WO1989004724A1 - Electrostatic filter for continuous separation of solid or liquid particles suspended in a gas stream - Google Patents

Electrostatic filter for continuous separation of solid or liquid particles suspended in a gas stream Download PDF

Info

Publication number
WO1989004724A1
WO1989004724A1 PCT/CH1988/000216 CH8800216W WO8904724A1 WO 1989004724 A1 WO1989004724 A1 WO 1989004724A1 CH 8800216 W CH8800216 W CH 8800216W WO 8904724 A1 WO8904724 A1 WO 8904724A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
separating
electrodes
gas stream
flow
Prior art date
Application number
PCT/CH1988/000216
Other languages
English (en)
French (fr)
Inventor
Harald Jodeit
Original Assignee
Asea Brown Boveri Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asea Brown Boveri Ag filed Critical Asea Brown Boveri Ag
Priority to DE8888909507T priority Critical patent/DE3870231D1/de
Priority to AT88909507T priority patent/ATE74801T1/de
Publication of WO1989004724A1 publication Critical patent/WO1989004724A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/66Applications of electricity supply techniques
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/10Plant or installations having external electricity supply dry type characterised by presence of electrodes moving during separating action

Definitions

  • Electrostatic filters for separating solid and liquid particles are widely used in the metallurgical and chemical industries as well as in power plants. Dust separation and gas cleaning have become increasingly important, particularly in connection with environmental protection regulations.
  • the invention relates to the further development, improvement and simplification of electrostatic dust separation and to the reduction of the associated apparatus.
  • an electrostatic filter for the continuous separation of solid or liquid particles suspended in a gas stream, with a rectangular cross-section in a channel guiding the gas stream at least one spray electrode acting as an ion source and utilizing the corona effect is arranged in the form of a plurality of peaks placed in the flow direction and at least one transverse, movable flat separator designed as an endless perforated conveyor belt or traveling grille, such that the spray electrode and the separating electrode are penetrated essentially vertically by the gas stream laden with particles and the electric fields accelerating the charged particles lie essentially in the direction of flow.
  • Dust separation is improved by moving separation electrodes with continuous cleaning.
  • electrically conductive metal strips or metal plates fastened to chains which in many cases also serve as lateral delimitation of the flow channel, are generally moved in a "cross flow" perpendicular to the direction of flow.
  • These movable separation electrodes are usually cleaned with the help of rotating brushes.
  • the construction of the device should be simple and inexpensive and should be characterized by low energy consumption and low maintenance requirements. You should fine the ⁇ special capture and fine dust particles to be suitable and independent of the carrier gas.
  • This object is achieved in that, in the electrostatic filter mentioned at the outset, in the direction of flow, after the separating electrode, in the space between the planes its supply side and the level of its return side and / or in the space after the level of its return side at least one control unit located in the same name as the spray electrode, in the form of rods lying in a plane parallel to the separating electrode, or in the form of a Grid or grid is arranged.
  • FIG. 1 schematically shows the basic structure of the basic embodiment of an electric lecturer with only one row of control electrodes in the space between two separating electrodes
  • FIG. 2 schematically shows the basic structure of an embodiment of an electrofilter with only one row of control electrodes in the space after the second separating electrode
  • FIG. 3 schematically shows the basic structure of an embodiment of an electrostatic filter with a number of control electrodes in the space between two reading electrodes and a number of control electrodes in the space after the second reading.
  • Fig. 4 shows schematically the construction of an embodiment of an ELektro ⁇ filter with several spray electrodes, several rows of control electrodes and rotating, zigzag, multi-acting band-shaped separating electrode.
  • Fig. 5 shows schematically the structure of an embodiment of an ELektro ⁇ filter with several spray electrodes, several rows of control electrodes and a plurality of circumferential, parallel ribbon-shaped separation electrodes,
  • FIG. 6 shows the basic structure (longitudinal section) of an embodiment of an electrofilter with a peripheral separating electrode and only one row of control electrodes
  • FIG. 7 shows the basic structure (longitudinal section) - an embodiment of an electrofilter with a peripheral separating electrode and three rows of control electrodes.
  • 1 schematically shows the basic structure of the basic design of an electrofilter with only one row of control electrodes in the space between two separating electrodes.
  • 1 is the gas stream loaded with particles, which perpendicularly passes through the electrodes arranged in parallel planes transverse to the direction of flow.
  • 3 is a usually negatively charged (sign) spray electrode, the tips 4 of which use the corona effect serve as ion sources.
  • 5 are the separating electrodes, which are basically designed as perforated sheets, nets or grids, and are normally kept at zero potential (sign 0). In the present case, there is mechanically a single, continuous, continuous separating electrode designed as a broken band.
  • 6 is the control electrode formed as round rods, which is at the same potential as the spray electrode 3.
  • This electrode arrangement requires an accelerating electric field 7 located in the direction of flow between the spray electrode 3 and the outer feed side (indicated by the left-hand arrow ) of the separating electrode 5. This is the case between the control lect 6 and the inner feed side of the separator 5 the accelerating electric field directed 8. The accelerating electric field between the control electrode 6 and the inner return side (indicated by the right-hand arrow) of the separating electrode 5 is again in the direction of flow.
  • the charged particles which in the present case have a negative charge (sign) are given multiple opportunities to deposit on one and / or the other side of the separating electrode 5. This is represented by the trajectories 10 of the charged particles. Accordingly, for example, a particle is repelled by the electric field 8 on the inner feed side of the separating electrode 5 against the direction of flow.
  • FIG. 2 shows schematically the basic structure of an embodiment of an electrofilter with only one row of control electrodes in the room after the second separating electrode.
  • 1 is the gas flow .
  • m 3 the spray electrode provided with tips 4, 5 the separator formed as a continuous openwork band and 6 the control electrode in the form of parallel rods.
  • the Fe Ldverh- ⁇ Ltm " sse in the space between the spray electrode 4 and the outer feed side of the separating electrode 5 are the same as in Fig. 1 (accelerating electrical field 7).
  • the separating electrode is dominated by the electric field NuLL (sign 0), which becomes in the space between the external control electrode 6 (negative potential: sign -) and the outer return side of the separating electrode 5 (potential zero: sign 0) against the direction of flow accelerating electrical field 15.
  • the trajectories 10 reflect the migration of the charged particles (sign -) onto the separating electrode 5. For example, a particleL is deflected under the influence of the electrical field 15 and against the direction of flow knocked back on the outer return side of the separating electrode 5.
  • FIGS. 1 and 2 schematically shows the basic structure of an embodiment of an electrofilter with a row of control electrodes in the space between two separation electrodes and one Row of control electrodes shown in the room after the second Abscheide ⁇ electrode. It is essentially a superposition of the electrode arrangements of FIGS. 1 and 2.
