WO1990004037A1 - Verfahren zum nachweis und zur identifikation toxischer substanzen mit hilfe klonierter mikroorganismen - Google Patents

Verfahren zum nachweis und zur identifikation toxischer substanzen mit hilfe klonierter mikroorganismen Download PDF

Info

Publication number
WO1990004037A1
WO1990004037A1 PCT/DE1989/000626 DE8900626W WO9004037A1 WO 1990004037 A1 WO1990004037 A1 WO 1990004037A1 DE 8900626 W DE8900626 W DE 8900626W WO 9004037 A1 WO9004037 A1 WO 9004037A1
Authority
WO
WIPO (PCT)
Prior art keywords
bioluminescence
organisms
gene
microorganisms
indicator
Prior art date
Application number
PCT/DE1989/000626
Other languages
English (en)
French (fr)
Inventor
Horst MÖLDERS
Seppo E. Kolehmainen
Original Assignee
Genlux Forschungsgesellschaft Für Biologische Verfahren Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genlux Forschungsgesellschaft Für Biologische Verfahren Mbh filed Critical Genlux Forschungsgesellschaft Für Biologische Verfahren Mbh
Publication of WO1990004037A1 publication Critical patent/WO1990004037A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/025Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6897Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids involving reporter genes operably linked to promoters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/14Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygen (1.14.14)
    • C12Y114/14003Alkanal monooxygenase FMN (1.14.14.3), i.e. bacterial-luciferase

Definitions

  • the invention relates to a method for the detection of toxic substances in a liquid or gaseous environment with the help of specifically sensitive and / or resistant microorganism strains which
  • All microorganisms are capable of emitting light (bio-luminescence) by introducing a plasmid-encoded luciferase gene.
  • bioluminescence of the indicator organisms enables changes in their metabolism or the loss of their viability as an effect of a toxic substance in the test medium to be detected quickly and with great sensitivity.
  • microorganisms for measuring critical loads caused by toxic substances (US Pat. No. 3,981,777) and for determining antibiotic concentrations (EP. No. 0200 226) has been established.
  • the applications are based on the detection of the growth of the test organisms by counting colonies, turbidity measurements, nephelometry, etc.
  • These measuring methods require the cultivation of large amounts of microorganisms, so that reliable measurements are only possible after can be carried out over a period of 16 to 72 hours. In contrast, the method described below allows the evaluation of measurement results after less than 2 hours.
  • Naturally occurring bioluminescent microorganisms are of marine origin and therefore require a high ionic strength in the test medium.
  • the production of the required osmolarity means a possibly falsifying intervention in the measurement.
  • the invention described here makes the methods ex- use experimental genetics to transform in principle any desired bacterial strain by introducing a specially constructed plasmid vector (pGL3, see below) into an organism capable of bioluminescence. While the principle of transforming a bacterial strain with a plasmid-encoded luciferase LUX gene has already been described (US Pat. No. 4,581,335), the present invention represents a decisive improvement: the expression of the LUX gene and the ability to bioluminescence is no longer permanent (constitutive), but can be switched on and off in a temperature-dependent manner.
  • the property of regulatability is achieved by constructing a plasmid vector which contains both the Luciferase gene complex from Vi ⁇ brio Harveyi (LUX genes A and B) and the C Ig57 allele of the phage lambda repressor gene (thermolabile Gene product!) Contains.
  • the inducible bioluminescence achieved by this concept has two important advantages compared to permanently light-emitting test organisms:
  • the signal to noise ratio of the individual measurement is improved.
  • Another characteristic of the development according to the invention is the possibility of introducing additional resistance or hypersensitivity to specific toxic mediating genes in the plasmid vector outlined; this is made possible by molecular cloning of a corresponding gene into existing specific restriction endonuclease sites.
  • Measurement results take about ten times less time than conventional microbiological cultivation and measurement methods and
  • any suitable, recommended or prescribed in standardized reference tests bacterial strain for bioluminescence measurements can be set up.
  • E.coli ATCC 25922 may be mentioned as an example of a bacterial strain which belongs to the latter category; this strain is the official (WHO) reference strain for standardized antibiotic inhibition tests.
  • E. coli ATCC 25922 and other strains frequently used in clinical and industrial tests (E. coli K- and B; chi 1776 etc.) have been successfully converted by the applicant into the species capable of bioluminescence by introducing the plasmid pGL3 .
  • the regulation takes place by using the Alieis 857 of the lambda repressor in a temperature-dependent manner.
  • the repressor protein By increasing the temperature to above 37 ° C, the repressor protein is inactivated and the LUX gene complex released for transcription in mRNA, which ultimately results in an increase in the bioluminescence activity of the indicator organism by more than three orders of magnitude.
  • the difference in the size of the bioluminescence signal between the repressed and transcribed state of the LUX gene complex - and thus the signal-to-noise ratio of the measurements - is more than a factor of ten in test organisms equipped with pGL3 better than those which are induced to bioluminescence by chemical induction of the lacZ gene (cf. US Pat. No. 4,581,335).
  • the plasmid pGL3 which was designed for the generation of controllable bioluminescence in microorganisms, was constructed by using conventional molecular biological cloning techniques; it contains:
  • Luciferase gene complex (LUX A; LUX B) from Vibrio Harvey
  • the LUX gene complex is 3 ', ie cloned "behind" the P RM promoter and is therefore transcribed by it; the P CM -Pro- - 3 -
  • the construction base of pGL3 is the plasmid pLK915 (see KK Stanley, and JP Luzio, EMBO J. 3: 1429 to 1434, 1984).
