WO1989012247A1 - Polymeres hotes pour l'optique non lineaire - Google Patents

Polymeres hotes pour l'optique non lineaire Download PDF

Info

Publication number
WO1989012247A1
WO1989012247A1 PCT/EP1989/000574 EP8900574W WO8912247A1 WO 1989012247 A1 WO1989012247 A1 WO 1989012247A1 EP 8900574 W EP8900574 W EP 8900574W WO 8912247 A1 WO8912247 A1 WO 8912247A1
Authority
WO
WIPO (PCT)
Prior art keywords
guest
polymer
host
polymers
optical component
Prior art date
Application number
PCT/EP1989/000574
Other languages
German (de)
English (en)
Inventor
Dieter Dorsch
Bernhard Rieger
Hilmar Franke
Original Assignee
MERCK Patent Gesellschaft mit beschränkter Haftung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MERCK Patent Gesellschaft mit beschränkter Haftung filed Critical MERCK Patent Gesellschaft mit beschränkter Haftung
Publication of WO1989012247A1 publication Critical patent/WO1989012247A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/361Organic materials
    • G02F1/3615Organic materials containing polymers

Definitions

  • the invention relates to guest / host polymers based on a polymer matrix with a nonlinear optical component, the polymer matrix consisting essentially of poly ( ⁇ -methylstyrene).
  • Frequency doubling (second harmonic generation, SHG) is the generation of light which has half the wavelength compared to the incident light.
  • the change in the refractive index of a material with an applied electric field is referred to as the electro-optical effect (Pockels effect); Methods of sum and difference frequency mixing as well as frequency division allow the continuous tuning of laser light.
  • Electro-optical switches, couplers and modulators are components for optical communications technology, frequency doublers and parametric amplifiers for laser technology.
  • a prerequisite for technical applicability is the highest possible value for the dielectric susceptibility x (2). This requires a non-centrosymmetric molecular arrangement in the crystal.
  • NLO non-linear optical
  • Chromophores are dipolar-oriented, a 2nd order nonlinear susceptibility ( ⁇ ( y 2 ')). The dipolar orientation is permanently frozen by cooling below the glass temperature.
  • PMMA polymethyl methacrylate
  • Other polymer materials for use as host polymers in guest / host polymers for nonlinear optics are, for example, polyacrylate, polystyrene and polycarbonate (JP 62 96 930, EP 218938), polyethylene, polypropylene, polyvinyl chloride (EP 232138) and polyvinylidene fluoride (EP 186999) and copoly - (vinylene fluoride trifluoroethylene) (JR Hill in Ferroelectrics 1987, Vol. 76, 435).
  • polymers with nonlinear optical properties are polypeptides such as poly- ⁇ -benzyl-L-glutamate [B.F. Levine and CG. Bethea in J. Chem. Phys. 65_, 1989 (1976)], benzimidazole polymers (U.S. 4,579,915), polydiacetylenes (EP 21695) and polymers with pendant NLO groups, as described, for example, in JP 61 148 433 and JP 61 167 930.
  • polypeptides such as poly- ⁇ -benzyl-L-glutamate [B.F. Levine and CG. Bethea in J. Chem. Phys. 65_, 1989 (1976)]
  • benzimidazole polymers U.S. 4,579,915
  • polydiacetylenes EP 21695
  • polymers with pendant NLO groups as described, for example, in JP 61 148 433 and JP 61 167 930.
  • the NLO materials known from the prior art have a number of disadvantages. Firstly, complex synthetic processes are necessary to produce polymers with NLO side chains. This includes, for example Synthesis of NLO monomers with polymerizable substituents or the synthesis of polymers with functional side groups to which the NLO chromophores are chemically bound. Furthermore, relatively high field strengths are required for dipolar orientation. For example, to align dye molecules in PMMA, polarization field strengths of the order of 1 MV / cm are required. This practically limits you to the polarity of thin films in the transverse direction. The degree of orientation after alignment is in many cases only a few percent. However, relaxation effects after orientation are a major problem, ie the NLO chromophores tend to lose their dipolar orientation after a relatively short time. This means that most of the known materials are practically closed to economical use.
  • the object of the invention was therefore to provide nonlinear optical materials which do not have the disadvantages described or only to a minor extent.
  • nonlinear optical materials can be obtained from e.g. Have a nonlinear optical component made in P ⁇ MS.
  • the invention thus relates to a guest / host polymer based on a polymer matrix with a nonlinear optical component, characterized in that the polymer matrix consists essentially of poly ( ⁇ -methylstyrene).
  • the invention further relates to a process for the production of guest / host polymers, characterized in that a nonlinear optical component is incorporated homogeneously in poly ( ⁇ -methylstyrene) and optionally dipolarly oriented.
  • the invention also relates to an optical component containing such a guest / host polymer with a dipolar oriented nonlinear optical component ! as well as the use of these components in the integrated optics.