  • the accelerating electric fields 7 and 9 are directed in the direction of flow, the fields 8 and 15 are directed against the direction of flow. Accordingly, there are 4 different possibilities for the migration of the negatively charged particles (sign) to the separating electrodes 5. All reference numerals correspond to those in FIGS. 1 and 2.
  • FIG. 4 schematically shows the structure of an embodiment of an electrostatic filter with a plurality of spray electrodes, a plurality of rows of control electrodes and a circumferential, zigzag-guided, multi-acting band-shaped separation electrode.
  • the gas stream 1 passes vertically through several electrode groups arranged in parallel planes.
  • the Abschei deelektrode 5 is designed as an endless openwork band, which-more than between a spray electrode 3 with tips 4 and a number of control electrodes 6, respectively. between two rows of control electrodes 6.
  • the belt is guided over drums 11 acting as deflection rollers. All spray electrodes 4 and all control electrodes 6 are at negative potential (sign -), while the multi-acting deposition electrode 5 is at zero potential (sign 0).
  • the spray electrodes 4 are on the negative pole of a direct high-voltage source 16 (voltage U 1 ), while the control electrodes 6 are on the negative pole of a second direct high-voltage source 17 (voltage U ? ).
  • the positive poles of both high-voltage sources are connected to the separating electrode 5 and are grounded together (sign 0).
  • the potential connections between the high-voltage sources and the electrodes are only shown in the upper part of the figure.
  • Such a cascade connection of a plurality of electrode groups lying one behind the other in the direction of flow improves the degree of separation, particularly in the case of very fine dust.
  • FIG. 5 schematically shows the construction of an embodiment of an electrostatic filter with a plurality of spray electrodes, a plurality of rows of control electrodes and a plurality of circumferential, parallel band-shaped separation electrodes.
  • the construction is similar to that of FIG. 4, with the difference that here 3 separate, i Openwork tapes guided essentially in the same way are used as deposition electrodes 5.
  • the arrangement of the spray electrodes 3 and the control electrodes 6 is similar to that of Fig. 4.
  • the potential relationships are basically the same. The voltage coupling has not been shown. Otherwise, the reference numerals are the same as in FIG. 4.
  • FIG. 6 shows the basic structure (longitudinal step) of an embodiment of an electrofilter with a rotating separating electrode and only one row of control electrodes.
  • 1 is the gas stream loaded with particles and guided vertically downwards in a channel 2. It passes through the plane of the spray electrode 3 vertically.
  • Whose tips 4 are arranged on a (for example square, rectangular or hexagonal) grid and point in the direction of flow.
  • 5 is the circumferential endless deposition electrode (for example designed as a broken band). The dust particles deposited on it are indicated as dots.
  • the drums 11, which are accommodated in lateral chambers, are provided as deflection rollers for the separating electrode 5 outside the channel wall 2. The direction of movement is indicated by arrows.
  • the Lekt rode 5 deposited on the separator dust is removed by bilateral wipers (scraper) 12 and also bilateral rotating re cleaning bushes 13 removed. With 14 de rabaustrag is indicated, but this is usually done in practice perpendicular to the plane of the drawing.
  • the control electrode which is designed in the form of parallel rods, is located between the supply side and the return side of the separating electrode 5. 6. Between the negatively charged tips 4 in the present case, which act as ion sources (co- rona effect ) , and the accelerating electric field 7 is built up on the outer supply side of the separating electrode 5, which is at zero potential. It is directed in the direction of flow.
  • An accelerating electric field 8 directed against the direction of flow is spanned between the negatively charged control electrode 6 and the inner feed side of the separating electrode 5. Between the control electrode 6 and the inner return side of the separating electrode 5 there is the accelerating electric field 9 directed in the direction of flow.
  • the trajectories 10 indicate the migration paths of the charged particles.
  • the active components 2, 3, 4, 5, 6, 11, 12 and 13 are usually made of rustproof or corrosion-resistant Cr or Cr / Ni steel.
  • FIG. 7 shows the basic structure (longitudinal section) of an embodiment of an electrofilter with a circumferential separating electrode and three rows of control electrodes.
  • the basic concept is similar to that of Fig. 6, with the reference numerals corresponding exactly.
  • the gas stream 1 loaded with particles was guided vertically from top to bottom.
  • the already expanded channel 2 consisted of a sheet made of corrosion-resistant 18 Cr / 8 Ni steel and
  • the spray electrode 3 also made of Cr / Ni steel, had tips 4 of 20 mm length arranged on a square grid ( in the direction of flow) and 0.8 mm rounding radius.
  • the tips 4 also made of corrosion-resistant Cr / Ni steel and had ⁇ a mutual spacing in two main 'chtungen of 100 mm.
  • the circumferential endless separating electrode 5 was designed in the form of 3, viewed perpendicular to the plane of the drawing, side by side (one behind the other) arranged, parallel and synchronously guided openwork steel bands.
  • the strips had a thickness of 0.5 mm and consisted of a corrosion-resistant type 18/8 Cr / Ni steel alloyed with special additives, but with a high plug-in limit, in the cold-rolled, almost spring-hard condition.
  • Each band had slots arranged in the direction of movement in the form of oblong holes of 5 mm width and 56 mm length rounded on the narrow sides.
  • the center distance (pitch) of the slots in the longitudinal direction (moving direction) was 119 mm, that in Quer ⁇ 'rect 10 mm. Adjacent rows of slots were offset by half a division in the longitudinal direction.
  • the strips ran over drums 11 made of Cr / Ni steel, which had a diameter of 250 mm. One of the drums 11 was driven by an electric motor via a gear.
  • the conveying speed was adjustable between approx. 1.5 mm / s and 85 mm / s, which corresponded to 1 revolution / h or 60 revolutions / h.
  • the distance from the tape surface to the tips 4 was 70 mm.
  • the control electrodes 6 were rods made of Cr / Ni steel with a diameter of 10 mm and a horizontal center distance (pitch) from one another.
  • the vertical distance between the centers of the bars from the adjacent strip surface was 75 mm each, the vertical distance between the centers of the bars below them was 100 mm.
  • the wipers (scraper) 12 and the rotating cleaning brushes 13 were also made of corrosion-resistant Cr / Ni steel.
  • the plant was operated with a gas stream 1 loaded with quartz dust.
  • the negative pole of a high-voltage source was placed.
  • the positive pole was placed on the separating electrode 5 and at the same time grounded (potential 0).
  • the control electrodes 6 negative pole of another equilibrium high-voltage source, while its positive pole was connected to earth.
  • Control electrode / separation electrode
  • the invention is not limited to the exemplary embodiment.
  • the separating electrode 5 is designed as a perforated conveyor belt or traveling grating, the control electrode 6 in the form of bars, grids or grids.
  • the multiple separating electrode 5 is designed as conveyor belts which are located one behind the other in the flow direction and move in the same or opposite directions.
  • the potential of the control electrodes 6 is generally matched to that of the spray electrode. Its absolute value is preferably set higher than that of the spray electrode 3. Otherwise, reference is made to the embodiment variants of FIGS. 1 to 6.

