WO1986003443A1 - Apparatus for automatically controlling heat input by a high-frequency power supply for welding - Google Patents

Apparatus for automatically controlling heat input by a high-frequency power supply for welding Download PDF

Info

Publication number
WO1986003443A1
WO1986003443A1 PCT/JP1985/000674 JP8500674W WO8603443A1 WO 1986003443 A1 WO1986003443 A1 WO 1986003443A1 JP 8500674 W JP8500674 W JP 8500674W WO 8603443 A1 WO8603443 A1 WO 8603443A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
output
circuit
welding
value
Prior art date
Application number
PCT/JP1985/000674
Other languages
English (en)
French (fr)
Inventor
Seietsu Sanmiya
Shigehisa Miyata
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to KR1019860700530A priority Critical patent/KR900002480B1/ko
Publication of WO1986003443A1 publication Critical patent/WO1986003443A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K13/00Welding by high-frequency current heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/08Seam welding not restricted to one of the preceding subgroups

Definitions

  • the present invention relates to an automatic heat input control device using a high frequency power source for welding.
  • the device according to the invention is used, for example, for automatic heat input control in high-quality high-frequency welding of ERW pipes. Background technology
  • the portion of the ERW pipe that is being welded becomes a so-called V-shaped groove, and the tip of the V-shaped groove becomes the welding point. It fluctuates slightly. Specifically, when the heat input level is low, there is almost no change in the welding point, but when the input heat level is high, the welding point position fluctuates with a certain amplitude and cycle. Therefore, those with small position fluctuations at the welding point are Type 1 welding phenomena, those with medium position fluctuation amplitude and cycle are Type 2 welding phenomena, and those with large and rough position are Type 3 welding phenomena. It can be called a phenomenon. Then, the current state of welding is detected and the welding conditions are adjusted to determine the desired welding phenomenon. Good quality is obtained if maintained.
  • the load of the high-frequency oscillation circuit that constitutes the welding electrode changes, which changes the output oscillation frequency, the phase difference between the output voltage and the same current, and the output power.
  • the welding point fluctuation By detecting it, it is possible to detect the welding point fluctuation and know whether the welding phenomenon is the first type to the third type.
  • proper welding can be performed by detecting the frequency fluctuation or cycle fluctuation of the power source and controlling the heat input so that the type 2 welding phenomenon is realized.
  • the reciprocal of ⁇ f that is, the period fluctuation width ⁇ (1 / f) is detected, and the output of the welding high frequency power source is controlled so that it becomes the target optimum value ⁇ (l Z i) (T).
  • the pipe power source to be welded that is, the load of the high-frequency oscillator circuit, the welding state affects the oscillation frequency of the high-frequency oscillator circuit (i), the welding state changes, and When the point position changes, the frequency changes.
  • This frequency ⁇ (i) is guided to the 1 / ⁇ counter, divided by a frequency divider to, for example, 1/100, and the rising or falling point of the divided output f Z lOO is pulsed by a monostable multivibrator.
  • the output signal of the monostable multivibrator which is the rising detection pulse that appears first, is the falling detection pulse that appears later.
  • the output pulse of the monostable multivibrator causes the counter to capture the value set in the setter.
  • the counter is loaded with the set value, the counter is reduced from the set value by the number of oscillator Count and output the residual value data.
  • the count value at the time when the monostable multivibrator produces an output, that is, the residual value obtained by subtracting the number of arrivals of the oscillator output cabals from the set value is taken into the latch.
  • the frequency i (i) is, for example, 400KH2, so the period of 1 divided by 100 is 0.25msec., And the frequency of the oscillator output clock is 100MHz. Therefore, the number of clock pulses during the period of 0.25msec. In which the set value is output to the counter is 25,000. If the value set in the potentiometer is set to 25000, the value taken into the ratch is 0 if it is-400 ⁇ 2, and the pulse number corresponding to the difference is the value if ⁇ > 400 ⁇ . It is taken in.
  • the difference captured in the switch is converted into an analog signal by the D-A converter and held by the beak-beak-hold circuit.
