WO1987007218A1 - Pompe de fluide a actionnement piezoelectrique - Google Patents

Pompe de fluide a actionnement piezoelectrique Download PDF

Info

Publication number
WO1987007218A1
WO1987007218A1 PCT/DE1987/000230 DE8700230W WO8707218A1 WO 1987007218 A1 WO1987007218 A1 WO 1987007218A1 DE 8700230 W DE8700230 W DE 8700230W WO 8707218 A1 WO8707218 A1 WO 8707218A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
layer
piezoelectrically
excitable
piezoelectrically excitable
Prior art date
Application number
PCT/DE1987/000230
Other languages
German (de)
English (en)
Inventor
Joachim Heinzl
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO1987007218A1 publication Critical patent/WO1987007218A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14233Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • F04B43/046Micropumps with piezoelectric drive
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2047Membrane type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14338Multiple pressure elements per ink chamber
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2400/00Loudspeakers

Definitions

  • the invention relates to a device for generating pressures and volume flows according to the preamble of claim 1.
  • Piezoelectrically operated drive elements for generating pressures are generally known.
  • DE-OS 21 64 614 describes an arrangement of writing mechanisms for writing with colored liquid on paper, in which a liquid located in an ink chamber is ejected from a writing nozzle via a piezoelectrically operated drive element.
  • the volume change in the chamber is brought about by an electrically controlled piezoceramic which sits on a metal plate and which bulges into the chamber.
  • the piezo drive element used consists of a continuously polarized piezoceramic layer, which is arranged on a metal plate, the metal plate serving as a counter electrode. When a suitable voltage pulse is applied, the piezoceramic contracts. Since the ceramic is attached to a metal plate, a bending moment affects this plate. As a result, the central part of the plate bulges into the liquid chamber.
  • the changes in length that can be generated directly piezoelectrically are negligibly small. They are also limited by the electric field strengths that can be applied to the ceramic without causing breakdowns or arcing. Furthermore, the field strengths do not lead to a polarization reversal, they must also be switchable via appropriate control circuits.
  • the field strength should be less than one volt per micron in the opposite direction to the polarization.
  • the distances between electrodes in air should also not be less than 1 ⁇ m / V.
  • the direct changes in length that can be achieved in this way are thus around 1%. or about 0.2 ⁇ m with a layer thickness of 200 ⁇ m, provided the ceramic is thoroughly active and not partially inactive due to a burning skin.
  • the object of the invention is to design or control a device of the type mentioned in the introduction in such a way that the greatest possible stroke results.
  • the membrane excites a piezoelectrically excitable peripheral region and a piezoelectrically has central area, which are controlled such that the membrane is shortened in its peripheral area by transverse contraction and lengthened in its central area to produce a membrane deflection, there is a particularly large stroke.
  • This stroke is the result of the exploitation of two effects, namely the exploitation of the transverse contraction in the ceramic itself and the curvature of the bond between adjacent layers, which expand differently.
  • the cross-contraction can increase the stroke of the membrane by reducing the layer thickness and increasing the length dimensions.
  • a particularly advantageous force effect is obtained if the membrane regions are arranged concentrically with one another, so that they bulge out like warts when excited.
  • This wart-like bulge represents the smallest and most compact geometric shape, which starts from a flat layer and widens and closes a cavity. It is rotationally symmetrical about a surface normal and leaves the plane in a toroidal fillet which merges into a lenticular spherical section.
  • the required state of curvature changes at the transition line. Accordingly, the electrodes are arranged or the corresponding membrane areas are polarized and controlled via the electrodes in such a way that the peripheral area (circular ring) is shortened, but the central area is lengthened.
  • the edge of the membrane does not change its position when deflected, because of which it can be firmly clamped.
  • the bending line essentially corresponds to a deflection under internal pressure.
  • a plurality of membranes which can be activated independently of one another are arranged on a common substrate surface, the drive lines for the individual ones Guide membranes over unpolarized areas of the substrate surface so that no undesired piezoelectric effects occur when controlled via these control lines.
  • a further piezoelectric excitable layer can be arranged instead of the support layer, which is polarized in the opposite direction to the first piezoelectric excitable layer. This almost doubles the stroke.
  • a particularly effective and easily controllable pump device can be produced with the drive element according to the invention. For this, three are together with one another
  • Pump channel connected membranes arranged so that a first membrane serves as an inlet valve, a second membrane is assigned to the variable cavity and a third membrane serves as an outlet valve.
  • Such a static pump with two controllable gate valves and a variable cavity can, for. B. from an artificial heart or as a lubricant hydraulic pump for generating high pressures.
  • the entire device can be controlled easily and can be made small despite the high pressures that can be achieved.
  • the device is also possible to use the device as an acoustic transducer device in loudspeakers or as a pressure sensor.
  • Show it 1 is a schematic comparison illustration between the deformation of a membrane plate under internal pressure and a membrane plate with an embossed curvature
  • FIG. 5 shows a static pump according to FIG. 4 in cross section
  • Fig. 6 is a schematic representation of the layer structure of the device according to the invention.