  • Compatibility of the Sal 1 interface with Barn HI was determined by previously attaching the 45 base pair long Bam HI - Sal 1 restriction fragment from the polylinker region of the plasmid "pBluescript" (company "STRATAGENE”; San Diego, Cal., USA ) at the Sal 1 end and subsequent restriction cleavage with the enzyme Bam HI.
  • the above-described plasmid pGL3 can in principle be introduced into any desired species of microorganism by standard techniques in order finally to be cultured in large quantities. It is possible to store bacteria as glycerol cultures at -20 ° C or after freeze-drying at ambient temperature. Freeze-drying is carried out either in glass ampoules or in specially made plastic containers, e.g. contain the lyophilized microorganisms or the components for the nutrient medium necessary for revitalizing the bacteria in two separate chambers. In order to carry out measurements of toxic substances in a gas phase, the indicator organisms are permanently separated from a measuring compartment by a membrane that is impermeable to water vapor. In this way, the constant composition of the growth medium and thus the measurement over a longer measurement period, as required for toxicity tests of gases, is ensured.
  • the application of the lyophilized indicator organisms to a suitable carrier material in the form of a test strip is a preferred form of application.
  • the microorganisms are applied in a defined amount to the carrier matrix by a special process, freeze-dried and finally sealed as a test strip.
  • the indicator bacteria are incubated for one to two hours in aqueous nutrient medium Ambient temperature revitalized.
  • the measuring principle of the toxicity test described here is based on the use of a two-step method:
  • a "screening" is carried out with a number of different test organisms of defined sensitivity for the detection of general toxicity in a sample. Thereafter, further detection reactions can be carried out with strains which are provided with a specific, genetically present or introduced by transformation property of resistance or (hyper) sensitivity.
  • a toxin to which a strain is specifically resistant will lead to an un or only partially reduced bioluminescence signal; in contrast, a non-resistant control strain is more serious in its viability and, correlated with it, its ability to bioluminescence.
  • the measuring method according to the invention is therefore suitable, on the one hand, for determining the degree of generally present toxicity of a sample through the growth behavior of microorganisms, and, on the other hand, it is also possible to use all substances with which a specific reactivity of certain test agents ganisms exists to identify and determine their concentration approximately easily and quickly.
  • indicator organisms - this time endowed with specific resistance or sensitivity to certain toxic substances - are incubated with the sample liquid in order to finally carry out bioluminescence measurements. If the bioluminescence signal is unchanged in only one of the test organisms, for example at the level of the control value, while all other microorganisms experience a reduction in measurable bioluminescence, then that toxin to which the strain in question is resistant is identified.
  • a strain of the gram-negative bacterium E. coli ATCC 25922 was mixed with a plasmid [(pGL3.T, which in addition to the com- components of pGL3 (see above) contains a tetracycline resistance gene (strain "T” in Fig. 2)].
  • pGL3.T which in addition to the com- components of pGL3 (see above) contains a tetracycline resistance gene (strain "T” in Fig. 2)].
  • strain "C" a derivative of ATCC 25922 - equipped with pGL3 - was used.
  • Several 0.5 ml samples of raw milk with different concentrations of the antibiotic tetracycline were mixed with 0.1 ml (about 2 x 10 bacteria) suspensions of the strains C and T and incubated for 20 minutes at room temperature. After heating the cultures at 40 ° C.
  • FIG. 1 shows the measurement results of samples with five different antibiotic concentrations as relative light signals (RLU; ordinate) as a function of time.
  • the bioluminescence signal of the tetracycline-resistant strain T is relatively constant over the measurement period, while strain C shows a decrease in the amount of light emitted in a concentration-dependent manner.
  • strain C shows a decrease in the amount of light emitted in a concentration-dependent manner.
  • the fact that the growth properties of the indicator strain T are not significantly impaired by tetracycline makes it possible to use this antibiotic in samples (e.g. milk) of unknown origin.
  • the determination of absolute concentrations of this antibiotic or other toxic substances to which an indicator staram is specifically resistant can be done in a good approximation by including reference values of known concentrations of the toxin in the measurement series.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Es wird ein Verfahren beschrieben, bei welchem mit Hilfe geeigneter Mikroorganismen definierter Sensitivität bzw. Resistenz gegenüber toxischen Substanzen Toxizitätstests in flüssigen oder gasförmigen Phasen durchgeführt werden können. Die Toxine können Antibiotika, Schwermetalle, mikrobielle Toxine, Fremdstoffe, Pestizide, Desinfektionsmittel, Konservierungsstoffe oder andere Substanzen mit antimikrobieller Wirkung sein. Die Mikroorganismen-Stämme, welche in dem Verfahren verwendet werden, sind mit einem Plasmid-Vektor ausgestattet, der die Synthese des Enzyms Luciferase in einer hitzeinduzierbaren und somit kontrollierbaren Art und Weise ermöglicht. Das Ausmaß der Toxizität wird erfaßt als Veränderungen im Metabolismus oder dem Verlust der Lebensfähigkeit der Indikator-Organismen, die ihrerseits schnell und mit hoher Empfindlichkeit anhand von Biolumineszenz-Signalen nach Anschalten der plasmid-enkodierten Luciferase-Produktion gemessen werden. Der vorgestellte neue Typ eines sich selbst regulierenden Plasmid-Vektors erlaubt Durchführung sensitiver und unaufwendiger Biolumineszenz-Messungen mit prinzipiell jedem Mikroorganismus. Das Verfahren eröffnet die Möglichkeit zur Durchführung biologisch relevanter Tests sowohl auf Anwesenheit generell vorhandener Toxizität als auch die Identifikation und Konzentrationsbestimmung spezifischer Toxine bei Verwendung speziell ausgerüsteter Mikroorganismen.