  • the beak hold surface holds the difference between the maximum value and the minimum value of the D A converter output, which is the latest value, and therefore outputs the period fluctuation width ⁇ (1 No). This output ⁇ (1 / f) becomes the feedback signal for power supply output control.
  • the above-mentioned conventional device has a low resolution due to the digital sampling method. Further, the target value ⁇ (l / f) (T) needs to be determined by the operator while visually observing the color of the weld, and there is a problem that it cannot be set automatically. There is also the problem that the circuit configuration is relatively complicated.
  • An object of the present invention is to obtain an improved automatic heat input control device by a high frequency power source for welding, which can automatically set a target value and can refine a measurement value by high resolution. is there.
  • the fluctuation of the output frequency of the high frequency power source for high frequency welding of the high frequency is detected, the maximum value and the minimum value of the output of the result of the detection of the output frequency fluctuation are obtained, and the maximum value is obtained.
  • the frequency fluctuation width ( ⁇ f) as the difference between the minimum values is calculated, the target value of the frequency fluctuation width ( ⁇ ⁇ (T)) is calculated, and the frequency fluctuation width.
  • An automatic heat input control method by a high frequency power source for welding characterized in that the output of the high frequency power source is controlled so that (amount) is equal to the frequency fluctuation width target value ⁇ f (T).
  • a high-frequency power source for high-frequency welding of a steel pipe comprising: a control circuit for controlling the output power of the high-frequency power source so that the ⁇ ⁇ ) becomes equal to a target value ( ⁇ f (T)).
  • the difference is not the frequency fluctuation width ⁇ (1 / f) but the frequency fluctuation width ⁇ ⁇ , which is the phase lock loop.
  • the detection and hold are performed by the loop circuit (PLL circuit) and the hold circuit, the circuit can be simplified, and at the same time, the resolution of measured values can be improved and the density of the measured values can be increased.
  • the threshold value of can be determined as ⁇ ⁇ at the point where the variation of ⁇ ⁇ is maximum.
  • Figure 1 is a block diagram showing a conventional heat input automatic control system using a high-frequency welding power source.
  • Fig. 2 is a waveform diagram showing various types of welding phenomena
  • Fig. 3 is a characteristic diagram showing the relationship between power, frequency change width and frequency change width change rate.
  • FIG. 4 is a diagram showing an automatic heat input control system using a welding high-frequency power source as one embodiment of the present invention.
  • FIGS. 1, 2, and 3 Prior to the description of the embodiment of the present invention in the best mode, the conventional apparatus and the first, second, and third type welding phenomena are shown in FIGS. 1, 2, and 3.
  • the system shown in Fig. 1 detects the reciprocal of the frequency fluctuation width ⁇ f, and therefore the periodic fluctuation width ⁇ (1), so that it becomes the optimum value (1) f ( ⁇ ) as the target value. Controls the output power of the welding high frequency power supply 1.
  • Reference numeral 7 denotes a pipe to be welded, which becomes a load on the high-frequency oscillator circuit as the power supply 1, and the welding state affects the frequency f (i) of the high-frequency oscillator circuit. Changes, the frequency changes To do.
  • This frequency (i) is guided to the frequency reciprocal (1) circuit 8 1. It is first divided by the frequency divider 811 into, for example, 1/100 to rise or fall the divided output. The point is balsified by the monostable multivibrators 812 and 813 and enters the counter 816 and the latch circuit 817, and the output of the monostable multivibrator 812, which is the rising detection pulse that appears earlier, changes the value of the counter 816.
  • the latching circuit 8 ⁇ causes the trailing edge detection panel that appears later, the monostable multivibrator 813's ridge cabals to cause the counter 816 to capture the value set in the setter 815.
  • the number of oscillator 81 outgoing cabals will be counted down from the set value and the residual value data will be output.
  • the count value at the time when the monostable multivibrator 812 produces an output that is, the residual value obtained by subtracting the number of arrivals of the oscillator 814 from the set value from the set value is taken into the latch 'circuit 817.
  • the frequency (i) is, for example, 400 KH2, so the period of 1/100 is 0.25 Bis ec.,
  • the frequency of the output clock of the oscillator 814 is 100 MHz, and therefore the counter 816 has the set value.
