WO1986000752A1 - Beam tube for bringing out x-ray light - Google Patents
Beam tube for bringing out x-ray light Download PDFInfo
- Publication number
- WO1986000752A1 WO1986000752A1 PCT/DE1985/000236 DE8500236W WO8600752A1 WO 1986000752 A1 WO1986000752 A1 WO 1986000752A1 DE 8500236 W DE8500236 W DE 8500236W WO 8600752 A1 WO8600752 A1 WO 8600752A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- membrane
- area
- jet pipe
- pipe according
- vacuum
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H7/00—Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
- H05H7/001—Arrangements for beam delivery or irradiation
Definitions
- the invention relates to a beam pipe for decoupling X-ray light from a UHV region of an X-ray radiation source according to the preamble of patent claim 1.
- the X-ray radiation source can, for example, be an electronic circulation system, such as. an electron storage ring. or a. Be electron synchrotron.
- the synchrotron radiation of such electron circulation systems has recently been increasingly used as a powerful X-ray light or X-ray radiation source for scientific experiments, for material analysis or in the semiconductor industry.
- beam tubes For coupling out the synchrotron radiation from such electron circulation systems, so-called beam tubes are used, which establish the connection between the electron circulation system and the area (application area) in which the x-ray radiation is used, for example, for one of the aforementioned purposes.
- the jet pipes are used over their entire length and also the second area, i.e. the application area is carried out in ultra-high vacuum technology, since the beam tube creates a direct connection between the electron circulation system and the application area.
- the beam tubes are designed as continuous tubes, so that in order to maintain the ultra-high vacuum in the electron circulation system, the beam tube and the area of application must also be implemented in UHV technology. This leads to a considerable increase in costs, since ultra-high vacuum components are several times more expensive than, for example, fine vacuum components.
- a pressure reduction in the jet pipe has not yet been considered.
- differential pressure stages are used for such pressure reductions. These essentially consist of a very long and narrow pipe, into which additional screens may be installed, which increase the line resistance.
- the pressure reduction of such differential pressure stages is not only very limited, the constricted pipe cross-section also has the disadvantage that the optical path is also greatly restricted. This is very disadvantageous if, for example, the full geometrical extent of the synchrotron light is to be used.
- differential pressure stages there would be great problems with adjusting the beam path in the beam pipe which has these narrow points.
- a large aperture is required if the light beam by means of optical elements te, for example with mirrors, etc. to be able to illuminate large areas in the vertical direction.
- such elements must be in the ultra-high vacuum part in order to maintain their optical quality. All of this has resulted in the average person having developed a prejudice against pressure reduction in the jet pipe.
- the invention has for its object to provide a beam pipe for coupling out X-ray light according to the preamble of claim 1, which allows a pressure reduction for the X-ray light with a large aperture.
- this thin membrane seals the UHV area of the X-ray source and the smaller UHV part of the jet pipe in a vacuum-tight manner against a second area of the jet pipe as well as, if applicable, the area of application in which there is a higher pressure, for example a fine vacuum of approx. 10 -2 hPa.
- a vacuum-tight membrane - as has been recognized according to the invention - can nevertheless be almost transparent to X-rays.
- the steel tube according to the invention has the same aperture as the prior art with the same geometric dimensions. It is particularly advantageous if - as claimed in claim 2 - the membrane consists of materials with a low mass number because of the strong mass dependence of the X-ray absorption.
- membrane In claim 3 it is characterized that preferred materials for the membrane are metals or semiconductors, for example aluminum, beryllium, magnesium or silicon and their compounds.
- the use of the membrane according to the invention for reducing the pressure has the advantage that the jet pipe is easy to handle and the membrane takes up little space. Since the absorption, particularly of the elements to be used with preference, is very high in the long-wave range, the heat load for the subsequent components is very low. The good thermal stability and the high thermal conductivity of silicon, for example, allow the use of this material, inter alia, even at the highest radiation intensities. This is another surprising advantage of the membrane according to the invention.
