 。
そ して、 再び第 4 5図のタ イマ割 り込みプロ グラムに処理が 移る と、 まず、 ステ ップ S 3 4 1〜 S 3 4 6 によっ て被検体 W の表面の位置を演算し記憶する。 この時、 ブラケ ッ ト 8 Dは第 2 5 図の Π の状態になっているので、 超音波探触子 1 0 a, 1 0 b間の距離を D とする と角度 δ は上述と 同様に次式で求め ら れる。
I
δ = tan-1 { ( β b z - β a 2)/ D ) … ( 5 9 ) したがっ て、 α軸の位置指令値 a r は次式によ り求める こ と が でき る。
α Γ = α。 + δ ·'· ( 6 0 ) 次に、 上述したと同様に fi r = ( β a 2 + β b ζ) / 2 となる よ う にブラケ ッ ト 8 D を第 2 5 図の矢印 Α方向に X, Z軸を補 正量 Δ X 2, Δ Z 2だけ移動し、 その後、 点 0 を中心に角度 δ だ け回転する。 その結果、 ブラケ ッ ト 8 Dは第 2 5 図の mの状態 と なる。 この時の補正量を Δ Χ3, Δ Ζ 3とする と上述したよ う に X, Ζ軸の指令値は次式で表される。
X r = XD + 厶 Xi+ A X2 + A X3 … ( 6 1 ) Z r Z o + A Zi + A Z z + A Z a … ( 6 2 ) 次いで、 第 4 5図のステップ S 1 3 5 0 を処理し、 ブラケ ジ 卜 8 Dを次の位置へ移動してタ イマ割 り込みプロ グラムが終了 される。
このよ う に して第 4 4図のステ ップ S 3 5 を繰返し行な う と, その間に、 ある一定の時間間隔で第 4 5図のタ イマ割 り込みプ ロ グラムが動作し、 被検体 Wにおける X軸方向の 1走査分の表 面形状の X, Υ , Z位置座標が記憶される。 そ して、 第 4 4図 のステ ッ プ S 3 7で形状測定動作完了と判定さ れる とプロ グラ ムは第 5図のステッ プ S 4 0の探傷動作へ移る。
次に、 以上のよ う な形状測定動作中に第 4 6 図の距離検出不 能補僂制御処理のステッ プ S 1 3 4 2 a において距離信号 S W A , S WB が異常 (M a。= 0 または M b。= 0 ) と判定される と、 ステ ッ プ S 1 3 4 2 cで距離 fi a = fi b = fi r とする。 し たがって、 第 4 5図のステップ S 1 3 4 2 に続く ステ ッ プ S 1 3 4 7 , S 1 3 4 8で求め られる δ , Δ X ζ , Δ Χ3, Δ Ζ 2, Δ Ζ3は零となるので、 超音波探触子 1 0 a, 1 0 b は異常と 判定された今回の姿勢のまま X軸に沿って接線方向に だけ 移動する。
また第 4 6 図の距離検出不能補償制御の処理で、 距離信号 S W A , S W B が異常と判定された回数が N 1 maxに達する と、 ステ ッ プ S 1 3 4 2 f に進んで fi a = fi b = fi r , 厶 D = 0 と して このプロ グラムが終了する。 そのため、 以降のステ ッ プ S 1 3 4 7〜 S 1 3 4 9 で式 ( 5 7 ) 〜 ( 6 2 ) を演算する と 、 δ , ί !^〜 m , A Z i〜 A Z 3が零と な り 、 a r = a。, X r = X。となって超音波探触子 1 0 a , 1 0 b は停止する。
以上のよ う にこの実施例によれば、 被検体表面の傷や信号伝 達の失敗によ り距離がまれに検出できない場合、 その姿勢を保 つ た状態で超音波探触子 1 0 a , 1 0 b の位置を制御する よ う に したので、 形状測定動作が異常にな らず円滑に動作を続行で きる。 さ らに、 非常に大きい傷や距離センサユニ ッ トの故障な どによつて距離を全く検出できないと きは ( N 1 = N 1 max時)、 形状測定動作が停止するので、 距離センサユニ ッ ト が被検体に 衝突するおそれがな く安全である。
③探傷動作の フ ローチャ ー ト
探傷動作処理について説明する。
第 5図のメ イ ン フ ロ ーチャ ー ト における探傷動作処理ステ ツ プ S 4 0 は、 第 1 の実施例のそれと同一であ り 、 第 1 2図に示 す探傷動作フ ロー 1 と して示される。 また、 この探傷動作フ ロ 一 1 のステ ッ プ S 4 1 の詳細内容も第 1 3図で示す探傷動作フ ロ ー 2 と 同一である。 この実施例の探傷動作の う ち第 1 の実施 例と異なるのは、 第 1 2図のステ ッ プ S 4 4 を通して起動され る探傷動作フ ロー 3である。