Landscapes

  • Electrostatic Separation (AREA)
  • Filtering Materials (AREA)

Description

BESCHREIBUNG
ELEKTROSTATISCHES FILTER FÜR DIE KONTINUIERLICHE ABSCHEIDUNG VON IN EINEM GASSTROM SUSPENDIERTEN FESTEN ODER FLÜSSIGEN PARTIKELN
TECHNISCHES GEBIET Elektrostatische Filter zur Abscheidung von festen und flüssi¬ gen Partikeln finden in der metallurgischen und chemischen Industrie sowie in Kraftwerksanlagen zahlreiche Verwendung. Die Staubabscheidung und Gasreinigung hat insbesondere im Zusammenhang mit den Umweltschutz-Besti mungen an Bedeutung zugenommen .
Die Erfindung bezieht sich auf die Weiterentwicklung, Verbesse¬ rung und Vereinfachung der elektrostatischen Staubabscheidung sowie auf die Verringerung des damit zusammenhängenden apparati¬ ven Au wandes .
Insbesondere betrifft sie ein elektrostatisches Filter für die kontinuierliche Abscheidung von in einem Gasstrom suspen¬ d erten festen oder flüssigen Partikeln, wobei in einem den Gasstrom führenden Kanal rechteckförmi gen Querschnitts quer zur Strömungsrichtung mindestens eine als Ionenquelle wirkende, den Koronaeffekt ausnutzende Sprühelektrode in Form mehrerer in Strömungsrichtung gestellter Spitzen und mindestens eine quer gestellte, als endloses durchbrochenes Förderband oder Wandergitter ausgebildete, bewegliche ebene Abschei dee lekt rode angeordnet ist, dergestalt, dass die Sprühelektrode und die Abscheideelektrode vom mit Partikeln beladenen Gasstrom im wesentlichen senkrecht durchsetzt werden und die die geladenen Partikel beschleunigenden elektrischen Felder im wesentlichen in Strömungsrichtung Liegen.
STAND DER TECHNIK Es wird allgemein versucht, die für die Staubabscheidung in E lekt rofi Ltern herrschenden Bedingungen zu verbessern, um zu wirksamerer Abscheidung und zu kleinerem apparativen Aufwand zu kommen. Dies gilt vor allem für die Abscheidung von Feinstaub und Flugasche. Mit Hilfe einer als IonenquelLe dienenden Korona-* entladung werden geladene Teilchen erzeugt, die im elektrischen Feld an den meist geerdeten Elektroden abgeschieden werden. In der Regel werden mehrere Abscheidestufen eingesetzt. Bereits in der ersten Stufe werden die meisten, vor allem die grösseren Schmutzpartikel erfasst. Die hinteren Filterstufen dienen der Abscheidung der feinen Staubteilchen, sowie dem Wiederein- fangen des beim Reinigen der vorderen Elektroden durch Klopfen oder Rütteln fre gesetzten Staubes.
Die Staubabscheidung w rd durch bewegte Abscheideelektroden mit kontinuierlicher Reinigung verbessert. Bei diesen Verfahren werden elektrisch leitende Metallbänder oder an Ketten befestig¬ te Metallplatten, die in vielen Fällen auch als seitliche Begrenzung des Strömungskanals dienen, in der Regel im "Kreuz¬ strom" senkrecht zur St rö ungsri chtung bewegt. Die Reinigung dieser beweglichen Abscheideelektroden erfolgt meistens mit Hilfe von rotierenden Bürsten. Vergleiche beispielsweise US 3,650,092; US 3,701,236; US 3,912,467; US 4,321,066; ferner H. Asano, M. Ootsuka, T. Yano, "Recent Results of Applications of the Moving Electrode E lect rostat i c Precipitator for Coal Fired Utility Boilers", Dust Control System Div. Hitachi Plant Engineering + Construction Co., Ltd. 1-13-2, Kita-Ootika, Toshima-ku, Tokyo, Japan 170. Andere Vorrichtungen verwenden quer zur St römungs ri chtung liegende durchbrochende Bänder als Abscheideelektrode. Es ist auch schon vorgeschlagen worden, feststehende, unter verschiedenen Potentialen stehende Gitter zur Staubabscheidung zu verwenden (vgl. US-A-3,740,927) . Mehr- fach-Abschei der in Form parallel gestellter Gitter und Loch¬ bleche abwechselnder Polarität, welche vom Gasstrom senkrecht durchsetzt werden, sind in zahlreichen Schriften bekannt (vgl. u.a. James M. Vincent, "The grid-type electrostatic preci ita¬ tor", Journal of the air pollution control association, March 1972, p. 200-201).
'D i e . bestehenden elektrostatis hen Vorrichtungen zur Entstaubung sind bezüglich Bauvolumen immer noch zu aufwendig. Sie genügen oft nicht den Anforderungen an den Abscheidegrad. Eine Ver- vollkommung ist daher dringendes Bedürfnis.
DARSTELLUNG DER ERFINDUNG Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zur kontinuierlichen elektrostatischen Abscheidung von in einem Gasstrom suspendierten Partikeln anzugeben, die eine höchstmögliche Ausnutzung der aktiven Teile, insbesondere der Abscheideelektrode gestattet, einen hohen Abscheidegrad erzielt, raumsparend ist und möglichst keine Probleme aufwirft, die mit der Verschmutzung der aktiven Teile und ihrer Reinigung verknüpft sind. Die Vorrichtung soll in ihrem Aufbau einfach und kostengünstig sein und sich durch geringen Energieverbrauch und niedrige Wartungsanforderungen auszeichnen. Sie soll ins¬ besondere zur Abscheidung feiner und feinster Staubpartikel geeignet und unabhängig vom Trägergas sein.
Diese Aufgabe wird dadurch gelöst, dass im eingangs erwähnten elektrostatischen Filter in St römungs ri chtung gesehen nach der Abscheideelektrode, im Zwischenraum zwischen der Ebene ihrer Zuführungsseite und der Ebene ihrer Rückführungsseite und/oder im Raum nach der Ebene ihrer Rückführungsseite minde¬ stens eine auf gleichnamigen Potential wie die Sprühelekt rode befindliche Steuere Lekt rode in Form von in einer zur Abscheide¬ elektrode parallelen Ebene liegenden Stäben, oder in Form eines Rasters oder Gitters angeordnet ist.
