WO1989005321A1 - Epoxy-modified hydrocarbon resin - Google Patents

Epoxy-modified hydrocarbon resin Download PDF

Info

Publication number
WO1989005321A1
WO1989005321A1 PCT/JP1987/000974 JP8700974W WO8905321A1 WO 1989005321 A1 WO1989005321 A1 WO 1989005321A1 JP 8700974 W JP8700974 W JP 8700974W WO 8905321 A1 WO8905321 A1 WO 8905321A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
hydrocarbon resin
epoxy
modified hydrocarbon
phenol
Prior art date
Application number
PCT/JP1987/000974
Other languages
English (en)
French (fr)
Inventor
Naoki Yokoyama
Original Assignee
Nippon Steel Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co., Ltd. filed Critical Nippon Steel Chemical Co., Ltd.
Priority to DE873791047T priority Critical patent/DE3791047T1/de
Priority to US07/399,546 priority patent/US5173548A/en
Priority to DE3791047A priority patent/DE3791047C2/de
Priority to PCT/JP1987/000974 priority patent/WO1989005321A1/ja
Publication of WO1989005321A1 publication Critical patent/WO1989005321A1/ja
Priority to KR1019890701475A priority patent/KR900700519A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/063Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols with epihalohydrins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes

Definitions

  • the present invention relates to an epoxy useful as a compatibilizer material for paints, adhesives, rubber, I (:: a sealant, etc., and as a base polymer, and also as a compatibilizer material for immiscible binders. It relates to modified hydrocarbon resin.
  • unsaturated aromatic hydrocarbons that is, hydrocarbon resins and hydrocarbon elastomers obtained from aromatic olefins or fractions containing the same, have an effect of plasticizing the base polymer, and have an effect of plasticizing the base polymer.
  • the coating film and the adhesive layer are hardened. After that, its mechanical strength, cohesive strength, adhesive strength, and shrinking power may be reduced, or the hydrofluoric resin may be transferred to the coating table or the interface of the adhesive layer, and the isostatic force may be applied to ⁇ it.
  • epoxy resin type] C sealing In the field of ⁇ ⁇ , a large internal stress is generated at the time of the hardening of the j-stop, so that the adhesion of the il material glue is reduced, M water is reduced to 4, and
  • a mixed composition of such an epoxy resin and a resin obtained by adding phenols to hydrocarbons such as styrene, indene, and alkyd lenidene, and polymerizing with a Friedel-Crafts catalyst are (Kokoku b 9 - 5 2 65 6 No.) but from a, which is a mixture of a resin, a hydrocarbon resin: not one Bowishi of 3 Ruono ⁇
  • the purpose of the present invention is to solve the problem of conventional carbonized 7k element f) & fossil water: ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ .
  • the goal of Shin is i3 ⁇ 4 ⁇
  • An epoxy-modified hydrocarbon resin having an epoxy group as a functional group is synthesized, and a modifier such as paint, adhesive, rubber, and IC encapsulation is to provide a base polymer.
  • Another object of the present invention is to provide a functional group having a hydrocarbon resin portion and a third substance having a third substance by reacting with a functional group reactive with an epoxy group or a third substance having a chemical composition.
  • the present invention is an epoxy-modified hydrocarbon resin obtained by shrinking epichlorohydrin into a copolymer of a hydrocarbon-refined phenol and phenols. Then, this ethoxy-modified hydrocarbon resin is used to produce a phenol-modified hydrocarbon resin by co-loading a hydrocarbon-refined phenol and a phenol in the presence of an acid catalyst.
  • a two-stage reaction consisting of a two-stage reaction and a second-stage reaction in which the resin-modified hydrocarbon resin is reacted with an epoxy port / retroline in the presence of an epoxy resin to perform an epoxy modification reaction.
  • the hydrocarbon refin used in the present invention includes, for example, aromatic ⁇ -refin such as indene, styrene, and malon, phthalene, pentene, pentene, phthalene, iso 7 len, biberylene, etc. Aliphatic 7) It is desirable that it be a refinka, an aromatic refin or a main component. Hydrogen sulfide is
  • At least two types of _t one or more _t : pedestrians are good, or a lot of aromatic oils
  • Preferred petroleum-based fractions are those having a boiling range of ⁇ 40 to 280 ⁇ by-products such as cracking of petroleum, and include carbon such as styrene, alkylstyrene, indene, and alkylindene. It contains about 35 to 65% by weight of an aromatic olefin of Formula 8 to about 0. It is more preferably a tar fraction and has a boiling point range of 30 to 280 °, preferably ⁇ 3 (.) To 200 °, in the coal tar. It is a fraction containing about 40 to 70 liters of aromatic refins such as indene, coumarone, and styrene. An example of the composition of a preferred single-system fraction is shown below.
  • the acid catalyst to be used is, for example, sulfuric acid, hydrochloric acid, sulfuric acid, etc., 7-hydrogen sulfide acid, -fluorinated chloride, aluminum chloride or the like. These complexes, etc. And solid acids such as activated clay and strong acid exchange resin.
  • the reaction temperature is preferably in the range of 50 to 100 ° C.
  • the ratio of the above-mentioned hydrocarbon fins and phenols is not less than 0.1 mol of phenols per mol of hydrocarbon fins, but even if phenols are excessively added, Since it does not react and remains unreacted, the range of 0.1 to 0.8 mol is preferable.
  • the catalyst and unreacted components are removed to obtain a phenol-modified hydrocarbon resin.
  • the phenol-modified hydrocarbon resin obtained in the second stage reaction there are usually many ⁇ phenols bonded to one end of a dimer to octamer of a carbohydrate refining resin.
  • the amount of epichlorohydrin used in the second step reaction is excessively used relative to the phenolic hydroxyl groups in the reaction product of the second step.
  • the molar amount is at least 6 times the molar number of the phenolic hydroxyl groups.
  • a known epoxidation method can be employed, or preferably, the phenol-modified hydrocarbon resin is converted to an excess of It may be performed by dissolving and adding a strong aqueous solution thereto.
  • is preferably an aqueous solution of, for example, sodium hydroxide, room temperature, or aqueous solution of hydroxide. 0) It is preferable that the sword be dripped in a small amount.
  • the reaction temperature is h ( ⁇ ⁇ (;) 0 G, preferably 60-80 C, 3 ⁇ 4 , While removing the generated water out of the anti-system, It is preferable to be able to do it.
  • the reaction is off Ding Roh Lumpur water-acid ⁇ of 3 Y mol% or more, preferable properly 4 0 leakage% or more, is 1 or properly Ri good reaction completion carried out until either Epokishi of 5 0 mol% or more After that, the excess alkali remaining in the system is neutralized with a solid acid such as activated clay, acid clay, acidic ion exchange resin, solid phosphoric acid, and finally, the activated clay is mixed with the salt generated during the reaction. Solid-liquid separation from inside This causes cloudiness of the formed resin due to residual alkaline.
  • the resin modified with hydrocarbon has a functional group or a chemical composition which reacts with an epoxy group such as an amine or a sulfonic acid, since it has a fuoxy group in a molecular structure. It is possible to cause a crosslinking reaction with the substance. Due to this property, in the fields of paints, adhesives, sealing materials, and caulking materials, increased mechanical strength of the cured coating and adhesive layer, increased cohesion, and hydrocarbons on the coating surface It is presumed that the effect of reducing resin feed will occur. In the field of 11-materials, it is presumed that it has an effect as an internal stress relieving agent with less mold contamination during molding.