第 4 7 図はこの実施例における探傷動作フ ロ ー 3 C を示す。 第 1 実施例の探傷動作フ ロ ー 3 (第 1 7 図) と同様なステ ツ プには同一の符号を付 して説明する 。
第 4 7図のプロ グラムのステ ジ プ S 4 4 1 では走查停止か否 かを判定し、 否定さ れる と ステ ッ プ S 4 4 2で N番目 の各軸位 置指令値の取 り込みとサーポ演算および出力が行なわれる。 こ れは、 第 1 6図に示した位置フィ ー ドバッ ク制御と速度フィ 一 ド フォ一ワード制御で行なわれる。 その後、 ステップ S 4 4 3 に進み、 超音波探触子 9 の出力を取り込み、 その探傷検出結果 を制御点位置 ( Xm,Y m) のデータ と して記録装置 1 5へ出力 する。 次に、 第 4 5図のステップ S 3 4 4〜 S 3 4 6 と同様な ステップ S 4 4 4〜 S 4 4 8 を順次に実行して、 第 1 8 図に示 すよう に探傷動作に並行して、 先行する走査ライ ン (破線で示 す) の形状測定が行なわれる。 すなわち、 超音波探触子 1 0 a , 1 0 b からのビームが被検体表面に当たっている位置が第 9 図 の各小領域に記憶される。 この場合も、 ステップ S 4 4 9 にお いて距離信号値が異常の場合はその時の位置データ は記憶され ない。
以上説明した実施例では、 次のよう に して被検体 Wの表面形 状の測定と探傷動作が行なわれる。
( a ) 先行する距離センサユニ ッ ト 1 0 a, 1 0 b の検出結果 などから被検体 Wの表面形状を測定する。 具体的には、 距離セ ンサュニッ 卜 1 0 a , 1 0 b の超音波ビームがあたっている表 面形状の X, Y , Zの位置座標を求めて記憶する。 これは、 X Y平面に区画した小領域のいずれかの領域のデータ と して記憶 する。 ただし小領域内には 1つのデータ のみを保存する。
( ) この形状測定時、 短いサンプリ ング間隔で距離信号 S W A , S W B を採取して距離信号の異常を判別し、 異常時は位置 座標を記憶しない。
( c ) この形状測定データ から、 2つの距離センサユニ ッ ト 1 0 a , 1 0 b の検出信号 S W A, S W B が目標値 fi r に等し く なる よ う に、 すなわち β a = β b = β r となる よ う にセ ンサュ ニッ 卜の姿勢を制御 して距離センサュニ ッ 卜の検出方向が被検 体表面の法線方向を向き、 距離センサと被検体表面と の距離が 目標値 β r になる よ う に しながら倣い走査する。
( d ) 距離信号異常時は、 距離センサユニ ッ ト を前回の法線方 向に向けたま まその法線方向と直交する X軸に沿っ た接線方向 に距離センサュニ ッ ト を 1 ピッチだけ走査する。
( e ) ( a ) 〜 ( d ) の手順を第 3 図の距離 L分だけ行なう 。
( f ) ( a ) 〜 ( e ) の操作によ り各小領域に保存されている 被検体 Wの表面形状データ から探傷用探触子 9 の制御点の位置 指令値 (探触子 9 は被検体表面から所定距離た'け離れその超音 波ビームは被検体表面の法線方向を向 く ) を求め、 複数の位置 指令値を平均化して各制御点の位置指令値とする。
( ) 平均化された位置指令値から制御点への速度指令値を演 算し、 複数の制御点への速度指令値から各制御点への速度指令 値を平均化して各制御点への速度指令値とする。
( h ) 平均化された位置指令値と実位置との偏差から偏差分の 速度指令値を求め、 平均化された速度指令値と加算し、 これで 各軸駆動装置を制御する。
( i ) 各制御点で探触子 9 から の検出信号を受信 して被検体を 探傷する。
( j ) 探傷動作と並行して ( a ) , ( b ) で述べた と 同様に探 傷ラ イ ン よ り も先行する走査ライ ン を形状測定する。 したがっ て、 被検体の表面の傷などによる不正確な位置デ一 タ が排除され、 探傷動作が正確に行われる と とも に、 探触子を 円滑に走査でき る。
産業上の利用可能性
本発明は、 表面が曲面を有する各種のワーク の表面や内部の 欠陥等を超音波で探傷する装置と して利用でき る。

