EP0722538B1 - Pompe a micromembrane - Google Patents

Pompe a micromembrane Download PDF

Info

Publication number
EP0722538B1
EP0722538B1 EP94927548A EP94927548A EP0722538B1 EP 0722538 B1 EP0722538 B1 EP 0722538B1 EP 94927548 A EP94927548 A EP 94927548A EP 94927548 A EP94927548 A EP 94927548A EP 0722538 B1 EP0722538 B1 EP 0722538B1
Authority
EP
European Patent Office
Prior art keywords
valve
membrane
pump
chamber
valves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94927548A
Other languages
German (de)
English (en)
Other versions
EP0722538A1 (fr
Inventor
Richard Rapp
Helmut Kalb
Walter Stark
Dieter Seidel
Hans Biedermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BUERKERT GMBH & CO. KG.
Forschungszentrum Karlsruhe GmbH
Original Assignee
Buerkert & Co Kg GmbH
Forschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Buerkert & Co Kg GmbH, Forschungszentrum Karlsruhe GmbH filed Critical Buerkert & Co Kg GmbH
Publication of EP0722538A1 publication Critical patent/EP0722538A1/fr
Application granted granted Critical
Publication of EP0722538B1 publication Critical patent/EP0722538B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps

Definitions

  • the invention relates to a micromembrane pump according to the preamble of claim 1, as can be seen from the conference proceedings. 124 to 133 of the 3rd Symposium Microsystems Technology, FH Regensburg, February 17 to 18, 1993.
  • micropumps have been manufactured almost exclusively using silicon technology, with one or more structured wafers made of silicon and glass being connected to one another by anodic bonding.
  • the pump diaphragm therefore also consists of one of these materials.
  • a pump with a glass membrane is known from J. Uhlemann, T. Wetzig, W. Rotsch, "Assembly technology of structured surface elements using the example of a micropump", 1st symposium microsystem technology, FH Regensburg, (1991).
  • the membranes made of silicon are approx. 20 ⁇ m thick and those made of glass at least 40 ⁇ m thick, so that only small membrane deflections of at most 25 ⁇ m were achieved.
  • the binding to the crystal planes during anisotropic etching of the single-crystal silicon results in pump membranes with restricted geometries, e.g. B. a square membrane. These lead to an inhomogeneous stress distribution in the membrane deflection, which additionally limits the permissible deflections. Large actuator pressures are required for membrane deflection depending on the membrane material and the membrane thickness.
  • valves made of silicon The function of the valves made of silicon is based on the deflection of a bending tongue, which opens or closes an opening.
  • the bending tongue is made of silicon and is elastically deformed by the pressure difference that drops over it.
  • the valves In order to ensure sufficient flow rates, the valves have to be dimensioned appropriately large (2 - 8 mm diameter) due to the high modulus of elasticity of silicon.
  • All pumps made on the basis of silicon are operated with liquids as the pumping medium. The liquids must be largely particle-free so that valve functions such. B. tight closing, not be affected. Since silicon is a hydrophobic material, it is difficult to fill pumps with water for the first time. A functioning micropump has been known for pumping gases.
  • micropumps that do not have any moving parts. They are based on the electrohydrodynamic principle, as is known from A. Richter et al., Electrohydrodynamic Micropumps, VDI Reports 960, 1992, pp 235-249.
  • a disadvantage of the pump of the generic type is that one of the two valves has to be manufactured separately, separated and attached to the side of the diaphragm opposite the first valve when it is manufactured. This requires increased assembly and adjustment effort.
  • the object of the invention is to design a pump of the generic type so that both valves on the same side the membrane can be built up, and the manufacturing process for the pump body can be significantly simplified.
  • FIG. 1 shows the schematic cross section of a pump with two valves of different stiffness
  • FIG. 2 shows the schematic cross section of a pump with two identical valves.
  • FIG. 3 shows the schematic structure of a particularly advantageous valve and FIG. 4 shows an example of dimensions.
  • FIG. 1 shows the lower pump body 1, which is sealed at the top with the membrane 2. This sits tightly connected to it (e.g. by gluing) the upper pump body 3.
  • the lower pump body contains the two valve chambers 4, 5, the pump chamber 6 and the two channels 9, 10, which connect the two valve chambers to the pump chamber.
  • the membrane 2 contains the inlet valve 7 on the left and the outlet valve 8 on the right.
  • the membrane area above the pump chamber 6 serves as a pump drive.
  • the upper pump body 3 contains inlet and outlet channels 11, 12 for the medium to be conveyed and a chamber for the pump drive 13.
  • a feed line for the drive medium is provided which drives the pump due to its pressure changes .
  • the two valves 7, 8 are shown enlarged in the lower part of the figure.
  • the valves are designed so that the stiffness of the part of the valve 8 structured on the membrane 2 is greater and the stiffness of the part of the valve 7 structured on the membrane 2 is smaller than that of the membrane. Overpressure in the pump chamber 6 therefore opens the valve 8 and closes the valve 7, and negative pressure in the pump chamber 6 opens the valve 7 and closes the valve 8.
  • the dimensioning of the valves is explained in more detail below.
  • valves 7, 8 shown enlarged are constructed identically.
  • the pump shown differs from the pump of FIG. 1 only in the area of the outlet valve 8.
  • the deflection channel 14 connects to the channel 10 before the valve 8, which breaks through the membrane 2 and which serves the media flow to the other side of the Steer valve 8.
  • the valve chamber 5 is connected to the outlet channel 12 via the deflection channel 15, which also breaks through the membrane.
  • the outlet duct 12 can also be led out downwards.
