WO1988008504A1 - Combustion control method for fluidized bed incinerator - Google Patents

Combustion control method for fluidized bed incinerator Download PDF

Info

Publication number
WO1988008504A1
WO1988008504A1 PCT/JP1988/000437 JP8800437W WO8808504A1 WO 1988008504 A1 WO1988008504 A1 WO 1988008504A1 JP 8800437 W JP8800437 W JP 8800437W WO 8808504 A1 WO8808504 A1 WO 8808504A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
fluidized bed
combustion
furnace
air
Prior art date
Application number
PCT/JP1988/000437
Other languages
English (en)
French (fr)
Inventor
Takeyuki Naito
Yosiki Kuroda
Hirosi Yosida
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corporation filed Critical Ebara Corporation
Priority to DE3852174T priority Critical patent/DE3852174T2/de
Priority to BR888807488A priority patent/BR8807488A/pt
Priority to SU884742193A priority patent/RU2070688C1/ru
Priority to EP88903951A priority patent/EP0358760B1/en
Priority to JP63503613A priority patent/JPH0689883B1/ja
Priority to CA000581671A priority patent/CA1307977C/en
Priority to CN88107553.1A priority patent/CN1017745B/zh
Publication of WO1988008504A1 publication Critical patent/WO1988008504A1/ja
Priority to NO885784A priority patent/NO169564C/no
Priority to KR88071749A priority patent/KR950013976B1/ko
Priority to FI894120A priority patent/FI93673C/fi
Priority to DK541989A priority patent/DK172333B1/da

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/28Control devices specially adapted for fluidised bed, combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • F23N5/006Systems for controlling combustion using detectors sensitive to combustion gas properties the detector being sensitive to oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/10Arrangement of sensing devices
    • F23G2207/101Arrangement of sensing devices for temperature
    • F23G2207/1015Heat pattern monitoring of flames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/10Arrangement of sensing devices
    • F23G2207/102Arrangement of sensing devices for pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/10Arrangement of sensing devices
    • F23G2207/103Arrangement of sensing devices for oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/10Arrangement of sensing devices
    • F23G2207/112Arrangement of sensing devices for waste supply flowrate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/30Oxidant supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/20Camera viewing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/06Air or combustion gas valves or dampers at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/18Controlling fluidized bed burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements

Definitions

  • the present invention relates to a fluidized bed incinerator that incinerates incinerated materials while flowing a fluidized medium such as sand from the lower part of the hearth by flowing the air thereinto.
  • the present invention relates to a method for controlling combustion in a fluidized bed incinerator, which is suitable for preventing unburned gas emissions without changing the amount of combustion air and exhaust gas by controlling the combustion of fuel. is there.
  • the fluidized bed incinerator includes a fluidized bed boiler for heat recovery.
  • Fluidized-bed furnaces have been used for incineration of municipal trash, etc.-When municipal trash is incinerated with this fluidized-bed incinerator, the trash is continuously charged into the fluidized-bed furnace. Due to their nature, mi are often entangled with each other and are often injected in large quantities instantaneously in large chunks. Fluidized bed furnaces have the advantage of burning very fast as incinerators and have the advantage of burning very well, but this can be disadvantageous in some cases. In other words, if the incinerated material is put into the fluidized bed, the fast one will burn in just a few seconds because of its good combustion performance.
  • fluidized-bed furnaces have good combustion performance, and can burn even if the air used for flowing fluid into the fluid medium is at or below the theoretical air ratio, as long as the cylinder speed at which the fluidized medium fluidizes is reached.
  • the air ratio is increased to prevent the generation of unburned gas such as carbon monoxide.
  • surplus air may be blown in advance so that the oxygen concentration does not decrease even when the supply amount of incinerated material is large.
  • the feeders that supply incinerated materials to the furnace have been improved to improve the quantitativeness of the feeders that supply them to the furnace.
  • a meter for measuring the amount of incinerated material input As disclosed in Japanese Patent Application No. Sho 59-222,198 (Japanese Unexamined Patent Publication No. Sho 61-106,122), a meter for measuring the amount of incinerated material input. When a large amount of incinerated material is provided, the number of rotations of the feeder is reduced to reduce the amount of incineration.
  • the method of controlling the secondary air to control the oxygen concentration in the exhaust gas at a certain value is based on the fact that the fluidized-bed furnace has an extremely fast burning speed, and the supply of incinerated material varies. Tsuki is Exhaust gas variation appears as it is, causing the same problems as above.
  • the large amount of combustion air means that the size of the combustion fan, exhaust gas induction fan, etc. must be increased. However, there are problems such as the increase in the driving power.
  • large-capacity incinerators such as exhaust gas treatment equipment such as exhaust gas ducts, gas coolers, and electric precipitators, are required when the amount of exhaust gas is large. There was also the problem of larger size and higher overall construction costs.
  • the amount of combustion is the amount of heat generated! : Kcal Z kg] X Amount of burning target (amount of incineration) [kg Z time]
  • the present invention has been made in order to solve the above-mentioned conventional problems, and does not use an expensive supply feeder having a good quantitative property, and has different properties and shapes such as different calorific values and flammability. Even if combustion products with different shapes and bulks, that is, coal, municipal waste, industrial waste, or a mixture of these are input to the fluidized-bed furnace as the combustion target, the input combustion target fluctuates.
  • An object of the present invention is to provide a combustion control method in a fluidized bed incinerator that does not increase the amount of combustion air and exhaust gas and can prevent the emission of unburned gas.
  • a combustion control method in a fluidized bed incinerator is characterized in that a fluid medium is fluidized by air sent from a lower part of a fluidized bed, and incineration material put into the furnace is burned.
  • a fluidized-bed furnace the amount of incineration burning in the fluidized-bed furnace is monitored, and if the combustion exceeds a predetermined amount, the amount of air sent from the lower part of the fluidized bed is reduced, reducing the amount of incineration in the furnace At the same time, the amount of air blown into the upper space of the fluidized bed was increased to control the amount of incineration burned at a constant level.
  • the amount of incineration material to be charged is a predetermined amount.
  • the amount of air sent from the air damper at the drop point of the incinerated material is reduced by a predetermined amount according to the amount of incinerated material, and the amount of air sent from the other chamber is reduced.
  • the inflow of fluid into the space above the fluidized bed to slow down the flow of the fluid medium at the point where the incinerated material falls, and increase the fluidity of the fluid medium around it to incinerate It is characterized in that the amount of material burned is controlled.
  • Figures 1 (A), (B), and (C) show the results of measurements of changes in the brightness of the furnace, the oxygen concentration in the exhaust gas, and the pressure in the furnace, respectively, in the fluidized bed incinerator.
  • Fig. 3 shows a schematic configuration of a fluidized bed incinerator that implements the combustion control method related to Kishiaki, and Fig. 3 shows the time variation of the amount of incinerated material in a fluidized bed incinerator using the conventional combustion control method.
  • Fig. 4 shows the variation of the combustion amount, the oxygen concentration in the exhaust gas, the exhaust gas amount, the primary air amount, the secondary air amount, and the temperature in the furnace.
  • Fig. 4 shows a fluidized bed incinerator using the combustion control method according to the present invention.
  • FIG. 5 A), (A), (A), (F) showing changes in the combustion amount, the oxygen concentration in the exhaust gas, the exhaust gas amount, the primary air amount, the secondary air amount, and the furnace temperature with respect to the time variation of the incineration material input amount in the furnace.
  • B) and (C) are the combustion control by the furnace brightness according to the present invention, respectively: the primary air amount of the & method, the furnace brightness, and the oxygen concentration in the exhaust gas.
  • Fig. 6 shows the measurement results of the oxygen concentration in the exhaust gas.
  • Fig. 6 (A) shows the case of using the conventional combustion control method. Fig.
  • FIG. 6 (B) figure showing a case of using the combustion control method of the present invention
  • Figure 7 shows the relationship between the fluidizing magnification G [U-ZU mf] and transfer B thermal coefficient h. k in a fluidized bed incinerator figure
  • FIG. 8 Is the fluidization ratio G (U Fig. 9 (A) and (B) show the relationship between ZU mf] and the pressure loss PL.
  • Figure 9 (A) and (B) show the fluctuations in the oxygen concentration in the exhaust gas when municipal refuse was incinerated with different amounts of flowing air in a fluidized bed incinerator.
  • Fig. 10 is a diagram showing the actual measurement results of Fig. 10.
  • Fig. 10 is a diagram showing the actual measurement results of Fig. 10.
  • FIG. 10 is a diagram showing a schematic configuration of another fluidized bed incinerator for implementing the combustion control method according to the present invention.
  • Figs. 11 (A), (B), ( (C) shows the results of measurement of the primary air volume, the furnace pressure, and the variation of the oxygen concentration in the exhaust gas, respectively, of the combustion control method using the furnace pressure according to the present invention
  • FIG. 12 shows the combustion control method according to the present invention.
  • FIG. 13 is a diagram showing a schematic configuration of another fluidized bed incinerator for implementing the combustion control method
  • FIG. 13 is a diagram showing a schematic configuration of another fluidized bed incinerator for implementing the combustion control method according to the present invention.
  • FIG. 16 shows the schematic configuration of the incinerator, and Fig. 16 shows the amount of exhaust gas, primary air, and secondary air with respect to the time variation of the amount of incinerated material by the conventional combustion control method in the fluidized bed incinerator with the configuration shown in Fig. 15.
  • Fig. 17 shows the fluctuations in the amount of air and the oxygen concentration in the exhaust gas, and Fig. 17 shows the amount of exhaust gas with respect to the time variation of the amount of incinerated material input with the combustion control method according to the present invention in a fluidized bed incinerator with a configuration.
  • FIG. 3 is a diagram showing variations in primary air amount, secondary air amount, and oxygen concentration in exhaust gas.
  • Fig. 1 (A), (B), and (C) show the measured results of the brightness L in the furnace, the oxygen concentration E in the exhaust gas, and the pressure P in the furnace, which represent the combustion in the fluidized bed incinerator.
  • FIG. The horizontal axis in the figure indicates time t (one division is 5 seconds).
  • the brightness L in the furnace, the oxygen concentration E in the exhaust gas, and the pressure P in the furnace change according to the variation in the amount of combustion.
  • the present invention estimates the amount of combustion based on the brightness L in the furnace, the oxygen concentration E in the exhaust gas, and the pressure P in the furnace, controls the amount of flowing air sent from the lower part of the fluidized bed, Even if the amount of incinerated material in the furnace fluctuates, rapid fluctuations in the amount of combustion are suppressed, and control is performed so that the amount of combustion remains constant.
  • FIG. 2 is a diagram showing a general structure of a fluidized bed incinerator for performing a combustion control method in a fluidized bed incinerator according to the present invention.
  • reference numeral 1 denotes a furnace, in which a fluidized bed 2 in which a fluid medium such as sand flows is formed.
  • An air chamber 6 is provided at the lower part of the fluidized bed 2 ⁇ , and the flowing air is sent into the furnace 1 through the air chamber 16 through the storage pipe 5 from the fluidizing pipe ⁇ ⁇ (not shown). In this way, the fluid medium is flowing.
  • This blower is, for example, It is a core blower and controls the air flow during operation, preferably to keep it constant.
  • Numeral 1 denotes an incineration material charging hopper for injecting incinerated material such as city trash, and a supply for supplying incinerated material into the furnace 1 is provided at a lower portion of the incineration material charging hobber 11.
  • Feeders 1 and 2 are provided.
  • 14-11 is a brightness detection sensor for detecting the brightness of the furnace 1
  • 13 is a regulator for adjusting the valve opening based on the measured value of the brightness in the furnace 1.
  • An air nozzle 8 for blowing air into the upper space of the fluidized bed 2 is provided on the wall of the furnace 1, and a control valve 7 is connected to the air nozzle 8 via an ffi pipe 16. Have been.
  • the position of this control valve 7 may be attached to either of the pipes 5 and 16, and the SE pipe 16 may not be the bypass pipe of the recording pipe 5 but the £ pipe 16 and the S pipe 5. It may be connected to another blower.
  • 9 is a free-board part and 18 is a secondary air inlet K pipe.
  • the brightness detection sensor 14-1 is connected to the secondary air inlet so that the brightness inside the furnace 1 due to the burning of incinerator A can be detected without being affected by the brightness of the fluid medium and the furnace wall. Above the furnace and at a position where the entire cross section of the furnace can be seen.
  • EG indicates exhaust gas discharged from the exhaust gas outlet
  • AS indicates ash discharged from the ash outlet.
  • the incineration material A introduced into the furnace 1 from the feed feeder 12 falls to a certain portion of the fluidized bed 2, that is, the central portion.
  • incineration A 0 may be distributed. If the amount of incinerated material A charged into furnace 1 is larger than usual, the amount of incinerated material burned (per unit time) increases, so the inside of furnace 1 becomes brighter and the brightness sensor The output of 1 4 1 1 increases.
  • the controller 13 opens the control valve 7 and a small amount of air blown from the air chamber 6 flows from the air nozzle 8 through the £ pipe 16. Blow into the upper space of floor 2.
  • the amount of air sent from the air chamber 6 is reduced, so that the flow of the fluidized medium in the fluidized bed 2 becomes longer, the amount of heat transfer from the fluidized medium to the incinerated material A is reduced, and the incinerated material A
  • the gasification rate becomes slower. That is, the burning speed becomes slow.
  • the amount of air from the air chamber 6 the amount of silicon in the fluidized bed 2 decreases, and the amount of unburned gas increases accordingly, but the amount of air blown from the air nozzle 8 increases.
  • the unburned gas is burned in the space above the fluidized bed 2 such as the free board section 9.
  • the amount of decrease in the amount of air from the air chamber 6 may be blown into the air nozzle 8 or the secondary air inlet, or into each of them, and may be blown into the air cylinder portion. You only have to blow enough air to burn the gas.
  • FIG. 3 shows the combustion amount, the oxygen concentration in the exhaust gas, the amount of exhaust gas, the amount of air for fluidization (primary air),
  • FIG. 4 is a diagram showing a fluctuation state of the secondary air amount and the furnace temperature.
  • the combustion amount, the oxygen concentration in the exhaust gas, the exhaust gas amount, the flow air (primary air amount), the secondary air amount It is a figure which shows the fluctuation state of the furnace temperature.
  • the horizontal axis represents time t.
  • the amount of primary air C supplied from the lower part of the fluidized bed 2 through the air chamber 6 is constant, and when the incinerated material A is supplied at time ti, it is immediately It is gasified and starts burning after a few seconds, the combustion amount Q increases, and the oxygen concentration E in the exhaust gas sharply decreases. 'If this oxygen concentration is low, unburned gas will be emitted, so the secondary air amount D will increase and the exhaust gas amount B will also increase due to the decrease in the oxygen concentration E in this exhaust gas. Further, the furnace temperature T also increases because the combustion amount Q increases.
  • controller 1 3 opens the control valve 7, to cormorants by blowing air into the space above the fluidized bed 2 as the primary air quantity C 2 Therefore, the primary air volume C supplied from the air chamber 6! Decrease.
  • the amount of primary air C t supplied from the air chamber 6 decreases 2 reduces the rate of increase in combustion ⁇ Q. That is, since the combustion speed is slowed down, the oxygen concentration E in the exhaust gas does not decrease sharply but decreases gradually.
  • the secondary air amount D increases in accordance with the decrease in the oxygen concentration E in the exhaust gas, the oxygen concentration E in the exhaust gas hardly fluctuates.
  • the decrease rate of the combustion amount Q decreases the increase rate of the furnace temperature T.
  • Ru increases the primary air quantity C i from Eachi catcher Nba one 6. Due to the increase of the primary air ⁇ C i, the flow of the fluid medium in the fluidized bed 2 becomes active, and the operation proceeds to the normal operation.
  • the decrease (increase) in the secondary air amount is desirably equal to the decrease (increase) in the primary air amount, but the decrease (increase amount) in the primary air amount is desirable. ) Of ⁇ 30%.
  • Fig. 5 shows the brightness L in the furnace, that is, the brightness sensor.
  • the primary air volume d ⁇ supplied from the air chamber 6 by the output of 1-1 is controlled, and the actual measurement is performed by controlling the combustion volume.
  • Figure CA) shows the fluctuation of the primary air volume C t [N ms Z m 2 ⁇ H].
  • Figure B shows the brightness L in the furnace.
  • [C] is a diagram showing the fluctuation state of the oxygen concentration E [%] in the exhaust gas.
  • the horizontal axis represents time t (one division represents 17 seconds).
  • Fig. 6 shows the results of actual measurement of the oxygen concentration E in the exhaust gas of the conventional combustion control method and the combustion control method of the present invention
  • Fig. 6 (A) shows the case where the conventional combustion control method is used
  • FIG. 7B shows a case where the combustion control method of the present invention is used.
  • the vertical axis represents the oxygen concentration in exhaust gas E [%]
  • the horizontal axis represents time t (one scale represents 200 seconds).
  • FIGS. 7 and 8 are flow fluidizing magnification G in the bed incinerator [U / U mf] and Ri Oh a diagram showing the relationship between the heat transfer coefficient h K
  • FIG. 8 is the pressure and flow of the magnification G [U / U mf] It is a figure which shows the relationship of loss PI.
  • U indicates the superficial superficial velocity
  • Umf indicates the minimum superficial superficial superficial velocity (minimum superficial superficial velocity for fluidizing the fluidized medium).
  • the superficial velocity of the fluidizing air U 0 1 4 is fluidizing magnification G [UZU mf] (7 0 0 ⁇ l 5 0 0 N m 3 / m 2 ⁇ H) from being operated in a range of heat transfer coefficient h K is substantially constant value.
  • the emptying speed U of the fluidized air is increased by the fluidization ratio of 1 to 4 [U / U mf] (250 to 70 0 N m V m 2 ⁇ H ) and normally is operated at a lower range Ri by that Do, combustion rate Q is the superficial velocity of the fluidizing air Tara summer more than a predetermined amount of incinerated fluidizing magnification G is - 1 [UZU mf] is slightly exceeded, that is, the range of the hatched portion in FIG. 7.
