WO1990006093A1 - Alloplastisches implantat - Google Patents

Alloplastisches implantat Download PDF

Info

Publication number
WO1990006093A1
WO1990006093A1 PCT/EP1989/001508 EP8901508W WO9006093A1 WO 1990006093 A1 WO1990006093 A1 WO 1990006093A1 EP 8901508 W EP8901508 W EP 8901508W WO 9006093 A1 WO9006093 A1 WO 9006093A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid particles
implant
solid
plastic
tissue
Prior art date
Application number
PCT/EP1989/001508
Other languages
English (en)
French (fr)
Inventor
Martin Lemperle
Original Assignee
Martin Lemperle
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6368743&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1990006093(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Martin Lemperle filed Critical Martin Lemperle
Priority to BR898907235A priority Critical patent/BR8907235A/pt
Priority to US07/572,975 priority patent/US5344452A/en
Priority to DE58909072T priority patent/DE58909072D1/de
Priority to EP90900864A priority patent/EP0406375B1/de
Publication of WO1990006093A1 publication Critical patent/WO1990006093A1/de
Priority to HK98103124A priority patent/HK1004519A1/xx

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0059Cosmetic or alloplastic implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds

Definitions

  • the invention relates to an alloplastic implant based on a tissue-compatible solid.
  • This implant is used in particular to compensate for skin imperfections, but can also be used for other purposes in plastic surgery.
  • collagen has been used very frequently. But collagen is a xenogeneic protein product that is broken down in the body. If, for example, an unevenness in the skin has been compensated for with collagen, for example by an injection under the skin (intra- or subcutaneously), then post-injections are generally necessary in order to restore the originally achieved result of the first injection. Collagen also has an allergic effect so that allergic symptoms occur in at least 3% of the cases. This phenomenon is particularly pronounced when several injections are required to obtain the desired result. The latter is usually the case.
  • gelatin It is also known to use gelatin for the above purpose.
  • gelatin has similar disadvantages to collagen and, moreover, is far more difficult to inject.
  • Silicon and silicone oils have also already been used. Silicone oils, however, cause a pronounced tissue reaction at the site of the injection (siliconom). In addition, the silicone oils are poorly fixed by the tissue at the injection site, so that the injected silicone oil is subsequently carried over to parts of the body that are close or distant. These include lymph nodes and liver.
  • the object of the present invention is to provide an alloplastic implant which is easy to inject, remains stationary at the injected location and is tissue-compatible, so that no side effects are caused.
  • tissue-compatible solid present as a powder is used as the implant.
  • the solid particles forming this solid are, for example, with the aid of an injection syringe and, if appropriate, in a welding machine. funds injected or injected into the desired location.
  • the solid particles used according to the invention have a smooth surface and are free from corners, edging, etc. In other words, the solid particles must not have any sharp transitions on their surface, as is the case with edges and corners, for example. Of course, there must also be no peaks of any kind or pointed projections.
  • the surface should also be as non-porous as possible.
  • transition from one outer surface to the other must therefore take place continuously. Any transitions that are present, such as at the edges of a cube, must be rounded.
  • solid particles which are crystallites (for example needle-shaped) or particles obtained by mechanical comminution (for example grinding of larger units), because such particles have the sharp particles mentioned above Corner and edges.
  • This smooth and rounded surface structure does not damage cells or other tissue structures. In addition, the risk of tissue reactions with subsequent inflammation is minimized.
  • rotationally symmetrical and in particular elipsoidal or spherical solid particles It is preferred to use solid particles of different geometrical shapes, provided that all of these particles have a smooth and rounded surface.
  • the solid particles which are in the form of powder or dust, preferably have an average diameter of approximately 10 ⁇ ra. Such solid articles are too large to be "eaten” by monocytes. However, you can also be small Bring nere solid particles to use, e.g. B. in the order of 4 to 5 microns or 5 - 10 microns.
  • the solid particles advantageously have an average diameter of approximately 15 to approximately 200 ⁇ m and particularly preferably approximately 15 to approximately 60 ⁇ m.
  • the solid particles are also small enough to be brought to the desired location through the cannula of an injection syringe.
  • the solid particles preferably have a diameter such that they are not washed away by lymphatic or other tissue webs at the place of use.
  • diameter means the largest diameter of the smallest cross-sectional area.
  • An advantage of using particles in the form of spheres or spheres is that they can form a tightly packed arrangement at the place of use.
  • the solid particles used according to the invention consist of an inert, tissue-compatible material.
  • This material can be, for example, glass which is in the form of glass spheres with a smooth and rounded surface.
  • the solid particles used according to the invention preferably consist of a plastic and in particular of a completely cured or polymerized plastic, so that no potentially toxic and carcinogenic residual monomers can get into the body of the person being treated.
  • any inert, tissue-compatible plastic can be used for the production of the materials according to the invention
  • Plastic particles will be used. However, it is preferred to use polyethacrylates and in particular polymethyl methacrylate (PMMA) as the plastic.
  • PMMA polymethyl methacrylate
  • Polymerized PMMA is compatible with the body and can be safely used in the human body so that it can be described as chemically and physically inert. For this reason, this plastic has also been used many times for the manufacture of implants, for example for the plastic covering of bone defects in the face and skull or as a joint plastic. This plastic is also used for the production of artificial teeth, as sutures, for the manufacture of intraocular lenses and dialysis membranes.
  • these particles are preferably slurried in a type of suspended medium.
  • a type of suspended medium for example, water, alcohols, in particular ethyl alcohol, and mixtures thereof can be used as the suspending agent.
  • the floating agents used according to the invention expediently also contain a surfactant, for example Tween 80, since such a surfactant changes the surface tension of the water, so that the solid particles and in particular the plastic particles float better.
  • a surfactant for example Tween 80
  • the mixing ratio of the components of the suspended matter can be selected according to the needs and in particular the size of the syringe used for the injection.
  • a mixture of 0.5 ml of ethyl alcohol, 0.5 ml of Tween 80 and 9 ml of water has proven to be expedient.
  • the designation "Tween” is in the Moreover, a trademark of ICI Americas Inc. Under diese_r Be ⁇ be drawing exaggerated polyoxyethylene derivatives of sorbitan ver ⁇ .
  • the Tween 80 is a polyethoxysorbitan oleate. Not only the Tween type mentioned (Tween 80), but also other Tween types can be used for the purposes of the invention.
  • PMMA beads with a smooth, rounded surface and with different diameters, for example from 40 to 80 ⁇ m and from 15 to 60 ⁇ m, were used for the investigations.
  • Such PMMA beads are known per se and are commercially available.
  • this floating agent which ensures that the small balls in the injection syringe do not sink due to gravity and thus make injection impossible, was mixed with the PMMA balls, and in a ratio of about 1 part by volume of beads and 2 parts by volume of suspended matter.
  • This alloplastic implant according to the invention was injected intracutaneously into the abdominal skin of male Wistar rats with a weight of 200 to 250 g in general anesthesia with nembutal in four places in an amount of 0.5 ml using a 20 G cannula.
  • the belly side of the animals was deliberately taken, as it is much more tender and flexible compared to the back side.
  • small wheals formed at the injection site due to the volume injected.
  • a total of 39 animals were injected with the alloplastic implant according to the invention. After the injection, three of the test animals were sacrificed at intervals of 3, 6, 9, 12, 15, 21 and 28 days and 8, 12, 16, 20, 24 and 28 weeks. The abdominal skin was then shaved using a depilatory cream. At the injection sites, the still visible, but no longer raised, beads were excised and examined with part of the abdominal skin.
  • monocytes migrate into the injection area during the first three days.
  • the monocytes are then differentiated.
  • the different forms of differentiation can be recognized approximately 6 days after the application of the foreign bodies. Macrophages, giant foreign body cells and fibrocytes can be seen.
  • This differentiation process extends up to about 16 weeks after the implant according to the invention has been introduced.
  • the differentiation process is essentially limited to the fibrocytes, which shield the PMMA beads against the animal body by further conversion into fibrin fibers and thereby give the globular cluster a certain physical stability both internally and externally.
  • Phagocytation or lysing of the PMMA beads cannot take place due to their size and physical stability.
  • the animal body can therefore only fibrotically encapsulate the foreign bodies in order to "eliminate" these foreign bodies. Such a process takes place with almost any foreign body that the volunteers body cannot otherwise destroy.
  • the fibrotic increase in connective tissue is a natural reaction to the injury to the tissue caused by the injection cannula. Due to the smooth surface and the chemical inertness of the PMMA beads, this fibrotic reaction comes to a complete standstill after only a few weeks. From then on, the beads remain unreacted in the tissue.
  • the intracorporeally introduced PMMA beads are encapsulated in a delicate connective tissue capsule or embedded in connective tissue fibers and remain stationary in the tissue.
  • the histologically proven foreign body reaction was minimal and also due to the mechanical damage to the tissue during the injection.
  • the use of an abrasive as described above is not absolutely necessary, since the PMMA beads described above can also be introduced into the body without an abrasive.
  • the abdominal skin of the test animals was opened with the aid of a stab incision.
  • the PMMA powder was then sprinkled into the opening.
  • the wound was then closed by a single button.
  • an intracutaneous or subcutaneous injection of a person's skin to compensate for skin imperfections should be advised to use a suspended substance, since in this case the implant according to the invention can be injected more easily using a syringe.
  • the surfactant described above can also be replaced by charging the beads in the same direction. As a result, they are repelled from one another and float better in the medium of the suspended matter, which in this case can consist exclusively of water, alcohol or a mixture thereof.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Transplantation (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dermatology (AREA)
  • Cardiology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)
  • Medicinal Preparation (AREA)
  • Dental Preparations (AREA)