- Fig. 2 shows another way to attach the membrane
- Fig. 3 shows a preferred embodiment of a membrane according to the invention.
- Fig. 1 shows part of a jet pipe.
- a thin, but vacuum-tight membrane 1 separates an ultra-high vacuum area A of the jet pipe from an area B in which a substantially higher pressure, for example a pressure in the fine vacuum or high vacuum area, is maintained.
- Area B is followed by the application area, not shown, in which experimental setups are arranged; a vacuum connection between the application area and area B is not absolutely necessary.
- the area A is directly connected in terms of vacuum to the X-ray radiation source, which is designed using UHV technology.
- the pressure is typically a few 10 -9 hPa, while in range B the pressure is typically 10 -2 hpa is.
- the membrane 1 is attached to a window flange 2.
- the window flange 2 is connected to the flanges 4 and 5 of the jet pipe using conventional vacuum sealing technology.
- the known vacuum sealing technology is only shown schematically by the elements 3, for example O-rings.
- the thin membrane 1 is connected to the window flange 2 in a vacuum-tight manner by means of sealing rings 6 and a retaining ring 7.
- the two sealing rings 6 can preferably be arranged slightly offset, so that the membrane 1 is simultaneously slightly tensioned.
- the sealing rings 6 can be conventional vacuum sealing elements, for example O-rings, but soft metal rings, for example made of gold, indium or lead, can also be used as sealing rings.
- a window flange 2 which carries the membrane 1
- the membrane 1 can be easily replaced in the event of damage or if another radiation source is used.
- FIG. 2 shows a further possibility of attaching the membrane 1 to the window flange 2 in a vacuum-tight manner.
- the membrane 1 is tightly connected to the window flange 2 by means of a sealing and adhesive compound 8, which is very thin.
- Vacuum-compatible adhesives commonly used, for example two-component adhesives, can be used as sealants and adhesives. Since the adhesive surfaces are very small, the emission rate of the adhesive is very low.
- FIG. 3 shows a special embodiment of the thin membrane 1.
- the membrane 1 has a circular area 1 a on, the thickness of which is very small compared to the surrounding annular area 1b.
- Such a membrane can be produced, for example, by etching a 400 to 500 ⁇ m thick silicon wafer in such a way that the circular region 1a is formed.
- the annular area 1b, ie the edge also serves as a clamping frame for the film 1a and can be connected to the window flange 2, for example in the manner shown in FIGS. 1 and 2, without the actual membrane 1a itself being mechanically stressed.
- the use of a membrane according to the invention has the advantage that an excellent pressure reduction is achieved.
- a membrane according to the invention has the advantage that an excellent pressure reduction is achieved.
- Silicon foil with a thickness of 1.5 ⁇ m and an area of 15 cm 2 can achieve pressure reductions of 10 -9 hPa against 10 -2 hPa at any time.
- the membrane can be connected to the window flange by means of a sintering or diffusion process.
- Silver for example, can be used as the diffusion material.
- This method of vacuum-tight fastening has the advantage that the window flange 2 together with the membrane can also be heated to higher temperatures when the UHV part of the vacuum system is heated.
- the x-ray permeable membrane can also have a rectangular or other shape.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- X-Ray Techniques (AREA)
- Particle Accelerators (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Description
Strahlrohr zum Auskoppeln von Röntgenlicht
Beschreibung
Technisches Gebiet
Die Erfindung bezieht sich auf ein Strahlrohr zum Auskoppeln von Röntgenlicht aus einem UHV-Bereich einer Röntgenstrahlungsquelle gemäß dem Oberbegriff des Patentanspruchs 1.
Die Röntgenstrahlungsquelle kann beispielsweise ein Elektrσnenumlaufrsystern, wie. ein Elektronenspeicherring. oder ein. Elektronensynchrotron sein. Die Synchrotronstrahlung derartiger Elektronenumlaufsysteπre wird in letzter Zeit verstärkt als leistungsfähige Röntgenlicht- bzw. Röntgenstrahlungs-Quelle für wissenschaftliche Experimente, zur Materialuntersuchung oder in der Halbleiterindustrie verwendet.