Description

Verfahren zum Nachweis und zur Identifikation toxischer Substanzen mit Hilfe klonierter Mikroorganismen
Die Erfindung betrifft ein Verfahren zum Nachweis toxischer Substanzen in einer flüssigen oder gasförmigen Umgebung mit Hilfe spezifisch sensitiver und/oder resistenter Mikroorga¬ nismen-Stämme, welche
1. natürlicherweise vorkommen,
2. durch wiederholte Labor-Selektion an bestimmte toxische Substanzen adaptiert oder
3. durch molekulare Klonierung mit bestimmten Eigenschaften ausgestattet worden sind.
Dabei sind alle Mikroorganismen durch Einführen eines plas- mid-enkodierten Luciferase-Gens zur Emission von Licht (Bio¬ lumineszenz) befähigt. Die Biolumineszenz der Indikatororga¬ nismen ermöglicht, schnell und mit großer Empfindlicheit Än¬ derungen in ihrem Metabolismus oder den Verlust ihrer Le¬ bensfähigkeit als Auswirkung einer toxischen Substanz im Testmedium zu erfassen.
Be schre ibung toe ei-fc-s toeH-cemn-t-i Meß ¬ verfahren mi-fc. Hilfe -von Mikroorganis ¬ men
Die Verwendung von Mikroorganismen zur Messung kritischer Be¬ lastungen durch toxische Substanzen (US-PS 3 981 777) sowie zur Bestimmung von Antibiotika-Konzentrationen (EP. No. 0200 226) ist etabliert. Bei den Anwendungen liegt die Erfas¬ sung des Wachstums der Test-Organismen durch Auszählen von Kolonien, Trübungsmessungen, Nephelometrie etc. zugrunde. Diese Meßverfahren erfordern die Kultivierung großer Mengen von Mikroorganismen, so daß verläßliche Messungen erst nach einem Zeitraum von 16 bis 72 Stunden durchgeführt werden kön¬ nen. Demgegenüber erlaubt das im folgenden beschriebene Ver¬ fahren die Auswertung von Meßergebnissen bereits nach weni¬ ger als 2 Stunden.
Natürlich vorkommende zur Biolumineszenz fähige Mikroorga¬ nismen sind nach Resistenz-Adaption im Labor zum Nachweis bestimmter Toxine eingesetzt worden (PCT/US84/01217) ; dieses Verfahren weist jedoch einige Nachteile auf, welche einen ge¬ nerellen Einsatz dieser Methode nicht erwarten lassen:
1. Natürlich vorkommende biolumineszierende Mikroorganismen sind marinen Ursprungs und benötigen deshalb eine hohe Ionenstärke im Testmedium. Die Herstellung der erforder¬ lichen Osmolarität bedeutet einen möglicherweise verfäl¬ schenden Eingriff in die Messung.
2. Die Adaption dieser Mikroorganismen an bestimmte Substan¬ zen durch wiederholte Selektion im Labor ist aufgrund der statistischen Seltenheit eines nützlichen Mutations- ereignisses sehr zeitaufwendig, oder
3. sogar unmöglich.
4. Die Verwendung von natürlicherweise biolumineszierenden Bakterien schließt die Anwendung des Meßprinzips für etablierte und international standardisierte Tests aus, die den Gebrauch eines definierten Bakterienstammes vor¬ schreiben.
Beschreibung euer Erfindung
Die hier beschriebene Erfindung macht sich die Methoden ex- perimenteller Genetik zunutze, um prinzipiell jeden gewünsch¬ ten Bakterienstamm durch Einführung eines speziell konstru¬ ierten Plasmid-Vektors (pGL3, s.u.) in einen zur Biolumines¬ zenz befähigten Organismus zu verwandeln. Während das Prin¬ zip der Transformation eines Bakterienstammes mit einem plas- mid-enkodierten Luciferase LUX-Gen bereits beschrieben wur¬ de (US-PS 4 581 335), stellt die vorliegende Erfindung eine entscheidende Verbesserung dar: Die Expression des LUX-Gens und damit die Fähigkeit zur Biolumineszenz ist nicht mehr permanent (konstitutiv) , sondern in einer temperaturabhängi¬ gen Art und Weise an- und abschaltbar. Die Eigenschaft der Regulierbarkeit wird durch Konstruktion eines Plasmid-Vek¬ tors erreicht, der sowohl den Luciferase-Gen-Komplex von Vi¬ brio Harveyi (LUX-Gene A und B) , als auch das CIg57-Allel des Phagen Lambda Repressorgens (thermolabiles Genprodukt!) enthält. Die durch diese Konzeption erreichte induzierbare Biolumineszenz hat verglichen mit permanent Licht emittieren¬ den Testorganismen zwei wichtige Vorteile:
1. Das Signal- zu Rauschverhältnis der Einzelmessung wird verbessert.
2. Der für das Bakterium energetisch aufwendige Prozeß der Lichtemission kann auf den kurzen Meßzeitraum beschränkt werden; dies hat zur Folge, daß auch schlecht wachsende Organismen eingesetzt werden können, die durch permanente Biolumineszenz in ihrem Wachstum besonders beeinträchtigt würden, für Tests aber gerade aufgrund ihrer hohen Empfind¬ lichkeit interessant sind.
Ein weiteres Charakteristikum der erfindungsgemäßen Entwick¬ lung ist die Möglichkeit zur Einführung von zusätzlicher Re¬ sistenz- oder Hypersensitivität gegenüber spezifischen Toxi- nen vermittelnden Genen in den skizzierten Plasmid-Vektor; dies wird durch molekulare Klonierung eines entsprechenden Gens in vorhandene spezifische Restriktions-Endonuklease- Schnittstellen ermöglicht.
Bisher wurde die Einführung verschiedener Antibiotika-Resi¬ stenzgene (z.B. Tetrazvklin) in Plasmid pGL3 erfolgreich durchgeführt. Mikroorganismen, die mit Genen ausgestattet sind, welche eine a priori festgelegte, spezifische Reaktivi¬ tät gegenüber einer toxischen Substanz aufweisen (z.B. Resi¬ stenz gegenüber dem Antibiotikum Tetrazvklin), können schlie߬ lich zur Identifikation und Konzentrationsabschätzung der fraglichen Substanz im Testmedium eingesetzt werden.
Weitere Vorteile der hier vorgestellten Entwicklung sind, daß
1. Meßergebnisse mit etwa zehnfach geringerem Zeitaufwand als durch konventionelle mikrobiologische Kultivierungs- und Meßmethoden zustande kommen und
2. prinzipiell jeder geeignete, empfohlene oder in standar¬ disierten Referenztests vorgeschriebene Bakterienstamm für Biolumineszenz-Messungen eingerichtet werden kann.
Als Beispiel eines Bakterienstammes, der zu letzterer Katego¬ rie zählt, sei E.coli ATCC 25922 angeführt; dieser Stamm ist der offizielle (WHO) Referenzstamm für standardisierte Anti¬ biotika-Hemmhoftests. E. coli ATCC 25922 und andere in klini¬ schen und industriellen Tests häufig eingesetzten Stämme (E. coli K- und B; chi 1776 etc.) sind von der Anmelderin durch Einführung des Plasmids pGL3 erfolgreich in zur Biolumines¬ zenz fähige Spezies überführt worden.
Zusammenfassend ist festzustellen, daß die hier vorgestellte Toxizitäts-Testung vermittels Licht emittierender Mikroorga¬ nismen gegenüber herkömmlichen Meßmethoden eine Weiterent¬ wicklung darstellt, welche die folgenden Vorteile in sich ver¬ eint:
1. Biologische Relevanz.
2. Hohe Geschwindigkeit.
3. Bei geeigneter Konstruktion des Klonierungs-Vektors Spezi- fität gegenüber bestimmten Substanzen und dadurch die Mög¬ lichkeit zu deren Identifikation und Konzentrationsab¬ schätzung.