  • the arrows on both figures indicate the direction of the medium being pumped.
  • Fig. 3 shows a valve which corresponds to the features of the valve of Fig. 3 b of DE 41 39 668 Al.
  • the membrane 2 corresponds to the valve seat 3 and the valve 7, 8 to the valve body 6.
  • the valve described here is characterized by an advantageous shape of the openings in the membrane 2 and valve 7, 8.
  • the openings in the membrane 2, shown above, are three slots which represent a three-pointed star in the membrane 2.
  • the course of the slits is elliptically curved towards the center of the star, the straight lines through the large semiaxes of the elliptical slit lines forming an equilateral triangle.
  • the cuts at their ends each extend beyond the apex and the adjacent ends of two cuts each run apart in a funnel shape with a bent edge.
  • the cavity 16 between the membrane and the valve which is created by etching away a thin sacrificial layer during valve manufacture.
  • the connecting line runs along the outer edge of the three slots to their ends and from there in an arched outward curve to the adjacent end of the adjacent slot.
  • the cavity 16 has a three-fold axis of rotation perpendicular to the plane of the drawing and three two-fold axes of rotation in the plane of the drawing.
  • a valve 7, 8 is shown below. It has three rows of converging holes that run over the three double axes of rotation of the cavity 16. Care should be taken to ensure that the holes in the valve 7, 8 are far enough away from the slots in the membrane when the diaphragm and valve come into contact when the valve is closed. The edges of the holes are at least 40 ⁇ m away from the slots. This is the only way to ensure a sufficient sealing effect.
  • a star with more than three axes can also be selected.
  • Fig. 4 shows an example of dimensioning, in which the valve, shown in plan view, consists of polyimide and the membrane of titanium. Only the three middle valve holes are shown. The remaining holes are not shown, since they can also be dispensed with in this metal combination.
  • a valve with the material combination of polyimide and titanium can be produced by the method described in DE 41 39 668 A1.
  • the polyimide membrane is replaced by a thicker, galvanized layer.
  • Nickel is used as the electroplating material, since it has by far the largest modulus of elasticity at 200 GPa of the available electroplating materials.
  • nickel has a greater flexural rigidity due to a biaxial module E / (1- ⁇ ) that is 1.5 times larger, with the same thickness and geometry. If you also choose a significantly larger thickness for nickel than the 2.7 ⁇ m of titanium, then when a differential pressure is applied, the titanium membrane is stretched more than the nickel layer.
  • a sacrificial layer is applied to a structured titanium membrane and also structured.
  • 16 ⁇ m photoresist are spun on in two work steps and structured optically.
  • Then, using KOH, the photoresist is developed in the machine developer.
  • the structured photoresist is then galvanically filled.
  • the photoresist can then be removed with acetone and the sacrificial layer can be removed.
  • a frame is then applied, the titanium membrane is cut around it and the valve is detached from the silicon substrate. Finally, the carbon layer can be removed in an oxygen plasma.
  • Option A In the case of a geometrically identical valve design, the inlet and outlet valves differ in one of the membrane materials.
  • Exhaust valve nickel and titanium membrane.
  • Variant B Same membrane materials with different stiffness (different designs) of the valve membranes.
  • Variant C Different membrane materials and different stiffness (valve design) of inlet and outlet valve.
  • the nickel membrane was designed to be as rigid as possible. That is, a greater thickness of the membrane (10 ⁇ m) was selected compared to titanium. In addition, the membrane contains only small holes, so that in addition to the already good material rigidity (given by the biaxial module), a high level of dimensional rigidity is obtained.
  • the titanium membrane which has a high material stiffness per se (which, however, is smaller than that of nickel), must be structured in such a way that the stiffness of the membrane becomes very low. This is achieved by creating a tripole-like structure in the titanium membrane.
  • the arms of the tripole are narrow and therefore flexible.
  • care was taken to ensure that notch stresses are kept low. This must be taken into account, since otherwise high stresses can occur in the thin titanium membrane, which can cause the formation of cracks and their progress along the structured slots that define and define the tripole structure. Outside the structured tripoles, titanium and nickel are firmly connected to one another, so that a "lifting movement" remains limited to the area of the tripoles.
  • Possibility 2 Identical inlet and outlet valves, with the delivery medium being deflected through an additional opening in the membrane at a connection.
  • the latter variant has the advantage that an extremely elastic polyimide membrane is thus available as the pump membrane.
  • the pump body 1, 3 can be plastic parts made of a single material, for. B. by plastic impression.
  • the molds for these plastic parts can be manufactured using precision engineering processes or the LIGA process.
  • One or both of the pump bodies 1, 2 can be made of metal.
  • the membrane instead of building up the walls of the pump body 1 on the membrane 2 and then closing the pump body by mounting an end plate, the membrane (with the valves) can be mounted on the finished pump body, e.g. B. by gluing or welding. This has the advantage over the generic pump that no further structures have to be built on the membrane.
  • the pump body 1, 3 additionally contain the fluidic connections to the inlet and outlet valve 4, 5, the deflection channels 14, 15 and a further chamber with a connection above the pump chamber 6 for a z.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