Claims

請求の範囲
1 ) 被検体上に設定された探傷領域内の各探傷点に向けて超 音波探傷信号を発射しその反射波を受信する超音波探触子と、 前記探傷領域を含む位置記憶領域内の測定点に向けて距離計 測信号を発射して距離を検出する距離センサ手段と、
前記距離センサ手段が前記超音波探触子よ りも先行する走査 ライ ン上を走査するよう に前記距離センサ手段と超音波探触子 と を結合する結合手段と、
前記超音波探触子および前記距離センサ手段の位置および姿 勢を制御する位置姿勢制御手段と、
前記距離センサ手段の検出結果とその時の距離センサ手段の 位置と に基づいて前記探傷領域を含む位置記憶領域の形状に閧 する情報を演算する形状情報演算手段と、
その形状情報を記憶する記憶手段と、
この記憶手段に記憶されている形状情報から、 前記探傷点に 所定の入射角度および距離で探傷信号を投射するための前記超 音波探触子の位置および姿勢を浪算する位置姿勢演算手段と、 前記距離センサ手段による形状測定走査と前記超音波探触子 による探傷走査を並行して行わせる制御手段と を具備する超音 波探傷装置。
2 ) 請求項 1 の超音波探傷装置において、
前記探傷領域を含む位置記憶領域を複数の小領域に分割し、 前記記憶手段は、 前記各小領域に対応する記憶領域を有し、 そ の記憶領域には前記形状情報を 1 つだけ記億する。 3 ) 請求項 2 の超音波探傷装置において、
前記超音波探触子と距離センサ手段は、 X軸, Y軸で定め ら れる 2次元平面内を走査し、 前記形状情報は、 X軸, Y軸の位 置および、 X軸, Y軸と直交する Z軸の位置によって規定され、 前記記憶手段の小領域に対応する記憶領域は X軸, Y軸の位置 に対応するァ ド レスでアクセスされ、 各ァ ドレスの記憶領域に は、 前記探傷領域を含む位置記憶領域におけるセンサ距離測定 点の X軸、 Y軸、 Z軸の位置情報が記憶される。
4 ) 請求項 2 の超音波探傷装置において、
前記位置姿勢演算手段は、 前記探傷点に対応する 1 つの前記 小領域を囲む複数の小領域の形状情報に基づいて前記超音波探 触子の位置および姿勢を湞算する。
5 ) 請求項 1 の超音波探傷装置において、
前記距離センサ手段と探傷用超音波探触子は同一の基板に設 置され、 距離センサ手段は一対の距離センサを含み、 これら一 対の距離センサは、 被検体表面の曲面形状を測定するためその 曲面の曲率変化方向である走査方向に並び、 かつ、 走査時に前 記探傷用の 1つの超音波探触子による探傷点よ りも先行する位 置記憶領域を走査するよう に配置されている。
6 ) 請求項 2 の探傷装置において、
前記距離センサ手段と探傷用超音波探触子は同一の基板に設 置され、 距離センサ手段は一対の距離センサを含み、 これら一 対の距離セ ンサは、 被検体表面の曲面形状を測定するためその 曲面の曲率変化方向である走査方向に並び、 かつ、 走査時に前 記探傷用の 1 つの超音波探触子による探傷点よ り も先行する位 置記憶領域を走査するよう に配雷:されている。
7 ) 請求項 3の探傷装置において、
前記距離センサ手段と探傷用超音波探触子は同一の基板に設 置され、 距離センサ手段は一対の距離センサを含み、 これら一 対の距離センサは、 被検体表面の曲面形状を測定するためその 曲面の曲率変化方向である走査方向に並び、 かつ、 走査時に前 記探傷用の 1つの超音波探触子による探傷点よ り も先行する位 置 憶領域を走査するよう に配置されている。
8 ) 請求項 1 の超音波探傷装置は円柱状の被検体を探傷する 装置であって、
前記被検体を所定の回転軸を中心に回転する回転手段を有し、 前記探傷領域を含む位置記憶領域を被検体の回転角度と回転 軸方向の位置 j:画した複数の小領域に分割し、 前記記憶手段 は前記各小領域に対応する記憶領域を有し、 その記憶領域には 前記形状情報を 1つだけ記憶する。
9 ) 請求項 8 の超音波探傷装置において、
前記超音波探触子と距離センサ手段は前記 Z軸方向に走査可 能であ り、 前記形状情報は、 Z軸の位置と、 前記回転角度 y と 探傷点の Z軸からの半径距離 D fi と によって規定され、 前記記 憶手段の小領域に対応する記憶領域は Z軸の位置と回転角度 y と に対応する ァ ド レスでアクセスされ、 各ァ ド レスの記憶領域 には、 探傷領域を含む位置記憶領域におけ 前記距離測定点の 回転角度 y と、 Z軸位置と、 半径距離 D £ と の情報が記憶され る。
1 0 ) 被検体上に設定された探傷領域内の各探傷点に向けて 超音波探傷信号を発射しその反射波を受信する超音波探触子と . 前記探傷領域を含む位置記憶領域内の測定点に向けて距離計 測信号を発射して距離を検出する距離センサ手段と、