  • the heat transfer coefficient h ⁇ can be changed.Therefore, not only the method of controlling gasification by simply changing the superficial velocity of the flowing air, but also taking this method into account As a result, it becomes possible to control the gasification rate of incinerated products well.
  • FIG. 9 shows the change in the oxygen concentration ⁇ ⁇ ⁇ in the exhaust gas when city garbage is incinerated by changing the flowing air ⁇ in a fluidized bed incinerator. 0 [ ⁇ m 3 Zm 2 * H], and FIG. 7B shows the case of a flowing air amount of 420 [N mm 2 ⁇ H].
  • the horizontal axis represents time t (one scale represents 100 seconds).
  • Figure Shimesuru so on and garbage is charged when the amount of flowing air is 9 7 0 [Nm s Zm 2 ⁇ H] and often at once gasified, the variation of the oxygen concentration E in the intact exhaust gas fluctuations in input amount Connect. Therefore, even when performing combustion speed control, the fluctuation is large.
  • the calorific value differs, and the combustion products such as coal, Tonan trash, industrial waste, etc.
  • these mixed combustion products even if they are to be burned, they can be burned without significantly changing the amount of combustion air, the amount of exhaust gas, the oxygen concentration in the exhaust gas, and the unburned gas.
  • FIG. 10 is a schematic configuration diagram of a fluidized bed incinerator in which the amount of incineration in the furnace is controlled by detecting the pressure in the furnace-1.
  • the parts denoted by the same reference numerals as those in FIG. 2 indicate the same or corresponding parts.
  • a pressure detection sensor 14 2 that detects the pressure inside the furnace is provided above the fluidized bed 2, and the output of the pressure detection sensor 14 is input to the controller 13. .
  • the combustion control By configuring the combustion control as described above, if the amount of incinerated material A charged into the furnace 1 is large, the amount of combustion of the incinerated material A (per unit time) increases. However, as the amount of generated exhaust gas increases, the internal pressure of the furnace 1 increases as can be seen from FIG. 1 (C), and the output of the pressure detection sensors 14 and 12 increases. When the internal pressure of the furnace 1 increases, the controller 13 is controlled. The control valve 7 is opened to increase the amount of air blown from the air nozzle 8 into the upper space of the fluidized bed 2.
  • the amount of air sent from the air chamber 6 is reduced, so that the flow of the fluidized medium in the fluidized bed 2 becomes longer, the amount of heat transfer from the fluidized medium to the incinerated material A is reduced, and the gasification rate of the incinerated material A is reduced. Is reduced. That is, the burning speed becomes slow.
  • the amount of air blown from the air chamber 6 the amount of oxygen in the fluidized bed 2 decreases and the amount of unburned gas increases accordingly, but the air nozzle 8 and / or the secondary air inlet
  • the unburned gas is burned because it is blown into the upper space of the fluidized bed 2 such as the freeboard section 9 using the air.
  • an equivalent amount of the reduced primary air may be supplied from the air nozzle 8 as the secondary air C 2 .
  • Fig. 11 shows the furnace pressure P, that is, the output i 'of the pressure detection sensor 14-2, which is supplied from the air chamber 6.
  • FIG. 3C is a diagram showing a change in pressure P [mmaq)
  • FIG. 3C is a diagram showing a change in oxygen concentration E [%] in exhaust gas.
  • the horizontal axis indicates time t C 1 scale indicates 17 seconds).
  • the change in the oxygen concentration E in the exhaust gas is extremely gentle. Become. That is, the combustion becomes mild (the combustion speed is slow ), It can be confirmed that it is stable.
  • Fig. 12 is a schematic configuration diagram of a fluidized bed incinerator in which the amount of incineration in the furnace is controlled by detecting the oxygen concentration in the exhaust gas.
  • the parts denoted by the same reference numerals as those in FIG. 2 indicate the same or corresponding parts.
  • an oxygen concentration detection sensor 14-3 for detecting the oxygen concentration in the exhaust gas is provided at the exhaust gas outlet, and the output of the oxygen concentration detection sensor 14-13 is input to the controller 13. I have.
  • the combustion amount control As the amount of combustion (per unit time) increases, the amount of exhaust gas generated increases, the oxygen concentration in the exhaust gas decreases, and the output of the oxygen concentration detection sensor 14-13 decreases.
  • the regulator 13 opens the control valve 7 to increase the amount of air blown from the air nozzle 8 into the upper space of the fluidized bed 2.
  • the amount of air sent from the air chamber 16 decreases, so that the flow of the fluidized medium in the fluidized bed 2 becomes slow, and the amount of heat transferred from the fluidized medium to the incinerated material A decreases.
  • the gasification rate of substance A decreases. That is, the burning speed becomes slow.
  • the amount of air blown from the air chamber 6 the amount of oxygen in the fluidized bed 2 decreases and the amount of unburned gas increases accordingly, but the air nozzle 8 and the secondary air inlet or The air is blown into the upper space of the fluidized bed 2 such as the freeboard section 9 by using any of these, so that the unburned gas is burned.
  • it may be Kyoawase a decrease in equal amounts of primary air i C i and from the air Nozzle Le 8 and primary air quantity C 2.
  • FIG. 13 is a schematic drawing of the fluidized bed incinerator in the case of controlling the amount of incineration of the incinerator by detecting the temperature inside the furnace.
  • the parts denoted by the same reference numerals as those in FIG. 2 indicate the same or corresponding parts.
  • a temperature detection sensor 144 that detects the temperature of the furnace 1 is provided above the fluidized bed 2, and the output of the temperature detection sensor 144 is input to the controller 13. .
  • the combustion amount control As described above, when the amount of incinerated material A is larger than usual, the amount of combustion of incinerated material A (per unit time) increases, and the furnace temperature increases. The output of the temperature detection sensor 144 increases.
  • the controller 13 opens the control valve 7 to increase the amount of air blown from the air nozzle 8 into the upper space of the fluidized bed 2.
  • the controller 13 opens the control valve 7 to increase the amount of air blown from the air nozzle 8 into the upper space of the fluidized bed 2.
  • the controller 13 opens the control valve 7 to increase the amount of air blown from the air nozzle 8 into the upper space of the fluidized bed 2.
  • the controller 13 opens the control valve 7 to increase the amount of air blown from the air nozzle 8 into the upper space of the fluidized bed 2.
  • the controller 13 opens the control valve 7 to increase the amount of air blown from the air nozzle 8 into the upper space of the fluidized bed 2.
  • the controller 13 opens the control valve 7 to increase the amount of air blown from the air nozzle 8 into the upper space
  • the burned amount of the incinerated material in the furnace 1 was measured by the brightness detection sensor 14-11, the pressure detection sensor 14-12, the oxygen concentration detection sensor 14-13, and the temperature detection sensor 1
  • a brightness detection means such as a brightness detection sensor such as the one shown in Fig. 14 (A) is used.
  • a law There is also a law.
  • the pressure inside the furnace tends to increase when combustion becomes intense. Therefore, the brightness of the brightness detection sensor 14-11 as shown in Fig. 14 (B) is high.
  • a control method that combines a pressure detection means and a furnace pressure detection means such as a pressure detection sensor 14-2. This is the output signal value PV of the pressure detection sensor 14-12 corresponding to the pressure inside the furnace from the arithmetic unit Yo "b" with the symbol b.
  • the minimum open Output signal value y which opens the control valve 7 to a certain opening, which is a degree, and outputs 2.
  • the furnace pressure is usually controlled, so it immediately drops to below the set value.
  • Output signal value PV of pressure detection sensor 1 4 1 2 If the value of 2 drops and a certain value or less continues for a predetermined time, the output signal value of the minimum opening to control valve 7 y ⁇ 2 and outputs a. output signal value y and y. are compared Ri by the calculator Y. s marked with sign-c, and outputs the signal value of the larger value as the output signal value y os, the control valve 7 the output signal value y s -. be good Ri opening adjustment.
  • control valve 7 By performing the control as described above, even if smoke or the like is generated and the inside of the furnace becomes dark, the control valve 7 is opened at a constant opening to enable effective observation.
  • the law is obtained.
  • the arithmetic unit with the symbol a may use a controller to control the brightness in the furnace to be constant. Further, the control valve 7 may control a bypass flow rate by setting a flow rate controller in addition to adjusting the opening degree.
  • the system can sufficiently follow the rapid change in the amount of combustion.
  • the combination is not limited to the above. In short, it detects brightness, furnace pressure, oxygen concentration in exhaust gas, furnace temperature, etc. More desirable by constantly monitoring the sensor output and ignoring the sensor output value whose output does not correspond to the condition inside the furnace and controlling with the output of the sensor operating normally New control becomes possible.
  • FIG. 15 is a diagram showing a schematic configuration of another fluidized bed incinerator that implements the combustion control method in the fluidized bed incinerator according to the present invention.
  • reference numeral 21 denotes a furnace, and a fluidized bed 22 is formed inside the furnace 21.
  • a plurality of air chambers 28, 26 are provided below the fluidized bed 22.
  • 3 1 Ri incinerated charged ho wrapper der to inject incinerated such Toshigo Mi, supply for the lower portion of the incinerated charged Ho Tsu Par 3 1 for supplying material to be incinerated into the furnace 2 1 5 1
  • a feeder 32 is provided, and at an end of the feeder 32, the amount of incineration A to be put into the incinerator hopper 31 from the feeder 32 is detected.
  • An incineration material input measuring device 33 is provided.
  • 3 9 is an air volume adjusting device.
  • An air nozzle 38 for blowing air into the upper space of the fluidized bed 2 220 is provided on the furnace wall of the furnace 21, and the on-off valve is connected to the air nozzle 38 via a pipe 34. 3 5 is connected.
  • An on-off valve 36 is connected to the central air chamber 28 via a storage tube 27.
  • reference numeral 37 denotes a minimum flow valve for supplying a minimum amount of air.
  • 29 is a freeboard section
  • 30 is an exhaust gas cooling section
  • 23 and 24 are incombustible material outlets.
  • the incineration material A fed from the feeder feeder 32 into the furnace 21 usually falls to a certain part of the fluidized bed 22, that is, the central part. You. In this case, although not shown, incineration material A may be dispersed using a blender. If the amount or bulk of incinerated material A introduced into the furnace 21 by the incinerated material amount measuring device 3 3 is larger than usual, or if it is considered that it is flammable by its nature, the air amount adjusting device 39 Immediately close the on-off valve 35 and open the on-off valve 35.
  • the amount of air sent to the central air chamber 28 is the amount of air sent through the minimum flow valve 37, that is, the minimum air that prevents a part of the flowing medium from leaking to the lower part of the furnace.
  • the flow of the fluidized medium in the fluidized bed 22 becomes slow.
  • air is blown from the air nozzle 38 into the upper space of the fluidized bed 22.
  • the incinerated material A measured by the incinerated material input measuring device 33 falls into the central part of the fluidized bed 22 where the flow of the fluidized medium becomes slow.
  • FIG. 16 shows the amount of exhaust gas B, the amount of primary air C, and the amount of secondary air D with respect to the time variation of the amount of incinerated material A by the conventional combustion control method in the fluidized bed incinerator with the configuration shown in Fig. 15.
  • FIG. 17 shows the variation of the oxygen concentration E in the exhaust gas
  • FIG. 17 shows the exhaust gas amount B and the primary air amount (d, C 2 ) with respect to the time variation of the amount of the incinerated material A by the combustion control method according to the present invention.
  • the secondary air amount D and the oxygen concentration E in the exhaust gas is the amount of exhaust gas B, the amount of primary air C, and the amount of secondary air D with respect to the time variation of the amount of the incinerated material A by the combustion control method according to the present invention.
  • the conventional combustion control method As soon as incinerated material A is charged, combustion starts immediately, and the oxygen concentration E in the exhaust gas rapidly decreases. In response to this decrease in the oxygen concentration E in the exhaust gas, the secondary air amount D increases and the exhaust gas amount B also increases. As the combustion proceeds, the amount of unburned matter in the furnace 21 decreases, and the oxygen concentration E in the exhaust gas increases, so the secondary air amount D is throttled and the exhaust gas amount B decreases.
  • incinerated A is projected input from time t 2, the repeat the same operation as described above. In other words, the amount of secondary air D, the amount of exhaust gas B, and the oxygen concentration E in the exhaust gas fluctuate greatly according to the incineration material A. When the oxygen concentration E in the exhaust gas is low, the emission of unburned gas is reduced. Become.
  • the incineration material ⁇ is supplied at every time ti, t ⁇ , With the on-off valve 3 6 closed and the on-off valve 3 5 opened, the primary air is divided into upper and lower parts of the fluidized bed 22 and a certain amount (air nozzle
  • the primary air volume C i) blown in from 28 is sent in, and the secondary air volume D is controlled by feedback control based on the oxygen concentration E in the exhaust gas. Therefore, when the incineration material A is introduced at the time, the primary air amount C i from the lower part of the fluidized bed 22 where the incineration material A has fallen decreases, the flow of the fluidized medium becomes slow, and the Transfer to incineration A 1 () The amount of heat is suppressed, and gasification of incineration A, that is, combustion is suppressed, and the burning speed is reduced. Also, since the combustion speed is low, the oxygen concentration E in the exhaust gas does not drop sharply.
  • the baking becomes gentle, and a stable condition in the furnace can be obtained without a sudden change in oxygen concentration and no change in exhaust gas amount B.
  • the on-off valve 36 At the same time as closing, the control valve is throttled at 25 and fed through the air chamber 26. It is also possible to reduce the amount of primary air to be injected and increase the amount of air blown from the air nozzle 38 to the upper space of the fluidized bed 22.
  • a combustion control method similar to the combustion control of the present invention in the fluidized bed incinerator of FIG. 1 may be used in combination.
  • the combustion control method has been described using a fluidized bed incinerator, but the fluidized bed incinerator may be a so-called fluidized bed boiler for heat recovery. Therefore, the fluidized bed incinerator of the present invention includes a fluidized bed boiler.
  • the combustion control method in the fluidized-bed incinerator according to the present invention employs a method of controlling the combustion of coal, which is different in the calorific value, the combustibility and the like, and the properties, shapes, and bulks, and the municipal waste. Even if it is put into a fluidized bed furnace as an industrial waste or an industrial waste mixed with them, the amount of combustion air and exhaust gas are maintained almost constant, and the oxygen concentration in the exhaust gas is also kept constant.
  • peripheral incinerators such as municipal refuse using a fluidized bed incinerator
  • the peripheral equipment for the fluidized bed incinerator such as primary and secondary air blowers, and gas treatment facilities, can be compacted, and construction costs can be reduced. And reduce the emission of unburned gas into the atmosphere as much as possible. It is also effective from the point of view.
  • the method for controlling combustion in a fluidized bed incinerator according to the present invention, even if the amount of combustion supplied to the fluidized bed incinerator fluctuates, the fluctuations in the oxygen concentration and the amount of exhaust gas in the exhaust gas are reduced. It is effective as a combustion control method in incinerators and the like equipped with a fluidized bed incinerator because it can suppress the emission of unburned gas and can prevent the emission of unburned gas. ⁇ ⁇ Especially remarkable when incinerated materials such as coal, municipal waste, industrial waste, or a mixture of these, which have different calorific values, different flammability, etc., properties, shapes and bulks, are used as combustion targets. Stable combustion control can be easily performed, and it is suitable as a combustion control method for urban refuse incineration equipment equipped with a fluidized bed incinerator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Incineration Of Waste (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Description