L'invention concerne une pompe à micromembrane qui comprend deux chambres de soupape, une chambre de pompage entre les chambres de soupape, chaque chambre de soupape étant reliée à la chambre de pompage par un canal, un mécanisme d'entraînement et une membrane qui obture les trois chambres. La membrane porte une soupape d'admission dans la zone d'une chambre de soupape et une soupape de sortie dans la zone de l'autre chambre de soupape. L'invention vise à mettre au point une pompe où les deux soupapes puissent être placées du même côté de la membrane et dont la fabrication du corps de pompe soit sensiblement simplifiée. A cette fin, les soupapes sont intégrées dans la membrane et les parties de soupape structurées sur la membrane se trouvent du même côté de la membrane. Un corps de pompe qui contient la chambre de pompage et les chambres de soupape est monobloc.

Claims (9)

  1. Pompe à micromembrane composée de deux chambres de soupape avec entre elles une chambre de pompe, chaque chambre de soupape étant reliée à la chambre de pompe par un canal,
    • un entraînement de pompe et une membrane fermant les trois chambres,
    • la membrane ayant une soupape d'admission dans la plage d'une chambre de soupape et une soupape d'échappement dans la plage de l'autre chambre de soupape,
    • la soupape d'admission étant structurée sur la membrane,
    caractérisée en ce que
    a) les parties des soupapes (7, 8) structurées sur la membrane (2) sont situées du même côté de la membrane et
    b) toutes les chambres et conduites nécessaires au fonctionnement de la pompe sont réalisées par une structure dans un corps de pompe inférieur (1) et un corps de pompe supérieur (3), ces deux corps étant reliés tous deux de manière étanche à la membrane (2).
  2. Pompe à micromembrane selon la revendication 1,
    caractérisée en ce que
    les deux soupapes (7, 8) sont de même construction et un canal de renvoi (14) est associé à l'une des chambres de soupape qui conduit le fluide sur l'autre côté de la membrane.
  3. Pompe à micromembrane selon la revendication 1,
    caractérisée en ce que
    la rigidité de la partie d'une soupape réalisée par structure sur la membrane (2) est supérieure à celle de la membrane et la rigidité de la partie de l'autre soupape réalisée par structure sur la membrane (2) est plus petite que celle de la membrane.
  4. Pompe à microstructure selon l'une des revendications 1 à 3,
    caractérisée en ce que
    les soupapes (7, 8) ont au moins trois rangées de trous qui se rejoignent et la membrane (2) comporte au moins trois fentes à courbure concave au niveau des soupapes (7, 8).
  5. Pompe à micromembrane selon l'une des revendications 1 à 4,
    caractérisée en ce qu'
    un corps de pompe (1) est en matière plastique et comporte la chambre de pompe (6) et les chambres de soupape (4, 5).
  6. Pompe à micromembrane selon l'une des revendications 1 à 4,
    caractérisée en ce qu'
    un corps de pompe (1) est en métal et comporte la chambre de pompe (6) et les chambres de soupape (4, 5).
  7. Pompe à micromembrane selon l'une des revendications 1 à 6,
    caractérisée en ce que
    la membrane (2) est en polyimide.
  8. Pompe à micromembrane selon l'une des revendications 1 à 6,
    caractérisée en ce que
    la membrane (2) est en métal.
  9. Pompe à micromembrane selon l'une des revendications 1 à 8,
    caractérisée
    par un corps de pompe (1) réalisé en une seule pièce et comportant la chambre de pompe (6) et les chambres de soupape (4, 5).
EP94927548A 1993-09-25 1994-09-02 Pompe a micromembrane Expired - Lifetime EP0722538B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4332720 1993-09-25
DE4332720A DE4332720C2 (de) 1993-09-25 1993-09-25 Mikromembranpumpe
PCT/EP1994/002927 WO1995008711A1 (fr) 1993-09-25 1994-09-02 Pompe a micromembrane

Publications (2)

Publication Number Publication Date
EP0722538A1 EP0722538A1 (fr) 1996-07-24
EP0722538B1 true EP0722538B1 (fr) 1997-10-22

Family

ID=6498644

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94927548A Expired - Lifetime EP0722538B1 (fr) 1993-09-25 1994-09-02 Pompe a micromembrane

Country Status (6)

Country Link
US (1) US5718567A (fr)
EP (1) EP0722538B1 (fr)
JP (1) JP2977904B2 (fr)
DE (1) DE4332720C2 (fr)
DK (1) DK0722538T3 (fr)
WO (1) WO1995008711A1 (fr)