  • this ubioxy-modified hydrocarbon resin can be used as a plasticizer or extender for general-purpose oxy resins such as bisphenol: r-nor type A epoxy resin, and is used in the field of ethoxy resin-based paints and adhesives. It acts as an internal stress relieving agent, an adhesion enhancer, and a corrosion inhibitor.
  • general-purpose oxy resins such as bisphenol: r-nor type A epoxy resin
  • the function of the hydrocarbon resin portion and the function of the third substance are obtained.
  • this epoxy-modified hydrocarbon resin is reacted with a secondary amine, and then neutralized with an acid to impart a spear-proofing function of the hydrocarbon resin portion.
  • FIG. 1 shows the IR spectrum of the reaction product of the second stage of Example II
  • FIG. 2 shows the IR spectrum of the reaction product of the second stage of Example II
  • FIG. 3 shows the IR spectrum of the second-stage reaction product of Example 2
  • FIG. 4 shows the] R spectrum of the second-stage reaction product of Example 2.
  • Stage 3 reaction 40.0 SP of indene, 6.2 g of phenol, and 60.03 of xylene as a solvent were equipped with a stirrer, a reflux condenser, and a wet humidifier. ⁇ And charged to 70 with stirring
  • FIG. 5 shows the result of measuring the IR spectrum of the reaction product of the first stage.
  • the absorption of 35 55 O CTT 1 seen in the spectrum of the reaction product of the first stage in Fig. 1 is characteristic absorption based on the presence of hydroxyl groups, and indicates that indene and phenol are copolymerized. Is shown.
  • Second stage reaction 20,0 g of phenol-modified indene resin synthesized in the first stage reaction and 45.3 g of epichlorohydrin were mixed at 25 ⁇ / ⁇ equipped with a stirrer, thermometer and reflux condenser. The flask was charged, and the phenol-modified indene resin was dissolved in epichlorohydrin while ripening and stirring. Next, 5.8 g of an aqueous sodium hydroxide solution was injected, and reacted at a boiling point (about 00) for 2 hours. After the completion of the reaction, water was removed from the system by single distillation under normal pressure. Next, the reaction solution was filtered, and the salt and caustic soda in the system were roughly removed.
  • the obtained epoxy-modified indene resin had a softening point of 68.0 and an equivalent weight of 84.3 g / eq of oxy group.
  • the hydroxyl equivalent of the first-stage reaction product and the epoxy group equivalent of the second-stage reaction product were cloudy.
  • the epoxidation achievement ratio calculated from the measurement result was 59.7% by weight.
  • FIG. 2 shows the result of measuring the IR spectrum of the second-stage reaction product.
  • Example 2 After the epoxidation reaction, the same procedure as in Example 1 was carried out, except that the caustic soda was removed by repeating washing with water 5 times without neutralizing excess caustic soda with activated clay. This modified indene resin was synthesized. This resin was slightly cloudy, and the resin yield was 52%.
  • Stage 3 Reaction Styrene, [trimethylstyrene, indene, and coumarone were about 2.7%, 3.5%> 29.3%, and 3%, respectively, as hydrocarbon-refined fins.
  • Bottom are gask mouth area percentages), including the initial boiling point ⁇ 35, and the dry oil ⁇ 9 bV in the range of deoiled and debasified crude oil ⁇ 30 ⁇ Stirrer 3 2 3, put it in a reflux condenser ⁇ - While heating, the temperature was raised to 70 ⁇ .
  • boron trifluoride etherate 4. was added dropwise little by little while taking care not to cause a rapid reaction.
  • the polymerization temperature was maintained at 7 7 ⁇ 2 ° C, and the polymerization reaction was carried out for 3 hours.
  • slaked lime 32.5 S was added, and the catalyst was decomposed at 70 ° C. for 15 minutes.
  • the slurry content was suction-filtered to remove the catalytic decomposition product and excess slaked lime.
  • the polymerized oil thus obtained was charged into a 2.0 round bottom flask, and steam distillation was performed by blowing heated steam into the flask to evaporate the solvent, thereby obtaining a phenol-modified hydrocarbon resin.
  • the end point of the steam distillation was set at the time when the liquid temperature of the heavy oil reached 220 ° C.
  • the obtained phenol-modified hydrocarbon resin was reddish-brown, transparent, viscous at room temperature, and had a hydroxyl equivalent of 3.55 g / eq.
  • FIG. 3 shows the result of measuring the IR spectrum of the reaction product of the first stage. Absorption of 3 5 5 O CTT 1 seen in spectra of Figure 3 the ⁇ stage reaction product is a characteristic absorption based on the presence of hydroxyl groups as in the case of the ⁇ FIG.
  • 2nd stage reaction 2 ⁇ separable flask equipped with a stirrer, reflux condenser and temperature ⁇ with phenol-modified hydrocarbon resin 40 ⁇ 3 and epichloro / lecitrin ⁇ 08383 formed in the second stage reaction Then, the resin was dissolved in 2 f picrohydrin while stirring. Next, inject 4 g of 4 ( ⁇ % hydroxide: aqueous solution of ⁇ 33 g, and boiling point (: approx. For 4 hours. After the completion of the reaction, the same treatment as in Example 1 was performed to obtain a yellow transparent epoxy-modified hydrocarbon resin. The amount of activated clay used for the neutralization reaction was ⁇ 44 g.
  • the obtained epoxy-modified hydrocarbon resin was yellow and transparent and had a oxy group equivalent of 632 / eq, which was calculated from the measurement results of the hydroxyl equivalent of the first-stage reaction product and the epoxy group equivalent of the second-stage reaction product.
  • the epoxidation achievement ratio was 65.0% by weight.
  • FIG. 2 shows the result of measuring the IR spectrum of the second-stage reaction product.
  • the A scan Bae-vector of the second-stage reaction product of FIG. 2 the I not found in spectrum stage reaction product 9 ⁇ O CTT 1 and near ⁇ 2 4 OC 1 near the epoxy groups Characteristic absorption based on presence is observed, and at the same time 3 ⁇
  • the epoxy-modified hydrocarbon resin of the present invention has a reactive epoxy group which is not present in conventional hydrocarbon resins, it is cross-linked or graphed with a polymer having a functional group or chemical composition which reacts with an epoxy group such as polyamine. Reaction. Therefore, in the fields of coating, adhesives, etc., in addition to the functions of the conventional hydrocarbon resin, such as the provision of an initial lock and the prevention of pinching, the coating and the cohesion of the adhesive layer after curing. It has the effect of increasing force and increasing mechanical strength In the field of 1 C sealant, it is effective as an internal plasticizer with less mold stain.
  • a graft polymer is formed with another polymer by using the reactivity of the epoxy group, the difference in the compatibility between the hydrocarbon resin portion and the backbone polymer portion is utilized, and the originally incompatible system is used. Has the effect of functioning as a compatibilizer or internal plasticizer between the polymers. Also, when used as a modifying component of an epoxy resin, it contributes to the improvement of impact resistance as an internal plasticizer without impairing water resistance and electrical properties. Furthermore, this epoxy-modified hydrocarbon resin utilizes the polarity of the epoxy group and is compatible with substances that conventional hydrocarbon resins could not be compatible with. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