Zur Auskoppelung der Synchrotronstrahlung aus derartigen Elektronenumlaufsystemen werden sogenannte Strahlrohre verwendet, die die Verbindung zwischen dem ElektronenumlaufSystem und dem Bereich (Anwendungsbereich) herstellen, an dem die Röntgenstrahlung beispielsweise zu einem der vorstehend genannten Zwecke verwendet wird.
Stand der Technik
In Elektronenumlaufsystemen muß Ultrahochvakuum von ca. 10-9 hPa aufrecht erhalten werden, um ausreichend große Ströme und Speicherzeiten für die Elektronen zu erhalten; auch im Strahlrohr sollte Vakuum aufrecht erhalten werden, um starke Absorptionsverluste der Synchrotronstrahlung zu vermeiden, deren Wellenlängen vom fernen Infrarot bis weit
in den Röntgenbereich reichen. Andererseits ist es jedoch oft ausreichend, wenn das Vakuum in dem zweiten Bereich, in dem die Anwendung des Röntgenlichts erfolgt, Feinvakuum bis Hochvakuum ist.
Trotzdem werden nach dem Stand der Technik die Strahlrohre über ihre gesamt Länge und auch der zweite Bereich, d.h. der Anwendungsbereich in Ultrahochvakuum-Technik ausgeführt, da das Strahlrohr eine direkte Verbindung zwischen dem ElektronenumlaufSystem und dem Anwendungsbereich herstellt. Nach dem Stand der Technik sind nämlich die Strahlrohre als durchgehende Rohre ausgeführt, so daß zur Aufrechterhaltung des Ultrahochvakuums in deπr Elektronenumlaufsystem auch das Strahlrohr und der Anwendungsbereich in UHV-Technik ausgeführt sein müssen. Dies führt zu einer erheblichen Kostensteigerung, da Ultrahochvakuum-Bauteile um ein mehrfaches teurer sind als beispielsweise Feinvakuum-Bauteile.
Eine Druckuntersetzung im Strahlrohr ist bislang noch nicht in Betracht gezogen worden. Nach dem Stand der Technik werden für derartige Druckuntersetzungen differentielle Druckstuferr verwendet. Diese bestehen im wesentlichen aus einem sehr langen und engen Rohr, in das gegebenenfalls zusätzlich Blenden eingebaut sind, die den Leitungswiderstand heraufsetzen. Die Druckuntersetzung derartiger differentieller Druckstufen ist nicht nur sehr begrenzt, der verengte Rohrquerschnitt hat darüberhinaus den Nachteil, daß der optische Weg ebenfalls stark eingeengt ist. Dies ist sehr nachteilig, wenn beispielsweise das Synchrotronlicht in seiner vollen geometrischen Ausdehnung genutzt werden soll.. Auch würden sich bei derartigen differentiellen Druckstufen große Probleme mit dem Justieren des Strahlengangs in dem Strahlrohr ergeben, das diese Engstellen aufweist. Erschwerend kommt noch hinzu, daß gerade eine große Apertur erforderlich ist, wenn der Lichtstrahl mittels optischer Elemen
te, beispielsweise mit Spiegeln, etc. ausgelenkt werden soll, um auch in vertikaler Richtung große Flächen ausleuchten zu können. Derartige Elemente müssen sich jedoch unbedingt im Ultrahochvakuumteil befinden, damit ihre optische Güte erhalten bleibt. Dies alles hat dazu geführt, daß der Durchschnittsfachmann, ein Vorurteil gegen eine Druckuntersetzung im Strahlrohr entwickelt hat.
Beschreibung der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, ein Strahlrohr zum Auskoppeln von Röntgenlicht gemäß dem Oberbegriff des Patentanspruchs 1 anzugeben, das es bei großer Apertur für das Röntgenlicht eine Druckuntersetzung erlaubt.