WEGE ZUR AUSFÜHRUNG DER ERFINDUNG Die Erfindung wird anhand der nachfolgenden, durch Figuren näher erläuterten Ausführungsbeispiele beschrieben.
Dabei zeigt :
Fig. 1 schematisch den prinzipiellen Aufbau der Grundausfüh¬ rung eines E Lektrofi Iters mit nur einer Reihe von Steuere Lekt roden im Zwischenraum zwischen zwei Ab¬ scheideelektroden,
Fig. 2 schematisch den prinzipiellen Aufbau einer Ausführung eines ELektrofilters mit nur einer Reihe von Steuer¬ elektroden im Raum nach der zweiten Abscheideelektrode,
Fig. 3 schematisch den prinzipiellen Aufbau einer Ausführung eines ELektrofilters mit einer Reihe von Steuerelektro¬ den im Zwischenraum zwischen zwei Abseheidee Lekt roden und einer Reihe von SteuereLektroden im Raum nach der zweiten Absehe dee Lekt rode,
Fig. 4 schematisch den Aufbau einer Ausführung eines ELektro¬ filters mit mehreren Sprühe Lekt roden, mehreren Reihen von SteuereLektroden und umlaufender, im Zickzack geführter, mehrfach wirkender bandförmiger Abscheide- e Lektrode.
Fig. 5 schematisch den Aufbau einer Ausführung eines ELektro¬ filters mit mehreren Sprühelektroden, mehreren Reihen von Steuerelektroden und mehreren umlaufenden, parallel geführten bandförmigen Abscheideelektroden,
Fig. 6 den prinzipiellen Aufbau (Längsschnitt) einer Ausführung eines ELektrofilters mit umlaufender Abscheideelektrode und nur einer Reihe von Steuerelektroden,
Fig. 7 den prinzipiellen Aufbau (Längsschnitt)- einer Ausfüh¬ rungsform eines ELektrofilters mit umlaufender Abscheide¬ elektrode und drei Reihen von Steuerelektroden.
In Fig. 1 ist schematisch der prinzipielle Aufbau der Grundaus¬ führung eines ELektrofilters mit nur einer Reihe von Steuer¬ elektroden im Zwischenraum zwischen zwei Abscheideelektroden dargestellt. 1 ist der mit Partikeln beladene Gasstrom, der die quer zur Strömungsrichtung in parallelen Ebenen angeordneten .Elektroden senkrecht durchsetzt. 3 ist eine meist negativ aufgeladene (Vorzeichen-)Sprühelektrode, deren den Koronaeffekt ausnutzende Spitzen 4 als Ionenquellen dienen. 5 sind die grundsätzlich als gelochte Bleche, Netze oder Gitter ausgeführ¬ ten, normalerweise auf Potential Null (Vorzeichen 0) gehaltenen Abscheideelektroden. Im vorliegenden Fall ist mechanisch eine einzige, umlaufende endlose, als durchbrochenes Band gestaltete Abscheideelektrode vorhanden. 6 ist die als Rundstäbe ausge¬ bildete Steuerelektrode, die sich auf gleichnamigem Potential wie die Sprühelektrode 3 befindet. Im vorliegenden Fall ist sie negativ aufgeladen (Vorzeichen -). Diese Elektrodenanord¬ nung bedingt ein in St römungsri chtung liegendes beschleunigendes elektrisches Feld 7 zwischen Sprühelektrode 3 und äusserer Zuführungsseite (mit Linksgerichtetem Pfeil angedeutet) der Abscheideelektrode 5. Zwischen der Steuere Lekt rode 6 und der inneren Zuführungsseite der Abschei dee Lekt rode 5 herrscht das gegen die Strömungsri chtung gerichtete beschleunigende elektrische Feld 8. Das beschleunigende elektrische Feld zwi¬ schen der Steuerelektrode 6 und der inneren Rückführungsseite (mit rechtsgerichtetem Pfeil angedeutet) der Abscheideelektrode 5 Liegt wieder in Strömungsri chtung. Durch diese Gesamtanord- nung der Elektroden wird eine mehrfache Abscheidung erzielt und somit der Abscheidegrad merklich erhöht. Es wird den ge¬ ladenen Partikeln, im vorliegenden Fall mit negativer Ladung behaftet (Vorzeichen -) mehrfach Gelegenheit gegeben, sich auf der einen und/oder anderen Seite der Abscheideelektrode 5 abzulagern. Dies ist durch die Trajektorien 10 der geladenen Partikel dargestellt. Demnach wird beispielsweise ein PartikeL durch das elektrische Feld 8 auf die innere Zuführungsseite der Abschei dee Lektrode 5 gegen die Strömungsr chtung zurückge- stossen .
Fig. 2 stellt schematisch den prinzipiellen Aufbau einer Aus¬ führung eines ELektrofilters mit nur einer Reihe von Steuer¬ elektroden im Raum nach der zweiten Abscheidelektrode dar. 1 ist der Gasstro.m, 3 die mit Spitzen 4 versehene Sprühelektro¬ de, 5 die als umlaufendes durchbrochenes Band ausgebildete Abschei dee Lekt rode und 6 die Steuerelektrode in Form paralleler Stäbe. Die Fe Ldverh-ä Ltm" sse im Raum zwischen der Sprühelektrode 4 und der äusseren Zuführungsseite der Abschei dee Lekt rode 5 sind die gleichen wie in Fig. 1 (besc leunigendes elektriches Feld 7). Zwischen der Züführungssei te und der Rückfü rungssei te der Abscheidelektrode herrscht das elektr sche Feld NuLL (Vor¬ zeichen 0). Im Raum zwischen der aussen L i egenden Steuerelektro¬ de 6 (negatives Potential: Vorzeichen -) und der äusseren Rückführungsseite der Abscheide Lektrode 5 (Potential Null: Vorzeichen 0) wird das gegen die Strömungsri chtung gerichtete besc leunigende elektrische Feld 15 aufgespannt. Die Trajektorien 10 geben die Wanderung der geladenen Partikel (Vorzeichen -) auf die Abscheide Lektrode 5 zu wieder. Es wird beispielsweise ein PartikeL unter dem Einfluss des elektrischen Feldes 15 umgelenkt und gegen die Strömungsrichtung auf die äussere Rückführungsseite der Abscheidee lektrode 5 zurückgestossen .