4. Jede durch das LUX-Plasmid transformierbare Spezies ist als Indikator-Organismus einsetzbar, was eine erhebliche Ausweitung möglicher Anwendung bedeutet.
5. Biolumineszenz-Messungen sind mit geringem apparativen Aufwand durchzuführen, deshalb kostengünstig und
6. unter "Feldbedingungen", d.h. dezentral, durchzuführen.
Funktionsweise -von -Plasmici o 5I-ι3 im Vergleich mit LUX-Gen onstruktionen cies Standes cler Technik
Die molekulare Klonierung der LUX-Genkomplexe verschiedener mariner Bakterien sowie deren Transfer in normalerweise nicht zur Biolumineszenz befähigte Mikroorganismen ist sowohl in de wissenschaftlichen als auch in der Patentliteratur beschrie¬ ben (US-PS 4 581 335; EP 0168933). Bei diesen Dokumentationen handelt sich um Plas id-Vektoren, die LUX-Gene entweder kon- - o -
stitutiv durch ihren ursprünglichen Promotor oder unter Kon¬ trolle des Beta-Galaktosidase-(lac Z-) Gen Promotors von E. coli expri ieren. Plasmid pGL3 hingegen
1. transkribiert den Luciferase-Genkomplex unter der Kon¬ trolle des P-j^-Promotors des Phagen Lambda,
2. enkodiert gleichzeitig das C-.-Repressorgen des Phagen- Lambda, dessen Genprodukt der sog. Lambda-Repressor, den Pp-.-Promotor negativ reguliert,
3. die Regulation erfolgt durch Verwendung des Alieis 857 des Lambda-Repressors in temperaturabhängiger Weise.
Durch Erhöhung der Temperatur auf über 37°C wird das Repres- sorprotein inaktiviert, der LUX-Genkomplex zur Transkription in mRNA freigegeben, woraus schließlich eine um mehr als drei Zehnerpotenzen erhöhte Biolumineszenz-Aktivität des Indika- tororganis us resultiert. Der Unterschied in der Größe des Biolumineszenzsignals zwischen reprimiertem und transkri¬ biertem Zustand des LUX-Genkomplexes - und damit das Signal- zu Rauschen-Verhältnis der Messungen - ist bei Testorganis¬ men, die mit pGL3 ausgestattet sind, um mehr als eine Zehner¬ potenz besser als bei solchen, welche durch chemische Induk¬ tion des lacZ-Gens zur Biolumineszenz angeregt werden (vgl. US-PS 4 581 335). Der Grund für diese Eigenschaft von pGL3 liegt darin, daß der Lambda P-^-Promotor, der die Expression der LUX-Gene reguliert, einerseits einen der stärksten, in E. coli funktionstüchtigen, prokaryontischen Promotoren dar¬ stellt, zum anderen aber im reprimierten Zustand etwa eine Zehnerpotenz "dichter" geschlossen ist als alle bisher be¬ kannten bakterieneigenen Promotoren. Diese fast absolute Un¬ terdrückung der Biolumineszenz durch pGL3 im reprimierten Zustand der LUX-Gene, d.h. bei Inkubationen unter 35°C, ist eine wichtige Voraussetzung, auch sehr fragile Mikroorganis¬ men für Biolumineszenzmessungen einzusetzen: Der das ohnehin mäßige Wachstum solcher Bakterien durch zusätzlichen Energie¬ verbrauch stark beeinträchtigende Prozeß der Biolumineszenz kann so auf den kurzen Meßzeitraum eingeschränkt werden.
Beschreibung einzelner _A.s-p>ekte cier
Entwicklung
I. Konstruktion des Plasmid-Vektors pGL3
Das für die Erzeugung regulierbarer Biolumineszenz in Mikroor¬ ganismen konzipierte Plasmid pGL3 wurde durch Anwendung gängi¬ ger molekularbiologischer Klonierungstechniken konstruiert; es enthält:
1. den Luciferase-Genkomplex (LUX A; LUX B) von Vibrio Harvey
2. den PL-Promotor des Bakteriophagen Lambda,
3. das Lambda CIgr-γ-Repressorgen unter Kontrolle des
4. P -Promotors des Bakteriophagen Lambda,
5. ein Resistenzgen gegen das Antibiotikum Ampicillin,
6. incl. seines Promotors und
7. eine Schnittstelle für die Restriktionsendonuklease Pst 1.
Der LUX-Genkomplex ist 3', d.h. "hinter" den PRM-Promotor klo niert und wird deshalb von diesem transkribiert; der PCM-Pro- - 3 -
motor seinerseits wird negativ vom Genprodukt des C_-Gens - dem Lambda-Repressor - kontrolliert; dieser Lambda-Repressor wird zwar durch konstitutive Expression des P_-abhängigen Cj-Gens immer in ausreichender Menge synthetisiert, ist aber durch Verwendung des CIgr-7-Allels hitzelabil. So bleibt der P-^-Promotor durch Bindung des Repressors solange blockiert, bis durch 5- bis 15minütige Temperaturerhöhung auf 37° bis 42°C das Repressor-Protein denaturiert wird und vom PRM-Pro- motor abfällt. An den freien Promotor bindet dann die DNA- abhängige RNA-Polymerase und bewirkt die massive Transkrip- t tion des LUX-Genkomplexes. Insgesamt führt diese Konstruktion von pGL3 zu einer regulierbaren, da temperaturabhängigen Syn¬ these des Enzyms Luciferase, welches für die Biolumineszenz der IndikatorOrganismen verantwortlich ist.
Die Konstruktionsbasis von pGL3 ist das Plasmid pLK915 (s. K. K. Stanley, und J. P. Luzio, EMBO J. 3: 1429 bis 1434, 1984). In die Barn Hl Restriktions-Schnittstelle von pLK915 wurde ein 3,1 Kilobasenpaare großes Sal 1-Bam Hl Restrik¬ tionsfragment aus dem Genom von Vibrio Harveyi, das den kom¬ pletten Luciferase-Genkomplex (allerdings ohne Promotor) ent¬ hält, durch molekulare Klonierung eingefügt; Kompatibilität der Sal 1 Schnittstelle mit Barn Hl wurde durch vorheriges An- ligieren des 45 Basenpaare langen Bam Hl - Sal 1- Restrik¬ tionsfragments aus der Polylinkerregion des Plasmides "pBlue- script" (Firma "STRATAGENE"; San Diego, Cal., USA) an das Sal 1-Ende und anschließender Restriktionsspaltung mit dem Enzym Bam Hl hergestellt. Zuletzt wurde ein Oleonukleotid mit der Länge von 16 Basenpaaren, welches Translations-Stoppsi- gnale in allen 3 Leserastern enthält (Firma Pharmazia, Schwe¬ den) , in die Sma 1-Schnittstelle des Bam Hl-Sal 1 Polylinker- Fragments einkloniert, um jegliche Proteintranslation ober¬ halb, d.h. 5', des LUX-Genkomplexes auszuschließen. II. Herstellung, Aufbewahrung und Handhabung transformierter Mikroorganismen
Das oben beschriebene Plasmid pGL3 kann durch Standardtech¬ niken in prinzipiell jede gewünschte Spezies von Mikroorganis¬ men eingeführt werden, um schließlich in großen Mengen kul¬ tiviert zu werden. Es ist möglich, Bakterien als Glycerin- Kulturen bei -20°C oder nach Gefriertrocknung bei Umgebungs¬ temperatur aufzubewahren. Die Gefriertrocknung wird entweder in Glasampullen oder speziell angefertigten Kunststoffbehäl¬ tern durchgeführt, die z.B. in zwei voneinander abgetrennten Kammern die lyophilisierten Mikroorganismen bzw. die Kompo¬ nenten für das zur Revitalisierung der Bakterien notwendige Nährmedium enthalten. Um Messungen toxischer Substanzen in einer Gasphase durchzuführen, ist die permanente Trennung der Indikatororganismen von einem Meßkompartiment durch eine für Wasserdampf impermeable Membran vorgesehen. Auf diese Weise wird die konstante Zusammensetzung des Wachstumsmediums und damit auch die Messung über eine längere Meßperiode, wie für Toxizitättests von Gasen erforderlich, gewährleistet.
III. Anwendung des 'Verfahrens
