WO1988003282A1 - Negative feedback control system - Google Patents
Negative feedback control system Download PDFInfo
- Publication number
- WO1988003282A1 WO1988003282A1 PCT/JP1987/000830 JP8700830W WO8803282A1 WO 1988003282 A1 WO1988003282 A1 WO 1988003282A1 JP 8700830 W JP8700830 W JP 8700830W WO 8803282 A1 WO8803282 A1 WO 8803282A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- control amount
- output
- decrement
- deviation
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B11/00—Automatic controllers
- G05B11/01—Automatic controllers electric
- G05B11/36—Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
Definitions
- the present invention relates to a negative feedback control system, and more particularly to a negative feedback control system using a digital signal.
- detecting means for outputting an increment signal or a decrement signal in accordance with a fixed amount of control amount, and detecting these increment signals by +1, The decrement signal is counted as 11 and this count value is compared with the target value of the control amount.
- a digital negative feedback control system having two types of negative feedback paths: a second path for amplifying the count value as it is by an amplifying means having a high response speed without integration.
- FIG. 1 The general configuration of such a system is shown in FIG. 1
- the control amount detecting means 4 detects an increase or decrease of a predetermined unit amount of the control amount and outputs an increment signal or a decrement signal.
- the increment signal is counted as +1 unit amount of the control amount
- the decrement signal is counted as -1 unit amount of the control amount.
- the first deviation detecting means 6 detects a deviation between the target value and the output of the simple counting means 5 and outputs a high value.
- the fast feedback amplifying means 2 amplifies the power of the simple counting means 5 by a fast response time which does not include the integration, and the low speed amplifying means 7 slows down the response including the integration of the output of the first deviation detecting means 6.
- the second deviation detection means 8 detects the deviation between the output of the low-speed amplification means 7 and the output of the high-speed feedback amplification means 2, and the control amount increasing / decreasing means 3 detects the second deviation.
- the control amount is increased or decreased according to the output of the detecting means 8. '
- the output of the simple counting means 5 is quickly amplified by the high-speed feedback amplification means 2 and input to the second deviation detection means 8 as negative feedback. If the detected deviation is positive, the control amount increasing / decreasing means 3 operates to reduce the control amount. As a result, the control amount decreases, and when this decrease corresponds to the n unit amount, the control amount detecting means 4 detects a change in the -II unit amount of the control amount and outputs a decrement signal n ⁇ . The simple counting means 5 detects this, and the output of the simple counting means 5 is amplified by the high-speed feedback amplification means 2 and input to the second deviation detecting means 8.
- the controlled variable increasing / decreasing means 4 controls the controlled variable. It is activated to increase the temperature. Then, the control amount increases again, and this increase is detected, and the system again tries to decrease the control amount again.
- the control amount is increased or decreased as described above. Will endlessly repeat at the natural vibration frequency of. In this case, only the above-mentioned loop affects the vibration, and the signal from the path passing through the low-speed amplification means including the integral and having a slow response has a slow response and is not related to the vibration.
- the above-mentioned phenomenon occurs in the digital servo system of the motor, and microvibrates at a frequency of several 10 to 100 several 1 QHz around the position commanded to stop. Disclosure of the invention
- An object of the present invention is to provide a negative feedback control system that suppresses generation of vibration during high-speed negative feedback control using a digital signal.
- a negative feedback control system comprises: a control amount detecting means for detecting an increase or decrease of a predetermined unit amount of a control amount and outputting an increment signal or a decrement signal; Simple counting means for counting the increment signal as +1 unit amount of the control amount and the decrement signal as -1 unit amount of the control amount; and Of the decrement signals, up to n consecutive decrement signals immediately after the increment signal and up to n consecutive decrement signals immediately after the decrement signal The increment signal is not counted, and the increment signal from the (n + 1) th continuous unit is incremented by + 1 unit of the control amount, and the increment from the (n + 1) th continuous unit A vibration suppression counting means for counting the signal as -1 unit amount of the control amount, and a hundred value of the control amount A control amount purpose ⁇ Ordinance means command for a first deviation detecting means for detecting a deviation between the output of the simple counting means and said target value, out of the vibration suppressing counting means High-speed feedback amplifying means for
- FIG. 1 is a diagram showing a general configuration of a conventional negative feedback control system.
- FIG. 2 is a diagram showing a basic configuration of a negative feedback control system according to the present invention.
- Fig. 3 is a diagram showing the hardware configuration of the motor servo system.
- Figure 4 is a block diagram of a conventional motor servo system
- the fifth surface is a diagram showing a configuration of a negative feedback control system in a motor servo system as an embodiment of the present invention.
- FIG. 2 is a diagram showing a basic configuration of the present invention, and corresponds to the conventional eclipse feedback control system shown in FIG. 1 described above.