  • FIG. 7 shows a schematic illustration of a writing head for an ink writing device with a plurality of membranes arranged on a common substrate as writing nozzles.
  • a planar transducer made of piezoceramic as shown in FIGS. 2 and 3 consists of a piezoelectrically excitable layer 1 made of piezoceramic which is polarized continuously in one direction and a support layer 2, e.g. B. made of nickel.
  • This electrically controllable membrane formed in this way is controlled via corresponding electrodes 3, 4, the support layer 2 serving as a continuous ground electrode and the actual control electrodes consisting of a peripheral control electrode 3 and a central control electrode 4.
  • These actual control electrodes 3 and 4 define membranes arranged concentrically to one another in the form of circular surfaces or circular ring surfaces.
  • Electrode 4 there is an expansion of the piezoceramic layer 1.
  • the drive electrodes 3 and 4 are now designed according to the invention in connection with the piezoelectrically excitable layer 1 and the support layer 2, which serves as a ground electrode, such that this ideal shape approximately results in the deflection.
  • the circular outer electrode 3 is arranged in the outer curvature region of the membrane and is subjected to an electrical field such that the piezoelectric layer is in this curvature area. draws together richly.
  • the inner electrode 4, which is arranged concentrically thereto, is in turn subjected to a field such that the central region of the piezoceramic layer 1 expands.
  • the radius of curvature up to which flat layers can be warped in this way is approximately 0.1 m to 0.4 m, depending on how thin the layers can be made.
  • the ratio of the electrode areas to one another is now dimensioned such that the desired profile in FIG. This results in an inclination in accordance with FIG. 1b with the associated curvature in FIG. 1c (right side in FIG. 1).
  • such a planar piezo ceramic transducer can be used to form a static pump with two controllable gate valves SE and SA and a variable cavity H.
  • the three membranes SE, H, SA are formed on a continuous substrate surface 1.
  • a pump channel P is formed in a carrier layer T carrying the substrate A with its associated support layer 2.
  • This pump channel P is connected to a fluid supply V (FIG. 4).
  • a transverse rib Q is formed in the pump channel in the area of the inlet valve SE, against which the diaphragm made of piezoceramic 1 and support layer 2 bears in the unexcited state and thus closes the channel.
  • the membrane lifts off in a wart-like manner and thus opens the channel P.
  • the pump channel can also be designed in a different way. So it is also possible to arrange collar-shaped openings instead of the transverse rib Q in the inlet and outlet valves SE and SA, the collar itself forming the channel. The membrane surface then lies in the unexcited state in a manner analogous to that on the transverse rib on this collar and thus closes the outlet.
  • FIG. 7 So according to Fig. 7 so that an ink writing head can be built in which on a single substrate surface 1, z. B. nine writing nozzles S1 to S9 are arranged. Each of these writing nozzles consists of an inlet valve SE, a variable cavity H and an outlet valve SA. The writing nozzles S1 to S9 are connected to the storage area V. In order to be able to form a write head with a larger number of nozzles, it is also possible to pack several substrate surfaces with write nozzles arranged thereon one above the other.
  • the writing nozzles S1 to S9 are functionally completely separated from the ink supply V.
  • a mechanical closure of the nozzles between the write head and the actual paper arranged in front of the write head and the drive of this closure can thus be omitted, since the actual ink channels are closed by the outlet valves SA as long as these outlet valves SA are not activated.
  • Crosstalk between the nozzles is eliminated since there is no flow connection during the actual spraying process.
  • the spraying processes are not limited by the reflection in the actual spraying channel and not by the crosstalk from neighboring nozzles, but only by the intrinsic values of the individual transducer elements. Static pumping removes air bubbles from the ink channel P and empty channels can be filled in an electrically controlled manner.
  • the static pumps described can also be used to supply lubricants in bearings, since the pressures reached are very high. It is also possible to use such pumps in the field of medicine for the transport of blood and other tissue fluids.
  • the membrane in turn can be used in an acoustic transducer device such. B. use as a tweeter. Furthermore, such a device can serve as a pressure sensor, the deflection occurring as a result of the pressure causing a voltage which can be picked up at the electrodes 3 and 4.
  • a so-called controllable gate valve for. B. an inlet valve SE, an outlet valve SA or the controllable cavity H in a simple manner.
  • a thin layer of piezoceramic is used as the substrate on which the required structure z.
  • the ink writing head is galvanoplastic.
  • the piezoceramic layer 1 is polarized and tested before the galvanoplastic structure.
  • control electrodes 3 and 4 z. B. of silver or gold is structured photolithographically and the support layer 2 is applied galvanically on its other side.
  • Aluminum (ALU) is then vapor-deposited on this support layer, which serves as the ground electrode, which can later be etched out between the surrounding metal layers and thus enables the wart to detach from the web Q between the channels.
  • ALU Aluminum
  • This is followed by the galvanic structure of the channel structure in the gaps of a photoresist, the filling of the channels with a filling that can be etched against the channel wall W and the application of the carrier layer T.
  • a further supporting layer SS can also be applied outside the electrodes prevents warping of the composite when the temperature changes. Structures can also be found here
  • the approximate values for the thickness of the individual layers are as follows: piezoceramic layer (1) 200 ⁇ m; Electrodes (3, 4) 10 ⁇ m, silver or gold; Support layer (2) 100 ⁇ m, nickel; additional support layer (SS) 100 ⁇ m, nickel; Intermediate layer (ALU) aluminum 0.2 ⁇ m; Pump channel thickness (walls W) 50 ⁇ m, nickel; and carrier layer (T) 100 ⁇ m, nickel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