Abstract

Gegenstand der Erfindung ist ein alloplastisches Implantat auf Basis eines gewebeverträglichen und pulverförmig vorliegenden Feststoffes, insbesondere Kunststoffes. Die Feststoffpartikel besitzen eine glatte, von Ecken und Kanten freie Oberfläche. Als Kunststoff für die Herstellung dieser Feststoffpartikel wird vorzugsweise Polymethylmethacrylat (PMMA) eingesetzt. Vorzugsweise setzt man PMMA-Kügelchen ein. Das erfindungsgemäße alloplastische Implantat kann zur Unterspritzung von Hautunebenheiten jeglicher Genese eingesetzt werden und verbleibt dauerhaft am eingespritzten Ort und ruft keine Nebenwirkungen hervor.

Description

Alloplastisches Implantat
- Die Erfindung betrifft ein alloplastisches Implantat auf Basis eines gewebeverträglichen Feststoffes. Dieses Implantat dient insbesondere zum Ausgleich von Hautunebenheiten, kann jedoch auch für andere Zwecke in der plastischen Chirurgie eingesetzt werden.
Es wird seit langer Zeit und auf vielfache Weise versucht, pathologisch veränderte oder durch Unfall zerstörte Elemente des menschlichen Körpers mit Hilfe chirurgischer Maßnahmen "wiederherzustellen" und erforderlichenfalls durch Fremdkörper zu ersetzen. Dabei finden insbesondere auf dem Gebiete der plastischen Chirurgie und der Schönheitschirurgie Implantate immer mehr Anwendung.
Häufig besteht der Wunsch danach, Hautunebenheiten jeglicher Genese dauerhaft und ohne Nebenwirkungen auszugleichen. Für diesen Zweck und natürlich auch für andere Zwecke der plasti- sehen Chirurgie hat man bereits verschiedene Stoffe eingesetzt.
So hat man beispielsweise sehr häufig Kollagen zur Anwendung gebracht. Kollagen ist aber ein xenogenes Eiweißprodukt, das im Körper abgebaut wird. Hat man beispielsweise eine Hautuneben¬ heit mit Kollagen ausgeglichen, beispielsweise durch eine Injektion unter die Haut ( intra- oder subkutan), dann sind in der Regel Nachinjektionen erforderlich, um das ursprünglich er¬ zielte Ergebnis der ersten Injektion wiederherzustellen. Kollagen wirkt außerdem allergisierend, so daß es in mindestens 3 % der Fälle zu allergischen Erscheinungen kommt. Dieses Phänomen ist insbesondere dann ausgeprägt, wenn mehrere Injek¬ tionen für die Erlangung des erwünschten Ergebnisses er- forderlich sind. Letzteres ist in der Regel der Fall.
Es ist auch bekannt, für den oben genannten Zweck Gelatine zum Einsatz zu bringen. Gelatine besitzt jedoch ähnliche Nachteile wie Kollagen und ist darüber hinaus wesentlich schlechter inji¬ zierbar.
Auch Silicon bzw. Siliconöle haben bereits Anwendung gefunden. Siliconöle bewirken jedoch eine ausgeprägte Gewebsreaktion am Ort der Injektion (Siliconom). Die Siliconöle werden zudem am Injektionsort nur schlecht vom Gewebe fixiert, so daß es in der Folge zu einer Verschleppung des injizierten Siliconöls in nahe oder entferntere Körperteile kommt. Dazu zählen Lymphknoten und Leber.
Auch ist es bekannt, für die hier in Rede stehenden Zwecke eine Fettunterspritzung mit körpereigenem Fett vorzunehmen. Es hat sich jedoch herausgestellt, daß eine derartige Maßnahme häufig zu Infektionen führt. Zudem wird das körpereigene Fett schnell und stark vom Körper resorbiert, so daß in der Regel nur 10 % des eingespritzten Fettes ortsfest an der gewünschten Stelle verbleiben.
Aufgabe der vorliegenden Erfindung ist es, ein alloplastisches Implantat zur Verfügung zu stellen, das einfach injizierbar ist, an dem eingespritzten Ort ortsfest verbleibt und gewebe¬ verträglich ist, so daß keine Nebenwirkungen hervorgerufen werden.
Gelöst wird diese Aufgabe durch die Lehre des Anspruchs 1.
Erfindungsgemäß wird somit ein gewebeverträglicher und als Pul¬ ver vorliegender Feststoff als Implantat eingesetzt. Die diesen Feststoff bildenden Feststoffpartikel werden beispielsweise mit Hilfe einer Injektionsspritze und gegebenenfalls in ein Schwe- bemittel inkorporiert an die gewünschte Stelle injiziert bzw. gespritzt.
Die erfindungsgemäß zum Einsatz gebrachten Feststoffpartikel besitzen eine glatte Oberfläche und sind frei von Ecken, Kant etc. Mit anderen Worten, die Feststoffpartikel dürfen an ihre Oberfläche keinen scharfen Übergänge aufweisen, wie dies bei¬ spielsweise bei Kanten und Ecken der Fall ist. Natürlich dürf auch keine irgendwie gearteten Spitzen bzw. spitzartigen Vor¬ sprünge vorhanden sein. Auch sollte die Oberfläche möglichst porenfrei sein.
Bei den erfindungsgemäß eingesetzten Feststoff artikeln muß d Übergang von einer Außenfläche zur anderen somit kontinuierli erfolgen. Gegebenenfalls vorhandene Übergänge, wie beispiels¬ weise an den Kanten eines Würfels, müssen abgerundet sein.
Erfindungsgemäß können somit keine Feststoffpartikel eingeset werden, bei denen es sich um Kristallite (zum Beispiel nadei¬ förmige) oder um durch mechanische Zerkleinerung (z. B. Mahle von größeren Einheiten erhaltene Partikel handelt, denn derar tige Partikel besitzen eben die oben erwähnten, scharfen Ecke und Kanten.
Durch diese glatte und abgerundete Oberflächenstruktur werden keine Zellen oder andere Gewebsstrukturen verletzt. Zudem wird die Gefahr von Gewebsreaktionen mit nachfolgender Entzündung minimiert.
Vorzugsweise setzt man rotationssymmetrische und insbesondere elipsoide oder kugelförmige Feststoffpartikel ein. Auch ist es möglich, Feststoffpartikel unterschiedlicher geometrischer For zur Anwendung zu bringen, sofern alle diese Partikel eine glatte und abgerundete Oberfläche besitzen.