Eine erfindungsgemäße Lösung dieser Aufgabe ist mit ihren Weiterbildungen in den Patentansprüchen angegeben.
Erfindungsgemäß ist erkannt worden, daß es möglich ist, im Strahlrohr eine Druckuntersetzung dadurch zu erhalten, daß im Strahlrohr eine dünne Membran angeordnet ist. Diese dünne Membran dichtet einerseits den UHV-Bereich der Röntgenquelle sowie den kleineren UHV-Teil des Strahlrohrs vakuumdicht gegen einen zweiten Bereich des Strahlrohrs sowie gegebenenfalls den Anwendungsbereich ab, in denen ein höherer Druck, beispielsweise ein Feinvakuum von ca. 10-2 hPa herrscht. Andererseits kann eine derartige vakuumdichte Membran - wie erfindungsgemäß erkannt worden ist - dennoch für Röntgenstrahlung nahezu durchlässig sein. Da nur noch ein kleiner Teil des Strahlrohrs in UHV-Technik ausgeführt werden muß, sind die Herstellungs- und auch die Unterhaltskosten (weniger Ausheizen etc.) des Strahlrohrs wesentlich geringer als beim Stand der Technik. Trotzdem weist das erfindungsgemäße Stahlrohr bei gleichen geometrischen Abmessungen dieselbe Apertur wie der Stand der Technik auf.
Dabei ist es besonders vorteilhaft wenn - wie in Anspruch 2 beansprucht - die Membran wegen der starken Massenabhängigkeit der Röntgenabsorption aus Materialien mit niedriger Massenzahl besteht.
In Anspruch 3 ist gekennzeichnet, daß -bevorzugte Materialien für die Membran Metalle oder Halbleiter, beispielsweise Aluminium, Beryllium, Magnesium oder Silizium nsowie deren Verbindungen sind.
Da die mechanische Belastung aufgrund der Druckdifferenz zwischen den beiden Vakuumbereichen minimal ist, und andererseits die Absorption des Rontgenlichts von der Dicke der Membran abhängt, kann diese außerordentlich dünn sein. In Anspruch 4 ist ein bevorzugter Dickenbereich für die Membran angegeben.
In den Ansprüchen 5 bis 8 sind verschiedene Ausführungsformen der Membran beansprucht.
In jedem Falle hat die Verwendung der erfindungsgemäß vorgesehenen Membran zur Druckuntersetzung den Vorteil, daß das Strahlrohr einfach zu handhaben ist, und die Membran nur einen geringen Platzbedarf hat. Da die Absorption insbesondere der bevorzugt zu verwendenden Elemente im langwelligen Bereich sehr hoch ist, ist die Wärmebelastung für die nachfolgenden Bauteile sehr gering. Die gute thermische Stabilität und die hohe thermische Leitfähigkeit beispielsleise von Silizium läßt die Verwendung unter anderem dieses Materials auch bei höchsten Strahlungsintensitäten zu. Dies ist ein weiterer überraschender Vorteil der erfindungsgemäßen Membran .
Dennoch kann durch die Aufteilung des Strahlrohrs in einen
Bereich, in dem Ultrahochvakuum aufrecht erhalten wird, und in einem Bereich, in dem lediglich Feinvakuum oder niedriges Hochvakuum herrscht, der Anteil der in UHV-Technik auszuführenden Bauteile klein gehalten werden, so daß sich eine wesentliche Kostenersparnis ergibt. Andererseits ist das wesentlich geringere Vakuum im zweiten Teil des Strahlrohrs für einen nahezu absorptionsfreien Durchgang der Röntgenstrahlung ausreichend.
Kurze Beschreibung der Zeichnung
Die Erfindung wird nachstehend exemplarisch unter Bezugnahme auf die Zeichnung näher beschrieben in der zeigen:
Fig. 1 ein erfindungsgemäßes Strahlrohr,
Fig. 2 ein weitere Möglichkeit, die Membran zu befestigen, und
Fig. 3 ein bevorzugtes Ausführungsbeispiel einer erfindungsgemäßen Membran.