La pompe de fluide décrite servant à produire des pressions comprend une membrane excitable électriquement et constituée d'une première couche à excitation piézoélectrique et d'une couche protectrice solidement liée à cette dernière. La membrane possède une région périphérique à excitation piézoélectrique et une région centrale à excitation piézoélectrique, ces régions étant excitées de telle manière que, pour provoquer une orientation de la membrane, celle-ci est raccourcie par contraction transversale dans sa région périphérique et agrandie dans sa région centrale.
PCT/DE1987/000230 1986-05-30 1987-05-19 Pompe de fluide a actionnement piezoelectrique WO1987007218A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP3618106.4 1986-05-30
DE19863618106 DE3618106A1 (de) 1986-05-30 1986-05-30 Piezoelektrisch betriebene fluidpumpe

Publications (1)

Publication Number Publication Date
WO1987007218A1 true WO1987007218A1 (fr) 1987-12-03

Family

ID=6301881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1987/000230 WO1987007218A1 (fr) 1986-05-30 1987-05-19 Pompe de fluide a actionnement piezoelectrique

Country Status (4)

Country Link
EP (1) EP0310605A1 (fr)
JP (1) JPH01500892A (fr)
DE (1) DE3618106A1 (fr)
WO (1) WO1987007218A1 (fr)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0339528A1 (fr) * 1988-04-27 1989-11-02 Drägerwerk Aktiengesellschaft Dispositif de soupape composé de parties micro-structurées
EP0392978A1 (fr) * 1989-04-11 1990-10-17 Westonbridge International Limited Micropompe à débit constant
WO1991013469A1 (fr) * 1990-03-01 1991-09-05 Jones Clifton (Products) Ltd. Ameliorations apportees a des valves a fluide commandees electriquement
US5205819A (en) * 1989-05-11 1993-04-27 Bespak Plc Pump apparatus for biomedical use
US5327041A (en) * 1991-07-05 1994-07-05 Rockwell International Corporation Biaxial transducer
WO1997010435A2 (fr) * 1995-09-15 1997-03-20 Institut Für Mikro- Und Informationstechnik Hahn-Schickard-Gesellschaft Pompe a fluide depourvue de soupape anti-retour
WO2003079409A2 (fr) * 2002-03-15 2003-09-25 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Dispositif electro-actif mettant en oeuvre un piezo-diaphragme a champ electrique radial destine a la commande de mouvement de fluide
WO2004018875A1 (fr) * 2002-08-22 2004-03-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Micropompe péristaltique
US6720710B1 (en) * 1996-01-05 2004-04-13 Berkeley Microinstruments, Inc. Micropump
KR100453815B1 (ko) * 2002-05-20 2004-10-20 한국전자통신연구원 압전형 마이크로 펌프
US7064472B2 (en) * 1999-07-20 2006-06-20 Sri International Electroactive polymer devices for moving fluid
US7191503B2 (en) 2000-09-18 2007-03-20 Par Technologies, Llc Method of manufacturing a piezoelectric actuator
US7198250B2 (en) 2000-09-18 2007-04-03 Par Technologies, Llc Piezoelectric actuator and pump using same
US7199501B2 (en) 1999-07-20 2007-04-03 Sri International Electroactive polymers
US7258533B2 (en) 2004-12-30 2007-08-21 Adaptivenergy, Llc Method and apparatus for scavenging energy during pump operation
US7268466B2 (en) 2002-01-10 2007-09-11 Steen Brabrand Rasmussen Piezo electric pump and device with such pump
US7287965B2 (en) 2004-04-02 2007-10-30 Adaptiv Energy Llc Piezoelectric devices and methods and circuits for driving same
US7290993B2 (en) 2004-04-02 2007-11-06 Adaptivenergy Llc Piezoelectric devices and methods and circuits for driving same
US7312554B2 (en) 2004-04-02 2007-12-25 Adaptivenergy, Llc Piezoelectric devices and methods and circuits for driving same
US7320457B2 (en) 1997-02-07 2008-01-22 Sri International Electroactive polymer devices for controlling fluid flow
US7345407B2 (en) 2005-11-18 2008-03-18 Adaptivenergy, Llc. Human powered piezoelectric power generating device
US7368862B2 (en) 1999-07-20 2008-05-06 Sri International Electroactive polymer generators
CN100430599C (zh) * 2003-06-30 2008-11-05 Nxp股份有限公司 用于产生介质流的设备
US7498718B2 (en) 2005-04-13 2009-03-03 Adaptivenergy, Llc. Stacked piezoelectric diaphragm members
US7537197B2 (en) 1999-07-20 2009-05-26 Sri International Electroactive polymer devices for controlling fluid flow
US7605777B2 (en) 2006-06-02 2009-10-20 Montres Rado S.A. Display device for a portable instrument such as a watch
US7889877B2 (en) 2003-06-30 2011-02-15 Nxp B.V. Device for generating a medium stream
US8162629B2 (en) 2006-07-11 2012-04-24 Murata Manufacturing Co., Ltd. Piezoelectric pump
US8308454B2 (en) 2007-03-12 2012-11-13 Murata Manufacturing Co., Ltd. Fluid conveyance device
US9195058B2 (en) 2011-03-22 2015-11-24 Parker-Hannifin Corporation Electroactive polymer actuator lenticular system
US9231186B2 (en) 2009-04-11 2016-01-05 Parker-Hannifin Corporation Electro-switchable polymer film assembly and use thereof
US9425383B2 (en) 2007-06-29 2016-08-23 Parker-Hannifin Corporation Method of manufacturing electroactive polymer transducers for sensory feedback applications
US9553254B2 (en) 2011-03-01 2017-01-24 Parker-Hannifin Corporation Automated manufacturing processes for producing deformable polymer devices and films
US9590193B2 (en) 2012-10-24 2017-03-07 Parker-Hannifin Corporation Polymer diode
US20170123113A1 (en) * 2009-09-15 2017-05-04 Webster Capital Llc Optical device with a piezoelectrically actuated deformable membrane shaped as a continuous crown
US9761790B2 (en) 2012-06-18 2017-09-12 Parker-Hannifin Corporation Stretch frame for stretching process
US9876160B2 (en) 2012-03-21 2018-01-23 Parker-Hannifin Corporation Roll-to-roll manufacturing processes for producing self-healing electroactive polymer devices