明 細 書 流動床焼却炉における燃焼制御方法
技 術 分 野
本発明は、 砂等の流動媒体を炉床下部から送り込む空 気によ り流動させながら焼却物を焼却する流動床焼却炉 において、 炉内に投入される焼却物の燃焼量、 即ち単位 時間当りの燃焼悬を制御する こ と によ り、 燃焼用空気量 及び排ガス畺を変動させる こ と な く 、 未燃ガスの排出を 防止するのに好適な流動床焼却炉における燃焼制御方法 に関するものである。 なお、 こ こで流動床焼却炉とは熱 回収を目的とする流動床ボ イ ラーを含むものとする。 ' 背 景 技 術
従来、 流動床炉は都市ゴ ミ の焼却等に使用されてお り、-都市ゴ ミ をこの流動床焼却炉で焼却する場合はゴ ミ を連続的に流動床炉に投入するが、 都市ゴ ミ はその性質 上互いに絡ま り、 大きな塊となった状態で瞬間的に大量 に投入される場合が度々ある。 流動床炉は焼却炉と して は燃焼速度の極めて速い炉であ り、 非常に良く燃える と いう利点があるが、 これが逆に欠点となる場合がある。 即ち、 燃焼性能が良いため流動床に焼却物を投入する と 早いものは僅か数秒で燃えて しまう。 そのため、 焼却物 を炉に供給するフ ィーダの定量性が悪いと、 焼却物の投 入量のバラ ツキはそのまま燃焼ガス中の酸素濃度のバラ ツキにつながる と いう問題がある。 ' 流動床炉の形式にもよるが、 燃焼排ガス中の酸素濃度 が約 5 %近辺以下となると一酸化炭素とか、 メ タ ン、 ェ チ レ ン、 プロ ピレ ン、 アセチ レ ン、 ベンゼン と いった炭 化水素等が燃焼 し きれずに排出される こ とになる。 ま た、 塩化ア ンモン とか、 水酸化ア ンモン と い った物質も 生成されるので煙突よ り 白煙がでること になる。
また、 流動床炉は燃焼性能が良いため流動媒体への流 動用空気が理論空気比- 1以下でも、 流動媒体が流動化 する空筒速度さ えあれば燃やすこ とができ るが、 前記の ように一酸化炭素等未燃ガスの生成を防ぐために空気比 を増している。 また、 供給ブ イーダの定悬性がそこなわ れる場合を想定して、 焼却物の供給量が多くなつても酸 素濃度が低く ならないよう に余剰空気を予め吹き込んで いる場合もある。
供給'フ ィーダの定量性能にも よるが、 炉へ吹き込む空 気量は多いも ので理論空気の 2倍を使用している。 しか し .この場合でも特に都市ゴミ を扱う と きは、 ゴミ どう し がからみつき大きな塊とな て、 ゴミの所謂 ドカ落ちの 状態となるため瞬間的に酸素不足となり、 一酸化炭素等 の未燃ガスが煙突よ り排出されるこ と もある。
従来、 これらの未然ガスの排出を防止する方法と し て、 焼却物を炉に供給する供給フ ィ ーダの定量性を向上 させるよう に供袷フ ィ ーダを改良した.り、 例えば、 特願 昭 5 9 - 2 2 3 1 9 8号(特開昭 6 1 - 1 0 0 6 1 2号 公報) に開示するよう に、 焼却物の投入量を計測する計 量手段を設け焼却物が多 く入ったら供給フ ィ ーダの回転 数を減ら して投入量を少な く したり している。
また、 投入される焼却物の増大或いは酸素不足を検出 して、— 新たに二次空気を吹き込む方法等が採用されてい る
しかしながら、 上記従来の未燃ガスの排出を防止する 法の一つである供給フ ィーダの利用においても、 その 定量性を向上させる改良には限界があ り、 結果と してや たらにコ ス トの高いフ ィ ーダを使用する傾向と なってい また、 前記特願昭 5 9 - 2 2 3 1 9 8号に開示するも のも投入量計測装置を用いているが結果と して、 炉内に 落下 し た焼却物は即座に燃焼して し まい酸素不足と な る。 これを補うために、 新たに二次空気を吹き込むと、 急激な燃焼による排ガス量の増加に加え、 二次空気が入 るので排ガス量が更に増加し、 炉内圧力は正圧と なる。 この圧力をと らえて誘引フ ァ ン入口ダンバが葡き炉内圧 力 ^"正常値に しょ う とするから、 焼却物が多 く投入され る と きは炉内圧.力が変動し、 正圧のために排ガスダク ト フ ラ ンジゃ灰排出用ロータ リーパルプ等から排ガスが吹 き 出 し、 排ガス中の粉塵も飛散し、 工場内を埃ぼ くする 等の問題がある。
また、 排気ガス中の酸素濃度をある値に保っため二次 空気をコ ン ト π—ルする 法は、 流動床炉がその燃焼速 度が極めて速いこ とから、 焼却物の供給量のバラ ツキが そのまま排ガスのバラツキとなってあらわれ、 上記と同 じ問題が発生する他、 燃焼用空気量が多いこ とは、 燃焼 フ ァ ン 、 排ガ 誘引フ ァ ン等を大き く し 'なければな ら ず、 その ¾動動力も大き くする等の問題がある。 さ らに は排ガス量が変動するため、 排ガス悬の多い場合に合わ せて排ガスダク ト、 ガス冷却器、 電気集塵器といった排 ガス処理設備に大容量のものを必要とする等焼却設備の 大型化と全体の建設コス トが高く なるという問題もあつ た。
また、 従来流動床ボイ ラー、 特に癸電用流動床ボ イ ラーにおいては、 特開昭 5 9 - 1 9 1 2号公報に開示さ されているよ う に、 負荷の変動に応じて石炭等の燃料の 供給量を変えているが、 燃料の供袷量が増えた場合、 流 動床下部から送り込む流動空気量を制御し、 流動床の流 動媒体の温度が所定以上にならないように しながら、 燃 焼を制御する燃焼制御方法があるが、 この燃焼制御 法 - を用いても都市ゴミ等のよう に嵩、 形状、 燃えやすさ及 び発熱量の不均一なものが混在したものを燃焼対象物と する流動床焼却炉において、 特に炉内に投入される焼却 物の量が変動した場合、 燃焼量の急激な変動を抑え燃焼 用空気量及び排ガス量を変動させる ことな く、 未燃ガス の排出を防止する こ とは不可能であつた。
こ こで、 燃焼量とは、 発熱量!: k c a l Z k g 〕 X燃 焼対象物の量(焼却物の量) 〔 k g Z時間 〕 のこ とを言 ハ 本発明は上記従来の問題点を解決するためになされた もので、 定量性の良い高価な供給フ ィ ーダを用いる こ と な く 、 発熱量が異なったり、 燃えやすさなどの性状や形 状及び嵩が異なる燃焼物、 即ち石炭や都市ゴ ミ 、 産業廃 棄物或いはこれらの混合燃焼物を燃焼対象物と して流動 床炉に投入しても、 この投入される燃焼対象物が変動し ても燃焼用空気量及び排ガス量を増大させる こ とな く 、 且つ未燃ガスの排出を防止でき る流動床焼却炉における 燃焼制御方法を提供する こ と を 目的とする。
発 明 の 開 示
上記目的を達成するため、 本発明の流動床焼却炉にお ける燃焼制御方法は、 流動床下部から送り込む空気によ り、 流動媒体を流動させ、 炉内に投入される焼却物を燃 焼させる流動床炉において、 流動床炉内で燃焼する焼却 物の燃焼量を監視し、 燃焼量が所定量 越えた場合流動 床下部から送り込む空気量を減少させ、 炉内の焼却物の 燃焼量を減少させる と共に、 流動床上部空間に吹き込む 空気量を増やし、 焼却物の燃焼量を一定に制御するよ う に したこ と を特徴とする。
また、 流動床炉の炉床下部の複数のヱァチ ャ ンバ一か ら送り込む空気によ り、 流動媒体を流動させるよ う に構 成した流動床炉において、 投入される焼却物の量が所定 量以上になったら焼却物の投入量に応じて焼却物の落下 点部分のエアチ ヤ ンパ'一から送り込む空気量を所定量減 少させる と共に他のヱァチ ヤ ンバーよ り送り込む空気量 を増やし、 流動床上部の空間に送り込む等して、 焼却物 投入量に応じて焼却物落下点部分の流動媒体の流動状態 を緩慢にすると共に、 その周辺の流動媒体の流動状態を 活発にし焼却物の燃焼量を制御するように したこ とを特 锒とする。 ·
図面の筒単な説明
第 1図( A ) , ( B ) , ( C )はそれぞれ流動床焼却 炉における炉内の明るさ、 排ガス中の酸素濃度、 炉内圧 力の変動の実測結果を示す図、 第 2図は本癸明に係る燃 焼制御方-法を実施する流動床焼却炉の概咚構成を示す 図、 第 3図は従来の燃焼制御 法による流動床焼却炉内 ' の焼却物投入量の時間変動に対す-る燃焼量と排ガス中の 酸素濃度と排ガス量と一次空気量と二次空気量及び炉内 温度の変動を示す図、 第 4図は本発明に係る燃焼制御方 法による流動床焼却炉内の焼却物投入量の時間変動に対 する燃焼量と排ガス中の酸素濃度と排ガス量と一次空気 量と二次空気量及び炉内温度の変動を示す図、 第 5 図 ( A ) , ( B ) , ( C )はそれぞれ本発明に係る炉内明 るさによる燃焼制御: &法の一次空気量、 炉内明るさ、 排0 気ガス中の酸素濃度の実測結果を示す図、 第 6図は排ガ ス中の酸素濃度の実測結杲を示す図で、 同図( A )は従 来の燃焼制御方法を用いる場合を示す図、 同図( B )は 本発明の燃焼制御 法を用いる場合を示す図、 第 7図は 流動床焼却炉における流動化倍率 G 〔 U-ZU m f 〕 と伝B 熱係数 h.kの関係を示す図、 第 8図は流動化倍率 G 〔 U Z U m f 〕 と圧力損失 P Lの関係を示す図、 第 9 図( A ) , ( B ) はそれぞれ流動床焼却炉において異なる流動 空気量で都市ゴ ミ を焼却した場合の排ガス中の酸素濃度 の変動の実測結果を示す図、 第 1 0図は本発明に係る燃 焼制御方法を実施する他の流動床焼却炉の概略構成を示 す図、 第 1 1 図( A ) , ( B ) , ( C )はそれぞれ本発 明に係る炉内圧による燃焼制御方法の一次空気量、 炉内 圧力、 排ガス中の酸素濃度の変動の実測結果を示す図、 第 1 2図は本発明に係る燃焼制御方法を実施する他の流 動床焼却炉の概略構成を示す図、 第 1 3 図は本発明に係 る燃焼制御方法を実施する他の流動床焼却炉の概略構成 を示す図、 第 1 4図は本発明に係る燃焼制御 法の制御 フ ローを示す図、 第 1 5 図は本発明に係る燃焼制御方法 を実施する他の流動床镜却炉の概略構成を示す図、 第 1 6図は第 1 5図に示す構成の流動床焼却炉における従来 の燃焼制御 法による焼却物投入量の時間変動に対する 排ガス量と一次空気量と二次空気量及び排ガス中の酸素 濃度 変動を示す図、 第 1 7図は第 1 5 図に示す.構成の 流動床焼却炉における本発明に係る燃焼制御方法による 焼却物投入量の時間変動に対する排ガス量と一次空気量 と二次空気量及び排ガス中の酸素濃度の変動を示す図で ある。
発明を実施するための最良の形態 以下、 本発明を実施するための形態を図面を参照しつ つ説明する。 流動床焼却炉においては、 燃焼対象物の燃焼量を直接 測定することは挺めて困難であ り、 この燃焼量は炉内の 明るさ、 排ガス中の酸素濃度、 炉内圧力、 炉内温度及び 炉内に投入される焼却物の量又は ¾や性質等から間接的 に検出される。
第 1図( A ) , ( B ) , ( C ) は上記流動床焼却炉に おける燃焼悬を代表する炉内の明るさ L、 排ガス中の酸 素濩度 E及び炉内圧力 Pの実測結果を示す図である。 な お、 図中横軸は時間 t を ( 1 目盛は 5秒)示す。 図示す るように流動床焼却炉においては、 燃焼量の変動に応じ て炉内の明るさ L、 排ガス中の酸素濃度 E及び炉内圧力 Pが変化する。'そこで本発明はこの炉内の明るさ L、 排 ガス中の酸素濃度 E及び炉内圧力 Pによ り、 燃焼量を推 測し、 流動床下部から送り込む流動空気量を制御し、 炉 内に投入される焼却物の量が変動しても燃焼量の急激な 変動を抑え、 燃焼量が一定になるよう に制御するもので ある
第 2図は、 本発明に係る流動床焼却炉における燃焼制 御方法を実施する流動床焼却炉の概咯構成を示す図であ る。 図において、 1 は炉であり、 該炉 1の内部には砂等 の流動媒体が流動する流動床 2が形成されている。 流動 床 2 ·の下部にはエアチャ ンバ一 6が設けられており、 記 管 5 を通して流動用ブ πヮ (図示せず) よ り流動空気を 該エアチヤ ンバ一 6 を介して炉 1 内に送り込むこと によ り—、 流動媒体を流動させている。 このブロ ワは例えば遠 心ブロ ワであ り、 運転中は望ま し く は風量が一定になる ように制御を している。 1 1 は都市ゴ ミ等の焼却物を投 入する焼却物投入ホ ツバ一であ り 、 該焼却物投入ホ ッ バー 1 1 の下部には焼却物を炉 1 内に供給するための供 給フ ィ ーダ 1 2が設けられている。 1 4 一 1 は炉 1 の明 るさ を検出する明るさ検出セ ンサであ り、 1 3 は炉 1 内 の明るさの測定値をも と にバルブ開度を調節する調節器 である。 炉 1 の壁には流動床 2の上部空間に空気を吹き 込むための空気ノ ズル 8が設けられており、 該空気ノ ズ ル 8 には ffi管 1 6 を介して制御弁 7が接艉されている。 こ の制御弁 7 の位置は配管 5 , 1 6 のいずれに取り付け て もかまわない し、 更に SE管 1 6 を記管 5 のバイ パス £ 管とせず £管 1 6 と S管 5 をれぞれ別のブロ ワに接続し ても よい。 なお、 図中、 9 はフ リ一-ボー ド部、 1 8 は二 次空気送入 K管である。 明るさ検出セ ンサ 1 4 - 1 は、 流動媒体ゃ炉壁等による明るさ に影響されないで、 焼却 物 Aの燃焼による炉 1 内の明るさ を検出でき るよう に、 二次空気送入口よ り充分上方でかつ炉の横断面全面が見 渡せる位置に取り付ける。 また、 図中 E Gは排ガス出口 部から排出される排ガスを示し、 A Sは灰出口部から排 出される灰 示す。