  • the value taken into the latch circuit 817 is 0, and if >> 400 KHz, the number of pulses corresponding to the difference is taken into the rat circuit 817.
  • the difference taken in by the latch circuit 817 is converted into an analog signal by the DA converter 818, and held by the beak beak hold circuit 4.
  • Beak hold circuit 4 The difference between the maximum value and the minimum value of the output of the DA converter 818, which is the latest value, is maintained, and therefore the period fluctuation width ⁇ (1 / f) is output. This output ⁇ (l / ⁇ ) becomes the output control feedback signal of power supply 1.
  • Figure 1 The device has a low resolution due to the digital sampling method.
  • the target value ⁇ (1) ( ⁇ ) needs to be determined by the operator while visually observing the color of the welding portion, and cannot be set automatically.
  • the circuit configuration is relatively complicated.
  • Figure 1 shows the 1st, 2nd, and 3rd type welding phenomena.
  • Figure 3 shows the relationship between the power vs. frequency converter width ⁇ L and its rate of change D ( ⁇ f).
  • FIG. 4 shows an automatic heat input control device using a high frequency power source for welding as an embodiment of the best mode of the present invention.
  • Reference numeral 2 is a phase lock loop circuit, which is composed of a phase comparator 21, a reduction filter 22 and a voltage controlled oscillator 23.
  • Reference numeral 3 is a target value detection circuit for ⁇ , which comprises a differentiating circuit 31, a frequency-to-voltage converter 3 2, beak-hold circuits 33 and 35, and a comparing circuit 34.
  • the comparator 21 determines the phase difference between the input and the output of the voltage controlled oscillator (VC0) 23. The corresponding output is generated.
  • the output frequency of the voltage controlled oscillator 23 is adjusted in advance so that it is within ⁇ 5% of the frequency (i).
  • the output of the comparator 21 is filtered by the filter 22 to remove high frequency components and then added to the voltage controlled oscillator 23, and its output frequency is changed so that there is no phase difference with the input f (i). Operate.
  • the output frequency of the voltage controlled oscillator 2 3 Following this, the relation between the amplitude f (a) of the frequency signal output from the filter 22 and the input frequency f (i) in this state is as shown by the straight line £, and f (a) is It is proportional to the change of i). However, the direction of extinction is the opposite, and as f increases, the amount of ⁇ (a) diminishes.
  • the hold circuit 4 beak-beak-holds the difference between the maximum value and the minimum value of such (a) and outputs the frequency fluctuation value.
  • the hold circuit 4 should be discharged in about 1 second so that the latest ⁇ can always be obtained.
  • the conventional frequency reciprocal counting circuit need only be the phase clock loop circuit 2, and the circuit configuration is simplified. .
  • the target value ⁇ ⁇ ( ⁇ ) is output from the target value detection circuit 3.
  • the output of filter (a) is differentiated by the differentiation circuit 31 and pulsed.
  • the output force (a) of the filter 22 and the output ( ⁇ ) of the differentiating circuit 3 1 are as shown in Fig. 2 depending on the welding conditions of the first type to the third type. ..
  • the frequency of the output f (p) is converted into the analog voltage D ( ⁇ f) by the frequency-voltage converter 3 2 and input to the beak hold circuit 3 3 and the comparison HI path 3 4.
  • the comparison circuit 3 4 is the peak value of D ( ⁇ f) output by the hold circuit 3 3.
  • D ( ⁇ ⁇ ) ( ⁇ ) is compared with the current value of D ( ⁇ f) output from the frequency / voltage converter 32.
  • D (Af) (p)> D (Af) an output is generated.
  • the load f at that time is taken into the hold circuit 35, and this is output as ⁇ f (T).
  • D ( ⁇ f) with respect to the output power KW of the high-frequency power source for welding Figure 3 shows the changes in ⁇ f first increases with the increase of the output power KW, and then turns into a decrease due to the beak.
  • the point where the increase rate is the maximum, that is, D ( ⁇ f) becomes a beak, is almost the second point.
  • the target value output circuit 30 uses this fact.
  • ⁇ f is taken into the hold circuit 35, that is, ⁇ ⁇ (T) is determined by gradually increasing the output power KW of the welding high frequency power grid 1 by a main control system (not shown). Prohibits the fetching operation and shifts to the control using ⁇ f (T) as the reference value.
  • the circuit for measuring the optimal heat input control index ⁇ f is greatly simplified, the measurement accuracy is improved, and it is economical.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)