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19834536C2 (de) * 1998-07-31 2001-06-28 Daimler Chrysler Ag Vorrichtung, Mikrosystem und Verfahren zum Transportieren und/oder Entmischen von Flüssigkeiten
DE19904106C2 (de) * 1999-02-02 2001-06-28 Oskar Bschorr Schallgenerator mit Pumpantrieb
WO2002023043A1 (fr) 2000-09-14 2002-03-21 Beenker Jan W Procede et machine pour le transport de substances
DE102005055697B4 (de) * 2005-11-23 2011-12-29 Allmendinger Elektromechanik Gmbh Vorrichtung zur dosierten Abgabe eines Fluids und Gerät mit einer solchen Vorrichtung
DE102009024757B4 (de) * 2009-06-12 2012-01-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtungen zur Steuerung einer chemischen Reaktion mittels Druck unter Verwendung von hochdruck-optimierten Biokomponenten
DE102013100559A1 (de) 2013-01-21 2014-07-24 Allmendinger Elektromechanik KG Vorrichtung zur dosierten Abgabe eines Fluids, sowie Gerät und Verfahren mit einer solchen Vorrichtung
CN105201796A (zh) * 2015-10-29 2015-12-30 宁波大学 一种压电蠕动微泵

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1065880B (fr) * 1959-09-24
DE1165667B (de) * 1962-06-28 1964-03-19 Siemens Ag Piezoelektrischer Biegeschwinger
DE1287135B (de) * 1967-06-16 1969-01-16 Telefunken Patent Elektroakustischer Wandler mit einer Schicht aus Halbleitermaterial bedeckten Membran
EP0095911A2 (fr) * 1982-05-28 1983-12-07 Xerox Corporation Disposition d'éjection de gouttelettes par onde de pression et ensemble
DE3320443A1 (de) * 1983-06-06 1984-12-06 Siemens AG, 1000 Berlin und 8000 München Fluessigkeitspumpe
EP0145066A2 (fr) * 1983-11-26 1985-06-19 Philips Patentverwaltung GmbH Tête microplanaire d'impression à jet d'encre
US4539575A (en) * 1983-06-06 1985-09-03 Siemens Aktiengesellschaft Recorder operating with liquid drops and comprising elongates piezoelectric transducers rigidly connected at both ends with a jet orifice plate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1065880B (fr) * 1959-09-24
DE1165667B (de) * 1962-06-28 1964-03-19 Siemens Ag Piezoelektrischer Biegeschwinger
DE1287135B (de) * 1967-06-16 1969-01-16 Telefunken Patent Elektroakustischer Wandler mit einer Schicht aus Halbleitermaterial bedeckten Membran
EP0095911A2 (fr) * 1982-05-28 1983-12-07 Xerox Corporation Disposition d'éjection de gouttelettes par onde de pression et ensemble
DE3320443A1 (de) * 1983-06-06 1984-12-06 Siemens AG, 1000 Berlin und 8000 München Fluessigkeitspumpe
US4539575A (en) * 1983-06-06 1985-09-03 Siemens Aktiengesellschaft Recorder operating with liquid drops and comprising elongates piezoelectric transducers rigidly connected at both ends with a jet orifice plate
EP0145066A2 (fr) * 1983-11-26 1985-06-19 Philips Patentverwaltung GmbH Tête microplanaire d'impression à jet d'encre

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Band 7, Nr. 217 (M-245) (1362) 27. September 1983 & JP, A, 58112747 (M. Araki) 5. Juli 1983 *