Die Feststoffpartikel , die ja als Pulver bzw. Staub vorliegen, besitzen vorzugsweise einen durchschnittlichen Durchmesser von etwa 10 μra. Derartige Feststoff artikel sind zu groß, um von Monozyten "gefressen" zu werden. Allerdings kann man auch klei nere Feststoffpartikel zur Anwendung bringen, z. B. in der Größenordnung von 4 bis 5 μ oder 5 - lOμm.
Die Feststoffpartikel haben zweckmäßigerweise einen mittleren Durchmesser von ungefähr 15 bis ungefähr 200 μm und insbeson- dere bevorzugt von ungefähr 15 bis ungefähr 60 μm.
In diesem Fall sind die Feststoffpartikel auch klein genug, um durch die Kanüle einer Injektionsspritze an den gewünschten Ort gebracht werden zu können.
Partikel mit den genannten Durchmessern können auch nicht als einzelne Fremdkörper in bzw. unter der Haut ertastet werden.
Die Feststoffpartikel besitzen vorzugsweise einen solchen Durchmesser, daß sie am Einsatzort nicht durch Lymph- oder son¬ stige Gewebsbahnen abgeschwemmt werden.
Bei Feststoffpartikeln, die keine Kugeln darstellen, wird im übrigen im Rahmen der hier vorliegenden Unterlagen unter Durch- messser der größte Durchmesser der kleinsten Querschnittsfläche verstanden.
Die eingesetzten Partikel werden aufgrund ihrer Form, Ober¬ fläche und Größe von den körpereigenen Freßzellen (Makrophagen) nicht als Fremdkörper erkannt, so daß keine Abwehrreaktionen auftreten.
Ein Vorteil des Einsatzes von Partikeln in Kugelform oder kugelähnlicher Form besteht darin, daß sie am Einsatzort eine dicht gepackte Anordnung bilden können.
Die erfindungsgemäß eingesetzten Feststoffpartikel bestehen aus einem inerten, gewebeverträglichen Material. Bei diesem Mate¬ rial kann es sich beispielsweise um Glas handeln, welches in Form von Glaskügelchen mit glatter und abgerundeter Oberfläche vorliegt.
Vorzugsweise bestehen die erfindungsgemäß eingesetzten Fest- stoffpartikel aus einem Kunststoff und insbesondere aus einem völlig ausgehärteten bzw. auspolymerisierten Kunststoff, so da keine potentiell toxischen und kanzerogenen Restmonomere in de Körper der behandelten Person gelangen können.
Im Prinzip kann jeder inerte gewebeverträgliche Kunststoff für die Herstellung der erfindungsgemäß zum Einsatz gebrachten
Kunststoffpartikel verwenden werden. Vorzugsweise setzt man je doch als Kunststoff Poly ethacrylate und insbesondere Poly- methylmethacrylat (PMMA) ein.
Auspolymerisiertes PMMA ist körperverträglich und kann unbe- denklich in den menschlichen Körper eingesetzt werden, so daß es als chemisch und physikalisch inert bezeichnet werden kann. Aus diesem Grunde wurde dieser Kunststoff auch bereits vielfac zur Herstellung von Implantaten verwendet, beispielsweise zur plastischen Deckung von Knochendefekten in Gesicht und Schädel oder als Gelenkplastik. Dieser Kunststoff wird zudem auch zur Herstellung künstlicher Zähne, als Nahtmaterial, für die Her¬ stellung von Intraokularlinsen und von Dialysemembranen einge¬ setzt.
Um die erfindungsgemäß zum Einsatz gebrachten Feststoffpartike bzw. Kunststoffpartikel als Implantat in und unter die Haut spritzen zu können, schlämmt man diese Partikel vorzugsweise i einer Art Schwebemittel auf. Als Schwebemittel kann man bei¬ spielsweise Wasser, Alkohole, insbesondere Ethylalkohol sowie Mischungen daraus verwenden.
Die erfindungsgemäß eingesetzten Schwebemittel enthalten zweck mäßigerweise auch ein Tensid, beispielsweise Tween 80, da ein derartiges Tensid die Oberflächenspannung des Wassers verän¬ dert, so daß die Feststoffpartikel und insbesondere die Kunst- stoffpartikel besser schweben.
Das Mischungsverhältnis der Komponenten des Schwebemittels kann man nach den Bedürfnissen und insbesondere nach der Größe der für die Injektion eingesetzten Spritze wählen. Als zweckmäßig hat sich eine Mischung aus 0,5 ml Ethylalkohol, 0,5 ml Tween 80 und 9 ml Wasser herausgestellt. Die Bezeichnung "Tween" ist im übrigen ein Warenzeichen der ICI Americas Inc. Unter diese_r Be¬ zeichnung werden Polyoxyethylenderivate der Sorbitanester ver^ trieben. Beim Tween 80 handelt es sich um Polyethoxysorbitano- leat. Nicht nur die erwähnte Tween-Type (Tween 80), sondern auch andere Tween-Typen sind für die erfindungsgemäßen Zwecke einsetzbar.
Zur Applikation bzw. Injektion der erfindungsgemäß eingesetzten Feststoffpartikel schlämmt man somit diese in einem flüssigen inerten Medium auf. Als vorteilhaft hat sich ein Verhältnis von zwei Volumenteilen Schwebemittel und ein Volumenteil Feststoff¬ partikel bzw. Kunststoffkügelchen herausgestellt.
Vorzugsweise setzt man ein an sich bekanntes, im Körper abbau¬ bares Gel, beispielsweise auf Basis von Gelatine, als Schwebe¬ mittel ein.
Durch den Einsatz eines Schwebemittels ist es leichter, die er¬ findungsgemäß zum Einsatz gebrachten Feststoffpartikel mit Hilfe einer Injektionsspritze z.B. intracutan zu injizieren. Für eine derartige Injektion kann man beispielsweise 20 G - 27 G Kanülen einsetzen.
Um zu untersuchen, welche Gewebsreaktionen nach Einbringen des erfindungsgemäß eingesetzten körperfremden Materials auftreten, wurden Tierversuche durchgeführt.
Für die Untersuchungen wurden PMMA-Kügelchen mit glatter, abge¬ rundeter Oberfläche und mit verschiedenen Durchmessern, bei- spielsweise von 40 bis 80 μm sowie von 15 bis 60μm, eingesetzt. Als Schwebemittel wurde eine Mischung aus 0,5 ml Ethylalkohol, 0,5 ml Tween und 9 ml Wasser eingesetzt. Derartige PMMA-Kügel¬ chen sind an sich bekannt und im Handel erhältlich.
Vor der Injektion wurde dieses Schwebemittel, welches dafür sorgt, daß die kleinen Kügelchen in der Injektionsspritze be¬ dingt durch die Gravitation nicht absinken und damit eine In¬ jektion unmöglich machen, mit den PMMA-Kügelchen vermengt, und zwar in einem Verhältnis von etwa 1 Vol.-Teil Kügelchen und 2 Vol. -Teilen Schwebemittel.