Um das beschriebene Biolumineszenz-Toxizitätsmeßverfahren de¬ zentral einsetzen und automatisieren zu können, ist das Auf¬ bringen der lyophilisierten Indikatororganismen auf ein geeig¬ netes Trägermaterial in Form eines Teststreifens eine bevor¬ zugte Anwendungsform. Bei diesem Verfahren werden die Mikroor¬ ganismen in definierter Menge auf die Trägermatrix aufgebracht durch ein Spezialverfahren fixiert, gefriergetrocknet und schließlich als Teststreifen versiegelt. Vor der Durchführung der Biolumineszenz-Tests werden die Indikatorbakterien durch ein- bis zweistündige Inkubation in wässerigem Nährmedium bei Umgebungstemperatur revitalisiert.
Das Meßprinzip der hier beschriebenen Toxizitätstestung be¬ ruht auf der Anwendung eines Zweischritt-Verfahrens:
Zunächst wird ein "screening" mit einer Reihe verschiedener Testorganismen definierter Empfindlichkeit zum Nachweis gene¬ reller Toxizität in einer Probe durchgeführt. Danach können weitere Nachweisreakionen mit Stämmen, die mit einer bestimm¬ ten, genetisch vorhandenen bzw. durch Transformation eingeführ¬ ten Eigenschaft der Resistenz bzw. (Hyper-)Sensitivität aus¬ gestattet sind, durchgeführt werden. Ein Toxin, gegen das ein Stamm spezifisch resistent ist, wird bei diesem zu einem nicht- oder nur partiell reduzierten Biolumineszenz-Signal führen; demgegenüber ist ein nicht resistenter Kontrollstamm gravierender in seiner Lebensfähigkeit und, damit korreliert, der Fähigkeit zur Biolumineszenz beeinträchtigt. Das Meßver¬ fahren gemäß der Erfindung ist also einerseits dazu geeignet, das Maß generell vorhandener Toxizität einer Probe durch das Wachstumsverhalten von Mikroorganismen zu erfassen, anderer¬ seits ist es darüber hinaus möglich, alle Substanzen, gegen¬ über welchen eine spezifische Reaktivität bestimmter Testor¬ ganismen besteht, zu identifizieren und deren Konzentration näherungsweise einfach und schnell zu bestimmen.
IV. Durchführung eines Toxizitätstests
IV. 1 Nachweis genereller Toxizität in einer wässerigen Pro¬ be mit Hilfe verschieden sensitiver Indikatorstämme
Ein Aliquot (0,01 bis 1 ml) einer Suspension je eines Indika¬ torstammes in flüssigem Nährmedium wird mit dem gleichen Vo- lumen (etwa 10 3 bis 107 Zellen) der zu testenden Probeflüs- sigkeit versetzt, gemischt und 1 bis 60 min bei 10° bis 34°C inkubiert. Danach wird durch 5- bis 15minütige Erwärmung der Probe auf 37° bis 42°C die Transkription des LUX-Genkomplexes und dadurch die Biolumineszenz in den Mikroorganismen initi¬ iert. Die Messung der Lichtsignale erfolgt in einem geeigne¬ ten Lumineszenz-Phσtometer entweder als Endpunkt- oder als kontinuierliche Messung über einen Zeitraum von 1 bis 60 Mi¬ nuten. Das Maß genereller Toxizität in einer Testflüssigkeit wird bestimmt durch das abnehmende Biolumineszenz-Meßsignal verschiedener Indikatorstämme im Vergleich untereinander wie mit einer Kontrolle, deren Nahrmedium keine Probenflüssigkeit zugesetzt wurde.
IV. 2 Identifikation spezifischer Substanzen
Wie unter IV. 1 beschrieben, werden Indikator-Organismen - diesmal jedoch ausgestattet mit spezifischer Resistenz oder Sensitivität gegenüber bestimmten toxischen Substanzen - mit der Probenflüssigkeit inkubiert, um schließlich Biolumineszenz- Messungen durchzuführen. Ist das Biolumineszenz-Signal nur bei einem der Testorganismen unverändert, etwa in der Höhe des Kontrollwertes, -während alle anderen Mikroorganismen eine Reduktion meßbarer Biolumineszenz erfahren, so ist jenes To- xin, gegen welches der betreffende Stamm resistent ist, iden¬ tifiziert.
V. Anwendungsbeispiel 1
Das in Abbildung 2 gezeigte Beispiel verdeutlicht die Anwen¬ dung der hier vorgestellten Meßmethode zur Testung von Anti¬ biotika-Konzentration in roher Milch:
Ein Stamm des gram-negativen Bakteriums E. coli ATCC 25922 wurde mit einem Plasmid [(pGL3.T, das zusätzlich zu den Kom- ponenten von pGL3 (s.o.) ein Tetrazyklin-Resistenzgen enthält (Stamm "T" in Abb. 2)] transformiert. Als Kontroll-Stamm (Stamm "C") wurde ein Derivat von ATCC 25922 - ausgestattet mit pGL3 - verwendet. Mehrere 0,5 ml-Proben roher Milch mit verschiedenen Konzentrationen des Antibiotikums Tetrazyklin wurden mit je 0,1 ml (etwa 2 x 10 Bakterien) Suspensionen der Stämme C und T versetzt und 20 Minuten bei Raumtempera¬ tur inkubiert. Nach lOminütiger Erwärmung der Kulturen auf 40°C zur Induktion der Biolumineszenz wurden 0,01 ml einer 0,lprozentigen Lösung des Aldehyds Decanal als Substrat der Luciferase zugesetzt und die Proben in einem Lumineszenz-Pho¬ tometer über einen Zeitraum von 50 Minuten in 4-Minuten-In¬ tervallen gemessen. In Abbildung 2 sind die Meßergebnisse von Proben mit fünf verschiedenen Antibiotikakonzentrationen als relative Lichtsignale (RLU; Ordinate) als Funktion der Zeit aufgetragen.
Das Biolumineszenzsignal des tetrazyklin-resistenten Stamms T ist über den Meßzeitraum relativ konstant, während Stamm C ein Abnehmen der emittierten Lichtmenge in einer konzentra¬ tionsabhängigen Weise erkennen läßt. Die Tatsache, daß die Wachstumseigenschaften des Indikator-Stammes T durch Tetra¬ zyklin nicht wesentlich beeinträchtigt werden, ermöglicht seine Anwendung auch zur Identifikation dieses Antibiotikums in Proben (z.B. Milch) unbekannter Herkunft. Die Bestimmung absoluter Konzentrationen dieses Antibiotikums, oder anderer toxischer Substanzen, gegen die ein Indikatorstaram spezifisch resistent ist, ist in guter Näherung durch Einbeziehen von Referenzwerten bekannter Konzentration des Toxins in die Meß- reihe möglich.
VI. Weitere Anwendungen des Verfahrens
Das oben angeführte Beispiel erläutert nur eine der möglichen Anwendungen des hier vorgestellten Toxizitäts-Meßverfahrens mittels Biolumineszenz. Analog ist die Toxizitätsbestimmung flüssiger Proben im Hinblick auf deren Belastung mit anderen Antibiotika, Schwermetallen, Fluorchlorkohlenwasserstoff-Ver¬ bindungen (FCKW) wie Dioxinen, PCB etc. durchzuführen, voraus¬ gesetzt, daß mit entsprechenden Resistenz- bzw. Hypersensi- tivitäts-Genen ausgestattete Mikroorganismen zur Verfügung stehen.
Effekte toxischer Substanzen in gasförmiger Umgebung können in ähnlicher Weise - wie im Beispiel für flüssige Proben be¬ schrieben - erfaßt werden. Bei dieser Anwendungsform bringt man die gasförmige Probe über eine nur für Gase, nicht aber für Wasserdampf, durchlässige Membran in Kontakt mit den In¬ dikator-Organismen. Diese Meßanordnung erlaubt die Erfassung toxischer Substanzen in der Gasphase über längere Meßzeiten, ohne daß durch Verdunstung von Wasserdampf das Nährmedium der Testbakterien in seiner Zusammensetzung verändert wird.
*******