明 細 邕1
エホキシ変性炭化水素樹脂
技 術 分 野
本発明は、 塗料、 接着剤、 ゴム、 I (::封止剤等の改貿 剤及びベースポリマーと して 、 さ らには非相溶系ボりマ 一の相溶化剤原料として 有用なエポキシ変性炭化水素樹 脂に関する。
背 技 術
従来よ り、 不飽和芳香族炭化水素、 すなわち芳香族ォ レフ ィ ン又はこれを含む留分から得られた炭化水素樹脂 や炭化水素ユ ラス 卜マーは、 ベースボリマ一を可塑化^ る作用、 ベースポリマーの硬化反応時に発生する内部応 力を緩和 る作用、 ベースポリマーの初期タ ッ ク、 接着 力、 付着力を向上させる作用、 さ らにはベ一スポリマ一 の耐水性を向上させる作用等を有することから、 塗料、 接着剤、 コム、 I c封止材の改質剤と して使用されてい る しかしながら、 このような炭化水素樹脂や炭化水素 エラス 卜マーの改質効果は、 満足 し得るものではなく 、 特に極 ¾の強いペースポリマーに対して はその相溶性の 悪さから使用 ^ ることができす、 また、 ベースポリマー との反応性に乏しいために 、 塗膜、 接着層が硬化した後 にそ の機械的強度や凝集力、 付着力、 鐫カ等が低下 し たり , 塗腠表 、 接着層界面に ^化水素樹脂が移 し τ i t. . へ 付き等力、 ^ ¾ る という問 ¾を ¾ し—( いた
M体的には、 ク リ ル^、 メ ノ ノ り 儿, |¾ ¾の †、 り V一
^いはこれら と スザ レンのコホリマ一を wい ' 、 防 K ラッカー塗斜を製造する場台、 これらのベースボリマ一 と反応性を有し、 かつ相溶性の良い可塑剤として及び付 着力、 防鐫力の付与剤として適当なものがないという問 題がある c
また、 2液硬化型のエポキシ樹脂系、 ウレタン樹脂系、 塗料、 接着剤、 シーリ ングお、 コーヰング材は、 その硬 化反応時に大きな内部応力を生ずるため、 塗膜、 接着層 の^着力、 接着力、 耐水 ¾、 防食性が低下する欠点を有 している c
さ らに、 ゴム業界には、 天然ゴムの持つ弾性、 塩化ビ ニル樹脂の持つ耐候性を兼ね備えた新規ゴムとして、 両 ポリマーのコンパゥンドを靴底等に使闬したいという要 望があるが、 両ポリマーは非相溶系である。 そこで、 こ のような非相溶系のポリマーに対する相溶化剤が必要と されているが、 従来からの炭化水素樹脂を相溶化剤、 さ らにはタツキフアイヤーとして使用しょうとしても天然 ゴム相のみにしか相溶しないため使用できない問題があ る。
そして、 自動車の下塗に使用するカチオン電着塗料は 防鑄性能を高める必要が生じているが、 従来からの炭化 水素樹脂はカチォン電着性がないため、 防鐫力の付与剤 として使用できないという問題かある ,
加えて、 エポキシ樹脂系 ] C封止 ¾分野では、 j止 の硬化反 時に大きな内部応力が生 し、 そのため、 il 材のり一ド密着 ¾の低下、 M水†4 化、 つッノノの
^ 、 1 Cの信頼性の低下が間題となつ '( いる„ このため ホリフ'亍'ン等の炭化水素エ フス 卜マ一か内部応力の低 : 剤と し 闭いられて いるか、 : c ホキシ樹脂との相溶性か 悪く 、 成形時における金型汚れ、 成形品外観の曇りや濁 り、 表面へのにじみ出し等が発生するという問題がある :: ところで、 従来より、 エホキシ樹脂の代 的な硬化剤 と し は酸無水物、 芳香族ァミ ン、 フ : ノ ールノボラッ ク樹脂等があげられ、 これらのうちでもフ I ノールノホ ラッ ク樹脂を硬化剤と した:1ボキシ樹脂成形材料は他の 硬化剤を使用 したェボキシ樹脂成形材料に比ベ 、 成形 性、 耐湿性に優れており、 また、 毒性かなく安価である という特徴を有 し いるため、 1 G等の半導体の樹脂 止 ¾と して広く用いられて いる
また、 このようなエポキシ樹脂とスチ レン、 イ ンデン、 ァルキ レイ ンデン等の炭化水素にフ : I ノ ール類を添加し フ リ 一デルクラフツ触媒で重合した樹脂との混合組成物 も開示されて いる (特公昭 b 9 - 5 2 65 6号公報) しかしな から、. これは樹脂の混合物であって 、 炭化水素樹脂を:1 ボヰシ化 3 るおのではない π
本発明者は、 かかる観点に鑑みて鋭意研究を重ねた結 果、 炭化水素才 レフ イ ンとフ エ ノ一ル類を酸触媒の存¾ 下で共 台し、 得られた共重合物と: Ε ピク ロルヒ 卜 り ン とを反 させることにより: J ポキシ変性 ^化水素樹脂か られるこ とを .¾出し本発 ^ ¾成 し Γ
ίπ つ 、 本 ¾明の 的は、 従来の炭化 7k素樹 f) &や 化 水 :ι つ λ 卜マ一か ¾ る問 点を解^ るこ とに ^ - ま■/: , 本発明の伸の冃的は、 i¾ \ 忖 )官能皋 乂は n の官能基としてのエポキシ基を有するエポキシ変性炭化 水素樹脂を合成し、 塗料、 接着剤、 ゴム、 I C封止 ¾等 の改質剤乂はベースポリマーを提供することである。
さらに、 本発明の他の目的は、 エポキシ基と反応性を 有する官能基又は化学組成を有 る第三物質と反応させ ることにより、 炭化水素樹脂部分の有 る機能と第三物 質の有する機能とを併せ持つ新規な樹脂を製造するため の製造原料と して有用なェボキシ変性炭化水素樹脂を提 供するこ とにある c
発 明 の 開 示