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3035854B2 (ja) * 1995-09-15 2000-04-24 ハーン−シッカート−ゲゼルシャフト フア アンゲワンテ フォルシュンク アインゲトラーゲナー フェライン 逆止弁を有しない流体ポンプ
DE29708678U1 (de) * 1997-05-16 1997-08-07 Institut für Mikrotechnik Mainz GmbH, 55129 Mainz Mikromembranpumpe
DE19720482C5 (de) * 1997-05-16 2006-01-26 INSTITUT FüR MIKROTECHNIK MAINZ GMBH Mikromembranpumpe
DE19844518A1 (de) * 1998-09-28 2000-04-06 Sebastian Pobering Hydraulischer Wegverstärker für Mikrosysteme
US6174136B1 (en) 1998-10-13 2001-01-16 Liquid Metronics Incorporated Pump control and method of operating same
US6280147B1 (en) 1998-10-13 2001-08-28 Liquid Metronics Incorporated Apparatus for adjusting the stroke length of a pump element
JP3620316B2 (ja) * 1998-11-16 2005-02-16 株式会社日立製作所 マイクロポンプとその製造方法
US6899137B2 (en) 1999-06-28 2005-05-31 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US8052792B2 (en) * 2001-04-06 2011-11-08 California Institute Of Technology Microfluidic protein crystallography techniques
US8709153B2 (en) 1999-06-28 2014-04-29 California Institute Of Technology Microfludic protein crystallography techniques
US7144616B1 (en) * 1999-06-28 2006-12-05 California Institute Of Technology Microfabricated elastomeric valve and pump systems
DK1065378T3 (da) * 1999-06-28 2002-07-29 California Inst Of Techn Elastomere mikropumpe- og mikroventilsystemer
US20080277007A1 (en) * 1999-06-28 2008-11-13 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US8550119B2 (en) * 1999-06-28 2013-10-08 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US6264432B1 (en) 1999-09-01 2001-07-24 Liquid Metronics Incorporated Method and apparatus for controlling a pump
US6589229B1 (en) 2000-07-31 2003-07-08 Becton, Dickinson And Company Wearable, self-contained drug infusion device
WO2003015923A1 (fr) * 2001-08-20 2003-02-27 Biomicro Systems, Inc. Melange de fluides dans des chambres a faible rapport de forme
CA2450676C (fr) * 2001-03-09 2010-03-30 Biomicro Systems, Inc. Procede et systeme d'interfacage microfluidique avec des reseaux
WO2003015922A1 (fr) * 2001-08-20 2003-02-27 Biomicro Systems, Inc. Dispositif d'interface a microreseaux stratifie
CN1561313A (zh) 2001-10-01 2005-01-05 Fsi国际公司 流体分配装置
DE10224750A1 (de) 2002-06-04 2003-12-24 Fresenius Medical Care De Gmbh Vorrichtung zur Behandlung einer medizinischen Flüssigkeit
US20040089357A1 (en) * 2002-06-21 2004-05-13 Christopher Dube Integrated electrofluidic system and method
US6749407B2 (en) * 2002-08-22 2004-06-15 Motorola, Inc. Method of installing valves in a micro-pump
DE10242110A1 (de) * 2002-09-11 2004-03-25 Thinxxs Gmbh Mikropumpe und Verfahren zu ihrer Herstellung
US20040120836A1 (en) * 2002-12-18 2004-06-24 Xunhu Dai Passive membrane microvalves