Dieses erfindungsgemäße alloplastische Implantat wurde männli¬ chen Wistar-Ratten mit einem Gewicht von 200 bis 250 g in Voll narkose mit Nembutal an vier Stellen in einer Menge von 0,5 ml mit Hilfe einer 20 G Kanüle intracutan in die Bauchhaut inji¬ ziert. Es wurde bewußt die Bauchseite der Tiere genommen, da diese im Verhältnis zur Rückenseite wesentliche zarter und fle xibler ist. Nach der Injektion bildeten sich durch das inji- zierte Volumen kleine Quaddeln an der Injektionsstelle. Dies war jedoch auch der Fall, wenn das Schwebemittel allein inji¬ ziert wurde.
Insgesamt wurde 39 Tieren das erfindungsgemäße alloplastische Implantat injiziert. Nach der Injektion wurden im Abstand von 3,6,9,12,15,21 und 28 Tagen sowie 8,12,16,20,24 und 28 Wochen je drei der Versuchstiere getötet. Die Bauchhaut wurde dann mittels Enthaarungscreme rasiert. An den Injektionsstellen wur¬ den die noch sichtbaren, allerdings nicht mehr erhabenen Kügel¬ chen mit einem Teil der Bauchhaut exzidiert und untersucht.
Die Ergebnisse der durchgeführten mikroskopischen und makrosko¬ pischen Untersuchungen lassen sich wie folgt zusammenfassen.
Innerhalb der Versuchszeit von 28 Wochen starb keines der Ver¬ suchstiere. Nach der Injektion traten keine über das bei Ver¬ letzungen (Einstich der Kanüle) physiologische Maß hinausge- hende Abwehrreaktionen bzw. Entzündungen auf. Auch in der dar¬ auf anschließenden Zeit konnte keine derartige Reaktion beob¬ achtet werden. Es fanden sich keine Tumore, weder im Bereich der Injektion, noch im Gesamtorganismus. Die Bauchhaut zeigte äußerlich keine pathologischen Veränderungen. Innerhalb weniger Tage war bereits wieder ein Fellwachstum zu erkennen. Die an¬ grenzenden Lymphgefäße und Lymphknoten waren ebenfalls ohne pathologischen Befund.
Nach der Injektion der eingesetzten PMMA-Kügelchen wandern wäh¬ rend der ersten drei Tage Monozyten in den Injektionsbereich. Anschließend findet eine Differenzierung der Monozyten statt. Die verschiedenen Differenzierungsformen sind ca. nach 6 d nach der Applikation der Fremdkörper erkennbar. Man kann Makro- phagen, Fremdkörper-Riesenzellen und Fibrozyten erkennen. Die- ser Differenzierungsprozeß erstreckt sich bis etwa zu 16. Woche nach dem Einbringen des erfindungsgemäßen Implantats. Der Differenzierungsprozeß beschränkt sich jedoch im wesentlichen auf die Fibrozyten, die durch eine weitere Umwandlung in Fibrinfasern die PMMA-Kügelchen gegen den tierischen Körper abschirmen und dem Kugelhaufen dadurch sowohl nach innen als auch nach außen eine gewisse physikalische Stabilität verlei¬ hen.
Eine Phagozytierung bzw. Lysierung der PMMA-Kügelchen kann auf¬ grund deren Größe und physikalischen Stabilität nicht stattfin- den. Der Tierkörper kann daher nur die Fremdkörper fibrotisch abkapseln, um diese Fremdkörper zu "beseitigen". Ein derartiger Prozeß findet bei nahezu jedem Fremdkörper statt, den der tie¬ rische Körper ansonsten nicht zerstören kann.
Die fibrotische Bindegewebsvermehrung ist eine natürliche Reak- tion auf die durch die Injektionskanüle hervorgerufene Verlet¬ zung des Gewebes. Diese fibrotische Reaktion kommt aufgrund der glatten Oberfläche und der chemischen Inertheit der PMMA-Kügel¬ chen schon nach wenigen Wochen völlig zum Erliegen. Ab dann bleiben die Kügelchen reaktionslos Im Gewebe liegen.
Zusammenfassend läßt sich feststellen, daß die intrakorporal eingebrachten PMMA-Kügelchen in eine zarte Bindegewebskapsel abgekapselt werden bzw. in Bindegewebsfasern eingebettet werden und im Gewebe ortsfest verbleiben. Die histologisch nachgewie¬ sene Fremdkörperreaktion war minimal und auch durch die mecha- nische Verletzung des Gewebes bei der Injektion bedingt.
Im übrigen ist der Einsatz eines wie oben beschriebenen Schwe¬ bemittels nicht unbedingt erforderlich, denn die oben beschrie¬ benen PMMA-Kügelchen können auch ohne Schwebemittel in den Kör¬ per eingebracht werden. Um die Reaktion der Versuchstiere auf die Einbringung von PMMA- Kügelchen ohne Schwebemittel zu untersuchen, wurde die Bauch¬ haut der Versuchstiere mit Hilfe einer Stichinzision eröffnet. Anschließend wurde das PMMA-Pulver in die Öffnung eingestreut. Die Wunde wurde dann durch eine Einzelknopf aht verschlossen.
Auch hier konnte der gleiche Reaktionsablauf wie bei den weiter oben näher beschriebenen Untersuchungen festgestellt werden. Es bildete sich eine zarte Bindegewebskapsel , welche die PMMA-Kü¬ gelchen einschloß.
Allerdings dürfte für eine intracutane oder subcutane Unter- spritzung der Haut eines Menschen zum Ausgleich von Hautuneben¬ heiten die Verwendung eines Schwebemittels angezeigt sein, da in diesem Fall das erfindungsgemäße Implantat mit Hilfe einer Spritze leichter injiziert werden kann.
Um dafür Sorge zu tragen, daß die eingesetzten Kügelchen besser im Schwebemittel schweben, kann man im übrigen auch das ein¬ gangs beschriebene Tensid dadurch ersetzen, daß man die Kügel¬ chen gleichsinnig auflädt .Dadurch werden diese voneinander ab¬ gestoßen und schweben besser im Medium des Schwebemittels, das in diesem Fall ausschließlich aus Wasser, Alkohol oder aus ei¬ nem Gemisch davon bestehen kann.
Bei PMMA-Kügelchen kann man diese gleichsinnige Aufladung der Kügelchen dadurch herbeiführen, daß man die bereits ausgehärte¬ ten Kügelchen nochmals "anschmilzt" und dann in einem elektri- sehen Feld auflädt.