Wege zur Ausführung der Erfindung
Fig. 1 zeigt einen Teil eines Strahlrohrs. Eine dünne, jedoch vakuumdichte Membran 1 trennt einen Ultrahochvakuumbereich A des Strahlrohrs von einem Bereich B, in dem ein wesentlich höherer Druck, beispielsweise ein Druck im Feinvakuum- oder Hochvakuumbereich aufrecht erhalten wird. An den Bereich B schließt sich der nicht dargestellte Anwendungsbereich an, in dem Versuchsaufbauten etc angeordnet sind; eine vakuummäßige Verbindung zwischen dem Anwendungsbereich und dem Bereich B ist nicht zwingend erforderlich. Der Bereich A ist mit der in UHV-Technik ausgeführten Röntgenstrahlungsquelle vakummäßig direkt verbunden. Im Ultrahochvakuumbereich A, der mit UHV-Elementen wie Flansche, Rohrleitungen, Ventile und Pumpen ausgeführt werden muß, beträqt der Druck typischerweise einige 10-9 hPa, wahrend im Bereich B der DrucK typischerweise 10-2 hpa
beträgt.
Bei der in Fig. 1 dargestellte Ausführungsform ist die Membran 1 an einem Fensterflansch 2 befestigt. Der Fensterflansch 2 ist in üblicher Vakuum-Dichtungstechnik mit den Flanschen 4 und 5 des Strahlrohrs verbunden. Die bekannte Vakuumdichtungstechnik ist nur schematisch durch die Elemente 3, beispielsweise O-Ringe dargestellt.
Die dünne Membran 1 ist bei der in Fig. 1 dargestellten Ausführungsform mittels Dichtringen 6 und eines Halterings 7 vakuumdicht, mit dem Fensterflansch 2 verbunden. Die beiden Dichtringe 6 können vorzugsweise leicht versetzt angeordnet werden, so daß die Membran 1 .gleichzeitig leicht gespannt wird. Die Dichtringe 6 können übliche Vakuum-Dichtelemente, beispielsweise O-Ringe sein, jedoch können als Dichtringe auch weiche Metallringe beispielsweise aus Gold, Indium oder Blei verwendet werden.
Die Verwendung eines Fensterflansches 2, der die Membran 1 trägt, hat den Vorteil, daß die Membran 1 im Falle einer Beschädigung oder bei Verwendung einer anderen Strahlungsquelle leicht ausgetauscht werden kann.
Fig. 2 zeigt eine weitere Möglichkeit, die Membran 1 an den Fensterflansch 2 vakuumdicht zu befestigen. Die Membran 1 ist mittels einer Dicht- und Klebemasse 8, die sehr dünn ist, dicht mit dem Fensterflansch 2 verbunden. Als Dichtund Klebemassen können üblicherweise verwendete vakuumtaugliche Klebstoffe, beispielsweise Zwei-Komponenten-Klebstoffe verwendet werden. Da die Klebeoberflächen sehr klein sind, ist die Abgasrate des Klebstoffs sehr gering.
Fig. 3 zeigt eine besondere Ausführungsform der dünnen Membran 1. Die Membran 1 weist einen kreisförmigen Bereich la
auf, dessen Dicke im Vergleich zu dem in umgebenden ringförmigen Bereich 1b sehr gering ist. Eine derartige Membran, kann beispielsweise dadurch hergestellt werden, daß eine 400 bis 500 μ m dicke Siliziumscheibe so angeätzt wird , daß der kreisförmige Bereich 1a entsteht. Der ringförmige Bereich 1b, d.h. der Rand dient gleichzeitig als Spannrahmen für die Folie 1a und kann beispielsweise in der in den Fig. 1 und 2 dargestellten Weise mit dem Fensterflansch 2 verbunden werden, ohne das die eigentliche Membran 1a selbst mechanisch beansprucht wird.