In Fig. 3 ist schematisch der prinzipielle Aufbau einer Ausfüh¬ rung eines ELektrofilters mit einer Reihe von Steuerelektroden im Zwischenraum zwischen zwei Abscheideelektroden und einer Reihe von Steuerelektroden im Raum nach der zweiten Abscheide¬ elektrode dargestellt. Im wesentlichen handelt es sich um eine Superposition der Elektrodenanordnungen der Figuren 1 und 2. Die beschleunigenden elektrischen Felder 7 und 9 sind in Strömungsrichtung, die Felder 8 und 15 gegen die Strömungs¬ richtung gerichtet. Dementsprechend sind 4 verschiedene Möglich¬ keiten der Wanderung der hier negativ geladenen Partikel (Vor¬ zeichen -) auf die Abscheideelektroden 5 hin vorhanden. Alle Bezugszeichen entsprechen denjenigen der Figuren 1 und 2.
In Fig. 4 ist schematisch der Aufbau einer Ausführung eines ELektrofilters mit mehreren Sprühelektroden, mehreren Reihen von Steuerelektroden und umlaufender, im Zickzack geführter, mehrfach wirkender bandörmiger Abscheidelektrode dargestellt. Der Gasstrom 1 durchsetzt mehrere, in parallelen Ebenen ange¬ ordnete Elektrodengruppen senkrecht. Die Abschei deelektrode 5 ist als endloses durchbrochenes Band ausgeführt, das-sich mehr .als zwischen eine Sprühelektrode 3 mit Spitzen 4 und eine Reihe von Steuerelektroden 6 resp-. zwischen zwei Reihen von Steuerelektroden 6 schiebt. Das Band wird über als Umlenk¬ rollen wirkende Trommeln 11 geführt. Sämtliche Sprühelektroden 4 und sämtliche Steuerelektroden 6 befinden sich auf negativem Potential (Vorzeichen -), während die mehrfach wirkende Abschei¬ deelektrode 5 auf dem Potential Null, an Erde liegt (Vorzeichen 0). Die Sprühelektroden 4 Liegen am negativen Pol einer Gleich- Hochspannungsque L le 16 (Spannung U1 ) während die Steuerelektro¬ den 6 am negativen Pol einer zweiten Gleich-Hochspannungs- quelle 17 (Spannung U?) Liegen. Die positiven Pole beider Hochspannungsque l Len sind mit der Abscheideelektrode 5 verbun¬ den und gemeinsam geerdet (Vorzeichen 0). Der Uebersi cht L i ch- keit halber sind die Potent i a Lverbi ndungen zwischen den Hoch¬ spannungsque L len und den Elektroden nur im oberen Teil der Figur eingezeichnet. Durch eine derartige Kaskadenschaltung mehrerer in St römungsri chtung hintereinander liegenden Elek¬ trodengruppen wird der Abscheidegrad insbesondere bei Feinst- staub verbessert . F g. 5 stellt schematisch den Aufbau einer Ausführung eines ELektrofilters mit mehreren Sprühelektroden, mehreren Reihen von Steuerelektroden und mehreren umlaufenden, parallel gefühi— ten bandförmigen Abscheidelektroden dar. Der Aufbau ist ähnlich demjenigen der Fig. 4, mit dem Unterschied, dass hier 3 separa¬ te, i wesentlichen auf gleiche Art geführte durchbrochene Bänder als Abscheideelektroden 5 verwendet werden. Die Anordnung der Sprühelektroden 3 und der Steuerelektroden 6 ist derjenigen der Fig. 4 ähnLich. Die Potentialverhältnisse sind grundsätzlich die gleichen. Auf eine Darstellung der SpannungsankoppLung ist verzichtet worden. Im übrigen sind die Bezugszeichen die gleichen wie in Fig. 4.
In Fig. 6 ist der prinzipielle Aufbau (Längsschritt) einer Ausführung eines ELektrofilters mit umlaufender Abscheide- el'ektrode un'd nur einer Reihe von Steuerelektroden dargestellt. 1 ist der mit Partikeln geladene, senkrecht nach unten in einem Kanal 2 geführte Gasstrom. Er durchsetzt die Ebene der Sprühelektrode 3 senkrecht. Dessen Spitzen 4 sind auf einem (beispielsweise quadratischen, rechteckigen oder hexagonalen) Raster angeordnet und weisen in Strömungsri chtung . 5 ist die umlaufende endlose Abscheideelektrode (beispielsweise als durchbrochenes Band ausgeführt). Die auf ihr abgelagerten Staubpartikel sind als Punkte angedeutet. ALs Umlenkrollen für die Abscheideelektrode 5 sind ausserhalb der Kanalwand 2 die in seitlichen Kammern untergebrachten Trommeln 11 vorhanden. Die Bewegungsrichtung ist durch Pfeile angedeutet. Der auf der Abscheidee Lekt rode 5 niedergeschlagene Staub wird durch beidseitig wirkende Abstreifer (Schaber) 12 und durch ebenfalls beidseitig wirkende rotierende Re nigungsbüchsen 13 entfernt. Mit 14 ist de r Saubaustrag angedeutet, der jedoch in der Regel in der Praxis senkrecht zur Zeichnungsebene erfolgt. Zwischen der Zuführungss-e-fte und der Rückführungsseite der Abscheide¬ elektrode 5 befindet sich die in Form von parallelen Stäben ausgeführte Steuerelektrode. 6. Zwischen den im vorliegenden Fall negativ gel-adenen Spitzen 4, welche als Ionenquelle (Ko- ronaeffekt) dienen, und der äusseren Zuführungsseite der sich auf Potential Null befindlichen Abscheideelektrode 5 wird das beschleunigende elektrische Feld 7 aufgebaut. Es ist in Strömungsrichtung gerichtet. Ein gegen die Strömungsrichtung gerichtetes beschleunigendes elektrisches Feld 8 wird zwischen der negati geladenen Steuerelektrode 6 und der inneren Zufüh¬ rungsseite der Abscheideelektrode 5 aufgespannt. Zwischen der Steuerelektrode 6 und der inneren Rückführungsseite der Abschei deelektrode 5 besteht das in Strömungsrichtung gerich¬ tete beschleunigende elektrische Feld 9. Die Trajektorien 10 deuten die Wanderungswege der geladenen PartikeL an. Die aktiven Bauteile 2, 3, 4, 5, 6, 11, 12 und 13 sind in der Regel aus nichtrostendem bzw. korrosionsbeständigem Cr- oder Cr/Ni -Stahl gefertigt.