すなわち、 本発明は、 炭化水素才レフ ィ ンと フ エ ノー ル類との共重合物にェピクロルヒ ドリ ンを縮台せ しめて なるエポキシ変性炭化水素樹脂である。 そ して 、 このェ ボキシ変性炭化水素樹脂は、 炭化水素才レフ イ ンとフ エ ノール類とを酸触媒の存在下で共重台して フ ヱ ノール変 性炭化水素樹脂を製造する第つ 段反応と、 このフ 丁 ノ一 ル変性炭化水素樹脂とェピク 口 /レヒ 卜 リ ンとをアル力 り 存在下に反応させて エポキシ変性反応を なう第 2段反 とからなる 2段階反応によって製造される。
本発明で使用する炭化水素才レフ ィ ンとしては、 例え ばイ ンデン、 スチレン、 々マロン等の芳香 τί レフ イ ン、 フ'テン、 ペンテン、 フタジェン、 イ ソ 7レン、 ビべリ レ ン等の .脂肪族 7) レフイ ンカ、あるか、 芳香族才レフ ィ ンか 主成分であることが望ま しい。 化水素ォ レフ ィ ンは、
1 释で ¾ つても 2種以 _t の :台物で'あつ— もよいか、 ま しくは芳香族ォ レ ノ ィ ンを多 «に含む h油 ¾乂は 一 ル系留分である。 好ま しい石油系留分は、 石油類の分解 等によ り副生 る Ί 4 0〜 2 8 0 Όの沸点範囲を有する 留分であり、 スチレン、 ァルキルスチレン、 イ ンデン、 アルキルイ ンデンのような炭素数 8〜 Ί 0の芳香族ォ レ フ ィ ンを 3 5〜 6 5重量 %程度含 ¾するものである。 そ し て 、 より好ま しく はタ一ル系留分であり、 コールタ一 ル中の つ 3 0〜 2 8 0 Ό、 好ま しく は Ί 3 (.)〜 2 0 0 Ό の沸点範囲を有 る留分であり、 ィ ンデン、 クマロン、 スチレン等の芳香族才レフ ィ ンを 4 0〜 7 0靈躉 %程 含む留分である。 好ま しい 一ル系留分の組成の一例を 示す と下記の通りである
ベンゼン 1 51 量% 卜 メチル
卜ル:!: ン 8 5 V ベンゼン 10. 5重量% キシレン 13. b V ク □ン 5. b " スチレン 1 2. b V 、 -·
ンヒ 卜 □ィ
ナフタ レン 3. 0 〃 ン τ ン b . b " ! その他 52. 5 ィ ン丁 ン 34. 5 ,/ ' フ ェ ノ ール類と しては、 フ I ノール付水酸基を ¾する 物質であれぱ何でもよく 、 例えば、 フ :! ノールの他、 ク レソ ール '·、 キシレノ ール等ァルキル基を有- るもの、 ビ 二ル—ノ .τ ノール'、 ィソプロぺニルフ J ノ ール等ビ二 ,レ を有 ^ るもの等かあり、 ビニル基を有するものを使用 3 れは、 多官能基となる
第 1 段反 、におい τ 、 使用する酸触媒と し飞 は、 例え ば硫酡、 塩 ン:、 、 燐酸等の 7 レンシ つ つ ッ ド酸、 - 弗化 ゥ ¾、 塩化ァルミ二ゥムあるいはこれらの錯体等 のルイ ス酸、 更に活性白土、 強酸性ィ 1 ン交換樹脂等の の固体酸がある。 また、 反応温度は 5 0〜 Ί 0 0 °Cの範 囲が好ましい。
上記炭化水素才レフィン類とフエ ノール類の割台は、 炭化水素才レフ ィ ン Ί モルに対して フ : r ノール類 0 . Ί モル以上であるが、 フエノ一ル類を過剰に加えても反応 せず、 未反応のまま残るので、 0 . Ί 〜 0 . 8モルの範 囲が好ましい。
第 Ί 段反応終了後、 触媒及び未反応成分を除去してフ ェ ノール変性炭化水素樹脂が得られる。 この第 Ί 段反応 で得られるフエノール変性炭化水素樹脂は、 通常、 炭化 水秦才レフインの 2〜 8量体の片末端に Ί 個のフエ ノー ルが結合しているものが多く存在することが認められた c 第 2段反応におけるェピクロルヒ卜 リンの使用量は、 第 Ί 段反応生成物中のフ ェノール性水酸基に対して過剰 に使用する。 好ましくは、 フ Iノール性水酸基モル数の 6倍モル以上と る。 フヱ ノール変性炭化水素樹脂と-丁 ピクロル'ヒ ドリ ンとの反応は、 公知のエポキシ化方法を 採用^ることができるか、 好ましくはフ ヱ ノール変性炭 化水素樹脂を過剰のェピクロルヒドリ ンに溶解させ、 こ れに強ア 力リ水溶液を滴下することにより行うのかよ い π また、 使用するアルカリとし τは例えば水酸化ナ ί、 りゥム、 水酸化力りゥム等の水溶液か好ましく、 これレ 0)ァル'刀りは少量すつ滴下^ るのが好ましい c 反 ¾温 ¾ は h ( 〜 Ί (;) 0 Gとし、 好ましくは 6 0〜 8 0 Cと る , ¾に、 生成する水分を反^系外へ除去しながら反 f を it! 行 せるこ とが好ま しい。 反応は、 フ 丁 ノ ール性水酸皋 の 3 ϋモル%以上、 好ま しく は 4 0モ レ %以上 、 よ り 1 ま しく は 5 0モル%以上かェポキシ化されるまで行なう この反応終了後、 系中に残存する余剰のアルカ リ は、 活性白土、 酸性白土、 酸性イオ ン交換樹脂、 固体燐酸等 の固体酸で中和し、 最後にこの活性白土を反応中に生成 した塩と共に系中から固液分離する これにより、 ァル カ リ の残存よる生成樹脂の白濁が 」げる
本発明による .丄ホヰシ変性炭化水素樹脂は、 分子構 - 屮にュ ホキシ基を有 して いるので、 ァミ ン類、 力ルホン 酸類等のエポキシ基と反応する官能基又は化学組成を有 する物質との間で架橋反応を行なわせることが可能であ る。 この性質により、 塗料、 接着剤、 シー リ ング材、 コ 一キング材の分野では、 硬化後の塗膜、 接着剤層の機械 的強度の増大、 凝集力の増大、 塗膜表面への炭化水素樹 脂のフ'り ― ドの低減効果が生ずるものと推定される。 ま 1: ] 0封 .11-材の分野において は、 成形時の金型汚れの少 ない内部応力緩和剤と して の効果を生するものと推定 れる a