  • the embodiment of the invention is very simple. For example, a homogeneous solution of a nonlinear optical component is produced in P ⁇ MS, an electric field is applied above the softening temperature of the polymer, then it is cooled below the softening temperature and the desired material with the advantageous properties is thus obtained.
  • P ⁇ MS is preferably used in the form of the commercially available high molecular weight polymer (average molecular weight of 60,000, Aldrich Chem. Co). However, the equally available medium or low molecular weight form can also be used.
  • the double refractive properties of the high molecular form have been described by S. Muto et al. in Yes .J.Appl.Phys. 26_, 4, L 264 (1987).
  • the softening temperature T of the high molecular form is around 140 °, that of the medium molecular form around 119 ° and that of the low molecular weight around 99 ° C.
  • the P ⁇ MS and the NLO component are expediently in a suitable inert solvent, such as, for example, tetrahydrofuran, N-methyl pyrrolidone, (2-ethoxyethyl) acetate, dichloromethane, diethylene glycol dimethyl ether or mixtures thereof, and the solvent is then preferably removed evaporatively.
  • a suitable inert solvent such as, for example, tetrahydrofuran, N-methyl pyrrolidone, (2-ethoxyethyl) acetate, dichloromethane, diethylene glycol dimethyl ether or mixtures thereof.
  • Good homogeneous solutions can also be obtained by dissolving P ⁇ MS and the NLO component in the monomer and then annealing at 150 ° C. for a few hours.
  • NLO component here generally means a low-molecular compound having NLO properties. However, mixtures of two or more subcomponents can also be used as “nonlinear optical components”.
  • the concentration of the nonlinear optical component in the polymer is about 1 to 50%, preferably 3 to 40% and depends in part on the chemical constitution and the value for the nonlinear optical hyperpolarizability. In individual cases, however, concentrations whose values are outside the specified limits can also be advantageous.
  • the structure of the nonlinear optical component is not critical if it can be incorporated homogeneously in the polymer.
  • the prior art offers a large selection for this. For example, the following can be used:
  • additives such as light stabilizers, for example benzophenone derivatives, benzotriazole derivatives, tetraalkylpiperidines or phenylsalicylates, substances to improve the surface quality or other substances which are useful for a specific application can also be added to the guest / host polymer.
  • the materials according to the invention are notable for a number of advantages. The biggest advantage is that no relaxation effects have been shown so far. the degrees of orientation remain unchanged at least over a period of weeks. In contrast, the orientation in other polymer matrices can decrease significantly after only days or even in the case of PMMA after just a few hours [H. Hampsch et al. in Macromolecules ZI, 526 (1988)].
  • Another advantage is the good dipolar orientation with low polarity fields. In general, values of around 5-15 KV / cm are sufficient here. They are orders of magnitude below the polarity fields required for many materials (e.g. in
  • DHNS 4-di-n-hexylamino-4 , -nitrostilbene
  • the materials according to the invention thus open up a wide field of application. They are particularly suitable in the field of integrated optics, for example in sensor and communications technology, for frequency doubling of laser light, for producing directional couplers, switching elements, modulators, parametric amplifiers, waveguide structures and the like.
  • the following examples serve to explain the invention:
  • the materials show good frequency doubling efficiency.
  • PMMA is doped with 5% 4-di-n-hexylamino-4'-nitrostilbene and exposed to a direct electrical field of 50 KV / cm at a temperature of 90 ° C.
  • Example 1 After cooling to room temperature, the field is abolished and the electro-optical behavior, as in Example 1, is determined. A linear, rather a quadratic, electro-optical effect is observed. This means that behavior typical of isotropic samples is observed. An orientation of the NLO material is not recognizable. This material can therefore not be used in fields of application which are based on the linear electro-optical effect, for example frequency doubling.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Des polymères hôtes à base d'une matrice polymère avec un constituant optique non linéaire, cette matrice polymère étant composée essentiellement de poly-(alpha-méthylstyrol), conviennent remarquablement à la fabrication de composants optiques destinés à l'optique intégrée.
PCT/EP1989/000574 1988-06-10 1989-05-24 Polymeres hotes pour l'optique non lineaire WO1989012247A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP3819801.0 1988-06-10
DE19883819801 DE3819801A1 (de) 1988-06-10 1988-06-10 Guest/host-polymere fuer die nichtlineare optik