Claims

PATENTANSPRÜCHE
1. Alloplastisches Implantat auf Basis eines gewebeverträgli¬ chen Feststoffes, dadurch e k e n n z e i c h n e t, daß der Feststoff pulverförmig ist und aus Feststoffparti- 10 kein aufgebaut ist, die eine glatte sowie von Ecken und
Kanten freie Oberfläche besitzen.
2. Implantat nach .Anspruch 1, dadurch g e k e n n z e i c h n e t, daß die Feststoffpartikel rotationssymmetrisch und insbe- lö sondere elipsold oder kugelförmig sind.
3. Implantat nach Anspruch 1 oder 2, dadurch g e k e n n z e i c h n e t, daß die Feststoffpartikel einen solchen Durchmesser besitzen, daß sie am Einsatzort nicht durch Lymphbahnen 20 oder sonstige Gewebsbahnen abgeschwemmt werden.
. Implantat nach Anspruch 1 oder 2, dadurch g e k e n n z e i c h n e t, daß die Feststoffpartikel einen Durchmesser von mindestens 10 μm, insbesondere von durchschnittlich 15 bis 200 μm und 25 weiterhin insbesondere von 15 bis 60 μm aufweisen.
5. Implantat nach mindestens einem der Ansprüche 1 bis 4, dadurch g e k e n n z e i c h n e t, daß der Feststoff ein Kunststoff, insbesondere ein ausge härteter Kunststoff ist.
5 6. Implantat nach Anspruch 5, dadurch g e k e n n z e i c h n e t, daß der Kunststoff ein Polymethacrylat , insbesondere Pol ethylmethacrylat, ist.
7. Implantat nach mindestens einem der Ansprüche 1 bis 6, 10 dadurch e k e n n z e i c h n e t, daß die Feststoff- bzw. Kunststoff artikel in einem phy¬ siologisch verträglichen Schwebemittel vorliegen.
8. Implantat nach Anspruch 7 , dadurch g e k e n n z e i c h n e t,
Iδ daß das Schwebemittel ein im Körper abbaubares Gel, insbe sondere auf Basis von Gelatine, ist.
9. Implantat nach Anspruch 7 dadurch e k e n n z e i c h n e t, daß das Schwebemittel flüssig ist und insbesondere aus 0 Wasser oder einem Alkohol, insbesondere Ethylalkohol, ode aus einer Mischung daraus besteht und ggf. mit einem Ten¬ sid versetzt ist.
10. Verwendung von pulverförmigen Feststoffpartikeln gemäß ei nem der Ansprüche 1 bis 9 als alloplastisches Implantat.
PCT/EP1989/001508 1988-12-08 1989-12-08 Alloplastisches implantat WO1990006093A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR898907235A BR8907235A (pt) 1988-12-08 1989-12-08 Implante aloplastico
US07/572,975 US5344452A (en) 1988-12-08 1989-12-08 Alloplastic implant
DE58909072T DE58909072D1 (en) 1988-12-08 1989-12-08 Alloplastisches implantat.
EP90900864A EP0406375B1 (de) 1988-12-08 1989-12-08 Alloplastisches implantat
HK98103124A HK1004519A1 (en) 1988-12-08 1998-04-15 Alloplastic implant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3841401A DE3841401A1 (de) 1988-12-08 1988-12-08 Alloplastisches implantat
DEP3841401.5 1988-12-08

Publications (1)

Publication Number Publication Date
WO1990006093A1 true WO1990006093A1 (de) 1990-06-14

Family

ID=6368743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1989/001508 WO1990006093A1 (de) 1988-12-08 1989-12-08 Alloplastisches implantat

Country Status (8)

Country Link
US (1) US5344452A (de)
EP (1) EP0406375B1 (de)
AT (1) ATE119012T1 (de)
BR (1) BR8907235A (de)
DE (2) DE3841401A1 (de)
ES (1) ES2071812T3 (de)
HK (1) HK1004519A1 (de)
WO (1) WO1990006093A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0856299A1 (de) * 1997-02-03 1998-08-05 Office National D'etudes Et De Recherches Aerospatiales (Onera) Metallische Prothese zur Unterstützung und/ oder zum Ersatz von offenzelligem Gewebe sowie ihr Produktionsverfahren
US8038721B2 (en) 2007-12-17 2011-10-18 Anna Love Soft tissue filler
US9433499B2 (en) 2013-05-07 2016-09-06 Cook Medical Technologies Llc Vocal cord medialization
US9615918B2 (en) 2012-08-24 2017-04-11 Cook Medical Technologies Llc Medical devices, systems, and kits for the medialization of a vocal cord