Description

明 柳 溶接用高周波電源による入熱自動制御装置 技術分野
本発明は溶接用高周波電源による入熱自動制御装置に関す る。 本発明による装置は、 例えば、 電縫管の高品質の高周波 溶接における入熱自動制御に用いられる。 背景技術
一般に、 鐧板を管状に曲げ、 その突合せ部を高周波溶接す る電縫管製造工程では、 高品質溶接のため入熱を最適に制御 する必要があり、 そのための手段として溶接用電源の周波数 変動を監視し、 それが最適になるように入熱制御するこ とが 行なわれている。 .
電縫鐧管の溶接中の部分は所謂 V字溝になり、 その V字溝 先端が溶接点になるが、 この溶接点の位置は必らずしも一定 でなく、 溶接条件によって大き く又は小さ く変動する。 具体 的には、 入熱レベルが低い場合は溶接点の変勣は殆んどない が、 入力熱レベルが高いと溶接点位置はある振幅および周期 で変動する。 そこで溶接点の位置変動の小さいものを第 1形 式溶接現象と、 位置変動の振幅及び周期が中位のものを第 2 形式溶接現象と、 それが大き く荒々 しいものを第 3形式溶接 現象と呼ぶことができる。 そして溶接に際して現在どの状態 にあるかを検知し、 溶接条件を調節して望ましい溶接現象が 維持されるようにすれば良好な品質が得られる。 溶接点が変 動すると、 溶接電瀛を構成する高周波発振回路の食荷が変動 するため、 出力発振周波数、 出力電圧と同電流の位相差、 および出力電力が変動し、 従ってこれらのいずれかを検出す ることにより溶接点変動を検出し、 溶接現象が第 1形式〜第 3形式のいずれであるかを知ることができる。 通常の電縫 管溶接では電源の周波数変動又は周期変動を検出し、 第 2形 式溶接現象が実現されるように入熱制御すると適切な溶接を 行なう ことができる。
従来、 このような制御を行なう装置では、 周波数変動幅
Δ f の逆数、 従って周期変動幅 Δ ( 1 / f ) を検出し、 それ が目標である最適値 Δ ( l Z i ) ( T ) になるように溶接用高 周波電源の出力を制御する。 溶接されるべき管体電源、 すな わちその高周波発振回路の食荷となり、 その溶接状態が該高 周波発振回路の発振周波数 ί (i) 影響を与.え、 溶接状態が 変化し、 溶接点位置が変動すると該周波数が変化する。 この 周波数 ί ( i ) は 1 / ί カウ ンタに導かれ、 分周器で例えば 1 / 100 に分周され、 分周出力 f Z lOO の立上り又は立下り点 が単安定マルチバイ ブレータによりパルス化されてカウ ンタ を介してラ ツチに入り、 先に現われる立上り検出パルスであ る単安定マルチバイ ブレータの出カバルスは力ゥ ンタの値を ラ ッチへ取込ませ、 後に現われる立下り検出パルスである単 安定マルチバイ ブレータの出力パルスは設定器にセッ 卜され ている値をカウ ンタに取込ませる。 カ ウ ンタは設定値をロ ー ドされると、 設定値から発振器出カバルス到来数だけダウン カウ ン ト し、 残値データを出力する。 単安定マルチバイ ブレ 一タが出力を生じる時点での計数値、 すなわち設定値から発 振器出カバルスの到来数を滅算した残値がラ ツチに取込まれ る。
周波数 i (i) は例えば 400KH2であり、 従ってその 1 ノ100 分周の周期は 0.25msec. 、 であり、 発振器の出カク ロ ッ クの 周波数は 100MHzである。 従ってカウ ンタに設定値が口ー ドさ れる周期 0.25msec. の間のク ロ ックパルス数は 25000偭であ る。 設定器にセ ッ 卜する値を 25000とすれば、 ί - 400ΚΗ2で あると、 ラ ッチに取込まれる値は 0であり、 ί >400ΚΗζであ ると、 差分に相当するパルス数がラ ッチに取込まれる。 チ ッ チに取込まれた差分は D Α変換器により アナ口グ信号に変換 され、 ビーク ビークホール ド回路により保持される。 ビーク ホールド面路は D A変換器の出力の最大値と最小値であって 最新のものの差を保持し、 従って周期変動幅△ ( 1 ノ ί ) ·を 出力する。 この出力 Δ ( 1 / f ) は電源の出力制御用帰還信 号となる。
しかし前述の従来形装置は、 デジタルサンプリ ング方式の ため分解能が低い。 また目標値 Δ ( l / f ) (T)は、 ォペレ— タが溶接部の火色を目視判定しながら決定することが必要で あり、 自動設定はできないという問題点がある。 また、 回路 構成も比較的複雑である という問題点がある。
なお、 高周波溶接における溶接特性に関するデジタル測定 を行う こ とにより溶接現象を監視する装置は例えば米国特許 出願第 4254323号 (承継人 : 新日本製鉄株式会社) に開示さ れている。 発明の開示