In jedem Falle hat die erfindungsgemäße Verwendung einer Membran den Vorteil, daß eine hervorragende Druckuntersetzung erreicht wird. Beispielsweise bei Verwendung einer
Siliziumfolie mit einer Dicke von 1,5 μm und einer Fläche von 15 cm 2 können jederzeit Druckuntersetzungen von 10-9 hPa gegen 10 -2 hPa erreicht werden.
Vorstehend ist die Erfindung exemplarisch beschrieben worden. Im Rahmen des erfindungsgemäßen Grundgedankens, bereits im Strahlrohr eine Druckuntersetzung zu erzielen und zum Trennen der Vakuumbereich eine dichte, aber Röntgenlicht-durchlässige Membran zu verwenden, sinddie verschiedensten Modifikationen möglich:
Beispielsweise kann die Membran mittels eines Sinter- oder Diffusionsprozesses mit dem Fensterflansch verbunden werden. Als Diffusionsmaterial kann beispielsweise Silber verwendet werden. Dieses Verfahren der vakuumdichten Befestigung hat den Vorteil, daß der Fensterflansch 2 samt Membran beim Ausheizen des UHV-Teils des Vakuumsystems ebenfalls auf höhere Temperaturen erwärmt werden kann.
Darüberhinaus ist es selbstverständlich nicht erforderlich Membrane mit runder Form zu verwenden. Die Röntgenstrahl
durchlässigen Membrane können auch eine rechteckige oder sonstige Form haben.
In jedem Falle erzielt man durch die Aufteilung des Strahlrohrs in zwei Bereiche mit unterschiedlichen Drücken eine wesentliche Kostenersparnis, ohne daß die Apertur des Strahlrohrs verschlechtert würde.
Claims
1. Strahlrohr zum Auskoppeln von Röntgenlicht aus einem UHVBereich einer Röntgenstrahlungsquelle, in dem Hochvakuum bis Ultrahochvakuum aufrecht erhalten wird in einen zweiten Bereich, dadurch gekennzeichnet, daß das Strahlrohr in zwei Bereiche (A,B) aufgeteilt ist, zwischen denen eine Membran angeordnet ist, die den mit der Röntgenstrahlungsquelle verbundenen Bereich (A) gegen den zweiten Bereich (B) abdichtet, jedoch für das Röntgenlicht praktisch durchlässig ist.
2. Strahlrohr nach Anspruch 1, dadurch gekennzeichnet, daß die Membran aus einem Material niedriger Massenzahl besteht.
3. Strahlrohr nach Anspruch 2, dadurch gekennzeichnet, daß das Material ein Metall oder Halbleiter ist, z.B. Aluminium, Beryllium, Magnesium oder Silizium.
4. Strahlrohr nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Membran zwischen 0,5 μm und 5 μm dick ist.
5. Strahlrohr nach einem der Anspräche 1 bis 4, dadurch gekennzeichnet, daß die Membran (1) an einem Fensterflansch (2) befestigt ist, der mit dem Strahlrohr (4,5) lösbar verbunden ist.
6. Strahlrohr nach Anspruch 5, dadurch gekennzeichnet, daß die Membran (1) an den Fensterflansch (2) mittels eines Halterings (7) befestigt und mit zwischen den Haltering (7) und der Membran (1) bzw. der Membran (1) und dem Fensterflansch (2) angeordneten Dichtringen abgedichtet ist, die gegeneinander versetzt sind.
7. Strahlrohr nach Anspruch 5, dadurch gekennzeichnet, daß die Membran (1) mit dem Fensterflansch (2) verklebt oder versintert ist.
8. Strahlrohr nach einem der Anspräche 1 bis 7, dadurch gekennzeichnet, daß die Membran (1) einen zentralen dünnen Bereich, der für das Röntgenlicht praktisch durchlässig ist, und einen diesen zentralen Bereich umgebenden
Bereich mit einer Dicke von etwa 400 bis 500 μm aufweist.