上記構成の流動床焼却炉において、 供給フ ィーダ 1 2 から炉 1 内に投入される焼却物 Aは流動床 2 の一定の部 分、 即ち中央部分に落下するよ う になっている。 この場 合、 図示されていないが、 スブレ ッ ダを用いて焼却物 A 0 を分散させてもよい。 炉 1 内に投入される焼却物 Aの量 が通常よ り多い場合、 焼却物の燃焼量(単位時間当り ) が大き く なるから、 炉 1 内が明る く な り、 明るさ撿出セ ンサ 1 4 一 1 の出力が大き く なる。 炉 1 の明るさが大き く なる と調節器 1 3 は制御弁 7 を開放し、 エアチャ ン パー 6 か ら吹き込む空気量の滅少分を £管 1 6 を通し て、 空気ノ ル 8から流動床 2の上部空間に吹き込む。 これによ り、 エアチャ ンバ一 6から送り込まれる空気量 が減少するから、 流動床 2の流動媒体の流動が锾慢とな り、 流動媒体から焼却物 Aへの伝熱量が滅り焼却物 Aの ガス化速度が遅くなる。 即ち燃焼速度が遅く なる。 この 時、 エアチャ ンバ一 6からの空気量を減らすこ とで、 流 動床 2 の痿素量は減少し、 その分未燃ガスが増えるが、 空気ノ ズル 8から吹き込む空気量を増大させるので、 フ リーボー ド部 9等の流動床 2の上部空間でこの未燃焼ガ スは燃焼する こ と になる。
なお、 このエアチャ ンバー 6からの空気量の減少分は 空気ノ ズル 8や二次空気送入口のいずれか、 或いはそれ ぞれに分 Sさせて吹き込んでも よ く、 要は空筒部内に未 燃ガスを燃焼し き るだけの空気を吹き込みさえすればよ い。
第 3図は従来の燃焼制御 ¾法による流動床焼却炉内の 焼却物投入量の時閭変動に对する燃焼量、 排ガス中の酸 素濃度、 排ガス量、 流動用空気量(一次空気)、 二次空 気量及び炉内温度の変動状態を示す図であ り、 第 4図は 本発明に係る燃焼制御方法による^動床焼却炉内の焼却 物の投入量の時間変動に対する燃焼量、 排ガス中の酸素 濃度、 排ガス量、 流動用空気(一次空気量) 、 二次空気 量及び炉内温度の変動状態を示す図である。 なお、 図に おいて横軸は時間 t を示す。
従来は第 3図に示すよ うに、 エアチャ ンバ一 6 を通し て流動床 2の下部から供給される一次空気量 Cは一定で あ り、 時刻 t iから焼却物 Aが投入される と 、 即座にガ ス化され、 数秒後に燃焼が開始し、 燃焼量 Qが大き く な り、 排ガス中の酸素濃度 Eが急激に減少する。 'この酸素 濃度が低.いと き は未燃ガスの排出となるから、 この排ガ ス中の酸素濃度 Eの低下を受けて二次空気量 Dが増え、 排ガス量 Bも増大する。 また、 炉内温度 Tも燃焼量 Qが 大き く なるので上畀する。 燃焼が進行する と炉 1 中の未 燃物が少な く な り、 排ガス中の酸素濃度 Eが上昇するの で、 二次空気量 Dが絞られ排ガス量 B も減少し、 炉内温 度も降下する。
こ^ Iに対して本発明の燃焼制御方法を用いる場合、 第 4図に示すよ う に、 時刻 から焼却物 Aが投入され、 燃焼量 Qが増加する と、 炉 1 内の明るさが増し、 明るさ 検出センサ 1 4 一 1 の出力が大き く な り、 調節器 1 3が 制御弁 7 を開き 、 一次空気量 C 2と して流動床 2 の上部 空間に空気を吹き込むよ う にするので、 エアチ ャ ンバ一 6 から供給される一次空気量 C!が減少する。 エアチヤ ンバ一 6 から供給される一次空気量 C tが減少する こ と 2 によ り、 燃焼畺 Qの増加割合が減少する。 即ち燃焼速度 が遅く なるわけであるから、 排ガス中の酸素濃度 Eも急 激には減少せず緩やかに減少する。 しかも この排ガス中 の酸素濃度 Eの減少に合わせて二次空気量 Dが増加する から、 排ガス中の酸素濃度 Eは殆ど変動しない。 また、 燃焼量 Qの増加割合が減少するこ とによ り、 炉内温度 T の上昇割合は^、さ く なる。 燃焼量 Qが減少したら、 制御 弁 7 を閉じ空気ノ ズル 8からの一次空気量 C 2を減少さ せ、 エアチ ャ ンバ一 6からの一次空気量 C iを増加させ る。 この一次空気畺 C iの増加によ り流動床 2 の流動媒 体の流動が活発となり通常の運転に戾る。
このように燃焼 i Qの増加と共にエアチヤ ンバー 6か らの一次空気 C tを減少させ、 空気ノ ズル 8からの一次 空気 C 2を増大させ、 排ガス中の酸素濃度 Eの辏やかな 減少分に応じて、 二次空気量 Dを供給するから、 排ガス 量 Bの増加も極めて少ない。
なお、 この場合一次空気量の減少分(増大分) に伴い 二次空気量の滅少分(増大分) は望ま し く は、 等量であ るが、 一次空気量の減少分(増大分)の ± 3 0 %であつ も よい。
第 5図はそれぞれ炉内の明るさ L、 即ち明るさセ ンサ. 1 - 1 の出力によ り エアチ ャ ンパ一 6から供給される 一次空気量 d ^制御し、 燃焼量を制御した実測結杲を 示す図で、 同図 C A ) は一次空気量 C t 〔 N m s Z m 2 · H 〕 の変動状態を示す'図、 同図( B ) は炉内の明るさ L 3
〔 % 〕 の変動状態を示す図、 同図( C ) は排ガス中の酸 素濃度 E 〔 % 〕 の変動状態を示す図 ある。 横軸は時間 t ( 1 目盛は 1 7秒を表わす) を示す。
図示するよ う に、 炉内の明るさ Lによ り、 エアチ ャ ン バー 6 から供給される一次空気量 C tを制御する こ と に よ り、 排ガス中の酸素濃度 Eの変動が極めて緩やかとな る。 即ち、 燃焼が穏やかになって (燃焼速度が遅 く な る )、 安定するこ とが確認でき る。
第 6 図は従来の燃焼制御方法と本発明の燃焼制御方法 の排ガ ス中の酸素濃度 Eの実測結果を示す図で、 同図 ( A ) は従来の燃焼制御方法を用いる場合を示し、 同図 ( B ) は本発明の燃焼制御 法を用いる場合を示す。 図 において、 縱軸は排ガス中の酸素澳度 E 〔 % 〕 、 横軸は 時間 t ( 1 目盛は 2 0 0秒を表わす) を示す。 図示する よ うに、 従来の燃焼制御方法に比較し、 本発明の燃焼制 御方法では、 排ガス中の酸素濃度 Eの変動幅が小さ く な る こ とが確認でき た。
上記本発明の燃焼制御方法を第 7図及び第 8図を用い て更に説明する。 第 7図は流動床焼却炉における流動化 倍率 G 〔 U / U m f 〕 と伝熱係数 h Kの関係を示す図で あ り、 第 8図は流動化倍率 G 〔 U / U m f 〕 と圧力損失 P I·の関係を示す図である。 但 し、 Uは空塔速度、 U m f は最低流動化空塔速度(流動媒体が流動化するための 最低空塔速度) を示す。
通常の流動床炉においては、 流動用空気の空塔速度 U は流動化倍率 Gが 4〜 1 0 〔 UZU m f 〕 ( 7 0 0〜 l 5 0 0 N m3/m2 · H )の範囲で運転されているから、 伝熱係数 h Kは略一定値で流動空気の空塔速度を変えて も焼却物のガス化を制御する こ とはには限度がある。 そ こで、 上記本癸明の燃癍制御 法を実施する流動床焼却 炉では、 流動化空気の空搭速度 Uを流動化倍率 1 〜 4 〔 U/U m f 〕 ( 2 5 0〜 7 0 0 N m V m 2 · H ) とな る通常よ り低い範囲で運転しており、 焼却物の燃焼量 Q が所定量以上になつたら流動用空気の空塔速度を流動化 倍率 Gが- 1 〔 UZU m f 〕 を若干こえる部分、 即ち、 第 7図の斜線部分の範囲とする。 これによ り伝熱係数 h κ を変化させるこ とができ るそのため、 単に流動空気の空 塔速度を変える こ と でガス'化を制御する方法だけでな く、 この方法を加味するこ とでよ り いつそう焼却物のガ ス化速度を良好に制御するこ とが可能となる。 一
第 9図は流動床焼却炉において流動空気悬を変化させ て都市ゴ ミ を焼却した場合め排ガス中の酸素濃度 Εの変 化状態を示す図で、 同図( Α ) は流動空気量 9 7 0 〔 Ν m3Zm2 * H 〕 の場合を示し、 同図( B ) は流動空気量 4 2 0 〔 N m m2 · H 〕 の場合を示す。 なお、 図中、 横軸は時間 t ( 1 目盛は 1 0 0秒を表わす) を示す。 図 示するよう に、 流動空気量が 9 7 0 〔 NmsZm2 · H 〕 と多い場合投入されるゴ ミが一気にガス化して、 投入量 の変動がそのまま排ガス中の酸素濃度 Eの変動につなが る。 従って燃焼速度制御をを行なう際も、 変動が大きす ぎて、 酸素濃度や一酸化炭素の変動がおおき く なる。 こ れに対して、 流動空気量が 4 2 0 〔 N m sZ m 2 * H 〕 の 場合は燃焼が穏やかになって (燃焼速度が遅く なる )安 定するから、 これらの変動が小さ く なる。
流動床焼却炉における燃焼制御を上記の如くする こ と によ り、 発熱量が異なったり、 燃えやすさ等の形状及び 嵩が異なる燃焼物である石炭や都南ゴ ミ 、 産業廃棄物或 いは これ らの混合燃焼物が燃焼対象物でも、 燃焼空気 量、 排ガス量、 排ガス中の酸素濃度、 未燃ガス等を大幅 に変動させる こ とな く燃焼可能と なる。 また、 燃焼対象 物を無破砕で流動床焼却炉に投入し、 焼却するこ と も可 能と なる。
第 1 0 図は炉の焼却物の燃焼量を炉ー 1 .内の圧力を検出 して制御する場合の流動床焼却炉の概略構成図である。 同図において第 2図と同一符号を付した部分は同一又は 相当部分を示す。 図示するよ う に、 流動床 2の上部に炉 内の圧力を検出する圧力検出セ ンサ 1 4 2 を設け、 該 圧力検出セ ンサ 1 4 一 2の出力を調節器 1 3 に入力して いる。
燃焼畺制御を上記のよ う に構成する こ と に よ り 、 炉 1 内に投入される焼却物 Aの量が多い場合は、 焼却物 Aの 燃焼量(単位時間当り )が多 く なるから、 排ガスの発生 量が増大して、 炉 1 の.内圧は第 1 図( C )からも分かる よ うに高く な り、 圧力検出セ ンサ 1 4 一 2 の出力が大き く なる。 この炉 1 の内圧が大き く なる と調節器 1 3 は制 御弁 7 を開放して、 空気ノ ズル 8から流動床 2の上部空 間に吹き込む空気量を増大する。 これによ り 、 エアチヤ ンバー 6から送り込まれる空気量が減少するから、 流動 床 2の流動媒体の流動が缓慢となり、 流動媒体から焼却 物 Aへの伝熱量が減り、 焼却物 Aのガス化速度が減少す る。 即ち燃焼速度が遅く なる。 この時エアチャ ンバ一 6 から吹き込まれる空気量を減らすこ とで、 流動床 2の酸 素量が減少し、 その分未燃ガスが増えるが、 空気ノ ズル 8 や二次空気送入口或いはそのいずれをも利用してフ リ ーボー ド部 9 等の流動床 2の上部空間に吹き込むの で、 この未燃焼ガスは燃焼するこ と になる。
この場合一次空気の減少分の等量を空気ノ ズル 8から —次空気 C 2と して供給しても よい。
第 1 1 図はそれぞれ炉内圧力 P、 即ち圧力検出センサ 1 4— 2.の出力 i'こよ り 、 エアチャ ンバ一 6から供給され
- る一次空気量 C!を制御し、 燃焼量を制御した実測結果 を示す図で、 同図 ( A ) は一次空気量 C t 〔 N m sZ m • H 〕 の変動を示す図、 同図( B ) は炉内圧力 P 〔 m m a q ) の変動を示す図、 同図( C ) は排ガス中の酸素濃 度 E 〔 % 〕 の変動を示す図である。 横軸は時間 t C 1 目 盛は 1 7秒を表わす) を示す。
図示するよう に、 炉内圧力 Pによ り、 エアチャ ンバ一 6 か ら供給される一次空気量 C iを制御する こ と に よ り 、 排ガ ス中の酸素濃度 Eの変化が極めて緩やかと な る。 即ち、 燃焼が穏やかになって (燃焼速度が遅く な る )、 安定する こ とが確認でき る。
第 1 2図は炉の焼却物の燃焼量を排ガス中の酸素濃度 を検出 して制御する場合の流動床焼却炉の概略構成図で ある。 同図において第 2図と同一符号を付した部分は同 一又は相当部分を示す。 図示するよ う に、 排ガス出口部 に排ガス中の酸素濃度を検出する酸素濃度検出セ ンサ 1 4 - 3 を設け、 該酸素濃度検出セン 1 4 一 3 の出力を 調節器 1 3 に入力している。
燃焼量制御を上記のよ うに構成する こ と によ り 、 排ガ ス中の酸素濃度の場合は、 焼却物 Aの量が通常よ り多い と、 第 1 図でも分かるよう に、 焼却物 Aの燃焼量(単位 時間当り )が多く なるから、 排ガスの発生量が増して、 排ガス中の酸素濃度は減少し、'酸素濃度検出セ ンサ 1 4 一 3 の出力が小さ く なる。 酸素濃度が少な く なると、 調 節器 1 3 は制御弁 7 を開放して、 空気ノ ズル 8から流動 床 2 の上部空間に吹き込む空気量を増大させる。 これに よ り、 エアチ ャ ンバ一 6から送り込まれる空気量が減少 するから、 流動床 2の流動媒体の流動が緩慢と な り、 流 動媒体から焼却物. Aへの伝熱量が減り、 焼却物 Aのガス 化速度が減少する。 即ち、 燃焼速度が遅 ぐなる。 こ の 時、 エアチ ャ ンバ一 6から吹き込まれる空気量を減らす こ と で、 流動床 2の酸素量は減少し、 その分未燃ガスが 増えるが、 空気ノ ズル 8や二次空気送入口或いはそのい ずれをも利用してフ リーボ一 ド部 9等の流動床 2 の上部 空間に空気を吹き込むので、 こ の未燃ガスは'燃焼する こ とになる。
この場合、 一次空気 i C iの減少分の等量を空気ノ ズ ル 8から一次空気量 C 2と して供袷しても よい。