前記距離センサ手段が前記超音波探触子よ りも先行する走査 ライ ン上を走査するよう に前記距離センサ手段と超音波探触子 と を結合する結合手段と、
複数の軸駆動手段を含み、 前記超音波探触子および前記距離 センサ手段の位置および姿勢を前記各軸躯動手段を制御して行 なう位置姿勢制御手段と、
前記距離センサ手段の検出結果とその時の距離センサ手段の 位置とに基づいて前記探傷領域を含む位置記憶領域の形状に関 する情報を演算する形状情報演算手段と、
その形状情報を記憶する記憶手段と、
この記憶手段に記憶されている形状情報から、 前記探傷点に 所定の入射角度および距離で探傷信号を投射するための前記超 音波探触子の位置および姿勢を演算する位置姿勢演算手段と、 前記距離センサ手段による形状測定走査と前記超音波探触子 による探傷走査を並行して行わせる制御手段と、
前記各軸の位置を検出する軸位置検出手段と、
この検出手段で検出されている各軸の現在位置と、 予め求め られている前記形状情報と から前記超音波探触子の各探傷点の 位置指令値を演算する位置指令値演算手段と、 この演算手段で演算された各探傷点の位置指令値に基づいて、 探傷すべき点を含む複数の探傷点の位置指令値の 均値をその 探傷すべき点の位置指令値とする位置指令値平均化手段と、
この平均化手段で演算された各探傷点の位置指令値に基づい て各探傷点への速度指令値を演算する速度指令値演算手段と、 この演算手段で演算された各速度指令値に基づいて、 探傷す べき点を含む複数の探傷点への速度指令値の平均値をその探傷 すべき点の速度指令値とする速度指令値平均化手段と、
前記平均化された位置指令値と前記軸位置検出手段で検出さ れた位置との偏差に応じて速度指令値を演算し、 この速度指令 値と前記平均化された速度指令値との和で前記超音波探触子の 各軸の移動速度を制御する軸速度制御手段と を具備する こ と を 特徴とする超音波探傷装置。
1 1 ) 請求項 1 0 の超音波探傷装置において、
前記記憶手段は、 前記探傷領域を含む位置記憶領域を複数に 分割した小領域に対応する記憶領域を有し、 これら f 憶領域に は、 前記形状情報を 1 つだけ記憶する と ともに、 探傷点に対応 する小領域を含む周囲の複数の小領域内の形状情報に基づいて 位置指令値を平均化する。
1 2 ) 請求項 1 0 の超音波探傷装置において、
前記位置指令値演算手段と、 位置指令値平均化手段と、 速度 指令値演算手段と、 速度指令値平均化手段とは、 前記超音波探 触子が探傷している間に動作して次の探傷走査ライ ンの各探傷 点の平均化位置指令値と平均化速度指令値と を演算する。 1 3 ) 請求項 2の超音波探傷装置において、 距離センサ手段の出力が異常か否かを判定し異常時には異常 信号を出力する異常検出手段と、
異常信号出力時にはそのとき演算された形状情報の前記記憶 手段への書込みを禁止する禁止手段と、
異常信号非出力時は、 距離センサ手段の検出方向を今回演算 された法線方向に向けると ともに、 被検体と距離センサ手段と の間の距離を 目標値とするよう に し、 かつ、 法線方向と直交す る X軸に沿っ た接線方向に 1 ピッチだけ距離センサ手段が移動 するよう に制御する と ともに、 異常信号出力時は、 今回の姿勢 を保持したまま前回演算された法線方向と直交する X軸に沿つ た接線方向に距離センサ手段が 1 ピッチだけ移動するよう に制 御する駆動制御手段と を具備する。
1 4 ) 請求項 1 1 の超音波探傷装置において、
距離センサ手段の出力が異常か否かを判定し異常時には異 常信号を出力する異常検出手段と、
異常信号出力時にはそのとき演算された形状情報の前記記憶 手段への書込みを禁止する禁止手段と、
異常信号非出力時は、 距離センサ手段の検出方向を今回演算 された法線方向に向ける と ともに、 被検体と距離センサ手段と の間の距離を 目標値とするよう にし、 かつ、 法線方向と直交す る X軸に沿っ た接線方向に 1 ピッチだけ距離センサ手段が移動 するよう に制御する と ともに、 異常信号出力時は、 今回の姿勢 を保持したまま前回演算された法線方向と直交する X軸に沿つ た接線方向に距離センサ手段が 丄 ピッチだけ移動するよ う に制 御する駆動制御手段と を具備する。
PCT/JP1990/001054 1989-08-21 1990-08-20 Ultrasonic flaw detector WO1991002971A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/793,392 US5335547A (en) 1989-08-21 1990-10-20 Ultrasonic flaw detector