- the integration is fast and the response speed is high. output
- the output of the vibration suppression counting means 1 newly provided according to the present invention is input.
- the vibration suppression counting means 1 receives the continuous ⁇ immediately after the increment signal out of the increment signal and the decrement signal from the control amount detecting means 4 described above. It does not count up to ⁇ increment signals and up to ⁇ consecutive increment signals immediately after the decrement signal.
- the count signal is counted as +1 unit amount of the control amount, and the decrement signal from the nth station is counted as -1 unit amount of the control amount.
- Fig. 3 shows the schematic structure of the hard disk of the motor's digital servo system.
- the system of FIG. 3 comprises a microphone mouth computer 100, a switching amplifier 31 ', a motor 30 and a pulse encoder 4'.
- the motor 30 is driven by the switching lamp 31 ′, and the increase or decrease in its rotational position is detected by the pulse encoder 4 ′.
- the output of the pulse encoder has a phase of 180 o A signal consisting of two phases, A-phase and B-phase, that changes from one of the H level and L level to the other every time, and the phase of the A phase is 90 'ahead of the B phase
- the rising and falling edges of the signals in the A phase and the B phase are the increment signals, and the A phase in the case where the phase of the B phase is 90 'ahead of the A phase.
- the rising and falling edges of the signals at both the camp and the citrus are the aforementioned decrement signals.
- the microcomputer 100 receives a position command for the rotation position of the motor 30 from the host computer, the incremental signal and pulse signal from the pulse encoder as described above are received. By counting the count signal, the rotational position and rotational speed of the motor are recognized, and the deviation from the position command value or the like is performed. Then, based on the deviation, a PWM signal is output to the switching amplifier 30 as a drive 5 command so that the actual rotational position of the motor approaches the above-mentioned position command value. As a result, the switching * amplifier 31 ′ drives the motor 30 to approach the position command value.
- FIG. 4 is a block diagram showing a flow of a conventional general control signal in a motor servo system having the above-described hardware configuration as shown in FIG. 3 using a transfer function. It is.
- the position command is amplified by the position gain K P after taking the deviation from the position feedback signal, and outputs the speed command.
- the speed command deviates from the speed feedback signal.
- the transfer function is divided by the proportional integral shown by Its output is the velocity Fi over Dobakku signal is output after being taken deviation further ⁇ by torque command to that proportional amplified is shown by gain K 2.
- the motor angular velocity ⁇ is obtained by subtracting the torque reduction due to the load and the disturbance from the torque command.
- the angular velocity ⁇ is negatively fed back as the above-mentioned velocity feedback.
- the angle which is the time integral of the angular velocity ⁇ is taken out as the position feedback signal.
- FIG. 5 clearly shows the procedure of the mining process performed by the microcomputer 100 when the present invention is applied to the servo system of the motor shown in FIGS. 3 and 4 described above. It has been.
- the position detecting means 4 ′ corresponds to the panel encoder of FIG. 3
- the torque generating means 31 corresponds to the switching amplifier 31 of FIG. 3, and the motor 30. All the means shown by blocks other than those shown in FIG. 3 are realized by the micro computer 100 shown in FIG. 3 by various kinds of processing performed for realizing the present invention. is there.
- the position detecting means (pulse encoder) 4 'shown in FIG. 5 detects an increase or decrease of the motor rotation position by a predetermined angle and outputs an increment signal or a decrement signal. This corresponds to the control amount detection means 4 in FIG.
- the speed counting means 51 shown in FIG. 5 sets the increment signal to +1 and the decrement signal to -1 out of the output of the position detecting means 4 'every predetermined time. The counting is performed, and the position counting means 52 counts through the increment signal and the decrement signal.
- the speed counting means 51 and the position counting means 52 correspond to the simple counting means 5 in FIG.
- the position deviation detecting means 90 in FIG. 5 compares a position command commanded from a host * computer (not shown) with the output of the position counting means 52, and takes the deviation.
- the position deviation amplifying means 91 amplifies the output of the position deviation detecting means 90 and outputs it as a speed command.
- the speed deviation detecting means 6 'compares the output of the speed command with the output of the speed counting means 51, and takes the difference.
- the position deviation detection means 90 in FIG. 5 is also performed. This corresponds to the first deviation detecting means 6 in FIG.
- the position deviation detecting means 90 and the position deviation amplifying means 91 shown in FIG. 5 output a speed command. It can be considered to correspond to command means 9.
- Speed deviation integrating means 7 of FIG. 5. 'Fourth in to perform fast amplification response speed, including the integration of the output of said speed deviation detecting means 6 r Figure K t
- the speed counting proportional amplifying means 2 ′ corresponds to the calculation K 2 in FIG. 4 and corresponds to the high-speed feedback amplifying means 2 in FIG. 2, and includes a vibration suppression speed counting means provided by the present invention, which will be described later. Multiply the output of 1 'by a constant.