Fig. 7 zeigt den prinzipiellen Aufbau (Längsschnitt) einer Ausführung eines ELektrofilters mit umlaufender Absehei dee Lek- trode und drei Reihen von Steuerelektroden. Die grundsätzliche Konzeption ist ähnlich derjenigen von Fig. 6, wobei sich die Bezugszeichen genau entsprechen. Im Zwischenraum zwischen der innneren Zuführungsseite und der inneren Rückführungsseite der Abscheideelektrode 5 sind jedoch zwei Reihen von Steuer¬ elektroden 6 vorhanden. Ausserdem existiert noch eine weitere Reihe von Steuerelektroden 6 im Raum ausserhalb der äusseren Rückführungsseite der Abscheideelektrode 5.
AUSFÜHRUNGSBEISPIEL:
Si ehe Figur 7 !
Zur Entstaubung eines Gasstromes wurde in einem stark erweiter¬ ten Kanal ein elektrostatisches Filter eingebaut. Der mit Partikeln beladene Gasstrom 1 wurde senkrecht von oben nach unten geführt. Der bereits erweiterte Kanal 2 bestand aus einem Blech aus korrosionsbeständigem 18 Cr/8 Ni-Stahl und
2 hatte einen lichten Querschnitt von 2,55 m . Die ebenfalls aus Cr/Ni -Stahl gefertigte Sprühelektrode 3 wies auf einem quadratischen Raster angeordnete Spitzen 4 von 20 mm Länge (in Strömungsrichtung) und 0,8 mm Abrundungsradius auf. Die Spitzen 4 bestanden ebenfalls aus korrosionsbeständigem Cr/Ni- Stahl und hatten einen gegenseitigen Abstand in beiden Haupt- π'chtungen von je 100 mm. Die umlaufende endlose Abscheide¬ elektrode 5 war in Form von 3, senkrecht zur Zeichnungsebene betrachtet, nebeneinander (hintereinander) angeordneten, pa¬ rallel und synchron geführten durchbrochenen Stahlbändern ausgeführt. Die Bänder hatten eine Dicke von 0,5 mm und bestan¬ den aus einem korrosionsbeständigen mit speziellen Zusätzen legierten Cr/Ni-Stahl des Typs 18/8, jedoch mit hoher Steck¬ grenze, im kaltgewalzten, annähernd federharten Zustand. Jedes Band wies in der Bewegungsri chtung angeordnete Schlitze in Form von an den Schmalseiten abgerundeten Langlöchern von 5 mm Breite und 56 mm Länge auf. Der Mittenabstand (Teilung) der Langlöcher in Längsrichtung (Bewegungsrichtung) betrug 119 mm, derjenige in Querπ'chtung 10 mm. Benachbarte Langloch¬ reihen waren um je eine halbe Teilung in Längsrichtung gegen¬ einander versetzt. Die Bänder liefen über Trommeln 11 aus Cr/Ni-Stahl, welche einen Durchmesser von 250 mm hatten. Eine der Trommeln 11 war durch einen Elektromotor über ein Getriebe -angetrieben. Die Fördergeschwindigkeit war zwischen ca. 1,5 mm/s und 85 mm/s einstellbar, was 1 Umlauf/h bzw. 60 Umläufe/h entsprach. Der Abstand der Bandoberfläche von den Spitzen 4 betrug 70 mm. Die Steuerelektroden 6 waren Stäbe aus Cr/Ni-Stahl mit 10 mm Durchmesser und 100 mm horizontalem Mittenabstand (Teilung) voneinander. Der vertikale Abstand der Mitten der Stäbe von der benachbarten Bandoberfläche betrug je 75 mm, der vertikale Abstand der Mitten der Stäbe unter sich 100 mm. Die Abstreifer (Schaber) 12 sowie die rotierenden Reinigungs¬ bürsten 13 bestanden ebenfalls aus korrosionsbeständigem Cr/Ni- Stahl.
Die Anlage wurde mit einem mit Quarzstaub beladenen Gasstrom 1 betrieben. An die Sprühelektrode 3 wurde der negative Pol einer GLei ch-Hochspannungsquel le gelegt. Der positive Pol wurde an die Abscheideelektrode 5 gelegt und gleichzeitig geerdet (Potential 0). An die Steuerelektroden 6 wurde der negative Pol einer weiteren Glei ch-Hochspannungsque l le gelegt, während deren positiver Pol an Erde lag.
Die Betriebsdaten stellten sich wie folgt:
Volumenstrom des Gases:
Einseitige Absehei def Lache (virtuell) Länge =
Brei te = Fläche =
Umlaufgeschwindigkeit der Abscheideelektrode:
Verhältnis des Langlochquerschnitts zur gesamten virtuellen Abscheidefläche:
Totale effektive Abscheidefläche (4 Seiten) :
Mittlere Strömungsgeschwindigkeit im freien Raum (virtuell)
Effektive Strömungsgeschwindigkeit im
Lang lochquerschni tt :
Druckverlust bei virtueller Geschwindigkeit von 0,65 m/s:
Elektrisches Potential der Sprühelektrode:
Elektrisches Potential der Abscheideelektrode: ittlere elektrische Feldstärke im Raum
Sprühe lekt rode/Abschei dee lekt rode
Elektrisches Potential der Steuerelektrode
Mittlere elektrische Feldstärke im Raum
Steuerelektrode/Abscheideelektrode:
Staubgehalt des Reingases:
Pa rt i ke Igrösse 0,5
Staubgehalt des Reingases:
Abscheidegrad für Partikel von 0,5 um:
Abscheidegrad für Partikel von 4 um:
Abscheidegrad für Partikel von > 5 um:
Totaler Abscheidegrad für das gesamte Gemenge:
Figure imgf000013_0001
Die Erfindung ist nicht auf das Ausführungsbeispiel beschränkt Die Abscheideelektrode 5 ist als durchbrochenes Förderband oder Wandergitter ausgebildet, die Steuerelektrode 6 in Form von Stäben, Rastern oder Gittern. Die Mehrfach-Abscheideelek- trode 5 ist als in Strömungsrichtung hintereinander liegende gleich- oder gegenläufig bewegte Förderbänder ausgebildet. Das Potential der Steuerelektroden 6 ist im allgemeinen dem¬ jenigen der Sprühelektrode angepasst. Vorzugsweise wird sein absoluter Wert höher eingestellt als derjenige der Sprühelek¬ trode 3. Im übrigen wird auf die Ausfü rungsvar anten der Figuren 1 bis 6 ver iesen.