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0339528A1 (fr) * 1988-04-27 1989-11-02 Drägerwerk Aktiengesellschaft Dispositif de soupape composé de parties micro-structurées
EP0392978A1 (fr) * 1989-04-11 1990-10-17 Westonbridge International Limited Micropompe à débit constant
WO1990012209A1 (fr) * 1989-04-11 1990-10-18 Westonbridge International Limited Micropompe a debit constant
US5205819A (en) * 1989-05-11 1993-04-27 Bespak Plc Pump apparatus for biomedical use
WO1991013469A1 (fr) * 1990-03-01 1991-09-05 Jones Clifton (Products) Ltd. Ameliorations apportees a des valves a fluide commandees electriquement
US5327041A (en) * 1991-07-05 1994-07-05 Rockwell International Corporation Biaxial transducer
WO1997010435A2 (fr) * 1995-09-15 1997-03-20 Institut Für Mikro- Und Informationstechnik Hahn-Schickard-Gesellschaft Pompe a fluide depourvue de soupape anti-retour
WO1997010435A3 (fr) * 1995-09-15 1997-05-09 Inst Mikro Und Informationstec Pompe a fluide depourvue de soupape anti-retour
US6720710B1 (en) * 1996-01-05 2004-04-13 Berkeley Microinstruments, Inc. Micropump
US7320457B2 (en) 1997-02-07 2008-01-22 Sri International Electroactive polymer devices for controlling fluid flow
US7911115B2 (en) 1999-07-20 2011-03-22 Sri International Monolithic electroactive polymers
US7224106B2 (en) 1999-07-20 2007-05-29 Sri International Electroactive polymers
US8508109B2 (en) 1999-07-20 2013-08-13 Sri International Electroactive polymer manufacturing
US8981621B2 (en) 1999-07-20 2015-03-17 Ronald E. Pelrine Electroactive polymer manufacturing
US7064472B2 (en) * 1999-07-20 2006-06-20 Sri International Electroactive polymer devices for moving fluid
US7703742B2 (en) 1999-07-20 2010-04-27 Sri International Electroactive polymer devices for controlling fluid flow
US7362032B2 (en) 1999-07-20 2008-04-22 Sri International Electroactive polymer devices for moving fluid
US7368862B2 (en) 1999-07-20 2008-05-06 Sri International Electroactive polymer generators
US7199501B2 (en) 1999-07-20 2007-04-03 Sri International Electroactive polymers
US7923064B2 (en) 1999-07-20 2011-04-12 Sri International Electroactive polymer manufacturing
US7259503B2 (en) 1999-07-20 2007-08-21 Sri International Electroactive polymers
US7537197B2 (en) 1999-07-20 2009-05-26 Sri International Electroactive polymer devices for controlling fluid flow
US7394182B2 (en) 1999-07-20 2008-07-01 Sri International Electroactive polymer devices for moving fluid
US7468575B2 (en) 1999-07-20 2008-12-23 Sri International Electroactive polymer electrodes
US7198250B2 (en) 2000-09-18 2007-04-03 Par Technologies, Llc Piezoelectric actuator and pump using same
US7191503B2 (en) 2000-09-18 2007-03-20 Par Technologies, Llc Method of manufacturing a piezoelectric actuator
US7268466B2 (en) 2002-01-10 2007-09-11 Steen Brabrand Rasmussen Piezo electric pump and device with such pump
US6856073B2 (en) 2002-03-15 2005-02-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Electro-active device using radial electric field piezo-diaphragm for control of fluid movement
WO2003079409A2 (fr) * 2002-03-15 2003-09-25 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Dispositif electro-actif mettant en oeuvre un piezo-diaphragme a champ electrique radial destine a la commande de mouvement de fluide