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP1/214365 1989-08-21
JP1214365A JP2720077B2 (ja) 1989-08-21 1989-08-21 超音波探傷装置
JP1263418A JP2812737B2 (ja) 1989-10-09 1989-10-09 探触子の速度制御装置
JP1/263418 1989-10-09

Publications (1)

Publication Number Publication Date
WO1991002971A1 true WO1991002971A1 (en) 1991-03-07

Family

ID=26520277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1990/001054 WO1991002971A1 (en) 1989-08-21 1990-08-20 Ultrasonic flaw detector

Country Status (3)

Country Link
US (1) US5335547A (ja)
EP (1) EP0489161A4 (ja)
WO (1) WO1991002971A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004504610A (ja) * 2000-07-14 2004-02-12 ロッキード マーティン コーポレイション 試験目的の超音波信号発生装置を配置し位置決めするためのシステムおよび方法
CN110268258A (zh) * 2017-01-31 2019-09-20 株式会社日立电力解决方案 位置控制装置、位置控制方法以及超声波影像系统

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4220444A1 (de) * 1992-06-23 1994-01-05 Krautkraemer Gmbh Verfahren zur Längs-, Quer- und Schrägfehlerprüfung mittels Ultraschall von Werkstücken nach dem Impuls-Echo-Verfahren
US5850468A (en) * 1995-04-11 1998-12-15 Matsushita Electric Industrial Co., Ltd. Flaw detection apparatus
TW409183B (en) * 1997-06-25 2000-10-21 Hosokawa Micron Kk The method and the device for measuring the inclination angle of powder/grain material stack
GB2394042B (en) * 2002-10-11 2005-09-07 Statoil Asa Method and apparatus for the inspection of surfaces
DE10349948B3 (de) * 2003-10-24 2005-01-13 Nutronik Gmbh Verfahren und Vorrichtung zur Prüfung eines eine komplexe Oberflächenkontur aufweisenden Bauteils mittels Ultraschall
DE102004063738B4 (de) * 2004-12-29 2007-10-25 Intelligendt Systems & Services Gmbh & Co.Kg Ultraschall-Prüfeinrichtung
JP3886014B2 (ja) * 2005-02-14 2007-02-28 株式会社エクセディ 自動超音波検査装置、その検査方法及びその検査方法を用いた製造方法
JP4663385B2 (ja) * 2005-04-18 2011-04-06 株式会社ブリヂストン 回転体表面の凹凸データ補正方法
US7392708B2 (en) * 2005-05-06 2008-07-01 The Boeing Company Apparatus and method of measuring shear strain of thick adhesive bondlines
DE102005043122A1 (de) * 2005-09-10 2007-07-12 Intelligendt Systems & Services Gmbh & Co Kg Verfahren und Einrichtung zur Ultraschallprüfung eines Werkstückes mit einer unebenen Oberfläche
US7921575B2 (en) * 2007-12-27 2011-04-12 General Electric Company Method and system for integrating ultrasound inspection (UT) with a coordinate measuring machine (CMM)
JP5155693B2 (ja) * 2008-02-26 2013-03-06 東芝プラントシステム株式会社 超音波検査装置
JP5155692B2 (ja) * 2008-02-26 2013-03-06 東芝プラントシステム株式会社 超音波検査装置
CN101970978B (zh) * 2008-03-29 2014-01-01 平田机工株式会社 间隙的测定方法及测定单元