Claims

PATENTANSPRÜCHE
1. Elektrostatisches Filter für die kontinuierliche Abscheidung von in einem Gasstrom (1) suspendierten festen oder flüssi¬ gen Partikeln, wobei in einem den Gasstrom führenden Kanal (2) rechteckför igen Querschnitts quer zur St römungsri chtung mindestens eine als Ionenquelle wirkende, den Koronaeffekt ausnutzende Sprühelektrode (3) in Form mehrerer in Strömungs¬ ri chtung gestellter Spitzen (4) und mindestens eine quer gestellte, als endloses durchbrochenes Förderband oder Wandergitter ausgebildete, bewegliche ebene Abscheideelektrode (5) angeordnet ist, dergestalt, dass die Sprühelektrode und die Abscheideelektrode vom mit Partikeln beladenen Gasstrom (1) im wesentlichen senkrecht durchsetzt werden und die die geladenen Partikel beschleunigenden elektrischen Felder im wesentlichen in Strömungsrichtung liegen, dadurch gekennzeichnet, dass, in Strömungsrichtung gesehen nach der Abscheideelektrode (5), im Zwischenraum zwischen der Ebene ihrer Zuführungsseite und der Ebene ihrer Rückführungs¬ seite und/oder im Raum nach der Ebene ihrer Rückführungs¬ seite mindestens eine auf gleichnamigem Potential wie die Sprühelektrode (3) befindliche Steuerelektrode (6) in Form von in einer zur Abscheideelektrode (5) parallelen Ebene liegenden Stäben, oder in Form eines Kasters oder Gitters angeordnet ist.
2. Vorrichtung nach Anspruch 1, dadurch gekennze chnet, dass im Zwischenraum zwischen der Ebene der Zuführungsseite und der Rückführungsseite der Abscheideelektrode (5) zwei parallele Steuerelektroden (6) angeordnet sind.
3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass im Zwischenraum zwischen der Ebene der Zuführungsseite und der Rückführungsseite der Abscheideelektrode (5) zwei parallele Steuerelektroden (6) und im Raum nach der Ebene der Rückführungsseite der Abscheideelektrode (5) eine weitere Steuerelektrode (6) angeordnet ist.
4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Abscheidelektrode (5) als endloses Förderband den Gas¬ strom (1) mehrfach in Zuführungs- und Rückführungs ri chtung quer durchsetzend im Zickzack angeordnet ist.
5. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Abscheideelektrode (5) in Form mehrerer, in Strömungs¬ r chtung intereinander geschalteter gleich-oder gegen¬ läufiger Förderbänder ausgebildet ist.
6. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass, in Strömungsrichtung gesehen mehrere parallel angeordnete, durch mindestens eine Abscheideelektrode" (5) voneinander getrennte Sprühelektroden (3) vorgesehen sind.
7. Vorrichtung .nach Anspruch 1, dadurch gekennzeichnet, dass die Steuerelektroden (6) unter einem Potential stehen, dessen absoluter Wert höher ist als das Potential der Sprüh- e lekt rode (3) .
PCT/CH1988/000216 1987-11-27 1988-11-17 Electrostatic filter for continuous separation of solid or liquid particles suspended in a gas stream WO1989004724A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE8888909507T DE3870231D1 (de) 1987-11-27 1988-11-17 Elektrostatisches filter fuer die kontinuierliche abscheidung von in einem gasstrom suspendierten festen oder fluessigen partikeln.
AT88909507T ATE74801T1 (de) 1987-11-27 1988-11-17 Elektrostatisches filter fuer die kontinuierliche abscheidung von in einem gasstrom suspendierten festen oder fluessigen partikeln.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH4637/87A CH673411A5 (de) 1987-11-27 1987-11-27
CH4637/87-0 1987-11-27

Publications (1)

Publication Number Publication Date
WO1989004724A1 true WO1989004724A1 (en) 1989-06-01