CN1320275C (zh) * 2003-05-06 2007-06-06 王勤 具有双向过压保护功能的微量薄膜泵及其应用
US7284966B2 (en) * 2003-10-01 2007-10-23 Agency For Science, Technology & Research Micro-pump
US7458222B2 (en) * 2004-07-12 2008-12-02 Purity Solutions Llc Heat exchanger apparatus for a recirculation loop and related methods and systems
US8197231B2 (en) 2005-07-13 2012-06-12 Purity Solutions Llc Diaphragm pump and related methods
US7717682B2 (en) * 2005-07-13 2010-05-18 Purity Solutions Llc Double diaphragm pump and related methods
US7763453B2 (en) 2005-11-30 2010-07-27 Micronics, Inc. Microfluidic mixing and analytic apparatus
US9056291B2 (en) 2005-11-30 2015-06-16 Micronics, Inc. Microfluidic reactor system
US7815868B1 (en) 2006-02-28 2010-10-19 Fluidigm Corporation Microfluidic reaction apparatus for high throughput screening
WO2007111049A1 (fr) 2006-03-29 2007-10-04 Murata Manufacturing Co., Ltd. Micro-pompe
EP2041573B1 (fr) * 2006-06-23 2019-09-04 PerkinElmer Health Sciences, Inc. Procédés et dispositifs destinés à des dosages immunologiques microfluidiques pratiqués au point de service
CN101377192B (zh) * 2007-08-30 2012-06-13 研能科技股份有限公司 流体输送装置
DE102007045637A1 (de) * 2007-09-25 2009-04-02 Robert Bosch Gmbh Mikrodosiervorrichtung zum Dosieren von Kleinstmengen eines Mediums
US8038640B2 (en) * 2007-11-26 2011-10-18 Purity Solutions Llc Diaphragm pump and related systems and methods
US8192401B2 (en) 2009-03-20 2012-06-05 Fresenius Medical Care Holdings, Inc. Medical fluid pump systems and related components and methods
EP2453946B1 (fr) 2009-07-15 2013-02-13 Fresenius Medical Care Holdings, Inc. Cassettes pour fluide médical et systèmes afférents
KR101851117B1 (ko) 2010-01-29 2018-04-23 마이크로닉스 인코포레이티드. 샘플-투-앤서 마이크로유체 카트리지
US9624915B2 (en) 2011-03-09 2017-04-18 Fresenius Medical Care Holdings, Inc. Medical fluid delivery sets and related systems and methods
JP5185475B2 (ja) * 2011-04-11 2013-04-17 株式会社村田製作所 バルブ、流体制御装置
AU2012254069B2 (en) 2011-04-21 2015-10-08 Fresenius Medical Care Holdings, Inc. Medical fluid pumping systems and related devices and methods
JP6190822B2 (ja) 2012-01-09 2017-08-30 マイクロニクス, インコーポレイテッド マイクロ流体リアクタシステム
KR101959447B1 (ko) * 2012-04-06 2019-03-18 삼성전자주식회사 시료 중의 표적물질을 효율적으로 처리하는 방법
US9610392B2 (en) 2012-06-08 2017-04-04 Fresenius Medical Care Holdings, Inc. Medical fluid cassettes and related systems and methods
US9500188B2 (en) 2012-06-11 2016-11-22 Fresenius Medical Care Holdings, Inc. Medical fluid cassettes and related systems and methods
JP6172711B2 (ja) * 2012-07-05 2017-08-02 国立研究開発法人理化学研究所 マイクロチップ用の流体制御デバイスおよびその利用
KR101452050B1 (ko) * 2012-11-12 2014-10-21 삼성전기주식회사 마이크로 펌프
EP3549674B1 (fr) 2012-12-21 2020-08-12 PerkinElmer Health Sciences, Inc. Films à faible élasticité pour utilisation micro-fluidique