Claims

P a t e n t a n s p r ü c h e
1. Verfahren zum Nachweis toxischer Substanzen in flüssiger oder gasförmiger Umgebung mit Hilfe von Mikroorganismen de¬ finierter genereller oder spezifischer Resistenz bzw. (Hy- per)Sensitivität gegenüber toxischen Substanzen, d a ¬ d u r c h g e k e n n z e i c h n e t, daß die Indikator- Stämme
(I) natürlich vorkommen,
(II) durch Selektion im Laboratorium an ein bestimmtes Toxin adaptiert werden, oder
(III) durch molekularbiolσgische Techniken mit einem Resi¬ stenz bzw. Hypersensitivität gegenüber einem bestimm¬ ten Toxin vermittelndem Gen ausgestattet sind und
(IV) alle Mikroorganismen durch Transformation mit einem bakteriellen Luciferase-Genkomplex die Eigenschaft zur Biolumineszenz erhalten haben.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n ¬ z e i c h n e t, daß das mit pGL3 bezeichnete Plasmid folgende Konstruktionsmerkmale aufweist:
(I) den LUX-Genkomplex von Vibrio Harveyi,
(II) ein bestimmtes Allel des Lambda-Phagen-Repressorgens
C_ unter der Kontrolle seines natürlichen Promotors, PD,
(III) ein Resistenzgen gegen das Antibiotikum Ampicillin,
(IV) eine Reεtriktionsenzym-Schnittstelle, die die Option der Einführung eines zusätzlichen Gens durch Klonierung in pGL3 bietet,
(V) den Lambda-Phagen P^-Promotor, unter dessen Kontrolle der Luciferase-Genkomplex transkribiert wird.
3. Verfahren nach Anspruch 2, d a d u r c h g e k e n n ¬ z e i c h n e t, daß der PR-Promotor unter der Kontrolle des hitzelabilen Genproduktes des Lambda-Phagen-Repressorgens CI857 steht' das Repressorprotein durch Erwärmen auf über 37°C für etwa 5 bis 15 Minuten inaktiviert werden kann, woraus das Phänomen temperaturinduzierbarer Biolumineszenz resultiert.
4. Verfahren nach Anspruch 2, d a d u r c h g e k e n n ¬ z e i c h n e t, daß das Vorhandensein einer Schnittstelle für das Restriktionsenzym Pst 1 die Möglichkeit bietet, ein zu¬ sätzliches Resistenz oder Hypersensitivität gegen eine bestimm¬ te Substanz vermittelndes Gen durch molekulare Klonierung ein¬ zuführen.
5. Verfahren nach Anspruch 1, d a d u r c h g e k e n n ¬ z e i c h n e t, daß dabei toxische Effekte von Antibiotika, Schwermetallen, Enzyminhibitoren, Pestiziden, mikrobiellen Toxinen, flüchtigen KohlenwasserstoffVerbindungen (FCKW), Desinfektionsmitteln, Konservierungsstoffen oder anderen Sub¬ stanzen mit cytotoxischen Eigenschaften ausgeübt werden.
6. Verfahren nach Anspruch 1, d a d u r c h g e k e n n ¬ z e i c h n e t, daß die generelle Toxizität einer Probenflüs¬ sigkeit getestet wird, indem man einen durch genetische Mani¬ pulation zur Biolumineszenz befähigten Stamm von Indikator- Mikroorganismen dieser Flüssigkeit aussetzt und eine Reduk¬ tion des Biolumineszenz-Signals im Gegensatz zu Kontrollmes¬ sungen ohne Zusatz der zu testenden Probenflüssigkeit fest¬ stellt.
7. Verfahren nach Anspruch 1, d a d u r c h g e k e n n ¬ z e i c h n e t, daß die Identifikation einer bestimmten to¬ xischen Substanz durch Vergleich der Absterberaten eines sen¬ sitiven mit einem gegen das betreffende Toxin spezifisch re- sistenten Indikator-Organismus vorgenommen wird: Die Licht- emission der nicht spezifisch resistenten Kontrollorganismen ist reduziert, während ein konstantes Biolumineszenz-Signal zur Identifikation derjenigen Substanz führt, gegen die der Organismus spezifisch resistent ist.
8. Verfahren nach Anspruch 1, d a d u r c h g e k e n n ¬ z e i c h n e t, daß man die Konzentration einer toxischen Substanz durch Messung der Absterbekinetik oder Änderung im Metabolismus von zur Biolumineszenz fähigen Indikatororganis- men, die dieser Substanz über den Meßzeitraum ausgesetzt wer¬ den, bestimmt, indem man die Abnahme der Biolumineszeπz-Sig- nale dieser Messungen mit Kontrollen vergleicht, in denen be¬ kannte Konzentrationen der Testsubstanz auf die Indikator-Or¬ ganismen einwirken.
9. Verfahren nach Anspruch 1, d a d u r c h g e k e n n ¬ z e i c h n e t, daß man die Mikroorganismen lyophilisiert, durch ein Spezialverfahren auf eine Trägermatrix aus Papier oder einem synthetischen Material aufbringt und in einem spe¬ ziellen Behältnis aufbewahrt.
10. Verfahren nach Anspruch 9, d a d u r c h g e k e n n ¬ z e i c h n e t, daß der Testbehälter durch eine Membran in zwei Kompartimente getrennt wird, so daß zwar Gase, nicht aber Wasserdämpfe, in das Kompartiment mit den Mikroorganis¬ men aus dem flüssigen Nährmedium der Testbakterien in den Gasraum übertreten können.
*******
PCT/DE1989/000626 1988-10-03 1989-10-03 Verfahren zum nachweis und zur identifikation toxischer substanzen mit hilfe klonierter mikroorganismen WO1990004037A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP3833628.6 1988-10-03
DE3833628A DE3833628A1 (de) 1988-10-03 1988-10-03 Verfahren zum nachweis und zur identifikation toxischer substanzen mit hilfe klonierter mikroorganismen

Publications (1)

Publication Number Publication Date
WO1990004037A1 true WO1990004037A1 (de) 1990-04-19

Family

ID=6364298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1989/000626 WO1990004037A1 (de) 1988-10-03 1989-10-03 Verfahren zum nachweis und zur identifikation toxischer substanzen mit hilfe klonierter mikroorganismen

Country Status (3)