- 第 1 3図ほ炉の焼却物の燃焼量を炉内温度を検出して 制御する場合の流動床焼却炉の概咯構成図である。 同図 において第 2図と同一符号を付した部分は同一又は相当 部分を示す。 図示するように、 流動床 2 の上部に炉 1 の 温度を検出する温度検出セ ンサ 1 4 一 4を設け、 該温度 検出セ ンサ 1 4 一 4 の出力を調節器 1 3 に入力してい る。
燃焼量制御を上記のように構成するこ とによ り、 焼却 物 Aの量が通常よ り多い場合、 焼却物 Aの燃焼量(単位 時間当り )が多く なるから、 炉内温度が高く なり、 温度 検出センサ 1 4一 4 の出力が大き く なる。 炉内温度が大 き く なると、 調節器 1 3 は制御弁 7 を開放して、 空気ノ ズル 8から流動床 2 の上部空間に吹き込む空気量を増大 する。 これによ り、 エアチャ ンバ一 6から送り込まれる 空気量が減少するから、 流動床 2の流動媒体の流動が緩 慢となり、 流動媒体から焼却物 Aへの伝熱量が滅り、 焼 却物 Aのガス化速度が減少する。 即ち、 燃焼速度が遅く なる。 この時、 エアチャ ンパー 6から吹き込まれる空気 量を減らすこ とで、 流動床 2 の酸素量が減少し、 その分 未燃焼ガスが増えるが、 空気ノ ズル 8や二次空気送入口 或いはそのいずれも利甩してフ リ一ボー ド部 9等の流動 床 2 の上部空間に空気を吹き込むので、 この未燃焼ガス は燃焼する こ と になる。
この場合、 一次空気量 C iの減少分の等量を空気ノ ズ ル 8から一次空気量 C 2と して供給しても よい。 ― なお、 上記実施例では炉 1 の焼却物の燃焼量を明るさ 検出センサ 1 4 一 1 、 圧力検出セ ンサ 1 4 一 2、 酸素濃 度検出セ ンサ 1 4 一 3及び温度検出セ ンサ 1 4 一 4 を用 いて検知し、 制御する例を示したが、 それ以外に第 1 4 図( A ) に示すよ うな明るさ検出セ ンサ 1 4 一 1等の明 るさ検出手段用いた制御 法もある。 これは明るさ検出 セ ンサ 1 4 一 1 の出力値 P V を符号 a を付した演算器 Y 01によ り、 例えば明るさの信号に対して係数 k ( 0〜 2 . 0 :) を乗ずる こ と によ り 明るさ に比例した出力信号 y 01で制御弁 7の開度調整を行なう方法である。
この場合都市ゴ ミ等の焼却物が炉内に連続的に供給さ れていれば問題はない'が、 都市ゴ ミ の性質上からみつき による所謂「 ドカ落ち 」 によ り急激な燃焼によ り煙等が 尧生し、 燃焼が盛んになったにもかかわらず炉内が暗く なつ り し、 明るさ検出セ ンサ 1 4 一 1 から燃焼が不活 発であるという誤った信号を出力し、 制御弁 7の開度調 整に不調を来すこ とがあった。
上記問題点を解決するため、 燃焼が盛んになった際、 炉内圧力が上昇する傾向にあ るので、 第 1 4図( B ) に 示すよ うな明るさ検出センサ 1 4 一 1等の明るさ検出手 段と圧力検出セ ンサ 1 4 - 2等の炉内圧力検出手段を組 み合わせた制御方法がある。 これは、 符号 bを付した演算器 Y o "こよ り炉内圧力に 対応する圧力検出セ ンサ 1 4一 2 の出力信号値 P V。2が ある設定値以上に.なつたら、 いままで最小開度であった 制御弁 7の開度を一定開度まで開放するような出力信号 値 y。2を出力する。 こ こで炉内圧力は通常制御されてい るので、 直ちに低下し設定値以下となる。 圧力検出セン サ 1 4 一 2の出力信号値 P V。2が低下し、 ある設定値以 下が所定時間龌続したならば、 制御弁 7への最小開度の 出力信号値 y ί 2を出力する。 出力信号値 y と y。 は符 号 c を付した演算器 Y。sによ り比較され、 大きな値の信 号値を出力信号値 y o sと して出力し、 制御弁 7は出力信 号値 y。sに-よ り開度調整 れる。
上記のよ う な制御を行なう こ と によ り、 煙等が発生 し、 炉内が暗く なつた場合でも制御弁 7が一定開度に開 放され有効に観 く ので望ま しい燃焼制御: 5法が得られ る。 なお、 符号 aを付した演算器は調節計を使用し、 炉 内の明るさが一定になるように制御を しても良い。 さ ら に、 制御弁 7は開度調整するだけでな く流量調節計を設 けてバイ パス流量を制御しても良い。
同様に、 明るさ、 炉内圧力、 排ガス中の酸素濃度、 炉 内温度等の燃焼量の変動によ り変化する因子のいずれか を組み合わせるこ とで、 燃焼量のすみやかな変化に充分 つい追従でき る制御系を構築でき るならばその耝み合わ せは上記内容に限定されるもの-ではない。 要は明るさ、·炉内圧力、 排ガス中の酸素濃度、 炉内温度等を検出する セ ンサの出力を常時監視し、 出力が炉内状況に対応して いないセ ンサの出力値を無視し正常に動作しているセ ン ザの出力で制御するこ と によ り、 よ り望ま しい制御が可 能と なる。
5 第 1 5図は、 本発明に係る流動床焼却炉における燃焼 制御方法を実施する他の流動床焼却炉の概略構成を示す 図である。 同図において、 2 1 は炉であ り、 該炉 2 1 の 内部には流動床 2 2が形成され、 該流動床 2 2の下部に は複数のエアチ ャ ンバ一 2 8 , 2 6が設けられており、 0 配管 2 5 を通して流動用ブロ ワ一( 図示せず) よ り流動 空気を該エアチ ャ ンバ一 2 8 , 2 6 を介して炉 2 1 に送 り込むこ と に よ り 、 流動媒体を流動させている。 3 1 は 都市ゴ ミ等の焼却物を投入する焼却物投入ホ ッパーであ り、 該焼却物投入ホ ッ パー 3 1 の下部には焼却物を炉 2 1 5 1 内に供給するための供給フ ィ ーダ 3 2が設けられ、 該 供給フ ィ ーダ 3 2 の先端には供給フ ィ ーダ 3 2から焼却 物投入ホ ッパー 3 1 内に投入される焼却物 Aの量を検出 する焼却物投入量計測装置 3 3が設けられてい る。 3 9 は空気量調節装置である。 炉 2 1 の炉壁には流動床 2 2 20 の上部空間に空気を吹き込むための空気ノ ズル 3 8が設 けられており、 該空気ノ ズル 3 8 には配管 3 4 を介して 開閉弁 3 5が接続されてい る。 また、 中央のエアチ ャ ン バ一 2 8 には記管 2 7 を介して開閉弁 3 6が接続されて いる。 また、 図中 3 7は最小の空気量を送り込む ミ ニマ ゥ ς ム フ ロー弁である。 なお、 図中、 2 9 はフ リ ーボー ド部、 3 0 は排ガス冷 却部、 2 3 , 2 4は不燃物取出口である。
上記構成の流動床焼却炉においてゝ 供給フ ィ ーダ 3 2 から炉 2 1 内に投入される焼却物 Aは通常流動床 2 2の 一定の部分、 即ち中央部分に落下するよ う になってい る。 この場合、 図示されてはいないがスブレ ッ ダを用い て焼却物 Aを分散させても よい。 焼却物投入量計測装置 3 3 によ り炉 2 1 内に投入される焼却物 Aの量又は嵩が 通常よ り多いか、 又は性質上燃えやすいとされた場合、 空気量調節装置 3 9 は直ちに開閉弁 3 6 を閉じ る と共 に、 開閉弁 3 5 を開く 。 これに よ り 、 中央部分のエア チャ ンバ一 2 8 に送り込まれる空気量は ミ ニマムフ ロー 弁 3 7 を通して送られる空気量、 即ち流動媒体の一部が 炉下部に漏れるのを防止する最小の空気量となり、 この 部分の流動床 2 2の流動媒体の流動は緩慢となる。 同時 に空気ノ ズル 3 8から流動床 2 2 の上部空間に空気が吹 き込まれる。 また、 焼却物投入量計測装置 3 3で計測さ れた焼却物 Aは、 流動媒体の流動が緩慢となった流動床 2 2の中央部分に落下する。 これによ り、 焼却物 Aの落 下点の流動媒体の流動は緩慢となっているから焼却物 A のガス化即ち燃焼速度は遅く な り、 排ガスも急激に増加 する ことはない。 また、 流動床 2 2への送り込み空気量 を減らすこ と に よ り 、 流動床 2 2 の酸素濃度 0 2は若干 減少しその分未燃ガスが増えるが、 空気ノ ズル 3 8や二 次空気入口、 或いはそのいずれもを利用してフ リーボー ド部 2 9等の流動床 2 2の上部空間に空気を吹き込んで い るので、 こ の増えた未燃ガスは燃焼する。
この場合、 一次空気量 C tの減少分の等量を空気ノ ズ ル 8から一次空気 C 2と して供給してもよい。
第 1 6図は第 1 5 図に示す構成の流動床焼却炉におけ る従来の燃焼制御方法よる焼却物 Aの投入量の時間変動 に対する排ガス量 B、 一次空気量 C、 二次空気量 D及び 排ガス中の酸素濃度 Eの変動を示す図で、 第 1 7図は本 発明に係る燃焼制御方法による焼却物 Aの投入量の時間 変動に対する排ガス量 B、 一次空気量( d , C 2 ) , 二 次空気量 D及び排ガス中の酸素濃度 Eの変動を示す図で め a
従来の燃焼制御方法によると、 時刻 で焼却物 Aが 投入される と、 す ぐに燃焼が開始し、 排ガス中の酸素濃 度 Eは急激に低下する。 こ の排ガス中の酸素濃度 Eの低 下を受けて、 二次空気量 Dが増え、 排ガス量 B も増大す る。 燃焼が進行する と炉 2 1 内の未燃物が少な く な り、 排ガ 中の酸素濃度 Eが上昇するので二次空気量 Dが絞 られ排ガス量 Bが減少する。 時刻 t 2から焼却物 Aが投 入される と、 上記と 同じ動作を繰り返す。 即ち、 焼却物 Aに応じて二次空気量 D、 排ガス量 B及び排ガス中の酸 素濃度 Eの大幅な変動をき たし、 排ガス中の酸素濃度 E が低いと き未燃ガスの排出と なる。
これに対して、 本発明の燃焼制御: &法を用いる場合、 時刻 t i , t ί 毎に焼却物 Αが投入される と 同時に 開閉弁 3 6 を閉じる と共に、 開閉弁 3 5 を開き、 一次空 気悬は流動床 2 2 の上下に分け一定量づっ(空気ノ ズル
3 8から吹き込まれる一次空気量 C 2 , エアチ ャ ンバ一
2 8から吹き込まれる一次空気量 C i )送り込まれ、 二 •5 次空気量 Dは排ガス中の酸素濃度 Eによるフ ィー ドバッ ク制御でコ ン ト ロールされている。 従って、 時刻 に 焼却物 Aが投入されると、 該焼却物 Aが落下した部分の 流動床 2 2の下部からの一次空気量 C iは減少して流動 媒体の流動は緩慢となり、 流動媒体から焼却物 Aへの伝 1 () 熱量が抑えられ焼却物 Aのガス化、 即ち燃焼が抑制され 燃焼速度が遅く なる。 また、 燃焼速度が遅いから、 排ガ ス中の酸素濃度 Eの急激な低'下は起こ らない。 若干の低 下は起こるが、 二次空気量 Dを制御し、 排ガス中の酸素 濃度 Eの制御を行なうから、 排ガス中の酸素濃度 Eは殆 15' ど変動しない。 一定時間経過したら、 空気ノ ズ 3 8か らの一次空気量 C 2の吹き込みを停止し、 該一次空気量
C 2を流動床 2 2の下から吹き込むと、 流動床 2 2の中 央部分も流動化が活発となり、 通常の運転にも どる。 こ の時炉床内の揮発分は既に燃焼し終わっているから、 燃
20 焼は緩やかなも の となり、 急激な酸素濃度変動ゃ排ガス 量 Bの変動もなく安定した炉内状況が得られる。
なお、 第 1 5図に示す構成の流動床においても、 例え ぱ配管 2 5に制御弁を接続し、 炉 2 1 内に投入される焼 却物 Aが所定量以上の場合、 開閉弁 3 6 を.閉じる と同時 25 に前記制御弁を絞り 、 エアチ ャ ンバ一 2 6 を介して送り 込まれる一次空気量 を減少させ、 空気ノ ズル 3 8か ら流動床 2 2上部空間に吹き込む空気量を増大させるよ うに しても よい。 上記第 1 図の流動床燁却炉における本 発明の燃焼制御と 同様な燃焼制御方法を併用 しても よ い。 更に、 この場合、 一次空気量 C iの減少分と等量分 を空気ノ ズル 8から一次空気量 C 2と して供給してもよ い。 また、 上記制御方法を実施する流動床焼却炉の概略 構成は、 第 1 5図に示されるものに限定されるも のでは ない。
なお、 上記実施例は燃焼制御方法を何れも流動床焼却 炉を用いて説明 したが、 こ の流動床焼却炉は熱回収を 目 的と した *謂流動床ボイ ラーでも よいこ と は当然である から、 本発明の流動床焼却炉と は流動床ボイ ラーを含む ものとする。
以上説明 したよ うに、 本発明に係る流動床焼却炉にお ける燃焼制御 ¾法は、 発熱量が異なったり、 燃えやすさ などの性状や形状及び嵩が異なる燃焼物である石炭、 都 市ゴ ミ 、 産業廃棄物或いはこれらを混合した燃焼対象物 と して流動床炉に投入しても燃焼空気量及び排ガス量が 略一定に維持されると共に、 排ガス中の酸素濃度も咯ー 定に維持でき るから、 流動床焼却炉を用いる都市ゴ ミ等 の焼却設備において、 一次及び二次空気の送風装置、 鯡 ガス処理設備等の流動床焼却炉の周辺装置をコ ンパク ト にでき 、 建設費を安価にでき る と共に、 未燃ガスの大気 中の放出も極力抑える こ とが可能であ り、 大気汚染防止 の点からも効果的である。
産業上の利用可能性
以上のょゔに、 本発明に係る流動床焼却炉における燃 焼制御 法ほ、 流動床焼却炉に投入される燃焼量が変動 しても、 排ガス中の酸素濃度及び排ガス量の変動を小さ く抑えるこ とができ、 且つ未燃ガスの排出を防止でき る から、 流動床焼却炉を具備する焼却設備等における燃焼 制御方法と して有効である。 尧熱量が異なったり、 燃え やすさ等の性状や形状及び嵩が異なる焼却物である石 炭、 都市ゴ-ミ、 産業廃棄物或いはこれらの混合燃焼物を 燃焼対象物と した場合に、 特に顕著に安定した燃焼制御 を行なう ことが容易に行なえ、 流動床焼却炉を具備する 都市ゴ ミ焼却設備等の燃焼制御方法と して適している。