WO2003079409A3 (fr) * 2002-03-15 2004-05-13 Nasa Dispositif electro-actif mettant en oeuvre un piezo-diaphragme a champ electrique radial destine a la commande de mouvement de fluide
KR100453815B1 (ko) * 2002-05-20 2004-10-20 한국전자통신연구원 압전형 마이크로 펌프
WO2004018875A1 (fr) * 2002-08-22 2004-03-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Micropompe péristaltique
CN100389263C (zh) * 2002-08-22 2008-05-21 德商弗朗霍夫应用研究促进学会 蠕动微型泵
US7104768B2 (en) 2002-08-22 2006-09-12 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Peristaltic micropump
CN100430599C (zh) * 2003-06-30 2008-11-05 Nxp股份有限公司 用于产生介质流的设备
US7889877B2 (en) 2003-06-30 2011-02-15 Nxp B.V. Device for generating a medium stream
US7290993B2 (en) 2004-04-02 2007-11-06 Adaptivenergy Llc Piezoelectric devices and methods and circuits for driving same
US7287965B2 (en) 2004-04-02 2007-10-30 Adaptiv Energy Llc Piezoelectric devices and methods and circuits for driving same
US7969064B2 (en) 2004-04-02 2011-06-28 Par Technologies, Llc. Piezoelectric devices and methods and circuits for driving same
US7312554B2 (en) 2004-04-02 2007-12-25 Adaptivenergy, Llc Piezoelectric devices and methods and circuits for driving same
US7317274B2 (en) 2004-04-02 2008-01-08 Adaptivenergy, Llc. Piezoelectric devices and methods and circuits for driving same
US7258533B2 (en) 2004-12-30 2007-08-21 Adaptivenergy, Llc Method and apparatus for scavenging energy during pump operation
US7498718B2 (en) 2005-04-13 2009-03-03 Adaptivenergy, Llc. Stacked piezoelectric diaphragm members
US7345407B2 (en) 2005-11-18 2008-03-18 Adaptivenergy, Llc. Human powered piezoelectric power generating device
US7605777B2 (en) 2006-06-02 2009-10-20 Montres Rado S.A. Display device for a portable instrument such as a watch
US8162629B2 (en) 2006-07-11 2012-04-24 Murata Manufacturing Co., Ltd. Piezoelectric pump
US8308454B2 (en) 2007-03-12 2012-11-13 Murata Manufacturing Co., Ltd. Fluid conveyance device
US9425383B2 (en) 2007-06-29 2016-08-23 Parker-Hannifin Corporation Method of manufacturing electroactive polymer transducers for sensory feedback applications
US9231186B2 (en) 2009-04-11 2016-01-05 Parker-Hannifin Corporation Electro-switchable polymer film assembly and use thereof
US20170123113A1 (en) * 2009-09-15 2017-05-04 Webster Capital Llc Optical device with a piezoelectrically actuated deformable membrane shaped as a continuous crown
US10324236B2 (en) * 2009-09-15 2019-06-18 Webster Capital Llc Optical device with a piezoelectrically actuated deformable membrane shaped as a continuous crown
US9553254B2 (en) 2011-03-01 2017-01-24 Parker-Hannifin Corporation Automated manufacturing processes for producing deformable polymer devices and films
US9195058B2 (en) 2011-03-22 2015-11-24 Parker-Hannifin Corporation Electroactive polymer actuator lenticular system
US9876160B2 (en) 2012-03-21 2018-01-23 Parker-Hannifin Corporation Roll-to-roll manufacturing processes for producing self-healing electroactive polymer devices
US9761790B2 (en) 2012-06-18 2017-09-12 Parker-Hannifin Corporation Stretch frame for stretching process
US9590193B2 (en) 2012-10-24 2017-03-07 Parker-Hannifin Corporation Polymer diode