FR2930345B1 (fr) * 2008-04-18 2010-06-11 Eads Europ Aeronautic Defence Procede et dispositif de controle non-destructif par ultrasons avec suivi de profil des pieces inspectees
DE102008002832B4 (de) * 2008-04-24 2010-12-09 Institut für Akustomikroskopie Dr. Krämer GmbH Verfahren und Vorrichtung zur zerstörungsfreien Detektion von Defekten im Inneren von Halbleitermaterial
JP5306024B2 (ja) * 2009-04-02 2013-10-02 株式会社東芝 超音波検査装置及び超音波検査方法
WO2011159403A1 (en) 2010-06-16 2011-12-22 Mueller International, Llc Infrastructure monitoring devices, systems, and methods
EP2487455A1 (de) * 2011-02-11 2012-08-15 Siemens Aktiengesellschaft Messvorrichtung
US9593999B2 (en) 2011-08-12 2017-03-14 Mueller International, Llc Enclosure for leak detector
CN102426199B (zh) * 2011-08-18 2014-05-28 中国飞机强度研究所 一种超声波c扫描定位方法及装置
SG11201503041SA (en) 2012-10-26 2015-05-28 Mueller Int Llc Detecting leaks in a fluid distribution system
CN102944614B (zh) * 2012-11-26 2015-09-09 南车二七车辆有限公司 一种超声波探伤仪探头压力控制装置
US9746445B2 (en) * 2013-04-16 2017-08-29 The Boeing Company Apparatus for automated non-destructive inspection of airfoil-shaped bodies
WO2016035231A1 (ja) 2014-09-03 2016-03-10 パナソニックIpマネジメント株式会社 ユーザインターフェース装置およびプロジェクタ装置
US9528903B2 (en) 2014-10-01 2016-12-27 Mueller International, Llc Piezoelectric vibration sensor for fluid leak detection
CN104792885B (zh) * 2015-04-03 2018-04-10 上海和伍精密仪器股份有限公司 超声检测中摄像头与超声探头相对位置的标定方法
KR101736612B1 (ko) * 2015-12-07 2017-05-17 주식회사 포스코 높이 조절형 초음파 센서를 이용한 강판의 내부 결함 탐상 장치 및 방법
US10305178B2 (en) 2016-02-12 2019-05-28 Mueller International, Llc Nozzle cap multi-band antenna assembly
US10283857B2 (en) 2016-02-12 2019-05-07 Mueller International, Llc Nozzle cap multi-band antenna assembly
WO2019111381A1 (ja) * 2017-12-07 2019-06-13 三菱電機株式会社 超音波探傷装置
US11931202B2 (en) 2018-09-03 2024-03-19 Canon Medical Systems Corporation Ultrasound automatic scanning system, ultrasound diagnostic apparatus, ultrasound scanning support apparatus
US10859462B2 (en) 2018-09-04 2020-12-08 Mueller International, Llc Hydrant cap leak detector with oriented sensor
US11342656B2 (en) 2018-12-28 2022-05-24 Mueller International, Llc Nozzle cap encapsulated antenna system
US11473993B2 (en) 2019-05-31 2022-10-18 Mueller International, Llc Hydrant nozzle cap
US11542690B2 (en) 2020-05-14 2023-01-03 Mueller International, Llc Hydrant nozzle cap adapter
WO2023065045A1 (en) * 2021-10-21 2023-04-27 Evident Canada, Inc. Auto trajectory correction for non-destructive test