Claims

請 求 の 範 囲
1 . 流動床下部から送り込む空気によ り流動媒体を流 動させ、 炉内に投入される焼却物を燃焼させる流動床焼 却炉において、 前記炉内で燃焼する焼却物の燃焼量を燃 焼量検出手段で検知し、 該燃焼畺が所定量以上の場合前 記流動床下部から送り込む空気量を減少させ、 該燃焼量 が前記所定量以下と なった場合元に戻し、 炉内で燃焼す る焼却物の燃焼量を前記所定量に維持制御する こ と を特 徴とする流動床焼却炉における燃焼制御 fif法。
2 . 流動床下部から送り込む空気によ り流動媒体を流 動させ、 炉内に投入される焼却物を燃焼させる流動床焼 却炉において、 前記炉内で燃焼する焼却物の燃焼量を燃 焼量検出手段で検知し、 該燃焼量が所定量以上の場合前 記流動床下部から送り込む空気量を減少させる と共に流 動床上部の空間に吹き込む空気量を増大させ、 該燃焼畺 が前記所定量以下と なつた場合前記流動床下部から送り 込む空気量を元に戾すと共に前記流動床上部の空間に吹 き込 空気量を減少させる こ と に よ り 、 炉内で燃焼する 焼却物の燃焼量を前記所定量に維持制御する こ と を特徴 とする流動床焼却炉における燃焼制御方法。
3 . 前記燃焼量が所定量以上の場合流動床上部の空間 に吹き込む空気量が流動床下部から送り込む空気量の減 少分と等量であ り、 燃焼量が前記所定量以下と なった場 合流動床上部の空間に吹ぎ込む空気量の減少分が流動床 下部から送り込む空気量の増加分と等量である こ と を特 钹とする請求項 2記載の流動床焼却炉における燃焼制御 法。 '
4 . 前記流動床焼却炉は流動化倍率が 1乃至 4の範囲 の空塔速度で運転されている こ と を特徴とする請求項 1 乃至 3のいづれか 1 に記載の流動床焼却炉における燃焼 制御 ¾法 0
5 . 燃焼量制御手段が炉内の明るき を検出する明るさ 検出センサを具備し、 該明るさ検出センサの出力から燃 焼量を制御する制御手段であるこ と を特徵とする請求項 1乃至 4のいづれか 1 に記載の流動床焼却炉における燃 焼制御方法。
6 . 前記燃焼量制御手段の明るさ検出'センサは炉内の 二次空気吹き込み位置よ り上方に設けたこ とを特徴とす る請求項 5記載の流動床焼却炉における燃焼制御方法。
7 . 流動床下部から送り込む空気によ り流動媒体を流 動させ、 炉内に投入される焼却物を燃焼させる流動床焼 却炉において、 炉内に投入される焼却物の iヌは嵩を検 出する手段を設け、 該炉内に投入される焼却物の量又は 嵩から燃焼量を制御する制御手段を具備し、 炉内で燃焼 する焼却物の燃焼量が所定量以上の場合前記流動床下部 から送り込む空気量を減少させる と共に燃焼量が所定量 以下の場合元に戾し、 炉内で燃焼する焼却物の燃焼量を 前記所定量に維持制御する こ とを特徵とする流動床焼却 炉における燃焼制御 法。
8 . 流動床下部から送り込む空気によ り流動媒体を流 動させ、 炉内に投入される焼却物を燃焼させる流動床焼 却炉において、 炉内に投入される焼却物の量又は嵩を検 出する手段を設け、 該炉内に投入される焼却物の量又は 嵩から燃焼量を制御する制御手段を具備し、 炉内で燃焼 する焼却物の燃焼量が所定量以上の場合前記流動床下部 から送り込む空気量を減少させる と共に流動床上部の空 間に吹き込む空気量を増大させ、 該燃焼量が前記所定量 以下と なった場合前記流動床下部から送り込む空気量を 元に戾すと共に前記流動床上部の空間に吹き込む空気量 を減少させる こ と によ り、 炉内で燃焼する焼却物の燃焼 量を前記所定量に維持制御する こ と を特徴とする流動床 焼却炉における燃焼制御方法。
9 .'流動床下部から送り込む空気によ り流動'媒体を流 動させ、 炉内に投入される焼却物を燃焼させる流動床焼 却炉において、 炉内の温度を検出する温度検出手段を設 け、 炉内の温度か ら燃焼量を制御する制御手段を具備 し 、 炉内で燃焼する焼却物の燃焼量が所定量以上の場 合、 前記流動床下部から送り込む空気量を減少させ、 該 燃焼量が前記所定量以下と なった場合元に戾し、 炉内で 燃焼する焼却物の燃焼量を前記所定量に維持制御する こ と を特徴とする流動床焼却炉における燃 制御: &法。
1 0 . 流動床下部から送り込む空気によ り流動媒体を 流動させ、 炉内に投入され。る焼却物を燃焼させる流動床 焼却炉において、 炉内の温度を検出する温度検出手段を 設け、 炉内の温度から燃焼量を制御する制御手段を具備 し、 炉内で燃焼する焼却物の燃焼量が所定量以上の場 合、 前記流動床下部から送り込む空気量を滅少させる と 共に流動床上部の空間に吹き込む空気量を増大させ、 該 燃焼最が前記薪定量以下となつた場合前記流動床下部か ら送り込む空気量を元に戾すと共に前記流動床上部の空 間に吹き込む空気量を減少させることによ り、 炉内で燃 焼する焼却物の燃焼量を前記所定量に維持制御するこ と を特锒とする流動床焼却炉における燃焼制御 法。
1 1 . 流動床下部から送り込む空気によ り流動媒体を 流動させ 炉内に投入される焼却物を燃焼させる流動床 焼却炉において、 排ガス中の酸素澳度を検出する酸素濃 度検出手段を設け、 排ガス中の酸素濃度から燃焼量を制 御する燃焼量制御手段を具備し、 炉内で燃焼する焼却物 の燃焼量が所定量以上の場合前記流動床下部から送り込 む空気量を減少させ、 該燃焼 '量が前記所定量以下と-なつ た場合元に戾し、 炉内で燃焼する焼却物の燃焼量を前記 所定量に維持制御するこ .と を特徵とする流動床焼却炉に おける燃焼制御方法。
1 2 . 流動床下部から送り込む空気によ り流動媒体を 流動させ、 炉内に投入される焼却物を燃焼させる流動床 焼却炉において、 排ガス中の酸素濃度を検出する酸素濃 度検出セ ンサを設け、 排ガス中の酸素濃度から燃焼量を 制御する燃焼量制御手 を具備し、 炉内で燃焼する焼却 物の燃焼量が所定量以上の場合前記流動床下部から送り 込む空気量を減少させると共に流動床上部の空間に吹ぎ 込む空気量を増大さ せ、 該燃焼量が前記所定量以下と なった場合前記流動床下部から送り込む空気量を元に戾 すと共に前記流動床上部?)空間に吹き込む空気量を減少 させる こ と によ り、 炉内で燃焼する焼却物の燃焼量を前 記所定量に維持制御する こ と を特徴とする流動床焼却炉 における燃焼制御方法。
1 3 . 流動床下部から送り込む空気によ り流動媒体を 流動させ、 炉内に投入される焼却物を燃焼させる流動床 焼却炉において、 炉内圧を検出する圧力検出手段を設 け、 炉内の圧力から燃焼量を制御する燃焼量制御手段を 具備し、 炉内で燃焼する焼却物の燃焼量が所定量以上の 場合前記流動床下部から送り込む空気量を減少させ、 該 燃焼量が前記所定量以下と なった場合元に戾し.、 炉内で 燃焼する焼却物の燃焼量を前記所定量に維持制御する こ と を特徴とする流動床焼却炉における燃焼制御方法。
1 . 流動床下部から送り込む空気によ り流動媒体を 流動させ、 炉内に投入される焼却物を燃焼させる流動床 焼却—炉において、 炉内圧力を検出する圧力検出手段を設 け、 炉内の圧力から燃焼量を制御する燃焼量制御手段を 具備し、 炉内で燃焼する焼却物の燃焼量が所定量以上の 場合前記流動床下部から送り込む空気量を減少させる と 共に流動床上部の空間に吹き込む空気量を増大させ、 該 燃焼量が前記所定量以下と なった場合前記流動床下部か ら送り込む空気量を元に戻すと共に前記流動床上部の空. 間に吹き込む空気量を減少させる こ と によ り、 炉内で燃 焼する焼却物の燃焼量を前記所定量に維持制御するこ と を特徵とする流動床焼却炉における燃焼制御方法。
1 5 . 流動床下部から送り込む空気によ り流動媒体を 流動させ、 炉内に投入される焼却物を燃焼させる流動床 焼却炉において、 焼却物の性質等から燃焼量を制御する 制御手段を具備し、 炉内で燃焼する焼却物の燃焼量が所 定量以上の場合、 前記流動床下部から送り込む空気量を 減少させ、 該燃焼量が前記所定畺以下となった場合元に 戾し、 炉内で燃焼する焼却物の燃焼畺を前記所定量に維 持制御するこ とを特徴とする流動床焼却炉における燃焼 制御方法。
1 6 . 流動床下部から送り込む空気によ り流動媒体を 流動させ、 炉内に投入される焼却物を燃焼させる流動床 焼却炉において、 焼却物の性質等から燃焼量を制御する 制御手段を具備し、 炉内で燃焼する焼却物の燃焼量が所 定量以上の場合、 前記流動床下部から送り込む空気量を 減少させると共に流動床上部の空間に吹き込む空気量を 増大させ、 該燃焼量が前記所定量以下となつた場合前記 流動床下部から送り込む空気量を元に戾すと共に前記流 動床上部の空間に吹き込む空気量を減少させるこ と によ り、 炉内で燃焼する焼却物の燃焼量を前記所定量に維持 制御するこ と を特徵とする流動床焼却炉における燃焼制 御: &法。
. 1 7 . 流動床下部から送り込む空気によ り流動媒体を 流動させ、 炉内に投入される焼却物を燃焼させる流動床 焼却炉において、 炉内の明るさ を検出する明るさ検出手 段及び炉内の圧力を検出する圧力検出手段を設け、 該明 るさ検出手段及び圧力検出手段の出力のう ちいずれか大 きいほう を優先させて燃焼量を制御する燃焼量制御手段 を具備し、 炉内で燃焼する焼却物の燃焼量が所定量以上 の場合前記流動床下部から送り込む空気量を減少させ、 該燃焼量が前記所定量以下と なった場合元に戾し、 炉内 で燃焼する焼却物の燃焼量を前記所定量に維持制御する こ と を特徴とする流動床焼却炉における燃焼制御 法。
1 8 , 流動床下部から送り込む空気によ り流動媒体を 流動させ、 炉内に投入される焼却物を燃焼させる流動床 焼却炉において、 炉内の明るさ を検出する明るさ検出手 段及び炉内の圧力を検出する圧力検出手段を設け、 該明 るさ検出手段及び圧力検出手段の出力のう ちいずれか大 きいほう を優先させて燃焼量を制御する-燃焼.量制御手段 を具備し、 炉内で燃焼する焼却物の燃焼畺が所定量以上 の場合前記流動床下部から送り込む空気量を減少させる と共に流動床上部の空間に吹き込む空気量を増大させ、 該燃焼量が前記所定量以下と なつた場合前記流動床下部 から送り込む空気量を元に戻すと共に前記流動床上部の 空間に吹き込む空気量を減少させる こ と によ り、 炉内で. 燃焼する焼却物の燃焼量を前記所定量に維持制御する こ と を特徴とする流動.床焼却炉における燃焼制御方法。
1 9 . 前記流動床焼却炉は流動床下部に複数のユア チ ャ ンバ一を具備し、 該エアチ ャ ンバ一を通 して空気を 送り込むよう に構成されている こ と を特徴とする請求項 1乃至 1 7のいずれか 1 に記載の流動床焼却炉における 燃焼制御方法。
2 0 . 流動床下部から送り込む空気によ り流動媒体を 流動させ、 炉内に投入される焼却物を燃焼させる流動床 焼却炉において、 該流動床焼却炉は流動床下部に複数の エアチャンパ一を具備し、 該エアチャ ンバ一を通して空 気を送り込むよう に構成されており、 投入される焼却物 の落下点部分のエアチャ ンバ一から送り込まれる空気量 を調整して、 焼却物の燃焼量を制御するこ とを特徴とす る流動床焼却炉における燃焼制御方法。
2 1 . 前記投入される焼却物の落下点部分のエアチャ ンパーから送り込まれ'る空気量の減少分を流動床上部の 空間部に吹き込むこ と を特徴とする請求項 2 0記載の流 動床焼却炉における燃焼制御方法。
2 2 . 前記投入される焼却物の落下点部分のエアチヤ ンバーから送り込まれる空気量を滅少させると共にこの 減少分を他のエアチヤ ンバ一よ り送り込むこ とを特徵と する請求項 2 1記載の流動床焼却炉における燃焼制御
2 3 . 前記投入される焼却物が発熱量が異なつたり、 燃えやすさ等の性状や形状及び嵩が異なる燃焼物である こ とを特徴とする請求項 1乃至 2 2のいずれか 1 に記載 の流動床焼却炉における燃焼制御方法。
2 4 . 前記投入される焼却物が石炭、 産業廃棄物、 都 市ゴ ミ或いはこれらの混合燃焼物である こ と を特徴とす る請求項 1乃至 2 3 のいずれか 1 に記載の流動床焼却炉 における燃焼制御方法。
2 5 . 前記流動床焼却炉が流動床ボイ ラであるこ と を 特徵とする請求項 1乃至 2 4のいずれか 1 に記載の流動 床焼却炉における燃焼制御 ^法。
PCT/JP1988/000437 1987-05-01 1988-04-30 Combustion control method for fluidized bed incinerator WO1988008504A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
DE3852174T DE3852174T2 (de) 1987-05-01 1988-04-30 Verfahren zur steuerung der verbrennung für wirbelschichtverbrennungsanlagen.
BR888807488A BR8807488A (pt) 1987-05-01 1988-04-30 Metodo de controle da combustao em incinerador de leito fluidificado
SU884742193A RU2070688C1 (ru) 1987-05-01 1988-04-30 Способ управления горением в печи для сжигания отходов в псевдоожиженном слое
EP88903951A EP0358760B1 (en) 1987-05-01 1988-04-30 Combustion control method for fluidized bed incinerator
JP63503613A JPH0689883B1 (ja) 1987-05-01 1988-04-30
CA000581671A CA1307977C (en) 1988-04-30 1988-10-28 Method of controlling combustion in fluidized bed incinerator
CN88107553.1A CN1017745B (zh) 1988-04-30 1988-10-31 流化床焚烧炉的燃烧控制方法
NO885784A NO169564C (no) 1987-05-01 1988-12-28 Fremgangsmaate for styring av forbrenning av materiale i en ovn med fluidisert sjikt
KR88071749A KR950013976B1 (en) 1987-05-01 1988-12-28 Method of controlling combustion in fluidized bed incinerator
FI894120A FI93673C (fi) 1987-05-01 1989-09-01 Menetelmä aineksen palamisen säätämiseksi leijukerrospolttouunissa
DK541989A DK172333B1 (da) 1987-05-01 1989-10-31 Fremgangsmåde til kontrol af forbrænding i en forbrændingsovn med fluidiseret leje og forbrændingskontrolapparat til en sådan ovn