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7060287B1 (en) * 1992-02-11 2006-06-13 Bioform Inc. Tissue augmentation material and method
US6537574B1 (en) 1992-02-11 2003-03-25 Bioform, Inc. Soft tissue augmentation material
US7968110B2 (en) * 1992-02-11 2011-06-28 Merz Aesthetics, Inc. Tissue augmentation material and method
US5632774A (en) * 1995-01-17 1997-05-27 Babian; Hamik In-the-shell hydration to make implant filler material and prosthesis employing same
US5843185A (en) * 1996-10-23 1998-12-01 Leon Rolden; Carlos R. Keratoprosthesis and method of corneal replacement
BR9606075C1 (pt) * 1996-12-19 2002-05-07 Mateus Sommer Neto Composição injetável para uso médico.
FR2764514B1 (fr) 1997-06-13 1999-09-03 Biopharmex Holding Sa Implant injectable en sous-cutane ou intradermique a bioresorbabilite controlee pour la chirurgie reparatrice ou plastique et la dermatologie esthetique
US6660301B1 (en) 1998-03-06 2003-12-09 Biosphere Medical, Inc. Injectable microspheres for dermal augmentation and tissue bulking
AU742786B2 (en) * 1998-03-06 2002-01-10 Biosphere Medical, Inc. Implantable particles for tissue bulking and the treatment of gastroesophageal reflux disease, urinary incontinence, and skin wrinkles
US6652883B2 (en) * 2000-03-13 2003-11-25 Biocure, Inc. Tissue bulking and coating compositions
AU2001245660B2 (en) 2000-03-13 2006-06-15 Biocompatibles Uk Limited Embolic compositions
ATE310752T1 (de) * 2000-03-13 2005-12-15 Biocure Inc Biomedizinische artikel aus hydrogel
US7338657B2 (en) * 2001-03-15 2008-03-04 Biosphere Medical, Inc. Injectable microspheres for tissue construction
AU2001249221A1 (en) 2000-03-20 2001-10-03 Biosphere Medical, Inc. Injectable and swellable microspheres for tissue bulking
US6436424B1 (en) * 2000-03-20 2002-08-20 Biosphere Medical, Inc. Injectable and swellable microspheres for dermal augmentation
DE60130743T2 (de) 2000-03-24 2008-07-17 Biosphere Medical, Inc., Rockland Mikrokugeln zur aktiven embolisierung
JP2003534039A (ja) 2000-03-31 2003-11-18 アーツ メディカル ユーエスエイ インコーポレイテッド 尿道用の外科用器具
DE10026620A1 (de) * 2000-05-29 2002-03-07 Gerhard Quelle Poröse Implantate und Partikel
US9080146B2 (en) 2001-01-11 2015-07-14 Celonova Biosciences, Inc. Substrates containing polyphosphazene as matrices and substrates containing polyphosphazene with a micro-structured surface
WO2002100444A1 (en) * 2001-06-08 2002-12-19 Biosphere Medical Inc. Colloidal metal labelled microparticles, their production and use
JP2005511502A (ja) 2001-09-12 2005-04-28 ヴィレックス リサーチ インコーポレイテッド 固定化した血小板結合剤を有する血管閉塞固相剤
US7462366B2 (en) 2002-03-29 2008-12-09 Boston Scientific Scimed, Inc. Drug delivery particle
CA2492339A1 (en) 2002-06-12 2003-12-24 Boston Scientific Limited Bulking agents
US7842377B2 (en) 2003-08-08 2010-11-30 Boston Scientific Scimed, Inc. Porous polymeric particle comprising polyvinyl alcohol and having interior to surface porosity-gradient
US8012454B2 (en) 2002-08-30 2011-09-06 Boston Scientific Scimed, Inc. Embolization
US7883490B2 (en) 2002-10-23 2011-02-08 Boston Scientific Scimed, Inc. Mixing and delivery of therapeutic compositions
FR2850282B1 (fr) 2003-01-27 2007-04-06 Jerome Asius Implant injectable a base de ceramique pour le comblement de rides, depressions cutanees et cicatrices, et sa preparation
WO2004082459A2 (en) * 2003-03-13 2004-09-30 Burgess Cheryl M Methods of administering a material into a patient for dermal enhancement
RU2360928C2 (ru) * 2003-07-30 2009-07-10 Антэ С.А. Комплексная матрица для медико-биологического применения
US7976823B2 (en) 2003-08-29 2011-07-12 Boston Scientific Scimed, Inc. Ferromagnetic particles and methods
US7736671B2 (en) 2004-03-02 2010-06-15 Boston Scientific Scimed, Inc. Embolization
US20050209695A1 (en) * 2004-03-15 2005-09-22 De Vries Jan A Vertebroplasty method
US8173176B2 (en) 2004-03-30 2012-05-08 Boston Scientific Scimed, Inc. Embolization
US7311861B2 (en) 2004-06-01 2007-12-25 Boston Scientific Scimed, Inc. Embolization
BRPI0515007A (pt) 2004-08-12 2008-07-01 Navotek Medical Ltd sistema computadorizado para rastreamento e localização de fonte de ionização irradiada, sensor para direcionamento localizado em uma fonte de radiação ionizada, método para determinação da localização do dispositivo, método de fabricação de dispositivo de localização e uso de protetor de radiação ionizante
WO2007017847A1 (en) * 2005-08-11 2007-02-15 Navotek Medical Ltd. Medical treatment system and method using radioactivity based position sensor
WO2007017846A2 (en) * 2005-08-11 2007-02-15 Navotek Medical Ltd. Localization of a radioactive source
EP1784145B1 (de) * 2004-08-30 2011-08-10 Neville Alleyne Implantat zur behandlung von bändern und sehnen
JP2008511420A (ja) * 2004-08-30 2008-04-17 スピネオベイションズ・インコポレーテッド 脊髄の椎間板内障害の治療の方法
EP1804659A4 (de) * 2004-10-19 2010-11-03 Navotek Medical Ltd Lokalisation einer katheterspitze auf einer verfolgungsbahn
ATE503465T1 (de) * 2004-10-25 2011-04-15 Celonova Biosciences Germany Gmbh Beladbare polyphosphazenhaltige teilchen für therapeutische und/oder diagnostische anwendungen sowie herstellungs- und verwendungsverfahren dafür
US9114162B2 (en) 2004-10-25 2015-08-25 Celonova Biosciences, Inc. Loadable polymeric particles for enhanced imaging in clinical applications and methods of preparing and using the same