- the final deviation detecting means 8 'in FIG. 5 corresponds to the second deviation means 8 in FIG. 2, and the deviation between the output of the velocity deviation integrating means 7' and the output of the velocity counting proportional amplification means 2 '.
- the torque generating means 31 supplies current to the motor in order to generate a torque corresponding to the output of the final deviation detecting means 8 ', and corresponds to the control amount increasing / decreasing means 3 in FIG.
- the vibration suppression speed counting means 1 ′ shown in FIG. 5 is controlled by the position detecting means 4 ′ within a predetermined time (for example, a predetermined clock), similarly to the speed counting means 51.
- Increment and decrement signals are counted during the clock cycle or between multiple clocks, provided that the increment and decrement signals are counted.
- Out of the increment signals, up to n consecutive decrement signals immediately after the increment signal, and up to n consecutive increments immediately after the decrement signal The count signal is not counted, and the incremental signal from the first consecutive ⁇ ⁇ is counted as a signal that increases the unit by 1 unit of speed.
- the decrement signal is counted as a signal that decreases the speed by one unit.
- this can be suppressed for a system that vibrates with an amplitude corresponding to ⁇ or less of the output signal of the pulse encoder 4 ′.
- the eclipse feedback control system according to the present invention is particularly useful in a servo system of a motor.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Control Of Position Or Direction (AREA)
- Control Of Electric Motors In General (AREA)
- Feedback Control In General (AREA)
Description
明 細 書 負帰還制御システム 技術分野
本発明は負帰還制御システム、 特に、 ディ ジタル信号によ る負帰還制御システムに関する。 背景技術
従来、 制御量の一定量の增減に応じて各々 ィ ンク リ メ ン ト 信号、 或いはデク リ メ ン ト信号を出力する検出手段と、 これ らの イ ンク リ メ ン ト信号を + 1 、 ディ ク レメ ン ト信号を一 1 と計数してこの計数値を該制御量の目的値と比較し、 その偏 差を、 積分を舍む応答速度の遅い増幅手段で増幅する第 1 の 経路と、 前記計数値をそのまま、 積分を含まない応答速度の 速い増幅手段で増幅する第 2 の経路との 2種類の負帰還経路 を有するディ ジタル負帰還制御システムがある。
そのようなシステムの一般的構成を第 1図に示す。
第 1図において制御量検出手段 4 は制御量の所定の一単位 量の増減を検出してイ ンク リ メ ン ト信号或いはデク リ メ ン ト 信号を出力し、 単純計数手段 5 は、 前記イ ンク リ メ ン ト信号 を前記制御量の + 1 単位量、 前記デク リ メ ン ト信号を前記制 御量の - 1単位量として計数し、 制御量目的値指令手段 8 は 前記制御量の目的値を指令し、 第 1 の偏差検出手段 6 は、 前 記目的値と前記単純計数手段 5 の出力との偏差を検出し、 高
速帰還増幅手段 2 ば前記単純計数手段 5 の岀カを積分を含ま ない応答の速い演箕により増幅し、 低速増幅手段 7 は前記第 1 の偏差検出手段 6の出力を積分を含む応答の遅い演算によ り增幅し、 第 2 の偏差検出手段 8 は前記低速増幅手段 7 の岀 力と前記高速帰還増幅手段 2の出力との偏差を検出し、 制御 量増減手段 3 は前記第 2 の偏差検出手段 8 の出力に応じて該 制御量を増減させる。 '