本発明の目的は、 目標値の自動的設定が可能な、 かつ高分 解能による計測値の精密化が可能な、 改良された溶接用高周 波電源による入熱自動制御装置を得ることにある。
本発明においては、 基本彤態として、 高詧の鐧周波溶接用 の高周波電源の出力周波数の変動を検出し、 該出力周波数変 動検出の結果の出力の極大値および極小値を求め、 該極大値 極小値の差としての周波数変動幅 (Δ f ) を求め、 周波数変 勖幅の目標値 (Δ ί (T) )を求め、 そして、 該周波数変動幅 .
(厶 ί ) が該周波数変動幅目標値 Δ f (T) に等しく なるよう に該高周波電源の出力を制御する、 ことを特徴とする溶接用 高周波電源による入熱自動制御方法が提供される。
また本発明においては他の形態として、 鐧管の高周波溶接 用の高周波電源、 該高周波電源の出力周'凌数の変動を検出す る検出回路、 該検出回路の出力の極大値と極小値を求めその 差の周波数変動幅 (Δ ί ) を出力する第 1 のホール ド回路、 該周波数変動幅の目標値 ( Δ f (T) )を発生する目標値発生回 路、 および前記周波数変動幅 ( Δ ί)が目標値 ( Δ f (T) )に等 しく なるように該高周波電源の出力電力を制御する制御回路. を具備することを特徴とする溶接用高周波電源による入熱自 動制御装置、 が提供される。
本発明による装置においては、 差分を周波変動幅 Δ ( 1 / f ) でなく周波数変動幅 Δ ί とし、 該 を位相ロ ックルー プ回路 ( P L L回路) 及びホールド回路で検出ホールドする と、 回路を簡素化できると同時に、 計測値の高分解能化、 锖 密化を達成することができる a また目標値である周波数変動 幅厶 〖 の目橒値は Δ 〖 の変動が最大になる点の Δ ί として自 勖決定することができる。 図面の簡単な説明
第 1図は従来形の溶接用高周波電源による入熱自動制御装 置を示すブロ ック線図、
第 2図は溶接現象の種々の形式を示す波形図、
第 3図は.電力と周波数変化幅および周波数変化幅変化率と. の関係を示す特性図、
第 4図は本発明の一実'施例としての溶接用高周波電源によ る入熱自動制御装置を示す図である。 発明を実施するための最良の形態
最良の形態における本発明の実施例の記述に先立って従来 形の装置および第 1 , 第 2 , 第 3形式溶接現象が第 1図 , 第 2図 , 第 3図に示される。 第 1図装置では, 周波数変動幅 Δ f の逆数、 従って周期変勣幅 Δ ( 1 ノ ί ) を検出し、 それ が目標値としての最適値厶 ( 1ノ f ) (Τ)になるように溶接用 高周波電源 1 の出力電力を制御する。 7 は溶接されるべき管 体であって電源 1 としての高周波発振回路の負荷となり、 そ の溶接状態が該高周波発振回路の周波数 f ( i ) に影響を与え 溶接状態が変化し、 溶接点位置が変動すると該周波数が変化 する。
この周波数 ί (i) は周波数逆数 ( 1ノ ί ) 計数回路 8· 1 に 導かれて、 まず分周器 811 で例えば 1 / 100 に分周され、 分 周出力 ίノ 100 の立上り又は立下り点が単安定マルチバイブ レータ 812 , 813 によりバルス化されてカウ ンタ 816 、 ラ ッ チ回路 817 に入り、 先に現われる立上り検出パルスである単 安定マルチバイブレータ 812 の出カバルスはカウ ンタ 816 の 値をラッチ回路 8Π へ取込ませ、 後に現われる立下り検出パ ノレスである単安定マルチバイブレータ 813 の岀カバルスは設 定器 815 にセ ッ トされている値をカウ ンタ 816 に取込ませる , カウンタ 816 は設定値がロー ドされると、 設定値から発振器 81 出カバルス到来数をダウンカウ ン ト し、 残値データを出 力する。 単安定マルチバイ ブレータ 812 が出力を生じる時点 での計数値、 すなわち設定値から発振器 814 出カバルスの到 来数を減算した残値がラ ッチ'回路 817 に取込まれる
周波数 ί ( i ) は例えば 400KH2であり、 従ってその 1ノ 100 分周の周期は 0. 25Bi s ec . 、 発振器 814 の出力クロ ックの周波 数は 100MHz、 従ってカウ ンタ 816 に設定値が口一ドされる周 期 0. 25ms ec . の間のクロ ックパルス数は 25000偭である。
従って設定器 815 にセッ トする値を 25000とすれば、 ί =