WO2014100725A1 (fr) 2012-12-21 2014-06-26 Micronics, Inc. Système portable de détection par fluorescence et cartouche de microanalyse
US10065186B2 (en) 2012-12-21 2018-09-04 Micronics, Inc. Fluidic circuits and related manufacturing methods
US9561323B2 (en) 2013-03-14 2017-02-07 Fresenius Medical Care Holdings, Inc. Medical fluid cassette leak detection methods and devices
JP6484222B2 (ja) 2013-05-07 2019-03-13 マイクロニクス, インコーポレイテッド 核酸の調製および分析のためのデバイス
JP6472788B2 (ja) 2013-05-07 2019-02-20 マイクロニクス, インコーポレイテッド 粘土鉱物およびアルカリ性溶液を使用して核酸含有試料を調製するための方法
EP2994750B1 (fr) 2013-05-07 2020-08-12 PerkinElmer Health Sciences, Inc. Dispositifs microfluidiques et méthodes de séparation du sérum et de compatibilité croisée du sang
EP3033526B1 (fr) * 2013-08-12 2020-06-17 Koninklijke Philips N.V. Dispositif microfluidique avec valve
US10117985B2 (en) 2013-08-21 2018-11-06 Fresenius Medical Care Holdings, Inc. Determining a volume of medical fluid pumped into or out of a medical fluid cassette
FR3012443B1 (fr) 2013-10-24 2021-04-30 Univ Sciences Technologies Lille Procede pour generer un ecoulement de fluide
JP2019100329A (ja) * 2017-12-08 2019-06-24 日本電産株式会社 ポンプ
CN113710896A (zh) * 2019-06-03 2021-11-26 索尼集团公司 流体控制装置及电子设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE887429C (de) * 1951-07-03 1953-08-24 Volkswagenwerk G M B H Membranpumpe mit zwischen zwei Gehaeuseteilen eingespannter Membran, insbesondere Kraftstoffpumpe fuer Brennkraftmaschinen
US2980032A (en) * 1959-02-27 1961-04-18 Brown Engine Products Inc Fuel pump
US3145659A (en) * 1962-08-31 1964-08-25 Briggs & Stratton Corp Suction actuated fuel pump
GB1263057A (en) * 1968-02-22 1972-02-09 Timothy James Francis Roach Improvements in or relating to diaphragm pumps
JPS5677581A (en) * 1979-11-29 1981-06-25 Hitachi Metals Ltd Diaphragm pump
NL8302860A (nl) * 1983-08-15 1985-03-01 Stichting Ct Voor Micro Elektr Piezo-elektrische micropomp.
SE8801299L (sv) * 1988-04-08 1989-10-09 Bertil Hoeoek Mikromekanisk envaegsventil
CH679555A5 (fr) * 1989-04-11 1992-03-13 Westonbridge Int Ltd
EP0424087A1 (fr) * 1989-10-17 1991-04-24 Seiko Epson Corporation Micro-pompe ou dispositif à microdébit
KR910012538A (ko) * 1989-12-27 1991-08-08 야마무라 가쯔미 마이크로 펌프 및 그 제조 방법
JPH0466784A (ja) * 1990-07-06 1992-03-03 Seiko Epson Corp マイクロポンプおよびその製造方法
DE4135655A1 (de) * 1991-09-11 1993-03-18 Fraunhofer Ges Forschung Mikrominiaturisierte, elektrostatisch betriebene membranpumpe
DE4139668A1 (de) * 1991-12-02 1993-06-03 Kernforschungsz Karlsruhe Mikroventil und verfahren zu dessen herstellung
US5344292A (en) * 1992-08-20 1994-09-06 Ryder International Corporation Fluid pumping system and apparatus