US9107850B2 (en) 2004-10-25 2015-08-18 Celonova Biosciences, Inc. Color-coded and sized loadable polymeric particles for therapeutic and/or diagnostic applications and methods of preparing and using the same
US20210299056A9 (en) 2004-10-25 2021-09-30 Varian Medical Systems, Inc. Color-Coded Polymeric Particles of Predetermined Size for Therapeutic and/or Diagnostic Applications and Related Methods
US8425550B2 (en) 2004-12-01 2013-04-23 Boston Scientific Scimed, Inc. Embolic coils
US7727555B2 (en) 2005-03-02 2010-06-01 Boston Scientific Scimed, Inc. Particles
US7858183B2 (en) 2005-03-02 2010-12-28 Boston Scientific Scimed, Inc. Particles
US7963287B2 (en) 2005-04-28 2011-06-21 Boston Scientific Scimed, Inc. Tissue-treatment methods
ES2568782T3 (es) 2005-05-09 2016-05-04 Biosphere Medical, S.A. Composiciones y métodos de uso de microesferas y agentes de contraste no iónicos
WO2006122183A2 (en) * 2005-05-10 2006-11-16 Cytophil, Inc. Injectable hydrogels and methods of making and using same
EP1890749A1 (de) * 2005-06-16 2008-02-27 Artes Medical, Inc. Spritzen und behälter für flüssigkristallpolymere sowie verwendungsverfahren zur langfristigen lagerung von füllstoffen
WO2006138669A2 (en) * 2005-06-16 2006-12-28 Artes Medical, Inc. Life-like anatomic feature for testing injection of soft tissue fillers
US9463426B2 (en) 2005-06-24 2016-10-11 Boston Scientific Scimed, Inc. Methods and systems for coating particles
BRPI0616514A2 (pt) * 2005-08-11 2011-06-21 Navotek Medical Ltd sistema de tratamento médico e método utilizando radioatividade com base em sensor de posição
US20070102010A1 (en) * 2005-10-07 2007-05-10 Lemperle Stefan M Naso-pharyngeal tissue engineering
US8007509B2 (en) 2005-10-12 2011-08-30 Boston Scientific Scimed, Inc. Coil assemblies, components and methods
CA2634176A1 (en) * 2005-10-26 2007-05-03 Biocure, Inc. Hydrogel spinal disc implants with swellable articles
US8101197B2 (en) 2005-12-19 2012-01-24 Stryker Corporation Forming coils
US8152839B2 (en) 2005-12-19 2012-04-10 Boston Scientific Scimed, Inc. Embolic coils
US7947368B2 (en) 2005-12-21 2011-05-24 Boston Scientific Scimed, Inc. Block copolymer particles
US20070184087A1 (en) * 2006-02-06 2007-08-09 Bioform Medical, Inc. Polysaccharide compositions for use in tissue augmentation
BRPI0709348A2 (pt) * 2006-03-31 2011-07-12 Csir material de expansão de tecido leve e composição de expansão de tecido leve injetável
US8685421B2 (en) 2006-07-07 2014-04-01 Surmodics, Inc. Beaded wound spacer device
WO2008051864A2 (en) * 2006-10-24 2008-05-02 Neville Alleyne Method of treating spinal internal disk derangement
US8414927B2 (en) 2006-11-03 2013-04-09 Boston Scientific Scimed, Inc. Cross-linked polymer particles
US20080107744A1 (en) * 2006-11-06 2008-05-08 Jack Fa-De Chu Injectable hollow tissue filler
KR100759091B1 (ko) * 2006-12-13 2007-09-17 조강선 피부 충전제 조성물
US20080299172A1 (en) * 2007-06-04 2008-12-04 Stuart Young Tissue repair implant
US8475815B2 (en) 2007-10-29 2013-07-02 Ayman Boutros Alloplastic injectable dermal filler and methods of use thereof
US8709395B2 (en) 2007-10-29 2014-04-29 Ayman Boutros Method for repairing or replacing damaged tissue
US7910134B2 (en) * 2007-10-29 2011-03-22 Ayman Boutros Alloplastic injectable dermal filler and methods of use thereof
US8431141B2 (en) * 2007-10-29 2013-04-30 Ayman Boutros Alloplastic injectable dermal filler and methods of use thereof
US20100010549A1 (en) * 2008-03-05 2010-01-14 Neville Alleyne device and method of minimally invasive extracapsular ligamentous augmentation for canine stifle ligament injuries
US20100004700A1 (en) * 2008-03-05 2010-01-07 Neville Alleyne Method of treating tissue with a suspenson of tricalcium hydroxyapatite microspheres
US8469961B2 (en) * 2008-03-05 2013-06-25 Neville Alleyne Methods and compositions for minimally invasive capsular augmentation of canine coxofemoral joints
ES2565185T3 (es) 2008-04-18 2016-04-01 Collplant Ltd. Métodos de generación y de uso del procolágeno
IL199900A0 (en) * 2008-08-18 2010-04-15 Michal Tune Implantation device for soft tissue markers and other implants
US20140056982A1 (en) * 2009-01-03 2014-02-27 Russell J. Anderson Enhanced Carriers For The Delivery of Microparticles To Bodily Tissues And Fluids
US8586089B2 (en) 2009-01-03 2013-11-19 Russell J. Anderson Enhanced carriers for the delivery of microparticles to bodily tissues and fluids
US8657859B2 (en) * 2009-12-16 2014-02-25 Advanced Veterinary Solutions Implant for promoting stability of the canine stifle joint
US8815228B2 (en) 2010-04-30 2014-08-26 Ayman Boutros Alloplastic injectable dermal filler and methods of use thereof
US9232805B2 (en) 2010-06-29 2016-01-12 Biocure, Inc. In-situ forming hydrogel wound dressings containing antimicrobial agents
US9155671B2 (en) 2012-10-16 2015-10-13 Surmodics, Inc. Wound packing device and methods
US9370603B2 (en) 2014-03-14 2016-06-21 Suneva Medical, Inc. Injectable alloplastic implants and methods of use thereof
US9370469B2 (en) 2014-03-14 2016-06-21 Suneva Medical, Inc Injectable alloplastic implants and methods of use thereof
US10201457B2 (en) 2014-08-01 2019-02-12 Surmodics, Inc. Wound packing device with nanotextured surface
SG10201906601TA (en) 2015-01-16 2019-09-27 Spineovations Inc Method of treating spinal disk