9. Strahlrohr nach Anspruch 8, dadurch gekennzeichnet, daß der zentrale dünne Bereich durch Ätzen einer dicken Folie hergestellt ist.
10. Strahlrohr nach einem der Anspräche 1 bis 9, dadurch gekennzeichnet, daß im zweiten Bereich Feinvakuum (z.B. 10-2 hPa) aufrecht erhalten wird.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEP3425146.4 | 1984-07-07 | ||
DE19843425146 DE3425146A1 (de) | 1984-07-07 | 1984-07-07 | Strahlrohr zum auskoppeln von roentgenlicht aus einer synchrotronstrahlungsquelle |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1986000752A1 true WO1986000752A1 (en) | 1986-01-30 |
Family
ID=6240135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1985/000236 WO1986000752A1 (en) | 1984-07-07 | 1985-07-08 | Beam tube for bringing out x-ray light |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0187786A1 (de) |
JP (1) | JPS62501110A (de) |
DE (1) | DE3425146A1 (de) |
WO (1) | WO1986000752A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0469895A2 (de) * | 1990-08-01 | 1992-02-05 | Canon Kabushiki Kaisha | Röntgenstrahlenübertragendes Fenster und Verfahren zu seiner Einrichtung |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3711293A1 (de) * | 1987-04-03 | 1988-10-27 | Fraunhofer Ges Forschung | Schnellschliessendes durchgangsventil eines vakuum-schutzsystems |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE760042C (de) * | 1940-09-20 | 1954-02-22 | Siemens & Halske A G | Schnellverschluss fuer ein vakuumdichtes Gefaess, insbesondere ein Zyklotron |
DE2951387A1 (de) * | 1979-12-20 | 1981-07-02 | Deutsches Elektronen-Synchrotron Desy, 2000 Hamburg | Schnellschlussklappenventil fuer hochvakuum- oder ultrahoch-vakuumbetriebe |
DE3022127A1 (de) * | 1980-06-10 | 1982-01-07 | Hahn-Meitner-Institut für Kernforschung Berlin GmbH, 1000 Berlin | Strahlendurchtrittsfenster mit einer in einen rahmen gefassten duennen metallfolie |
US4342917A (en) * | 1978-01-16 | 1982-08-03 | The Perkin-Elmer Corporation | X-ray lithography apparatus and method of use |
WO1983003674A1 (en) * | 1982-04-14 | 1983-10-27 | Battelle Development Corp | Providing x-rays |
-
1984
- 1984-07-07 DE DE19843425146 patent/DE3425146A1/de not_active Withdrawn
-
1985
- 1985-07-08 JP JP60503221A patent/JPS62501110A/ja active Pending
- 1985-07-08 WO PCT/DE1985/000236 patent/WO1986000752A1/de not_active Application Discontinuation
- 1985-07-08 EP EP85903226A patent/EP0187786A1/de not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE760042C (de) * | 1940-09-20 | 1954-02-22 | Siemens & Halske A G | Schnellverschluss fuer ein vakuumdichtes Gefaess, insbesondere ein Zyklotron |
US4342917A (en) * | 1978-01-16 | 1982-08-03 | The Perkin-Elmer Corporation | X-ray lithography apparatus and method of use |
DE2951387A1 (de) * | 1979-12-20 | 1981-07-02 | Deutsches Elektronen-Synchrotron Desy, 2000 Hamburg | Schnellschlussklappenventil fuer hochvakuum- oder ultrahoch-vakuumbetriebe |
DE3022127A1 (de) * | 1980-06-10 | 1982-01-07 | Hahn-Meitner-Institut für Kernforschung Berlin GmbH, 1000 Berlin | Strahlendurchtrittsfenster mit einer in einen rahmen gefassten duennen metallfolie |
WO1983003674A1 (en) * | 1982-04-14 | 1983-10-27 | Battelle Development Corp | Providing x-rays |
Non-Patent Citations (1)
Title |
---|