Country Link
AU (1) AU4335289A (de)
DE (1) DE3833628A1 (de)
WO (1) WO1990004037A1 (de)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AP148A (en) * 1989-06-09 1991-10-22 Agronomique Inst Nat Rech Modified phytopathogenic bacterial strains and their application for the screening of molecules useful for the protection of cultures.
WO1992002633A1 (en) * 1990-08-09 1992-02-20 Amersham International Plc Methods for rapid microbial detection
WO1993002208A1 (en) * 1991-07-17 1993-02-04 Rolf Kroneld Method, apparatus and indicator for indicating evaporable hydrocarbons or environmental poisons in water or liquids
WO1993003179A1 (en) * 1991-07-30 1993-02-18 Bio-Technical Resources Device for detecting aqueous contaminants
WO1993009248A1 (en) * 1991-10-30 1993-05-13 Tepnel Medical Limited Testing animal fluids
WO1993014222A1 (en) * 1992-01-09 1993-07-22 Charm Sciences, Inc. Test kit and method for the determination of pesticides
EP0588139A1 (de) * 1992-09-10 1994-03-23 Bayer Ag Analytisches Verfahren zur Untersuchung von Gemischen auf toxische Bestandteile
WO1994013831A1 (en) * 1992-12-04 1994-06-23 E.I. Du Pont De Nemours And Company A highly sensitive method for detecting environmental insults
EP0639641A2 (de) * 1993-08-18 1995-02-22 Valio Oy Streptococcus thermophilus Stämme und deren Verwendung
WO1998035027A2 (en) * 1997-02-06 1998-08-13 Hoechst Marion Roussel, Inc. Human nerve growth factor exon 1 and exon 3 promoters
WO1998049337A1 (en) * 1997-05-01 1998-11-05 Eastman Chemical Company Bioluminescent reporter bacterium and methods for toxicity monitoring in biological wastewater treatment systems
US5877398A (en) * 1993-01-29 1999-03-02 University Of British Columbia Biological systems incorporating stress-inducible genes and reporter constructs for environmental biomonitoring and toxicology
KR100353617B1 (ko) * 1999-06-21 2002-09-26 광주과학기술원 발광성 미생물을 이용한 독성물질의 분해도 및 처리공정효율평가 방법
KR100377539B1 (ko) * 2000-04-06 2003-03-26 광주과학기술원 식품내 잔류하는 농약에 대한 발광미생물을 이용한 독성탐지방법
US7132247B1 (en) 1998-09-17 2006-11-07 Regents Of The University Of Minnesota Composite devices incorporating biological material and methods
GB2429283A (en) * 2006-08-01 2007-02-21 Univ Hertfordshire Higher Education Corp Preservative efficacy testing system
WO2009022329A1 (en) * 2007-08-13 2009-02-19 Check Light Ltd Method for detecting microbes
US7745023B2 (en) 2003-08-08 2010-06-29 Regents Of The University Of Minnesota Structured material for the production of hydrogen

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6673563B1 (en) 1991-04-04 2004-01-06 James E. Becvar Luminous bacteria and methods for the isolation, identification and quantitation of toxicants
US6017722A (en) * 1991-04-04 2000-01-25 Board Of Regents, The University Of Texas System Luminous bacteria and methods for the isolation, identification and quantitation of toxicants
DE4119079C2 (de) * 1991-06-10 1993-10-21 Fraunhofer Ges Forschung Verfahren zur Bestimmung der Abgabe von biologisch aktiven Stoffen aus Holzwerkstoffen
BE1006312A3 (fr) * 1991-11-29 1994-07-19 Univ Catholique Louvain Procede de selection de microorganismes recombinants comportant a leur surface au moins une molecule a activite enzymatique.
DE4332165A1 (de) * 1993-09-22 1995-03-23 Kolibri Umweltanalytik Und On Verfahren und Gerät zur Schadstoffanalyse von Gewässerproben
DE4426496C2 (de) * 1993-09-27 1996-03-28 Steinbeis Transferzentrum Ange Verfahren zur Prüfung von ausgerüsteten Textilien/Bekleidungsstücken auf ökotoxikologische Unbedenklichkeit durch Bioindikation über Bakterienhemmteste
DE4425382C2 (de) * 1994-07-19 1997-08-14 Univ Hohenheim Salmonella-Lebendimpfstoff
DE4431964A1 (de) * 1994-09-08 1996-03-14 Bayer Ag Lumineszente nitrifizierende Mikroorganismen
AUPM890694A0 (en) * 1994-10-19 1994-11-10 Institute For Child Health Research Cytoassay
DE19720997C2 (de) * 1997-05-12 2003-10-16 Probiogen Ag Schadstoff-Biogewebesensor zur Bestimmung biologischer Schadstoffeffekte
GB9910499D0 (en) 1999-05-06 1999-07-07 Azur Env Ltd Assay reagent

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3370175A (en) * 1965-01-28 1968-02-20 North American Rockwell Toxicant detector
DE2841896A1 (de) * 1977-09-28 1979-03-29 Beckman Instruments Inc Verfahren zum nachweis einer toxischen substanz
US4581335A (en) * 1982-12-01 1986-04-08 Texas A&M University System Process for producing a cloned luciferase-synthesizing microorganism
WO1988000617A1 (en) * 1986-07-22 1988-01-28 Boyce Thompson Institute For Plant Research Use of bacterial luciferase structural genes for cloning and monitoring gene expression in microorganisms and for tagging and identification of genetically engineered organisms

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985000890A1 (en) * 1983-08-16 1985-02-28 Battelle Development Corporation Bioluminescent chemical system and method for detecting the presence of chemical agents in a medium
CA1277931C (en) * 1984-06-05 1990-12-18 Shimon Ulitzur Detection and/or identification of microorganisms in a test sample usingbioluminescence or other exogenous genetically-introduced marker

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3370175A (en) * 1965-01-28 1968-02-20 North American Rockwell Toxicant detector
DE2841896A1 (de) * 1977-09-28 1979-03-29 Beckman Instruments Inc Verfahren zum nachweis einer toxischen substanz
US4581335A (en) * 1982-12-01 1986-04-08 Texas A&M University System Process for producing a cloned luciferase-synthesizing microorganism
WO1988000617A1 (en) * 1986-07-22 1988-01-28 Boyce Thompson Institute For Plant Research Use of bacterial luciferase structural genes for cloning and monitoring gene expression in microorganisms and for tagging and identification of genetically engineered organisms