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2812696A1 (de) * 1978-03-23 1979-09-27 Wilhelm Dr Dr Med Schlattmann Implantat fuer zahnprothesen und verfahren zu seiner herstellung
US4197846A (en) * 1974-10-09 1980-04-15 Louis Bucalo Method for structure for situating in a living body agents for treating the body
US4380569A (en) * 1981-08-03 1983-04-19 Spenco Medical Corporation Lightweight preformed stable gel structures and method of forming
US4500658A (en) * 1983-06-06 1985-02-19 Austenal International, Inc. Radiopaque acrylic resin
US4657548A (en) * 1984-09-11 1987-04-14 Helitrex, Inc. Delivery system for implantation of fine particles in surgical procedures
WO1987007495A1 (en) * 1986-06-09 1987-12-17 Coors Biomedical Company Biocompatible particles and cloth-like article made therefrom
WO1989006944A1 (fr) * 1988-01-26 1989-08-10 Thierry Rainier Besins Systeme de formation de depots subperiostaux pour restauration faciale

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3223083A (en) * 1960-09-09 1965-12-14 President And Directors Of Geo Method for adhesively securing together skin and other soft tissue and bone
DE2320373B2 (de) * 1973-04-21 1978-04-06 Merck Patent Gmbh, 6100 Darmstadt Antibioticahaltiges Mittel und seine Verwendung als chirurgisches Kunststoffmaterial
FR2287210A1 (fr) * 1974-10-09 1976-05-07 Elbaz Jean Prothese de chirurgie esthetique
CH629517A5 (en) * 1977-09-15 1982-04-30 Osteo Ag Bone cement
US4547390A (en) * 1982-03-12 1985-10-15 Medical Biological Sciences, Inc. Process of making implantable prosthesis material of modified polymeric acrylic (PMMA) beads coated with PHEMA and barium sulfate
US4786555A (en) * 1983-10-27 1988-11-22 E. I. Du Pont De Nemours And Company Support particles coated with or particles of precursors for or of biologically active glass
US4705519A (en) * 1985-02-27 1987-11-10 Hayes Separation, Inc. Repair material for use with bones
US4718910A (en) * 1985-07-16 1988-01-12 Klaus Draenert Bone cement and process for preparing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4197846A (en) * 1974-10-09 1980-04-15 Louis Bucalo Method for structure for situating in a living body agents for treating the body
DE2812696A1 (de) * 1978-03-23 1979-09-27 Wilhelm Dr Dr Med Schlattmann Implantat fuer zahnprothesen und verfahren zu seiner herstellung
US4380569A (en) * 1981-08-03 1983-04-19 Spenco Medical Corporation Lightweight preformed stable gel structures and method of forming
US4500658A (en) * 1983-06-06 1985-02-19 Austenal International, Inc. Radiopaque acrylic resin
US4657548A (en) * 1984-09-11 1987-04-14 Helitrex, Inc. Delivery system for implantation of fine particles in surgical procedures
WO1987007495A1 (en) * 1986-06-09 1987-12-17 Coors Biomedical Company Biocompatible particles and cloth-like article made therefrom
WO1989006944A1 (fr) * 1988-01-26 1989-08-10 Thierry Rainier Besins Systeme de formation de depots subperiostaux pour restauration faciale

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0856299A1 (de) * 1997-02-03 1998-08-05 Office National D'etudes Et De Recherches Aerospatiales (Onera) Metallische Prothese zur Unterstützung und/ oder zum Ersatz von offenzelligem Gewebe sowie ihr Produktionsverfahren
FR2758974A1 (fr) * 1997-02-03 1998-08-07 Onera (Off Nat Aerospatiale) Prothese metallique de soutien et/ou de remplacement tissulaire a porosite ouverte ainsi que son procede de fabrication
US8038721B2 (en) 2007-12-17 2011-10-18 Anna Love Soft tissue filler
US9615918B2 (en) 2012-08-24 2017-04-11 Cook Medical Technologies Llc Medical devices, systems, and kits for the medialization of a vocal cord
US10231816B2 (en) 2012-08-24 2019-03-19 Cook Medical Technologies Llc Medical devices, systems, and kits for the medialization of a vocal cord
US9433499B2 (en) 2013-05-07 2016-09-06 Cook Medical Technologies Llc Vocal cord medialization
US10105216B2 (en) 2013-05-07 2018-10-23 Cook Medical Technologies Llc Vocal cord medialization

Also Published As

Publication number Publication date
US5344452A (en) 1994-09-06
HK1004519A1 (en) 1998-11-27
DE58909072D1 (en) 1995-04-06
EP0406375B1 (de) 1995-03-01
ATE119012T1 (de) 1995-03-15
ES2071812T3 (es) 1995-07-01
EP0406375A1 (de) 1991-01-09
DE3841401C2 (de) 1990-12-20
DE3841401A1 (de) 1990-06-13
BR8907235A (pt) 1991-03-05

Similar Documents

Publication Publication Date Title
EP0406375B1 (de) Alloplastisches implantat
DE19953771C1 (de) Resorbierbares Knochen-Implantatmaterial sowie Verfahren zur Herstellung desselben
DE69333556T2 (de) Injizierbare keramische Zusammensetzungen sowie Verfahren für ihre Herstellung und Verwendung
DE69819694T2 (de) Subkutan oder intradermal injizierbares implantat in der plastischen oder wiederherstellenden chirurgie
DE69534083T2 (de) Brustgewebetechnologie
DE60302412T2 (de) Röntgensichtbarer Bandscheibenkern aus Hydrogel
DE60316291T2 (de) Esterderivate von hyaluronsäure zur herstellung von hydrogelmaterialien durch photohärtung
EP2273997B1 (de) Verfahren und zusammensetzung zur regeneration von gewebe mit hilfe von stamm- oder knochenmarkzellen
DE69534038T2 (de) Vorrichtung und verfahren zum in-vivo-züchten von verschiedenen gewebezellen
DE69434274T2 (de) Zusammensetzung zum regenerieren von gelenkknorpeln
DE60038721T2 (de) Weichgewebe-Ersatz und Weichgewebe-Wiederherstellung
KR20070057767A (ko) 인지질 조성물 및 이의 제조 및 사용 방법
DE1219180B (de) Verfahren zur Herstellung von prothetischen Vorrichtungen und chirurgischem Naehmaterial
CH634228A5 (de) Verfahren zur herstellung eines neuen antibiotikahaltigen mittels aus kunststoffpartikeln.
EP0804245B1 (de) Kollagenzubereitung zur gesteuerten abgabe von wirkstoffen
DE2320373B2 (de) Antibioticahaltiges Mittel und seine Verwendung als chirurgisches Kunststoffmaterial
DE3717818A1 (de) Knochenprothesematerial und verfahren zu deren herstellung
DE3941023C2 (de) Einspritzbares Mikro-Implantationsmittel sowie zugehöriges Verfahren zu seiner Anwendung und seine Verwendung
DE2022117C3 (de) Pulverförmige Ausgangsmischung für die unter Methacrylsäuremethylester-Zusatz erfolgende Herstellung von Knochenzement
WO2017005857A1 (de) Verfahren zur herstellung eines bioartifiziellen, primär azellulären konstrukts auf fibrinbasis und dieses konstrukt selbst
DE4006145C2 (de)
DE60111637T2 (de) Biomaterial in Form von Mikropartikeln von Hyaluronsäure zur medizinischen Verwendung
EP1184040B1 (de) Hautmatrix zur Abdeckung und Regenerierung verletzter Hautpartien sowie Verfahren zu ihrer Herstellung
EP1706157B1 (de) Verfahren zur herstellung von bandscheibenzelltransplantaten und deren anwendung als transplantationsmaterial
DE2756256A1 (de) Hilfsmittel zum bedecken und/oder ausfuellen von knochendefekten und verfahren zur herstellung desselben

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1990900864

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1990900864

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1990900864

Country of ref document: EP