Family

ID=4279851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1988/000216 WO1989004724A1 (en) 1987-11-27 1988-11-17 Electrostatic filter for continuous separation of solid or liquid particles suspended in a gas stream

Country Status (6)

Country Link
EP (1) EP0345309B1 (de)
AT (1) ATE74801T1 (de)
AU (1) AU2616288A (de)
CH (1) CH673411A5 (de)
DE (1) DE3870231D1 (de)
WO (1) WO1989004724A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990007982A1 (en) * 1989-01-20 1990-07-26 Fläkt Ab Arrangement for cleaning ventilation air polluted with paint particles
AU624527B2 (en) * 1989-08-31 1992-06-11 Metallgesellschaft Aktiengesellschaft Process and apparatus for the electrostatic purification of dust- and pollutant-containing exhaust gases in multiple- field precipitators
AU776136B2 (en) * 2000-05-19 2004-08-26 Hitachi, Ltd. Moving electrode type electric dust collecting apparatus
WO2008025954A1 (en) * 2006-08-26 2008-03-06 The Secretary Of State For Defence An electrostatic precipitator
WO2009012892A3 (de) * 2007-07-25 2009-04-09 Eisenmann Anlagenbau Gmbh & Co Vorrichtung zum abscheiden von lack-overspray

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104826737A (zh) * 2015-05-26 2015-08-12 济宁德山峻明机械设备有限公司 一种回流式静电除尘装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1457080A1 (de) * 1962-08-29 1969-03-13 K E Merckle Kg Vorrichtung zum Reinigen von Gasen,insbesondere Abgasen von Industrieanlagen
US3650092A (en) * 1970-08-17 1972-03-21 Gourdine Systems Inc Electrogasdynamic precipitator utilizing retarding fields
US3740927A (en) * 1969-10-24 1973-06-26 American Standard Inc Electrostatic precipitator
DE3418112A1 (de) * 1984-05-16 1985-11-21 Brown, Boveri & Cie Ag, 6800 Mannheim Entstaubungsvorrichtung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1457080A1 (de) * 1962-08-29 1969-03-13 K E Merckle Kg Vorrichtung zum Reinigen von Gasen,insbesondere Abgasen von Industrieanlagen
US3740927A (en) * 1969-10-24 1973-06-26 American Standard Inc Electrostatic precipitator
US3650092A (en) * 1970-08-17 1972-03-21 Gourdine Systems Inc Electrogasdynamic precipitator utilizing retarding fields
DE3418112A1 (de) * 1984-05-16 1985-11-21 Brown, Boveri & Cie Ag, 6800 Mannheim Entstaubungsvorrichtung

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990007982A1 (en) * 1989-01-20 1990-07-26 Fläkt Ab Arrangement for cleaning ventilation air polluted with paint particles
AU624527B2 (en) * 1989-08-31 1992-06-11 Metallgesellschaft Aktiengesellschaft Process and apparatus for the electrostatic purification of dust- and pollutant-containing exhaust gases in multiple- field precipitators
AU776136B2 (en) * 2000-05-19 2004-08-26 Hitachi, Ltd. Moving electrode type electric dust collecting apparatus
WO2008025954A1 (en) * 2006-08-26 2008-03-06 The Secretary Of State For Defence An electrostatic precipitator
GB2453505A (en) * 2006-08-26 2009-04-08 Secr Defence An electrostatic precipitator
WO2009012892A3 (de) * 2007-07-25 2009-04-09 Eisenmann Anlagenbau Gmbh & Co Vorrichtung zum abscheiden von lack-overspray
EP2324928A1 (de) * 2007-07-25 2011-05-25 Eisenmann AG Vorrichtung zum Abscheiden von Lack-Overspray

Also Published As

Publication number Publication date
EP0345309B1 (de) 1992-04-15
EP0345309A1 (de) 1989-12-13
CH673411A5 (de) 1990-03-15
DE3870231D1 (de) 1992-05-21
AU2616288A (en) 1989-06-14
ATE74801T1 (de) 1992-05-15

Similar Documents

Publication Publication Date Title
DE69508810T2 (de) Elektrostatischer Abscheider
DE3529057C2 (de)
DE3122515C2 (de) Elektrostatische Filteranordnung
DE2810735C2 (de) Elektrische Gasreinigungsvorrichtung
EP2744597B1 (de) Elektrostatischer feinstaubabscheider
DE102007036553A1 (de) Vorrichtung zum Abscheiden von Lack-Overspray
DE69028818T2 (de) System zum Auffangen von Staub im Tunnel
EP1976639B1 (de) Vorrichtung zur luftreinigung, insbesondere für lüftungs- und klimaanlagen
CH673237A5 (de)
EP0345309B1 (de) Elektrostatisches filter für die kontinuierliche abscheidung von in einem gasstrom suspendierten festen oder flüssigen partikeln
DE102011110805B4 (de) Elektronischer Feinstaubabscheider
EP0398236B1 (de) Sprühelektrode
EP0014273A1 (de) Mehrfeldriger Elektrofilter
DE69310785T2 (de) Elektroabscheider
DE3152216T1 (de) Electric filter
EP1545785B1 (de) Elektrostatisch arbeitender filter und verfahren zum abscheiden von partikeln aus einem gas
DE908370C (de) Elektrischer Gasreiniger
DE2460962C3 (de) Elektrostatischer Staubabscheider
DE2216436A1 (de) Staubfiltervorrichtung
DE3151936A1 (de) Plattenelektroden-anordnung fuer einen elektrostatischen abscheider
DE2235220A1 (de) Elektrostatischer abscheider
DE2628001C2 (de) Vorrichtung zum elektrostatischen Reinigen einer nicht leitfähigen Flüssigkeit
DE2207697C2 (de) Niederschlagselektrode für Plattenelektroabscheider
DE2254684A1 (de) Apparat zur elektrostatischen ausscheidung von partikeln aus einem gas
DE3740068A1 (de) Elektrofilter fuer die abscheidung von in einem gasstrom suspendierten festen oder fluessigen partikeln

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR CH DE DK FI HU JP KP KR LK LU MC MG MW NL NO RO SD SE SU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BJ CF CG CH CM DE FR GA GB IT LU ML MR NL SE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1988909507

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1988909507

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1988909507

Country of ref document: EP