Publications (1)

Publication Number Publication Date
WO1989012247A1 true WO1989012247A1 (fr) 1989-12-14

Family

ID=6356288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1989/000574 WO1989012247A1 (fr) 1988-06-10 1989-05-24 Polymeres hotes pour l'optique non lineaire

Country Status (3)

Country Link
EP (1) EP0374227A1 (fr)
DE (1) DE3819801A1 (fr)
WO (1) WO1989012247A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19546039A1 (de) * 1995-12-09 1997-06-12 Forsch Mineralische Und Metall Bildschirm, Verfahren zu seiner Herstellung sowie Verfahren und Vorrichtung zur Darstellung von Bildern auf einem Bildschirm

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JAPANESE JOURNAL OF APPLIED PHYSICS, Vol. 26, No. 4, April 1987, S. MUTO et al., "Preparation of Birefringent Plastic Optical Material", pages L264-L265. *
MACROMOLECULES, Vol. 21, No. 2, February 1988, AMERICAN CHEMICAL SOCIETY (US), H.L. HAMPSCH et al., "Orientation and Second Harmonic Generation in Doped Polystyrene and Poly(methyl methacrylate) Films", pages 526-528. *

Also Published As

Publication number Publication date
DE3819801A1 (de) 1989-12-14
EP0374227A1 (fr) 1990-06-27

Similar Documents

Publication Publication Date Title
DE68922557T2 (de) Polyurethane mit nichtlinearen optischen Eigenschaften und diese enthaltende Materialien, diese enthaltende optische Vorrichtung und Verfahren zur Herstellung dieser Verbindungen und Materialien.
DE68928746T2 (de) Integrierte optische Bauteile
DE4417409C2 (de) Thermostabiles Photopolymermaterial zur Ausrichtung von Flüssigkristallen
DE69026456T2 (de) Optischer Gegenstand für die Reflexionsmodulation
Riehl et al. Second-order optical nonlinearities of azo chromophores covalently attached to a sol-gel matrix
DE68911258T3 (de) Polymere und Materialien, die diese Polymere enthalten, mit nichtlinearen optischen Eigenschaften, Verfahren zur Herstellung dieser Polymere und Materialien und elektrooptische Vorrichtung, die diese Materialien enthält
DE3688996T2 (de) Nichtlineare optische Materialien und Vorrichtungen.
DE4116789A1 (de) Optischer schalter
EP0492216A1 (fr) Couches polymériques pour l'optique non-linéaire
DE3853243T2 (de) Feste Lösung.
DE68919717T2 (de) Organisches Material mit nichtlinearen optischen Eigenschaften und Vorrichtung mit nichtlinearen optischen Eigenschaften.
DE69118581T2 (de) Nichtlineare optische Vorrichtungen und Verfahren zur Herstellung
DE69427910T2 (de) Vernetzbares polymer, insbesondere verwendbar in der optik und in der nichtlinearen optik, daraus hergestellte materialien und gegenstände und verfahren zur herstellung dieses polymers
DE69813071T2 (de) Organisches nichtlinear-optisches Material und dieses verwendende nichtlinear-optisches Element
EP0477665A1 (fr) Résines époxy réticulées à propriétés optiques non linéaires
DE69013760T2 (de) Polymere mit nichtlinearer optischer Aktivität.
WO1989001182A1 (fr) Matieres optiques non lineaires poly-ynes
WO1989012247A1 (fr) Polymeres hotes pour l'optique non lineaire
EP0477666B1 (fr) Epoxy-résines réticulées à propriétés optiques non-linéaires
DE3918016A1 (de) (meth)arcrylat-copolymerisate sowie ihre verwendung in der nichtlinearen optik und zur herstellung von langmuir-blodgett-schichten
DE69204841T2 (de) Ladungsuebertragungskomplexe.
EP0303644A1 (fr) Composition de formation de liaisons hydrogene
DE3882015T2 (de) Photochromische zusammensetzung und diese zusammensetzung enthaltende gegenstaende.
EP0583677A1 (fr) Elément multicouche et son utilisation
EP0593866A1 (fr) Résines époxydes réticulées à propriétés optiques non linéaires

Legal Events

Date Code Title Description
AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1989906063

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1989906063

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1989906063

Country of ref document: EP