また、 この ·[ ポキシ変性炭化水素樹脂は、 その極忖に より、 ポリ ア々 リル酸、 ボリ メ タク リ ル酸およびそ れら の: Γ ス丁ルさ らにはポリ ウレタ ン等、 極性の強いホりマ 一との相溶 ¾を従来の炭化水素樹脂よ < 向上させること かできる:: これにより、 ¾' ¾から炭化水素か ¾ し '( い 7: 機能 c る ¾ \\:効 の i 、 m水 t. (j) i、j -4 といつ 7こ 1 柒かょ( ー ^ [?.,! f るものと ^わわ . 塗^、 接 ¾剤、 シ 一リ ング剤の分野では、 付着力、 防鐫力、 接着力、 耐^ 性のより優れた付与剤としての効果を生するものと推定 される。
また、 このュボキシ変性炭化水素樹脂は、 ビスフ : r ノ ール A型エポキシ樹脂等、 汎用ュ ポキシ樹脂の可塑剤、 増量剤としての使用も可能であり、 ェボキシ樹脂系塗料、 接着剤の分野における、 内部応力緩和剤、 接着力の向上 剤、 防食性付与剤の作用を果たす。
また、 このエポキシ変性炭化水素樹脂をエポキシ基と 反応性を有する官能基又は化学組成を有 ITる第三物質と 反応させることで炭化水素樹脂部分の有^る機能とこの 第三物質の有する機能を合わせ持った斩規樹脂を生成 るという効果を生ずる 例えば、 このエポキシ変性炭化 水素樹脂を二級ァミンと反応させ、 その後、 酸中和する ことで炭化水素樹脂部分の有する防鎗力付与機能及ぴ— 塑化機能と、 アミンー酸部分の有する水溶性力チ才ン化 機能を台わせ持った斩規樹脂を生成^る。 従って 、 カ ^ ■λ ン電着塗料における優れた防鐫カ付与剤及びその可 ^ 化効果による優れた付着力付与剤としての効果を生ずる ものと推定される。
また、 このエポキシ変性炭化水素樹脂をポリアミ ノ樹 脂と反応させることにより、 炭化水素樹脂部分の有する 天然ゴムへの相溶機能とポリアミ ノ樹脂部分の有 ^ る^ 化ヒ ニル樹脂への相溶機能とを台わせ持った新規樹脂 ¾ 生成 るものと推定される r これによ り非相溶系 あ 天然ゴム-塩化ヒニル樹脂の優れた枘溶化^ &ひ ッ フ アイヤーと しての効果を果た し、 結 ¾と して 、 ゴムの 持つ弾 ¾ と塩化ビニル樹脂の持つ耐候 Ήを台わせ持った 優れた新規コンパウンドを形成 るものと推定される。
図 面 の 簡 単 な 説 明 第 1 図は実施例 Ί の第 Ί 段反応生成物の I Rスべク 卜 ルを示し、 第 2図は実施例 Ί の第 2段反応生成物の I R スペク トルを示し、 第 3図は実施例 2の第 つ 段反応生成 物の I R スぺク 卜ルを示し、 第 4図は実施例 2の第 2段 反応生成物の ] R スぺク 卜ルを示す ::
発明を実施するための最良の形態
以下、 実施例及ひ比較例に基いて、 本発明を具体的に 説 m る。
実施例 Ί
第 Ί 段反応 : イ ンデン 4 0 . 0 SP 、 フ エ ノール Ί 6 . 2 g及び溶媒と して キシレン 6 0 . 0 3 を攪拌機、 還流 コ ンデン 一、 湿 ¾ 1を取り付けた 5 し) 0 ^のフラスコ に仕込み、 攪拌 しながら 7 0 に昇 した
次に、 触媒と し 三弗化ホウ素: Lチルユ ー亍ラー 卜 Ί .
O r ( B F 3 0 ( C H ) 〕 を急激な反応が起らな いように注意しながら少景ずつ滴下し、 反応初期に生ず る大きな反応熱は水水浴で除熟し、 発熱終了後は反応 ¾ 度を 7 0 V土 2 Vに保つ て Ί 時間重台反応を行なった。 反 I 終了後、 消石灰 Ί . 2 3 を加え、 7 (:) (;で Ί 5 9; 、 触嫫の分解反応を行なっ た。 分解 fe応終了後、 スラ リ ー 状の内容物を吸引 ^過し ' 、 触婢分解生 )¾物およひ余穿 Ji 消石「Xを除去 した:: 次に し I一々 リ ー」 パホレー 一を I いて、 2 2 0 °C、 5 torrまで徐々に昇温、 減 ΙΪして溶媒 のキシレンを留去、 フェノール変性ィンデン樹脂を得た c 得られたフエノール変性インデン樹脂は、 赤褐色透明 であり、 軟化点 8 0 . 0で及び水酸基当量 4 4 2 g z eq の性状を有するものであった。
また、 この第 Ί 段反応生成物の I Rスぺク 卜ルを測定 した結果を第 Ί 図に示す。 第 1 図の第 Ί 段反応生成物の スぺク 卜ルに見られる 3 5 5 O CTT 1の吸収は、 水酸基の 存在に基く特性吸収であり、 イ ンデンとフエノールが共 重合していることを示している。
第 2段反応 : 第 1 段反応で合成したフエノール変性ィ ンデン樹脂 2 0 , 0 g とェピクロルヒドリン 4 5 . 3 g を攪拌機、 温度計、 還流コンデンサーを取付けた 2 5 ϋ /^のフラスコに仕込み、 加熟攪拌しながらフエノール変 性インデン樹脂をェピクロルヒドリンに溶解させた。 次 に、 水酸化ナトリウム水溶液 5 . 8 gを注入し、 沸点 (約 0 0 ) で 2時間反応させた。 反応終了後、 常圧単蒸溜によって水を系外に除去した。 次に反応液を 濾過し、 系中の食塩、 苛性ソーダを粗除去した。 次に、 濾過した反応液を水蒸気蒸溜で濃縮し、 余剰ェピクロル ヒドリンを追い出した。 得られた樹脂は、 残存食塩、 苛 性ソーダで白濁していた。 次に、 得られた樹脂を同量の キシレンに溶解後、 活性白土 6 を添加攪拌し、 余剰の 苛性ソーダを中和後、 使用済白土を濾過で除去した 後に、 水蒸気蒸溜による濃縮を行つ 1 ポキシ変性ィ ン デン樹脂を得た。 - 1 Ί -
得られたエポキシ変性ィンデン樹脂は、 軟化点 6 8 . 0 じでユホキシ基当量 8 4 3 g / eqであり、 第 Ί 段反応 生成物の水酸基当量と第 2段反応生成物のェポヰシ基当 曇の測定結果から計算したエポキシ化達成率は 5 9 . 7 重量%であった。