IBM Technical Disclosure Bulletin, Vol. 26, No. 1, June 1983, New York (US) L.V. GAL et al.: "Cascade Beryllium Window Arrangement for X-Ray Lithography", page 34, see page 34, lines 1-26 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0469895A2 (de) * | 1990-08-01 | 1992-02-05 | Canon Kabushiki Kaisha | Röntgenstrahlenübertragendes Fenster und Verfahren zu seiner Einrichtung |
EP0469895A3 (en) * | 1990-08-01 | 1992-08-12 | Canon Kabushiki Kaisha | X-ray transmitting window and method of mounting the same |
Also Published As
Publication number | Publication date |
---|---|
DE3425146A1 (de) | 1986-01-16 |
JPS62501110A (ja) | 1987-04-30 |
EP0187786A1 (de) | 1986-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE10120335C2 (de) | Ionenmobilitätsspektrometer mit nicht-radioaktiver Ionenquelle | |
DE602005002257T2 (de) | Vorrichtung zur erzeugung von röntgenstrahlen mit einer flüssigmetallanode | |
EP0646283A1 (de) | Elektronenstrahlaustrittsfenster. | |
DE69300429T2 (de) | Mikrokanalplatte-Bildverstärkerröhre, insbesondere geeignet für radiologische Bilder. | |
DE69300980T2 (de) | Bildverstärkerröhre, insbesondere für Nahfokusröhre | |
DE112011103995T5 (de) | Herstellungsverfahren für ein Elektronenmultiplikator-Substrat, Herstellungsverfahren für einen Elektronenmultiplikator und Herstellungsverfahren für einen Strahlungsdetektor | |
DE2605376C3 (de) | Abdichtung für ein Röntgenstrahlendurchgangsfenster und Verfahren zur Herstellung der Abdichtung | |
EP1197983A1 (de) | Elektronenstrahltransparentes Fenster | |
EP1222677B1 (de) | Elektronenstossionenquelle | |
DE69403046T2 (de) | Strahlungsbildverstärker und Verfahren zu seiner Herstellung | |
WO1986000752A1 (en) | Beam tube for bringing out x-ray light | |
DE10050810A1 (de) | Verfahren zur Herstellung eines elektronenstrahltransparenten Fensters sowie elektronenstrahltransparentes Fenster | |
DE2049127C3 (de) | Bildverstärker | |
DE1439838A1 (de) | Ionen-Mikroskop | |
DE975461C (de) | Elektronenstrahlroehre, insbesondere Fernsehbildroehre, mit einem aus Metall bestehenden Roehrenkolben | |
DE3022127A1 (de) | Strahlendurchtrittsfenster mit einer in einen rahmen gefassten duennen metallfolie | |
DE69418406T2 (de) | Röntgenbildverstärker | |
DE2505167A1 (de) | Mikrokanalplatte mit ausgangsseitig abgewinkelten mikrokanaelen, verfahren zur herstellung einer derartigen platte und anwendung dieser platte in elektronischen anordnungen | |
DE69108322T2 (de) | Röntgenbildverstärker und dessen Herstellungsverfahren. | |
EP1529921A2 (de) | Eine einen Wärmedurchgang reduzierende Verschlusseinheit | |
DE2044277A1 (de) | Verfahren zum hermetischen Abdichten und Evakuieren \on Vakuumgehausen | |
DE2717264A1 (de) | Verfahren zum abdichten einer bildverstaerkerroehre und nach diesem verfahren erhaltene bildverstaerkerroehre | |
DE2835868C2 (de) | Verfahren zur Belichtung eines Photolacks | |
DE2900837A1 (de) | Fotokathodengehaeuse | |
DE2203853A1 (de) | Bildverstärkerdiode oder Bildumformerröhre |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Designated state(s): AT BE CH DE FR GB IT LU NL SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1985903226 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1985903226 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1985903226 Country of ref document: EP |