400 KHz ならラ ッチ回路 817 に取込まれる値は 0であり、 ί > 400 KHz であればその差分に相当するパルス数がラ ッチ回 路 817 に取込まれる。 ラ ッチ回路 817 に取込まれた差分は D A変換器 818 によりアナログ信号に変換され、 ビーク ビーク ホール ド回路 4により保持される。 ビークホ—ル ド回路 4 は D A変換器 818 の出力の最大値と最小値であっていずれも最 新のものの差を保持し、 従って周期変動幅 Δ ( 1 / f ) .を出 力する。 この出力 Δ ( l / ί ) は電源 1の出力制御用帰還信 号となる。 第 1図装置はデジタルサンプリ ング方式のため分 解能が低い。 また目標値 Δ ( 1ノ ί ) (Τ)は、 オペレータが溶 接部の火色を目視判定しながら決定することが必要であり、 自動設定はできない。 また、 回路構成も比較的複雑である。 第 1 , 第 2 , 第 3形式溶接現象が第 2図に示される。 電力対 周波数変化器幅 Δ ίおよびその変化率 D ( Δ f ) の関係が第 3図に示される。
本発明の最良の形態における一実施例としての溶接用高周 波電源による入熱自動制御装置が第 4図に示される。 2 は位 相ロ ックループ回路で、 位相比較器 2 1、 低減濾波器 2 2、 電圧制御発振器 2 3からなる。 3は△ ί の目標値検出回路で、 微分回路 3 1 、 周波数対電圧変換器 3 2、 ビークホールド面 路 33 , 35、 および比較回路 3 4を備える。
溶接電源 1 の出力周波数 ί (i) を位相ロ ックループ回路 2 の位相比較器 2 1 に入力すると、 該比較器 2 1 は該入力と電 圧制御発振器(VC0)23 の出力との位相差に応じた出力を生じ る。 なお電圧制御発振器 2 3 の出力周波数は、 周波数 ί (i) とは ± 5 %程度の差以内にあるように予め調節しておく。 比 較器 2 1 の出力は濾波器 2 2で高周波成分を除去されたのち 電圧制御発振器 2 3 に加わり、 その出力周波数を変化させて 入力 f (i) との位相差がな く なるように動作する。
こう して電圧制御発振器 2 3 の出力周波数は入力周波数に 追従するが、 この状態での濾波器 2 2の出力である周波信号 の振幅 f (a) と入力周波数 f (i) との関孫は直線 £の如く な り、 f (a) は ί (i) の変化に比例する。 但し增滅方向は逆で あり、 f の增加にともない ί (a) は滅少する。 ホールド回路 4はかかる ί (a) の極大値及び極小値の差をビークビークホ ールドし、 周波数変動値厶 ίを出力する。 なお、 ホールド回 路 4は 1秒程度で放電するようにしておき、 常に最新の△ ί が得られるようにしておく。 この Δ ί と目標値 Δ ί (Τ) との 差が溶接用高周波電源 1 の出力電力を制御し、 該差が零にな るようにする。 第 4 装置によれば、 従来形における周 ¾数 逆数計数回路は位相口 ックループ回路 2で済み、 回路構成が 簡単になる。 .
目標値 Δ ί (Τ) は目標値検出回路 3から出力される。 目標 値検出回路 3では濾波器出力 ί (a) を微分回路 3 1で微分し、 パルス化する。 これら.の濾波器 2 2の出'力 ί (a) および微分 回路 3 1 の出力 ί (ρ) は、 第 1形式〜第 3形式溶接找態に応 じて第 2図に示すようになる。 出力 f (p) の周波数は周波数 · 電圧変換器 3 2でアナログ電圧 D (Δ f ) に変換され、 ビー クホールド回路 3 3 と比較 HI路 3 4に入力される。 比較回路 3 4はホールド回路 3 3が出力する D ( Δ f ) のピーク値
D (△ ί ) (ρ)と周波数 · 電圧変換器 3 2が出力する D ( Δ f ) の現在値を比較 ύ、 D(Af) (p) >D(Af)になったとき出力を 生じてそのときの厶 f をホールド回路 3 5に取込ませ、 これ を Δ f (T) として出力させる。
溶接用高周波電源の出力電力 KWに対する , D ( Δ f ) の変化を第 3図に示す。 Δ f は最初、 出力電力 K Wの増大に ともない增加し、 次いでビークを柽て減少に転じるが、.その 増加率が最大の点、 つまり D ( Δ f ) がビークをつける点は、 ほぼ第 2形式溶接現象状態に対応する。 目標値出力回路 3 0 はこの事実を利用するものである。 起動時のホールド回路 3 5への△ f 取込みつまり Δ ί (T) の決定は、 溶接用高周波 電潁 1 の出力電力 K Wを図示されていない主制御系で漸增さ せながら行ない、 取込み後は取込み動作を禁止し、 Δ f (T) を基準値とする制御に移行する。
第 4図装置においては、 最適入熱制御指標 Δ f の計測回路 が大幅に簡素化され、 計測精度が向上し、 経済的である。 ま た溶接されるべき管体の材料によって異なる厶 ί の目標値と しての最適値目標値の設定が自動的にでき、 極めて有効であ る。