また、 この第 2段反応生成物の I Rスペク トルを測定 した結果を第 2図に示す。 この第 2図の第 2段反応生成 物のスぺク 卜ルには、 第 Ί 段反応生成物のスぺク 卜ルに は見られない 9 Ί O CT 1付近および Ί 2 4 O CTT 1付近の ェポキシ基の存在に基く特性吸収が認めら、 同時に 3 b O CTT 1の水酸基の特性吸収強度は第 Ί 段反応生成物の それに比して減少しているのが認められ、 ェボキシ化が 達成されていることが確認された。
なお、 エポキシ化反応後に、 活性白土による余剰苛性 ソ一ダの中和を行わず水洗を 5回繰り返すこ とで、 苛性 ソーダの除去を行った以外は、 実施例つ と同様の手順で、 ェポキシ変性インデン樹脂を合成.した この樹脂はやや 白濁しており、 また、 樹脂収率は 5 2 %であった。
実施例 2
第 Ί 段反応 : 炭化水素才 レフ ィ ンと して 、 スチレン、 [卜メチルスチレン、 イ ンデン、 クマロ ンを各々 Ί 2 . 7 %、 3 . 5 % > 2 9 . Ί %、 3 . Ί % (いずれもガスク 口面積百分率) 含む、 初留点 Ί 3 5て;、 乾点 Ί 9 b Vの 範囲にある ール軽油を脱齩、 脱塩基した原料油 Ί 3 0 ϋ と、 フ τ ノ ール 3 2 3を攪拌樑、 還流コンぅ ン^ ―、 温度 を取り付けた 2 .0 のフつスコに仕込み、 攪 しながら 7 0 Όに昇温した。 次に、 触媒として三弗化ホ ゥ素ェチルエーテラー 卜 Ί 4 . を急激な反応が起こ らないように注意しながら少量ずつ滴下し、 反応初期に 生ずる大きな反応熱は、 氷水浴で除熟、 発熱終了後は反 応温度を 7 Ο Ό ± 2 °Cに保って 3時間重合反応を行なつ た。 反応終了後消石灰 3 2 . 5 Sを加え、 7 0 °Cで 1 5 分間、 触媒の分解反応を行なった。 分解反応終了後、 ス ラリ一状の内容物を吸引濾過して、 触媒分解生成物およ び余剰消石灰を除去した。 このようにして得た重合油を 2 .0 丸底フラスコに仕込み、 これに加熱水蒸気を吹込む 水蒸気蒸溜を行うことで溶媒を蒸発させ、 フェノール変 性炭化水素樹脂を得た。 なお、 水蒸気蒸溜の終点は、 重 合油の液温が 2 2 0 °Cに達した時点とした。
得られたフ X ノール変性炭化水素樹脂は、 赤褐色透明 であって常温で粘稠体であり、 水酸基当量 3 5 5 g / eq の性状を有するものであった。
また、 この第 Ί 段反応生成物の I Rスベク トルを測 ' した結果を第 3図に示す。 第 3図の第 Ί 段反応生成物の スペク トルに見られる 3 5 5 O CTT 1の吸収は、 第 Ί 図の 場合と同様に水酸基の存在に基く特性吸収である。
第 2段反応 : 第 Ί 段反応で台成したフエノール変性炭 化水素樹脂 4 0 ϋ 3 とェピクロ/レヒト リン Ί 0 3 8 3を 攪拌機、 還流コンデンサー、 温度 Ϊ を取り付けた 2 ϋ の セパラブルフラスコに仕込み、 攪拌しながら、 樹脂を二 f ピクロ ヒ ドリ ンに溶解させ 7こ。 次に、 4(κ %水酸化: 卜リゥム水溶液 Ί 3 3 gを注入し、 沸点 (:約 Ί 0 0 °じ〉 で 4 時間反応させた。 反応終了後は、 実施例 Ί と同様の 処理を行って 、 黄色透明のエポキシ変性炭化水素樹脂を 得た。 なお、 中和反応に用いた活性白土の量は Ί 4 4 g であつに。
得られたエポキシ変性炭化水素樹脂は、 黄色透明で ポキシ基当量 6 3 2 / eqであり、 第 1 段反応生成物の 水酸基当量と第 2段反応生成物のエポキシ基当量の測定 結果から計算したエポキシ化達成率は 6 5 . 0重量%で あった。
また、 この第 2段反応生成物の I Rスペク トルを測定 した結果を第 2図に示 。 この第 2図の第 2段反応生成 物のスぺク トルには、 第 Ί 段反応生成物のスペク トルに は見られない 9 Ί O CTT 1付近および Ί 2 4 O C 1付近の エポキシ基の存在に基く特性吸収が認めら、 同時に 3 δ
5 の水酸基の特性吸収強度は第 1 段反応生成物の それに比して減少しているのが認められ、 エポキシ化の 達成されていることが確認された。
産業上の利用可能性
本発明のエポキシ変性炭化水素樹脂は、 従来の炭化水 素樹脂にはなかつた反応性のェポキシ基が存在するので、 ポリアミン等エポキシ基と反応する官能基又は化学組成 を有するポリマー等と架橋又はグラフ 卜反応させること ができる。 従って、 塗^、 接着剤等の分野においては、 從来の炭化水素樹脂が有していた初期 ックの 与、 防 鐫力の付与といった機能のほか、 塗腠、 接着層の硬化後 の凝集力の増大、 機械的強度の増大という効果がある また 1 C封止剤の分野においては、 金型汚れの少ない内 部可塑剤としての効果がある。 また、 エポキシ基の反応 性を利用して他のボリマーとの間でグラフ 卜ポリマーを 生成させれば、 炭化水素樹脂部分、 幹ポリマー部分の相 溶性の違いを利用して、 本来は非相溶系であるポリマー 間の相溶化剤ないしは内部可塑剤として機能する効果が ある。 また、 エポキシ樹脂の改質成分として用いれば、 耐水性、 電気特性等を損ねることなく内部可塑化剤とし て耐衝撃性の改良に寄与する。 さらに、 このエポキシ変 性炭化水素樹脂は、 エポキシ基の極性を利用し、 従来の 炭化水素樹脂が相溶し得なかった物質に対しても相溶性 を有するものでその改質に利用することができる。