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Dialog Information Services, File 55, Biosis, Biosis nummer 84024973, Leemans R et al.: "A broad-host-range expression vertor based on the pl promoter of coliphage lambda regulated synthesis of human interleukin 2 in erwinin and serratia species", & J. Bacteriol, 169 (5), 1987, 1899-1904. *
Diolog Information Services, File 55, Biosis, Biosis Nummer 81081249, Lastick S.M. et al.: "Overproduction of escherichia-coli xylose isomerase", & Biotechnol. Lett. 8 (1), 1986, 1-6. *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AP148A (en) * 1989-06-09 1991-10-22 Agronomique Inst Nat Rech Modified phytopathogenic bacterial strains and their application for the screening of molecules useful for the protection of cultures.
US5498525A (en) * 1990-08-09 1996-03-12 Amersham International Plc Methods for rapid microbial detection
WO1992002633A1 (en) * 1990-08-09 1992-02-20 Amersham International Plc Methods for rapid microbial detection
US5723330A (en) * 1990-08-09 1998-03-03 Merck Patent Gmbh Genetically engineered reporter bacteria for the detection of bacteriophage
WO1993002208A1 (en) * 1991-07-17 1993-02-04 Rolf Kroneld Method, apparatus and indicator for indicating evaporable hydrocarbons or environmental poisons in water or liquids
WO1993003179A1 (en) * 1991-07-30 1993-02-18 Bio-Technical Resources Device for detecting aqueous contaminants
US5612184A (en) * 1991-07-30 1997-03-18 Bio-Technical Resources L.P. Device for detecting mercury in water
WO1993009248A1 (en) * 1991-10-30 1993-05-13 Tepnel Medical Limited Testing animal fluids
EP0544413A1 (de) * 1991-10-30 1993-06-02 Tepnel Medical Limited Testen von Tierflüssigkeiten
GB2275531A (en) * 1991-10-30 1994-08-31 Tepnel Medical Ltd Testing animal fluids
GB2275531B (en) * 1991-10-30 1995-07-26 Tepnel Medical Ltd Testing animal fluids
WO1993014222A1 (en) * 1992-01-09 1993-07-22 Charm Sciences, Inc. Test kit and method for the determination of pesticides
EP0588139A1 (de) * 1992-09-10 1994-03-23 Bayer Ag Analytisches Verfahren zur Untersuchung von Gemischen auf toxische Bestandteile
US6238928B1 (en) 1992-09-10 2001-05-29 Bayer Aktiengesellschaft Analytical process for testing mixtures for toxic constituents
US5683868A (en) * 1992-12-04 1997-11-04 E. I. Du Pont De Nemours And Company Highly sensitive method for detecting environmental insults
WO1994013831A1 (en) * 1992-12-04 1994-06-23 E.I. Du Pont De Nemours And Company A highly sensitive method for detecting environmental insults
US5877398A (en) * 1993-01-29 1999-03-02 University Of British Columbia Biological systems incorporating stress-inducible genes and reporter constructs for environmental biomonitoring and toxicology
US5658748A (en) * 1993-08-18 1997-08-19 Valio Oy Streptococcus thermophilus strains and their use
EP0639641A2 (de) * 1993-08-18 1995-02-22 Valio Oy Streptococcus thermophilus Stämme und deren Verwendung
EP0639641A3 (de) * 1993-08-18 1996-12-18 Valio Oy Streptococcus thermophilus Stämme und deren Verwendung.
WO1998035027A3 (en) * 1997-02-06 1998-12-03 Hoechst Marion Roussel Inc Human nerve growth factor exon 1 and exon 3 promoters
WO1998035027A2 (en) * 1997-02-06 1998-08-13 Hoechst Marion Roussel, Inc. Human nerve growth factor exon 1 and exon 3 promoters
WO1998049337A1 (en) * 1997-05-01 1998-11-05 Eastman Chemical Company Bioluminescent reporter bacterium and methods for toxicity monitoring in biological wastewater treatment systems
US6110661A (en) * 1997-05-01 2000-08-29 Eastman Chemical Company Bioluminescent reporter bacterium
US7132247B1 (en) 1998-09-17 2006-11-07 Regents Of The University Of Minnesota Composite devices incorporating biological material and methods
KR100353617B1 (ko) * 1999-06-21 2002-09-26 광주과학기술원 발광성 미생물을 이용한 독성물질의 분해도 및 처리공정효율평가 방법
KR100377539B1 (ko) * 2000-04-06 2003-03-26 광주과학기술원 식품내 잔류하는 농약에 대한 발광미생물을 이용한 독성탐지방법
US7745023B2 (en) 2003-08-08 2010-06-29 Regents Of The University Of Minnesota Structured material for the production of hydrogen
GB2429283A (en) * 2006-08-01 2007-02-21 Univ Hertfordshire Higher Education Corp Preservative efficacy testing system
GB2429283B (en) * 2006-08-01 2007-08-08 Univ Hertfordshire Higher Education Corp Preservative efficacy testing
WO2009022329A1 (en) * 2007-08-13 2009-02-19 Check Light Ltd Method for detecting microbes

Also Published As

Publication number Publication date
DE3833628A1 (de) 1990-04-12
AU4335289A (en) 1990-05-01

Similar Documents

Publication Publication Date Title
WO1990004037A1 (de) Verfahren zum nachweis und zur identifikation toxischer substanzen mit hilfe klonierter mikroorganismen
Bååth Measurement of heavy metal tolerance of soil bacteria using thymidine incorporation into bacteria extracted after homogenization-centrifugation
Cheng et al. Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti
DE68927486T2 (de) Verfahren zur Integration eines bestimmten Gens ins bakterielle Chromosom und durch dieses Verfahren erhaltenes Bakterium
DE69831083T2 (de) Reprimiertes trans-aktivatorsystem zur charakterisierung von protein-protein interaktionen
DE69310207T2 (de) Methode zum Nachweis von unweltbedingten Vergehen
DE69734204T2 (de) Lichtproduzierender biosensor
DE3789766T2 (de) Verwendung von bakteriellen luciferase strukturellen genen zum klonieren und zur steuerung der genexpression in mikroorganismen, sowie zur etikettierung und identifizierung von genetisch gebildeten organismen.
DE69121888T2 (de) Screening nach proteinpartnern und deren verwendung
DE69023642T2 (de) Bestimmung der die genregelung und/oder genreplikation betreffenden faktoren.
DE69936867T2 (de) Dns sequenz, verfahren für dessen nachweis und herstellung und benutzung
EP0456667B1 (de) Verfahren zum nachweis von quecksilber mit hilfe von durch quecksilber zu erhöhter biolumineszenz angeregter mikroorganismen
DE60309589T2 (de) Verfahren zum nachweis von arsenionen durch indikatorbakterien
DE102007027619B4 (de) Biosensor
WO1990004053A1 (de) Vorrichtung zum elektropolieren von oberflächen
DE4343527A1 (de) Verfahren zur Identifizierung von Stoffen mit potentieller herbizider oder wachstumsregulatorischer Wirkung mittels pflanzlicher Transporterproteine, Verwendung der Transporterproteine sowie Substanzen mit herbizider und wachstumsregulatorischer Wirkung
Rolfe et al. Density differences between genetic markers in pneumococcal transforming principle
Wingfield et al. The effect of soil treatment on the response of the soil microflora to the herbicide dalapon
EP0705904B1 (de) Lumineszente nitrifizierende Mikroorganismen
van Overbeek et al. Pseudomonas fluorescens Tn 5-B20 mutant RA92 responds to carbon limitation in soil
DE102008030907B4 (de) Einrichtung und Verfahren zur Detektion und Verstärkung eines Signals
EP1341922B1 (de) Hefestamm zur prüfung der geno- und zytotoxizität komplexer umweltkontaminationen
DE60034786T2 (de) Verfahren zur identifizierung einer verbindung, die die funktion eines genprodukts von einem essentiellen gen moduliert
DE69736210T2 (de) Fermentationsverfahren unter Verwendung von markierten mikrobiellen Wirtszellen
EP1402057A2 (de) Verfahren zur detektion von mutagenen substanzen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU FI JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: IN PAT.BUL.09/90,THE ERRONEOUSLY PUBLISHED FIGURE REPLACED BY THE CORRECT FIGURE