Claims

請 求 の 範 囲
1. 鐧管の高周波溶接用の高周波電額の出力周波数の変動 を検出し、
該出力周波数変動検出の結果の出力の極大値および極小値 を求め、 該極大値、 極小値の差としての周波数変動輻 (Δ ί ) を求め、 周波数変動幅の目標値 (Δ f (T) )を求め、 そして、 該周波数変動幅 (Δ ί ) が該周波数変動幅目標値 ( Δ f (Τ) ) に等しく なるように該高周波電源の出力を制櫛する、 ことを 特徴とする溶接用高周波電源による入熱自動制御方 ¾。
2. 鐧管の高周波溶接用の高周波電源、 該高周波電源.の出 力周波数の変動を検出する検出回路、 該検出回路の出力の極 大値と極小値を求めその差の周波数変動幅 ( Δ ί ) を出力す る第 1 のホール ド回路、 該周波数変動幅の目標値 (Δ f (T) ) を発生する目標値発生回路、 および前記周波数変動幅 ) が目標値 (△ ί (Τ) )に等しく なるように該高周波電源の出力 電力を制御する制御回路、 を具備することを特徴とする溶接 用高周波電源による入熱自動制御装置。
3. 該目標値出力回路は、 検出回路の出力を微分する微分 回路、 該微分回路の出力を周波数-電圧変換する周波数 ♦ 電 圧変換器、 該周波数 ·電圧変換器の出力の極大値をホール ド する第 2のホール ド回路、 および該周波数 · 電圧 ♦ 変換器の 出力が第 2のホール ド西路の出力より小になるとき、 そのと きの周波数変動幅 (厶 f ) を取込み、 それを目標値 (△ ί (T) ) として出力する第 3のホール ド回路、 を具備する 請求の 範囲第 2項記載の装置,
PCT/JP1985/000674 1984-12-06 1985-12-06 Apparatus for automatically controlling heat input by a high-frequency power supply for welding WO1986003443A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019860700530A KR900002480B1 (ko) 1984-12-06 1985-12-06 고주파 용접 입열의 자동 제어장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP59257916A JPS61135490A (ja) 1984-12-06 1984-12-06 高周波溶接入熱自動制御装置
JP59/257916 1984-12-06

Publications (1)

Publication Number Publication Date
WO1986003443A1 true WO1986003443A1 (en) 1986-06-19

Family

ID=17312971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1985/000674 WO1986003443A1 (en) 1984-12-06 1985-12-06 Apparatus for automatically controlling heat input by a high-frequency power supply for welding

Country Status (7)

Country Link
US (1) US4740665A (ja)
JP (1) JPS61135490A (ja)
KR (1) KR900002480B1 (ja)
AU (1) AU582619B2 (ja)
DE (2) DE3590632C2 (ja)
GB (1) GB2181004B (ja)
WO (1) WO1986003443A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2750921C1 (ru) * 2020-11-30 2021-07-06 Акционерное общество "Выксунский металлургический завод" (АО "ВМЗ") Способ управления процессом высокочастотной сварки трубной заготовки

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4717801A (en) * 1986-08-11 1988-01-05 Fmc Corporation Dual induction heating pressure welding apparatus having a control circuit
JP2504056B2 (ja) * 1987-05-30 1996-06-05 株式会社明電舎 電縫管溶接の入熱制御方法およびその装置
JPH0323085A (ja) * 1989-06-16 1991-01-31 Nippon Steel Corp 電縫管の溶接欠陥検出方法
JPH0465551U (ja) * 1990-10-16 1992-06-08
US5278382A (en) * 1990-10-29 1994-01-11 Herfurth Gmbh Method for the high-frequency heating of dielectric workpieces
US5889262A (en) * 1997-05-15 1999-03-30 Seah Steel Corporation System for and method of automatically controlling amount of input heat in high-frequency electric resistance welding machine
DE10137479A1 (de) * 2001-08-02 2003-02-27 Wurzer Georg Schweissverfahren zum Verbinden der Kanten von Edelstahlblechen bzw. Profilen und Herstellungsmaschine für Hohlprofile
JP4505491B2 (ja) * 2007-11-05 2010-07-21 新日本製鐵株式会社 鋼管材の溶接部加熱装置及び方法
JP2011029127A (ja) * 2009-07-29 2011-02-10 Fuji Electric Systems Co Ltd コンタクト式電縫管溶接電源装置における負荷開放検出方法
KR101626339B1 (ko) * 2015-01-13 2016-06-01 삼성중공업 주식회사 용접 검교정 장치의 제어방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817711B2 (ja) * 1979-02-21 1983-04-08 新日本製鐵株式会社 高周波電縫溶接現象監視装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2719234C2 (de) * 1977-04-29 1985-03-28 Hans A. Dipl.-Chem. Dr. 8000 München Thoma Mehrkanalsystem zur Handhabung von immobilisierten, biologisch-aktiven Substanzen
US4254323A (en) * 1978-06-16 1981-03-03 Nippon Steel Corporation Apparatus for monitoring and controlling a welding phenomenon in an electric resistance welding
JPS5817711A (ja) * 1981-07-23 1983-02-02 Toshiba Corp 周波数変換回路
JPS5910871A (ja) * 1982-07-12 1984-01-20 Toshiba Corp 多チヤンネル検出器
DE3238766A1 (de) * 1982-10-20 1984-04-26 Hoesch Werke Ag Verfahren und vorrichtung zur ueberwachung und/oder regelung des schweissstromes beim hochfrequenzwiderstandspressschweissen von laengsnahtrohren
JPS58100985A (ja) * 1982-11-15 1983-06-15 Nippon Steel Corp 高周波電縫溶接現象制御装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817711B2 (ja) * 1979-02-21 1983-04-08 新日本製鐵株式会社 高周波電縫溶接現象監視装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2750921C1 (ru) * 2020-11-30 2021-07-06 Акционерное общество "Выксунский металлургический завод" (АО "ВМЗ") Способ управления процессом высокочастотной сварки трубной заготовки