前述の第 1図の搆成において単純計数手段 5 の出力は高速 帰還増幅手段 2において速かに増幅され、 第 2 の偏差検出手 段 8 に負帰還として入力される。 もし検出された偏差が、 正 の場合には、 制御量増減手段 3 は該制御量を減少させるベく 作動する。 これにより該制御量は減少し、 この減少が n単位 量に相当する場合制御量検出手段 4は制御量の - II単位量の 変化を検出してデク リ メ ン ト信号を n偭出力する。 前記単純 計数手段 5 はこれを検出し、 該単純計数手段 5 の出力は前記 高速帰還増幅手段 2 において増幅され前記第 2 の偏差検出手 段 8に入力される。 もし、 ここで前記制御量の— n単位量の 変化によつて、 該第 2 の偏差検出手段 8 にて検出された偏差 が食であると、 今度は前記制御量増減手段 4は該制御量を增 加させるベく作動する。 すると再び該制御量ば増加し、 この 増加を検出してこのシステムはまた再び該制御量を減少させ よう とする。 このように、 第 1図のシステムにおいて該制御 量を一定の値に止めよう とするとき該制御量の変動に対して 働く摩擦力が小さい場合には、 上述のよ な制御量の増減を システムの固有振動周波数で際限なく橾り返すことになる。
この場合振動に影響するのは上記のループのみであって積 分を含み応答の遅い低速増幅手段を通る経路からの信号は応 答が遅いため上記の振動には関係しない。
例えば、 上述の現象は、 モータのディ ジタルサ一ボシステ ムにおいて発生し、 静止すべく 指令した位置を中心に数 10〜 1 00数 1 Q Hzの周波数で微小振動をする。 発明の開示
本発明の目的は、 ディ ジタル信号を用いた高速の負帰還制 御の際の振動の発生を抑制する負帰還制御システムを提供す る こ とにある。
本発明による負帰還制御システムは、 制御量の所定の一単 位量の増減を検出してィ ンク リ メ ン ト信号或いはデク リ メ ン ト信号を出力する制御量検出手段と、 前記イ ンク リ メ ン ト信 号を前記制御量の + 1 単位量、 前記デク リ メ ン ト信号を前記 制御量の - 1 単位量として計数する単純計数手段と、 前記ィ ン ク リ メ ン ト信号およびデク リ メ ン ト 信号の う ち、 ィ ンク リ メ ン ト信号の直後の連続 n個までのデク リ メ ン ト信号、 およ びデク リ メ ン ト信号の直後の連続 n個までのイ ンク リ メ ン ト 信号を計数せず、 連続 n + 1 個目からのイ ンク リ メ ン ト信号 を前記制御量の + 1単位量、 連続 n + 1 個目からのディ ク リ メ ン ト信号を前記制御量の - 1単位量として計数する振動抑 制計数手段と、 前記制御量の百的値を指令する制御量目的 ί 令手段と、 前記目的値と前記単純計数手段の出力との偏差を 検出する第 1 の偏差検出手段と、 前記振動抑制計数手段の出
力を積分を含まない応答の速い演算により増幅する高速帰還 増幅手段と、 前記第 1 の偏差検出手段の出力を積分を舍む応 答の遅い演算により増幅する抵速増幅手段と、 前記低速増幅 手段の出力と前記高速帰還増幅手段の出力との偏差を検出す る第 2 の偏差検出手段と、 前記第 2の偏差検出手段の出力に 応じて前記制御量を増減させる制御量増減手段とを有するこ とを特徴とする。 図面の簡単な説明
第 1図は従来の負帰還制御システムの一般的構成を示す図- 第 2図は本発明による負帰還制御システムの基本的構 を 示す図、
第 3図はモータのサ一ボシステムの八一 ドウエア耩成を示 す図、
第 4図は従来のモータのサーボシステムのブロ ツ ク線図、 そして
第 5面は本発明の実施例としてのモータのサーボシステム における負帰還制御システムの構成を示す図である。 発明を実施するための最良の形態
第 2図は本発明の基本的構成を示す図であり、 前述の、 第 1図に示された、 従来の食帰還制御システムに対応するもの である。 第 2図に示されるように、 本発明の貪帰還制御シス テムにおいては、 積分を舍まず応答速度の速い、 前述の高速 帰還手段 2 に対してば、 従来のように单純計数手段 5 の出力
を入力するのではな く 、 本発明により新たに設けた振動抑制 計数手段 1 の出力を入力する。 この振動抑制計数手段 1 は、 前述の制御量検出手段 4からのィ ンク リ メ ン ト信号およびデ ク リ メ ン ト ί言号のう ち、 ィ ンク リ メ ン ト信号の直後の連続 η 個までのデク リ メ ン ト信号、 およびデク リ メ ン ト信号の直後 の連続 η個までのィ ンク リ メ ン ト信号を計数せず、 連繞 η + 1 個目からのイ ンク リ メ ン ト信号を制御量の + 1 単位量、 連 n 1個目からのデイ ク リ メ ン ト信号を該制御量の— 1単 位量と して計数する。
これにより、 前記制御量検出手段 4から n偭以下のィ ンク リ メ ン ト信号とディ ク リ メ ン ト信号が交互に出力された場合 これらを計数しないので、 次の高速帰還増幅手段 2 にはこの 交互の出力は伝達されず、 従って制御量増減手段 3 も、 上記 交互の出力に応じて作動する こ と もない。 したがって振動の 発生が抑制される。
以下に、 上述の、 本発明による負帰還制御システムの具体 例を示す。
第 3図はモータのディ ジタル ' サ一ボ · システムのハー ド ゥ アの概略構成を示すものである。 第 3図のシステムはマ イ ク 口コ ンピュータ 100 、 スイ ッチ ング . ア ンプ 3 1 ' 、 モ ータ 3 0 、 およびパルスエ ンコ ーダ 4 ' 力、らなる。
モータ 3 0 はスィ ツチングア ンプ 3 1 ' によ って駆動され、 その回転位置の増減はパルスエ ンコーダ 4 ' によって検出さ れる。
パルスエ ンコーダの出力は周知のように、 位相が 180 · 進