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61240158A (ja) * 1985-04-17 1986-10-25 Kawasaki Steel Corp 超音波探傷方法及び装置
JPS63309852A (ja) 1987-06-12 1988-12-16 Nippon Steel Corp 超音波探傷装置
JPS63309853A (ja) 1987-06-12 1988-12-16 Nippon Steel Corp 超音波探傷方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR958724A (ja) * 1938-09-26 1950-03-17
US3678736A (en) * 1970-08-03 1972-07-25 Gen Electric Machine with improved operating head traversing workpieces with curved surfaces
US4311052A (en) * 1979-01-11 1982-01-19 Automation Industries, Inc. Ultrasonic control contour follower
GB2066015B (en) * 1979-10-23 1984-02-15 South African Inventions Distance measurment
JPS606885A (ja) * 1983-06-24 1985-01-14 Matsushita Electric Ind Co Ltd 被測定物の形状検出装置
EP0251648A3 (en) * 1986-06-24 1989-05-24 British Aerospace Public Limited Company Apparatus for locating the geometrical centre of a symmetrical bore
JPH01292248A (ja) * 1988-05-19 1989-11-24 Tokyo Keiki Co Ltd 超音波自動探傷装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61240158A (ja) * 1985-04-17 1986-10-25 Kawasaki Steel Corp 超音波探傷方法及び装置
JPS63309852A (ja) 1987-06-12 1988-12-16 Nippon Steel Corp 超音波探傷装置
JPS63309853A (ja) 1987-06-12 1988-12-16 Nippon Steel Corp 超音波探傷方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004504610A (ja) * 2000-07-14 2004-02-12 ロッキード マーティン コーポレイション 試験目的の超音波信号発生装置を配置し位置決めするためのシステムおよび方法
CN110268258A (zh) * 2017-01-31 2019-09-20 株式会社日立电力解决方案 位置控制装置、位置控制方法以及超声波影像系统

Also Published As

Publication number Publication date
EP0489161A4 (en) 1992-07-08
US5335547A (en) 1994-08-09
EP0489161A1 (en) 1992-06-10

Similar Documents

Publication Publication Date Title
WO1991002971A1 (en) Ultrasonic flaw detector
JP5155693B2 (ja) 超音波検査装置
JP5155692B2 (ja) 超音波検査装置
US11422116B2 (en) Robot system and method for non-destructive testing
JP2720077B2 (ja) 超音波探傷装置
JP4688811B2 (ja) 複雑な表面輪郭を有する部材の超音波検査のための方法及び装置
JP2001330430A (ja) 平面度測定方法および平面度測定装置
JP2859659B2 (ja) 超音波探傷装置
JP2752734B2 (ja) 形状測定装置
JP2812737B2 (ja) 探触子の速度制御装置
JPH0545347A (ja) 自動超音波探傷方法
JP2005300363A (ja) 超音波探傷システムおよび超音波探傷試験方法
JP2018205091A (ja) 超音波探傷装置および超音波による検査方法
Biro et al. Integration of a scanning interferometer into a robotic inspection system for factory deployment
JP2005127805A (ja) 平面形状測定方法及び装置
JP2018042650A (ja) 超音波測定装置および超音波測定方法
US11320406B2 (en) Methods and systems for adaptive accuracy control of ultrasonic non-destructive testing devices
JP2018042651A (ja) 超音波測定装置
JPH0368863A (ja) 超音波探傷装置
JP2022188645A (ja) 超音波検査装置
JP5930886B2 (ja) 3次元超音波探傷方法
JP2021173556A (ja) タービンロータの動翼埋込部超音波探傷方法
JPH07128311A (ja) 超音波探傷装置
JPH0420838A (ja) 打撃検査システム
JPS63135813A (ja) プロ−ブ姿勢制御装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1990912369

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1990912369

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1990912369

Country of ref document: EP