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10955287 1987-05-01
JP62/109552 1987-05-01

Publications (1)

Publication Number Publication Date
WO1988008504A1 true WO1988008504A1 (en) 1988-11-03

Family

ID=14513134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1988/000437 WO1988008504A1 (en) 1987-05-01 1988-04-30 Combustion control method for fluidized bed incinerator

Country Status (11)

Country Link
US (1) US4986198A (ja)
EP (1) EP0358760B1 (ja)
KR (1) KR950013976B1 (ja)
AT (1) ATE114366T1 (ja)
AU (1) AU608004B2 (ja)
BR (1) BR8807488A (ja)
DE (1) DE3852174T2 (ja)
DK (1) DK172333B1 (ja)
FI (1) FI93673C (ja)
RU (1) RU2070688C1 (ja)
WO (1) WO1988008504A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5226374A (en) * 1990-03-27 1993-07-13 Nkk Corporation Method of controlling combustion of fluidized-bed incinerator

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4091278A (en) * 1976-08-18 1978-05-23 Honeywell Information Systems Inc. Time-independent circuit for multiplying and adding charge
FR2668815B1 (fr) * 1990-11-02 1993-04-09 Chauffe Cie Gle Procede d'incineration de dechets urbains dans une unite comportant un foyer a lit fluidise et une chaudiere, avec epuration intrinseque des fumees.
US5189963A (en) * 1991-09-30 1993-03-02 Mann Carlton B Combustible atmosphere furnace control system
US5826520A (en) * 1996-07-30 1998-10-27 Tempyrox Company, Inc. Apparatus and process for high temperature cleaning of organic contaminants from fragile parts in a self-inerting atmosphere at below the temperature of combustion
NL1013210C2 (nl) * 1999-10-04 2001-04-05 Tno Systeem voor continue thermische verbranding van materie, zoals afval.
US8667908B2 (en) 2010-06-02 2014-03-11 Steelcase Inc. Frame type table assemblies
US8689705B2 (en) 2010-06-02 2014-04-08 Steelcase, Inc. Reconfigurable table assemblies
US9185974B2 (en) 2010-06-02 2015-11-17 Steelcase Inc. Frame type workstation configurations
US9210999B2 (en) 2010-06-02 2015-12-15 Steelcase Inc. Frame type table assemblies
US10039374B2 (en) 2016-05-13 2018-08-07 Steelcase Inc. Multi-tiered workstation assembly
US10517392B2 (en) 2016-05-13 2019-12-31 Steelcase Inc. Multi-tiered workstation assembly
KR102260500B1 (ko) * 2018-12-28 2021-06-03 주식회사 경동나비엔 보일러 및 보일러의 연소 제어방법
CN112097268A (zh) * 2020-09-24 2020-12-18 广东粤华城市服务有限公司 一种固体废弃物处理用流化床焚烧炉

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5217346B2 (ja) * 1973-12-10 1977-05-14
JPS54120964A (en) * 1978-03-13 1979-09-19 Kubota Ltd Automatic control method of incinerator
JPS54128170A (en) * 1978-03-28 1979-10-04 Mitsubishi Heavy Ind Ltd Burning-up furnace
JPS56914A (en) * 1979-06-16 1981-01-08 Kubota Ltd Dust incinerator
JPS59195019A (ja) * 1983-04-21 1984-11-06 Ebara Corp 流動床燃焼炉
JPS6149929A (ja) * 1984-08-20 1986-03-12 Ebara Corp 炉内圧制御方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3319586A (en) * 1961-07-10 1967-05-16 Dorr Oliver Inc Treatment and disposal of waste sludges
US3847082A (en) * 1969-08-29 1974-11-12 Pacific Technica Corp Spin stabilized, discarding sabot projectile
DK310979A (da) * 1978-08-04 1980-02-05 Energy Equip Fremgangsmaade til styring af driften af fyringsanlaeg med fluidiseret bund samt midler til brug ved fremgangsmaadens gennemfoerelse
JPS5533510A (en) * 1978-08-31 1980-03-08 Babcock Hitachi Kk Fluidized bed combustion control method
JPS57127716A (en) * 1981-01-29 1982-08-09 Ebara Corp Fluidized incineration
JPS591912A (ja) * 1982-06-24 1984-01-07 Kawasaki Heavy Ind Ltd 流動層を備える燃焼炉の燃焼制御方法
JPS5952105A (ja) * 1982-09-20 1984-03-26 Babcock Hitachi Kk 流動層燃焼装置の運転方法
JPS59107111A (ja) * 1982-12-09 1984-06-21 Ebara Corp ごみの流動床式焼却方法
US4499857A (en) * 1983-10-17 1985-02-19 Wormser Engineering, Inc. Fluidized bed fuel burning
JPS61100612A (ja) * 1984-10-24 1986-05-19 Ebara Corp 焼却用廃棄物の投入量計測装置
JPS61110809A (ja) * 1984-11-01 1986-05-29 Ebara Corp 燃焼排ガス酸素濃度の制御方法
US4742783A (en) * 1987-08-06 1988-05-10 Phillips Petroleum Company Incinerator combustion air control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5217346B2 (ja) * 1973-12-10 1977-05-14
JPS54120964A (en) * 1978-03-13 1979-09-19 Kubota Ltd Automatic control method of incinerator
JPS54128170A (en) * 1978-03-28 1979-10-04 Mitsubishi Heavy Ind Ltd Burning-up furnace
JPS56914A (en) * 1979-06-16 1981-01-08 Kubota Ltd Dust incinerator
JPS59195019A (ja) * 1983-04-21 1984-11-06 Ebara Corp 流動床燃焼炉
JPS6149929A (ja) * 1984-08-20 1986-03-12 Ebara Corp 炉内圧制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0358760A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5226374A (en) * 1990-03-27 1993-07-13 Nkk Corporation Method of controlling combustion of fluidized-bed incinerator

Also Published As

Publication number Publication date
EP0358760B1 (en) 1994-11-23
FI93673B (fi) 1995-01-31
KR950013976B1 (en) 1995-11-18
DK541989A (da) 1989-10-31
BR8807488A (pt) 1990-05-15
EP0358760A4 (en) 1992-05-13
DK172333B1 (da) 1998-03-23
FI894120A (fi) 1989-09-01
FI93673C (fi) 1995-05-10
RU2070688C1 (ru) 1996-12-20
FI894120A0 (fi) 1989-09-01
DE3852174D1 (de) 1995-01-05
KR890700789A (ko) 1989-04-27
AU1689688A (en) 1988-12-02
ATE114366T1 (de) 1994-12-15
EP0358760A1 (en) 1990-03-21
DK541989D0 (da) 1989-10-31
DE3852174T2 (de) 1995-06-29
US4986198A (en) 1991-01-22
AU608004B2 (en) 1991-03-21

Similar Documents

Publication Publication Date Title
US4838183A (en) Apparatus and method for incinerating heterogeneous materials
EP1726876B1 (en) Improved method of combusting solid waste
WO1988008504A1 (en) Combustion control method for fluidized bed incinerator
US3658482A (en) Afterburner
US4332206A (en) Afterburner for combustion of starved-air combustor fuel gas containing suspended solid fuel and fly ash
JP3135892B2 (ja) 焼却装置の火力を制御する方法
WO2008079319A2 (en) Method and systems to control municipal solid waste density and higher heating value for improved waste-to-energy boiler operation
JP6696790B2 (ja) ストーカ式焼却炉
JP2008064361A (ja) ストーカ式焼却炉及びその燃焼制御方法
JP6695161B2 (ja) ストーカ式焼却炉
US3905312A (en) Process and apparatus for incinerating waste materials
CA1290988C (en) Method of combustion for fluidized bed incinerators
JP2001012716A (ja) 乾留ガス化燃焼装置の燃焼制御システム
CN113574320B (zh) 焚烧炉
JP3247066B2 (ja) 流動床焼却炉のフリーボード温度制御方法
JP3108742B2 (ja) 流動床焼却炉における燃焼制御方法
JPH071084B2 (ja) ボイラ付き流動床炉の空気量制御方法
CA1307977C (en) Method of controlling combustion in fluidized bed incinerator
US3516370A (en) Furnaces
JPH0490409A (ja) 流動床式焼却炉における燃焼制御方法及び制御装置
WO2008029712A1 (fr) Incinérateur à distributeur automatique et procédé pour réguler la combustion dans l'incinérateur
JP3789872B2 (ja) 乾燥汚泥を利用する廃棄物焼却炉の運転方法
JP3098240B2 (ja) 固形燃料燃焼制御方法
JPS6364688B2 (ja)
JP2795957B2 (ja) 廃棄物焼却炉の燃焼制御方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR DK FI JP KR NO SU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 894120

Country of ref document: FI

WWE Wipo information: entry into national phase

Ref document number: 1988903951

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1988903951

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1988903951

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 894120

Country of ref document: FI