o む毎に H レベルと L レベルのう ちの一方から他方へ変化する A相、 B相の 2相からなる信号であって、 該 A相の位相が B 相より 9 0 ' 進んでいる場合における該 A相、 B栢雨者にお ける信号の立上りおよび立下りが、 前記ィ ンク リ メ ン ト信号 であり、 B相の位相が A相より 9 0 ' 進んでいる場合におけ る該 A栢、 B柑両者における信号の立上りおよび立下りが前 記デク リメ ン ト信号である。
マイ ク ロコ ンピュータ 100 ば、 ホス ト ' コ ンピュータより モータ 3 0 の回転位置についての位置指令を受けており、 上0 記のようなパルスエ ンコーダからのィ ンク リ メ ン ト信号およ びデイ ク リ メ ン 卜信号を計数することにより、 モータの回転 位置および回転速度を認識し、 上記位置指令値等との偏差を 演箕する。 そして、 その偏差をもとに、 モータの実際の回転 位置を上記位置指令値に近づけるように、 P W M信号を駆動5 指令としてスィ ツチング ♦ ア ンプ 3 0 に対して出力する。 こ れにより、 スイ ッチング * ア ンプ 3 1 ' はモータ 3 0を駆動 して上記位置指令値に近づける。
第 4図は、 上述の、 第 3図に示されるようなハー ドウェア 構成を有するモータのサ一ボシステムにおける従来の、 一般 的な制御信号の流れを伝達関数を用いて表したプロ ック線図 である。 位置指令は位置フィ一ドバック信号との偏差をとら れた後位置ゲイ ン K P によって増幅され、 速度指令を出力す る。 該速度指令は速度フィ ー ドバック信号との偏差をとられ
Κ!
た後、 伝達関数 —— - で示される比例積分により增幅され、5
その出力は、 前記速度フィ ー ドバック信号がゲイ ン K 2 で示 される比例増幅されたものとの偏差をとられた後更に增幅さ れて ト ルク指令を出力する。 該 ト ルク指令から負荷、 外乱に よる トルク減少分を差し引いたものがモータの角速度 ωとな る。 該角速度 ωは上述の速度フィ ー ドバック として負帰還さ れる。 また該角速度 ωの時間積分である角度 は前記の位置 フ ィ 一 ドバッ ク信号として取り出される。
ところで、 本発明によれば、 上述の、 第 4図の速度フ ィ ー ドバッ ク信号に関しては、 ゲイ ン Κ 2 によって比例増幅され る前に、 モータの振動の原因となるような速度フ ィ ー ドバッ ク信号は取り除かれる。 こ の処理もまた前述のマイ ク;ロ コ ン ピュータ 1 00 によって行なわれる。
第 5図には、 上述の第 3図および第 4図で示されるモータ のサーボシステムに本究明を適用したときに、 前述のマイ ク 口 コ ン ピュータ 1 00 が行なう演箕処理の手順が明らかにされ ている。 第 5図においては、 位置検出手段 4 ' が第 3図のパ ノレス ヱ ンコーダに対応し、 トルク発生手段 3 1 が第 3図のス ィ ツチング ' ア ンプ 3 1 に対応する他、 モータ 3 0以外のブ ロ ッ クで示される手段は、 全て、 第 3図のマイ ク ロ コ ンピュ ータ 1 00 により、 本発明の実現のために行なわれる各種演箕 処理によつて実現されるものである。
まず、 第 5図の位置検出手段 (パルスエ ンコーダ) 4 ' は、 モ ー タ の回転位置の所定角度の増減を検出して、 イ ンク リ メ ン ト信号あるいはデク リ メ ン ト信号を出力するもので、 第 2 図の制御量検出手段 4に対応する。
第 5図の速度計数手段 5 1 は、 上記の位置検出手段 4 ' の 出力のう ちイ ンク リ メ ン ト信号を + 1 、 デク リ メ ン ト信号を - 1 として所定時間の間毎に計数し、 位置計数手段 5 2 は該 ィ ンク リ メ ン ト信号およびデク リ メ ン ト信号を通箕して計数 する。 速度計数手段 5 1および位置計数手段 5 2 は第 2図の 単純計数手段 5 に対応するものである。
第 5図の位置偏差検出手段 9 0 はホス ト * コ ンピュータ (図示せず) から指令された位置指令と前記位置計数手段 5 2 の出力とを比較して、 その偏差をとる。 また位置偏差増 幅手段 9 1 は前記位置偏差検出手段 9 0 の出力を増幅して速 度指令として出力する。 速度偏差検出手段 6 ' は前記速度指 令と前記速度計数手段 5 1 との出力を比較して、 その爝差を とる。 該速度偏差検出手段 S ' は第 2図の第 1 の偏差検出手 段 6に対応する。 この実施例においては、 速度のフィ ー ドバ フ ク、 および、 位置のフィ ー ドバックという 2つの制御量に ついて負帰還を行なつているので、 第 5図の位置偏差検出手 段 9 0 もまた第 2図の第 1 の偏差検岀手段 6 に対応する。 た だし、 第 5図の位置偏差検出手段 9 0および位置偏差増幅手 段 9 1 は速度指令を出力するという意味で、 速度フィ ― ドバ ッ ク制御に関しては、 第 2図の制御量巨的値指令手段 9 に対 応すると見なし得る。
第 5図の速度偏差積分手段 · 7 . ' は前記速度偏差検出手段 6 r の出力の積分を含む応答速度の速い増幅を行う もので第 4図 K t
の —— の演算に対応し、 第 2図の低速増幅手段 7 に対応す
< 1 る ものである。 速度計数比例増幅手段 2 ' は、 第 4図の演算 K 2 に対応し、 第 2図の高速帰還増幅手段 2 に対応する もの で、 後述する、 本発明により設けられた振動抑制速度計数手 段 1 ' の出力を定数倍する。 第 5図の最終偏差検出手段 8 ' は第 2図の第 2 の偏差手段 8 に対応し、 前記速度偏差積分手 段 7 ' の出力と前記速度計数比例増幅手段 2 ' の出力との偏 差をとる。 ト ルク発生手段 3 1 は前記最終偏差検出手段 8 ' の出力に応じた トルクを発生するためにモータに電流を供袷 する もので第 2図の制御量増減手段 3 に対応する。