Also Published As

Publication number Publication date
JPH0334432B2 (ja) 1991-05-22
GB2181004B (en) 1989-08-23
DE3590632C2 (ja) 1988-10-27
DE3590632T1 (ja) 1987-01-29
AU5232386A (en) 1986-07-01
AU582619B2 (en) 1989-04-06
US4740665A (en) 1988-04-26
JPS61135490A (ja) 1986-06-23
KR870700035A (ko) 1987-02-28
KR900002480B1 (ko) 1990-04-16
GB2181004A (en) 1987-04-08
GB8617721D0 (en) 1986-08-28

Similar Documents

Publication Publication Date Title
WO1986003443A1 (en) Apparatus for automatically controlling heat input by a high-frequency power supply for welding
TW445192B (en) Control method and apparatus for an arc welding system
KR100493124B1 (ko) 아크 용접 프로세스의 제어 방법 및 이를 이용하는 용접기
JP4334930B2 (ja) パルスアーク溶接のアーク長制御方法
US4525790A (en) Method for oscillating ultrasonic waves and a microcomputer's built-in ultrasonic wave oscillator circuitry
US5694046A (en) Method and apparatus for monitoring thermal processing of a workpiece in accordance with a measured capacitance frequency distribution
NL8101621A (nl) Werkwijze en inrichting voor het bewaken en besturen van een weerstandslasproces.
JP2006000857A (ja) パルスアーク溶接電源
EP0795373B1 (en) Standoff control method for plasma cutting machine
US6169262B1 (en) Apparatus and method for enhancing the working efficiency of an electric discharging machine
Wang et al. Separately excited resonance phenomenon of the weld pool and its application
JP4890281B2 (ja) パルスアーク溶接制御方法
JPS6117590B2 (ja)
JPH06198227A (ja) 静電粉末塗装銃および高電圧発生方法
KR20240017403A (ko) 신호 처리 시스템 및 신호 처리 시스템을 포함하는 전원 장치
JP4663309B2 (ja) パルスアーク溶接のアーク長制御方法
JPS6224180B2 (ja)
JPH0649253B2 (ja) 放電加工装置の電極間距離の制御装置
JP2619403B2 (ja) プラズマ処理装置およびプラズマ処理終点判定方法
JPH09253846A (ja) 溶接装置の電気的特性の計測方法
JP3476169B2 (ja) 粉粒体充填管の粉粒体充填率検出装置
RU2113954C1 (ru) Способ электронно-лучевой сварки
JP2021186821A (ja) パルスアーク溶接電源
JPH09271945A (ja) 消耗電極アーク溶接のアーク長復帰制御方法及び溶接装置
JP2006068784A (ja) アークスタート時パルスアーク溶接制御方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU DE GB KR US

CFP Corrected version of a pamphlet front page

Free format text: REPLACE (22) INT.FILING DATE "6 DECEMBER 1986 (061286)" BY "6 DECEMBER 1985 (061285)" AND (32) PRIORITY DATE "6 DECEMBER 1986 (061286)" BY "6 DECEMBER 1984 (061284)"

CFP Corrected version of a pamphlet front page

Free format text: IN JAPANESE CHARACTERS ONLY,THE NAME OF THE "INVENTOR;AND" AND "INVENTOR/APPLICANT(FOR US ONLY)""SANMYIA,SEIETSU(JP/JP)" WAS RETYPED

RET De translation (de og part 6b)

Ref document number: 3590632

Country of ref document: DE

Date of ref document: 19870129

WWE Wipo information: entry into national phase

Ref document number: 3590632

Country of ref document: DE