Claims

( υ 炭化水素才レフィンとフ: Ε ノール類との共重台物 にェピクロルヒ ドリ ンを縮台せしめてなるエポキシ変性 炭化水素樹脂。
( 2 ) 炭化水素才レフ ィ ンが、 イ ンデン、 スチレン、 ク マロンからなる群かョ -α Bら選ばれた Ί 種又は 2種以上の芳香 族才レフインを含むものである特許請求の範囲第 Ί 項記 求
の 1ホキシ変性炭化水素樹脂。
( 3 ) 炭化水素才レフィ ンが、 Ί 3 5 〜 Ί 9 5 °Cの沸点 範囲にあるタール軽油である特許請求の範囲第 Ί 項記載 のエポキシ変性炭化水素樹脂。
( 4 ) フエノール類がフエノール、 クレゾール、 キシレ ノール及びビニルフ ι ノールからなる群から選ばれたつ 種又は 2種以上である特許請求の範囲第 Ί 項記載の 1ポ キシ変性炭化水素樹脂。
( 5 ) 炭化水素ォ レフィンとフ エノール類との共重合物 か、 ブレンシュテッ ド酸、 ルイス酸又は固体酸の存在下 に 5 0〜 Ί 0 0 °Cで重合させ得られた特^請求の範囲第 1 項記載のポキシ変性炭化水素樹脂。
( ) 炭化水素才レフィンとフ Iノール類との共重合物 にェピクロルヒ ドリ ンを縮台せしめてなる樹脂が、 フ: r ノール変性炭化水素樹脂のフエ ノール性水酸基モル数に 対し、 6倍モル以上の過剰のェピクロルヒ ドリ ンを 5 0 〜 Ί 0 0 で水酸化ナト リウム、 水酸化カリウム等のァ ルカ り水溶液で脱塩酸、 脱水縮台さ乜、 この反応終了後、 余剰のァリカ リを活性白土、 酸性白土、 酸性イ ン交換 樹脂、 固体燐酸等の固体酸で中和し、 最後に、 この活性 白土を反応中に生成した塩と共に系中から固一液分離 ることを特徴と 3る特許請求の範囲第 Ί 項記載の濁りの 少ないエポキシ変性炭化水素樹脂。
( 7 ) 炭化水素才レフィンとフエノール類とを共重合さ せて得られたフ Iノール変性炭化水素樹脂のフエノール 性水酸基の少なく とも一部をェピクロルヒドリンでェポ キシ化してなるェボキシ変性炭化水素樹脂。
( 8 ) 炭化水素才レフ ィ ン重合体の片末端に Ί 個のフエ ノール類が結合したフ ェ ノール変性炭化水素樹脂のフ -τ ノール性水酸基の 4 〇モル%以上をエポキシ化してなる 1ボキシ変性炭化水素樹脂。
PCT/JP1987/000974 1987-12-12 1987-12-12 Epoxy-modified hydrocarbon resin WO1989005321A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE873791047T DE3791047T1 (de) 1987-12-12 1987-12-12 Epoxymodifizierte kohlenwasserstoffharze
US07/399,546 US5173548A (en) 1987-12-12 1987-12-12 Epoxy-modified hydrocarbon resins
DE3791047A DE3791047C2 (ja) 1987-12-12 1987-12-12
PCT/JP1987/000974 WO1989005321A1 (en) 1987-12-12 1987-12-12 Epoxy-modified hydrocarbon resin
KR1019890701475A KR900700519A (ko) 1987-12-12 1989-08-07 에폭시-변성 탄화수소 수지