1 0 と こ ろで、 第 5図の振動抑制速度計数手段 1 ' は、 前記速 度計数手段 5 1 と同様に前記位置検出手段 4 ' からの、 所定 の時間内 (例えば、 所定のク ロ ック周期の間、 あるいは複数 の ク ロ ッ ク の間における ィ ンク リ メ ン ト信号およびデク'リ メ ン ト信号を計数するが、 但し、 イ ンク リ メ ン ト信号およびデ ク リ メ ン ト信号の う ち、 イ ンク リ メ ン ト信号の直後の連続 n 個までのデイ ク リ メ ン ト信号、 およびデク リ メ ン ト信号の直 後の連铙 n個までのィ ンク リ メ ン ト ί言号を計数せず、 連続 η τ 1 個目からのィ ンク リ メ ン ト信号をそれぞれ速度の 1 単位 量増加の信号としてこれを計数し、 連続 η + 1個目からのデ 0 ク リ メ ン ト信号をそれぞれ速度の 1単位量減少の信号として これを計数する。
したがって、 第 5図の構成によれば、 パルスエ ンコーダ 4 ' の出力信号の η個以下の量に相当する振幅で振動しょう とす る系に対して、 これを抑制することができる。
5
産業上の利用可能性
本発明による食帰還制御システムは、 モータのサーボシス テムにおいて特に有用である。
1
Q
Claims
1. 制御量の所定の一単位量の増減を検出してイ ンク リ メ ン 卜 if号或いはデク リ メ ン ト信号を出力する制御量検出手段 ( 4 ) と、
前記ィ ンク リ メ ン ト信号を前記制御量の ÷ 1 単位量、 前記 デク リ メ ン ト信号を前記制御量の - 1 単位量として計数する 単純計数手段 ( 5 ) と、
前記ィ ンク リ メ ン ト信号およびデク リ メ ン ト信号のう ち、 ィ ン ク リ メ ン ト信号の直後の連続 n個までのデク リ メ ン ト信 号、 およびデク リ メ ン ト信号の直後の連続 η個までのィ ンク リ メ ン ト信号を計数せず、 連続 η + 1個目からのィ ンク リ メ ン ト信号を前記制御量の + 1 単位量、 連続 η + 1個目からの ディ ク レメ ン ト信号を前記制御量の— 1 単位量として計数す る振動抑制計数手段 ( 1 ) と、
前記制御量の目的値を指令する制御量目的値指令手段 ( 9 ) 、
前記目的値と前記単純計数手段の出力との偏差を検出する 第 1 の偏差検出手段 ( 6 ) と、
前記振動抑制計数手段 ( 1 ) の出力を積分を含まない応答 の早い演算により増幅する高速帰還増幅手段 ( 2 ) と、
前記第 1 の偏差検出手段 ( 6 ) の出力を積分を含む応答の 遅い演算により増幅する低速増幅手段 ( 7 ) と、
前記低速増幅手段 ( 7 ) の出力と前記高速帰還増幅手段 ( 2 ) の出力との偏差を検出する第 2 の偏差検出手段 ( 8 )
と、 ■ ■
前記第 2 の偏差検岀手段 ( 8 ) の出力に応じて前記制御量 を增减させる制御量増減手段 3 ) とを有することを特徴と する負帰還制御システム。
Ϊ- 制御量の所定の一単位量の増減を検出してィ ンク リ メ ン ト信号或いはデクリメ ン ト信号を出力する制御量検出手段 ( 4 ' ) と、
所定の長ざの時間中に出力された前記ィ ンク リメ ン ト信号 を前記制御量の + 1単位量として、 且つ、 該所定の長さの時 間中に出力された前記デク リ メ ン ト信号を前記制御量の一 1 単位量として計数する速度計数手段 (51 ) と、
前記制御量検出手段 ( 4 ) からの前記イ ンク リ メ ン ト信号 およびデク リ メ ン ト信号のう ち、 イ ンク リ メ ン ト ft号の直後 の連続 η倔までのデク リ メ ン ト信号、 およびデク リ メ ン ト信 号の直後の連繞 η値までのィ ンク リ メ ン ト信号は無視し、 連 t
T5t η 二 1 腹巨からのイ ンク リ メ ン ト信号を前記制御量の + 1 単位量、 連続 ■+- 1偭目からのディ ク レメ ン ト信号を前記制 御量の - 1単位量として計数し、 且つ、 該 + 1単位量、 およ び - 1単位量の計数については、 所定の時間内において行な う振動抑制速度計数手段 ( 1 ' ) と、
前記制御量の目的値を指令する制御量目的値指令手段 ( 90 , 91) と、
前記目的値と前記速度計数手段 (51 ) の出力との偏差を検 出する第 1 の偏差検出手段 ( 6 ' ) と、
前記振動抑制速度計数手段 ( 1 ' ) の出力を積分を含まな
い応答の早い演算により増幅する高速帰還増幅手段 ( 2 ' ) と、
前記第 1 の偏差検出手段 ( 6 ' ) の出力を積分を含む応答 の遅い演算により増幅する低速増幅手段 ( 7 ' ) と、
前記低速増幅手段 ( 7 ' ) の出力と前記高速帰還増幅手段 ( 2 ' ) の出力との偏差を検出する第 2 の偏差検出手段 ( 8 ' ) と、
前記第 2 の偏差検出手段 ( 8 ' ) の出力に応じて前記制御 量を増減させる制御量増減手段 (31) とを有するこ とを特徴 とする負帰還制御システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE8787907132T DE3780948T2 (de) | 1986-10-29 | 1987-10-29 | Gegenkopplungsregelsystem. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61/255748 | 1986-10-29 | ||
JP61255748A JP2535334B2 (ja) | 1986-10-29 | 1986-10-29 | デイジタル負帰還制御システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1988003282A1 true WO1988003282A1 (en) | 1988-05-05 |