Also Published As

Publication number Publication date
EP0310605A1 (fr) 1989-04-12
DE3618106A1 (de) 1987-12-03
JPH01500892A (ja) 1989-03-30

Similar Documents

Publication Publication Date Title
WO1987007218A1 (fr) Pompe de fluide a actionnement piezoelectrique
EP2207963B1 (fr) Pompe et ensemble pompe
DE60210736T2 (de) Elektrisch aktivierbarer Antrieb aus polymer und Diaphragmapumpe mit diesem Antrieb
DE19639717C2 (de) Tintenstrahldruckkopf und Verfahren zu seiner Herstellung
EP0722538B1 (fr) Pompe a micromembrane
DE69009431T2 (de) Mikropumpe.
DE69107813T2 (de) Ventil, Methode zur Herstellung dises Ventils und mit diesem Ventil versehene Mikropumpe.
DE60114411T2 (de) Microbearbeitete fluidische vorrichtung und herstellungsverfahren
DE19720482C5 (de) Mikromembranpumpe
DE60033410T2 (de) Doppelmembranpumpe
EP0268204B1 (fr) Pompe piézo-électrique
DE60204763T2 (de) Mikropumpe
EP0307403B1 (fr) Tete d'ecriture a l'encre avec membrane a excitation piezoelectrique
EP1331538A1 (fr) Micro-actionneur pour fluides à commande piezo-électrique
WO1990015933A1 (fr) Micro-soupape
EP0485739A1 (fr) Microvalve dans une structure à plusieurs couches
DE3926348A1 (de) Pumpenanordnung
WO2009065427A1 (fr) Ensemble pompe avec soupape de sécurité
DE2344530A1 (de) Druckwandler
WO2011124384A1 (fr) Microsoupape comportant une lèvre de soupape élastiquement déformable, procédé de fabrication de cette microsoupape et micropompe
DE19639436A1 (de) Tintenstrahlkopf und Verfahren zu seiner Herstellung
EP1076767A1 (fr) Microsoupape
EP0613535A1 (fr) Soupape micromecanique pour dispositifs de dosage micromecaniques.
DE102013013545B4 (de) Vakuumerzeugervorrichtung
WO2004081390A1 (fr) Microvanne normalement doublement fermee

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT NL SE

WWE Wipo information: entry into national phase

Ref document number: 1987903244

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1987903244

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1987903244

Country of ref document: EP