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1987/000974 WO1989005321A1 (en) 1987-12-12 1987-12-12 Epoxy-modified hydrocarbon resin

Publications (1)

Publication Number Publication Date
WO1989005321A1 true WO1989005321A1 (en) 1989-06-15

Family

ID=13902944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1987/000974 WO1989005321A1 (en) 1987-12-12 1987-12-12 Epoxy-modified hydrocarbon resin

Country Status (4)

Country Link
US (1) US5173548A (ja)
KR (1) KR900700519A (ja)
DE (2) DE3791047C2 (ja)
WO (1) WO1989005321A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0776923B1 (en) * 1991-06-19 2004-08-18 Akzo Nobel N.V. Epihalohydrin-based resins having a reduced halogen content
US20040197571A1 (en) * 2003-04-03 2004-10-07 Yuji Hiroshige Thermosetting composition, and sealing article and sealing structure using the same
KR102473850B1 (ko) * 2022-06-14 2022-12-05 주식회사 신아티앤씨 테트라메틸비페놀형 에폭시 수지 및 이의 제조방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL187191B (nl) * 1953-05-01 Dvsg Patentverwaltungs Gmbh Binnenvorm met schuin oplopende hielboog voor een hiel-vormmachine.
US3644537A (en) * 1969-12-29 1972-02-22 Hooker Chemical Corp Phenols and phenolic resins
US4491667A (en) * 1981-06-17 1985-01-01 Hitachi Chemical Company, Ltd. Hexahydrophthalides
DE3217569C2 (de) * 1982-05-11 1985-11-28 Heidelberger Druckmaschinen Ag, 6900 Heidelberg Verfahren und Vorrichtung zum Dosieren der Farbe bei Offsetdruckmaschinen
DE3242782A1 (de) * 1982-11-19 1984-05-24 Rütgerswerke AG, 6000 Frankfurt Phenolmodifizierte kohlenwasserstoffharze mit hoher oh-zahl sowie verfahren zu ihrer herstellung und ihre verwendung
JPH0611782B2 (ja) * 1986-06-13 1994-02-16 新日鐵化学株式会社 エポキシ変性炭化水素樹脂の製造方法
US5008350A (en) * 1987-12-16 1991-04-16 Sumitomo Chemical Company, Limited Glycidyl ethers of phenolic compounds and process for producing the same

Also Published As

Publication number Publication date
US5173548A (en) 1992-12-22
KR900700519A (ko) 1990-08-13
DE3791047C2 (ja) 1992-04-30
DE3791047T1 (de) 1989-12-21

Similar Documents

Publication Publication Date Title
CA2856452C (en) Composition of olefinically functionalised siloxane oligomers based on alkoxy silanes
TW387909B (en) Alkoxy silyl capping agents for making terminally functionalised polymers
TW390891B (en) Coupling of anionic polymers with trialkoxysilanes having silicon-hydrogen bonds
JPH07508299A (ja) 無作為にエポキシ化した小さな星形ポリマー
CN1281491A (zh) 可固化的树脂组合物
US6288208B1 (en) Highly branched oligomers, process for their preparation and applications thereof
EP0490589A1 (en) Styryloxy compounds and polymers thereof
WO1989005321A1 (en) Epoxy-modified hydrocarbon resin
US3919151A (en) Preparation of low free resorcinol containing resorcinol-phenol copolymer resins
CN109790357A (zh) 可固化的改性石油树脂、其制备方法及用途
JPH03717A (ja) 新規エポキシ樹脂及びその製造法
JP3410503B2 (ja) 立体障害性エポキシ化重合体の化学的架橋法
JPS6399218A (ja) エポキシ変性炭化水素樹脂の製造方法
US3711451A (en) Hydroxyl containing liquid mercaptan-terminated acrylate polymers
US3577437A (en) Epoxy resins from alkylated phenol novolac resins
KR20150113024A (ko) 관능성 폴리이소부틸렌-함유 올리고머 및 중합체의 합성
Cohen New Epoxide Resins by Reaction of Epichlorohydrin with Sulfonamides
JP4399977B2 (ja) 芳香族炭化水素変性フェノール樹脂の製造方法
US3385913A (en) Thermosetting copolymers based upon propylene oxide-butadiene monoxide copolymers
Wang et al. Synthesis and characterization of dicyclopentadiene–cresol epoxy resin
US20210269572A1 (en) Improving the mechanical integrity of polysulfonic acids
JPS5948054B2 (ja) エポキシ樹脂の製造方法
JPS6025069B2 (ja) カシュ−シェルオイル誘導体
JP3246686B2 (ja) 硬化性樹脂組成物
JPS5845204A (ja) ビニルを末端基とする反応性液体ポリマ−及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

RET De translation (de og part 6b)

Ref document number: 3791047

Country of ref document: DE

Date of ref document: 19891221

WWE Wipo information: entry into national phase

Ref document number: 3791047

Country of ref document: DE