Family
ID=17283083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1987/000830 WO1988003282A1 (en) | 1986-10-29 | 1987-10-29 | Negative feedback control system |
Country Status (5)
Country | Link |
---|---|
US (1) | US4864209A (ja) |
EP (1) | EP0287684B1 (ja) |
JP (1) | JP2535334B2 (ja) |
DE (1) | DE3780948T2 (ja) |
WO (1) | WO1988003282A1 (ja) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06339292A (ja) * | 1993-04-02 | 1994-12-06 | Fanuc Ltd | 外乱負荷推定による力制御方法 |
JPH07120216B2 (ja) * | 1988-10-21 | 1995-12-20 | 新技術事業団 | 位置制御方法 |
JPH02297602A (ja) * | 1989-05-12 | 1990-12-10 | Fanuc Ltd | 非線形項補償を含むスライディングモード制御方式 |
JP2637578B2 (ja) * | 1989-11-08 | 1997-08-06 | オークマ株式会社 | 工作機械の位置制御装置 |
JP2566665B2 (ja) * | 1990-06-27 | 1996-12-25 | 川崎重工業株式会社 | 慣性系におけるロボットの制御装置 |
US5063335A (en) * | 1990-09-11 | 1991-11-05 | Allen-Bradley Company, Inc. | Two-input control with independent proportional and integral gains for velocity error and velocity feedforward including velocity command limiting |
US5122719A (en) * | 1991-02-27 | 1992-06-16 | Eastman Kodak Company | Method and apparatus for reducing recurrent fluctuations in motor torque |
DE19635979C2 (de) * | 1996-09-05 | 2003-03-27 | Abb Patent Gmbh | Verfahren und Einrichtung zur Regelung eines Positionierantriebs |
WO2004008624A1 (ja) * | 2002-07-11 | 2004-01-22 | Kabushiki Kaisha Yaskawa Denki | サーボ制御装置のゲイン調整方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54181A (en) * | 1977-06-01 | 1979-01-05 | Nec Corp | Position controller |
JPS56132612A (en) * | 1979-12-14 | 1981-10-17 | Nec Corp | Digital positioning controller |
JPS575703U (ja) * | 1980-06-06 | 1982-01-12 | ||
JPS5719804A (en) * | 1980-07-09 | 1982-02-02 | Oki Electric Ind Co Ltd | Digital servo system |
JPS59109864A (ja) * | 1982-12-15 | 1984-06-25 | Fanuc Ltd | 低速積分形速度検出装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4553078A (en) * | 1979-07-26 | 1985-11-12 | The United States Of America As Represented By The United States Department Of Energy | Servo control booster system for minimizing following error |
CH642467A5 (de) * | 1980-03-19 | 1984-04-13 | Sulzer Ag | Regelverfahren und schaltung zum ausueben des verfahrens. |
JPS59231602A (ja) * | 1983-06-13 | 1984-12-26 | Hitachi Ltd | フイ−ドバツクル−プ制御系の制御方式 |
JPS6146198A (ja) * | 1984-08-11 | 1986-03-06 | Mitsubishi Electric Corp | ステツプモ−タ駆動制御回路 |
JPS6177906A (ja) * | 1984-09-26 | 1986-04-21 | Nissan Motor Co Ltd | マニピユレ−タの制御装置 |
JPS61211553A (ja) * | 1985-03-15 | 1986-09-19 | Daikin Ind Ltd | 回転圧縮機の振動低減装置 |
-
1986
- 1986-10-29 JP JP61255748A patent/JP2535334B2/ja not_active Expired - Fee Related