Also Published As

Publication number Publication date
DE4332720C2 (de) 1997-02-13
US5718567A (en) 1998-02-17
JPH09500945A (ja) 1997-01-28
DE4332720A1 (de) 1995-03-30
DK0722538T3 (da) 1998-05-25
EP0722538A1 (fr) 1996-07-24
JP2977904B2 (ja) 1999-11-15
WO1995008711A1 (fr) 1995-03-30

Similar Documents

Publication Publication Date Title
EP0722538B1 (fr) Pompe a micromembrane
EP2207963B1 (fr) Pompe et ensemble pompe
DE4402119C2 (de) Verfahren zur Herstellung von Mikromembranpumpen
EP0310605A1 (fr) Pompe de fluide a actionnement piezoelectrique
DE69106240T2 (de) Mikropumpe und Verfahren zur Herstellung einer Mikropumpe.
DE19720482C2 (de) Mikromembranpumpe
DE68925425T2 (de) Differenzdrucksensor mit membran mit freier randkonstruktion
DE69938202T3 (de) Tintenzufuhrvorrichtung
DE60114411T2 (de) Microbearbeitete fluidische vorrichtung und herstellungsverfahren
DE10202996A1 (de) Piezoelektrisch steuerbare Mikrofluidaktorik
DE102007035721A1 (de) Mikroventil, Verfahren zum Herstellen eines Mikroventils sowie Mikropumpe
WO2009065427A1 (fr) Ensemble pompe avec soupape de sécurité
DE10235441A1 (de) Durch Mikrobearbeitung hergestelltes Hochtemperaturventil
EP2205869A1 (fr) Pompe à membrane
DE4422743A1 (de) Mikropumpe
DE102011078770A1 (de) Mikrofluidische Vorrichtung, mikrofluidisches System und Verfahren zum Transport von Fluiden
EP0613535A1 (fr) Soupape micromecanique pour dispositifs de dosage micromecaniques.
WO2004081390A1 (fr) Microvanne normalement doublement fermee
DE10135569B4 (de) Mikromechanisches Bauteil
DE4238571C1 (de) Verfahren zur Herstellung von durch einen Rahmen aufgespannte Membranen
DE102008004147A1 (de) Mikropumpe und Verfahren zum Pumpen eines Fluids
DE19844518A1 (de) Hydraulischer Wegverstärker für Mikrosysteme
EP2072819B1 (fr) Chambre de pompe et procédé de fabrication de cette chambre
DE102008001075B4 (de) Herstellungsverfahren für ein mikromechanisches Bauteil und entsprechendes mikromechanisches Bauteil
DE10313158A1 (de) Mikropumpe mit einem membranartigen Aktor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19951214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DK FR IT LI NL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19961126

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BUERKERT GMBH & CO. KG.

Owner name: FORSCHUNGSZENTRUM KARLSRUHE GESELLSCHAFT MIT BESCH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DK FR IT LI NL

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG

Ref country code: CH

Ref legal event code: EP

ET Fr: translation filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20010817

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020829

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020927

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020930

Year of fee payment: 9

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040401

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040528

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050902