-
1987
- 1987-10-29 EP EP87907132A patent/EP0287684B1/en not_active Expired - Lifetime
- 1987-10-29 US US07/233,647 patent/US4864209A/en not_active Expired - Lifetime
- 1987-10-29 DE DE8787907132T patent/DE3780948T2/de not_active Expired - Fee Related
- 1987-10-29 WO PCT/JP1987/000830 patent/WO1988003282A1/ja active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54181A (en) * | 1977-06-01 | 1979-01-05 | Nec Corp | Position controller |
JPS56132612A (en) * | 1979-12-14 | 1981-10-17 | Nec Corp | Digital positioning controller |
JPS575703U (ja) * | 1980-06-06 | 1982-01-12 | ||
JPS5719804A (en) * | 1980-07-09 | 1982-02-02 | Oki Electric Ind Co Ltd | Digital servo system |
JPS59109864A (ja) * | 1982-12-15 | 1984-06-25 | Fanuc Ltd | 低速積分形速度検出装置 |
Also Published As
Publication number | Publication date |
---|---|
DE3780948D1 (de) | 1992-09-10 |
EP0287684A1 (en) | 1988-10-26 |
EP0287684A4 (en) | 1989-06-14 |
DE3780948T2 (de) | 1993-02-18 |
JP2535334B2 (ja) | 1996-09-18 |
US4864209A (en) | 1989-09-05 |
EP0287684B1 (en) | 1992-08-05 |
JPS63111503A (ja) | 1988-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63274385A (ja) | サ−ボモ−タの速度制御装置 | |
WO1988003282A1 (en) | Negative feedback control system | |
TWI748866B (zh) | 風扇系統及風扇驅動方法 | |
US4882528A (en) | Digital servo system | |
CN102467131A (zh) | 伺服控制器 | |
CN1321494C (zh) | 电动机控制装置 | |
JPH11282538A (ja) | サーボ装置 | |
US20030195643A1 (en) | Method and apparatus for acceleration limiting a position command for motion control | |
WO1988002140A1 (en) | Method of removing follow-up delay using a digital servo system in a full-close feedback nc system | |
US4254370A (en) | Closed loop positioner for a stepping motor driven by a buffered translator | |
JP2005328607A (ja) | モータ制御装置 | |
JP2015159660A (ja) | サーボモータ制御装置 | |
JPH06253576A (ja) | 電動機制御装置 | |
JP2728260B2 (ja) | サーボ制御装置 | |
JPS61269687A (ja) | 摩擦トルクを補償するサ−ボ制御方法 | |
JPH04257001A (ja) | ゲインスケジューリング | |
JP3269198B2 (ja) | 位置制御装置 | |
SU1037400A1 (ru) | След щий электропривод | |
JP2893900B2 (ja) | インバータによる同期運転装置 | |
JPS60515A (ja) | 位置決め装置 | |
JPH0591774A (ja) | モータ速度制御装置 | |
SU746598A1 (ru) | Вычислительное устройство дл систем управлени вентильными электроприводами | |
SU1534719A1 (ru) | Электропривод с оптимальным управлением | |
JPH10111720A (ja) | Acサーボモータ及びその駆動方法 | |
JPS60134905A (ja) | 揺動機構の制御方式 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1987907132 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1987907132 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1987907132 Country of ref document: EP |