WO1985004656A1 - New 9-halogen-prostaglandine - Google Patents

New 9-halogen-prostaglandine Download PDF

Info

Publication number
WO1985004656A1
WO1985004656A1 PCT/DE1985/000120 DE8500120W WO8504656A1 WO 1985004656 A1 WO1985004656 A1 WO 1985004656A1 DE 8500120 W DE8500120 W DE 8500120W WO 8504656 A1 WO8504656 A1 WO 8504656A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
acid
alkyl
free
formula
Prior art date
Application number
PCT/DE1985/000120
Other languages
English (en)
French (fr)
Inventor
Bernd Radüchel
Werner Skuballa
Helmut VORBRÜGGEN
Olaf Loge
Walter Elger
Original Assignee
Schering Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schering Aktiengesellschaft filed Critical Schering Aktiengesellschaft
Priority to DE8585901971T priority Critical patent/DE3586828D1/de
Priority to AT85901971T priority patent/ATE82258T1/de
Priority to HU852186A priority patent/HU196746B/hu
Publication of WO1985004656A1 publication Critical patent/WO1985004656A1/de
Priority to DK578785A priority patent/DK578785D0/da

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C405/00Compounds containing a five-membered ring having two side-chains in ortho position to each other, and having oxygen atoms directly attached to the ring in ortho position to one of the side-chains, one side-chain containing, not directly attached to the ring, a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, and the other side-chain having oxygen atoms attached in gamma-position to the ring, e.g. prostaglandins ; Analogues or derivatives thereof
    • C07C405/0008Analogues having the carboxyl group in the side-chains replaced by other functional groups
    • C07C405/0016Analogues having the carboxyl group in the side-chains replaced by other functional groups containing only hydroxy, etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C405/00Compounds containing a five-membered ring having two side-chains in ortho position to each other, and having oxygen atoms directly attached to the ring in ortho position to one of the side-chains, one side-chain containing, not directly attached to the ring, a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, and the other side-chain having oxygen atoms attached in gamma-position to the ring, e.g. prostaglandins ; Analogues or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C405/00Compounds containing a five-membered ring having two side-chains in ortho position to each other, and having oxygen atoms directly attached to the ring in ortho position to one of the side-chains, one side-chain containing, not directly attached to the ring, a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, and the other side-chain having oxygen atoms attached in gamma-position to the ring, e.g. prostaglandins ; Analogues or derivatives thereof
    • C07C405/0008Analogues having the carboxyl group in the side-chains replaced by other functional groups
    • C07C405/0033Analogues having the carboxyl group in the side-chains replaced by other functional groups containing sulfur
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C405/00Compounds containing a five-membered ring having two side-chains in ortho position to each other, and having oxygen atoms directly attached to the ring in ortho position to one of the side-chains, one side-chain containing, not directly attached to the ring, a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, and the other side-chain having oxygen atoms attached in gamma-position to the ring, e.g. prostaglandins ; Analogues or derivatives thereof
    • C07C405/0008Analogues having the carboxyl group in the side-chains replaced by other functional groups
    • C07C405/0041Analogues having the carboxyl group in the side-chains replaced by other functional groups containing nitrogen

Definitions

  • the present invention relates to new 9-halogen prostaglandin derivatives, processes for their preparation and their use as medicaments.
  • prostaglandins It is known from the very extensive state of the art of prostaglandins and their analogues that this class of substances is suitable for the treatment of mammals, including humans, on account of their biological and pharmacological properties.
  • their use as a medicine often encounters difficulties.
  • Most natural prostaglandins have an effect duration that is too short for therapeutic purposes because they are metabolized too quickly by various enzymatic processes. All structural changes have the goal of increasing the duration of action and the selectivity of effectiveness.
  • the new 9-halogen prostaglandin derivatives have an excellent activity specificity, better activity, longer duration of action than natural prostaglandins and their derivatives and are particularly suitable for oral administration.
  • the invention relates to 9-halogen prostane derivatives of the formula
  • shark is an ⁇ - or ß-standing chlorine or fluorine atom
  • R 1 is CH 2 OH or with R 2 in the meaning a hydrogen atom, an alkyl-cycloalkyl, aryl or heterocyclic radical or
  • R 1 the rest with R 3 in the meaning of a
  • W is a free or functionally modified hydroxymethylene group or a free or functionally modified
  • OH group is ⁇ or ⁇ can be, D and E together a direct bond or D a straight-chain, branched-chain or ring-shaped
  • R 5 is a hydrogen atom, an alkyl, a halogen-substituted alkyl, a cycloalkyl, an optionally substituted aryl or a heterocyclic group, and if R 2 has the meaning of a hydrogen atom, the salts thereof with physiologically compatible bases.
  • alkyl groups R 2 straight or branched alkyl groups with 1-10 C atoms are to be considered, such as methyl, ethyl, propyl, butyl, isobutyl, tert-butyl, pentyl, neopentyl, hexyl, heptyl, decyl.
  • the alkyl groups R 2 can optionally be mono- to polysubstituted by halogen atoms, alkoxy groups, optionally substituted aryl or aroyl groups, dialkylaraino and trialkylammonium, the simple substitution being preferred.
  • substituents are fluorine, chlorine or bromine, phenyl, dimethylamino, diethylamino, methoxy, ethoxy.
  • Preferred alkyl groups R 2 are those with 1-4 C atoms, such as methyl, ethyl, propyl, dimethylaminopropyl, isobutyl, butyl.
  • both substituted and unsubstituted aryl groups can be considered, such as phenyl, 1-naphthyl and 2-naphthyl, which can each be substituted by 1-3 halogen atoms, one phenyl group, 1-3 alkyl groups, each with 1-4 C -Atoms, a chloromethyl, fluoromethyl, trifluoromethyl, carboxyl, hydroxy or alkoxy group with 1-4 C atoms.
  • the substituents in the 3- and 4-position on the phenyl ring are preferred, for example by fluorine, chlorine, alkoxy or trifluoromethyl or in the 4-position by hydroxy.
  • the cycloalkyl group R 2 can contain 3-10, preferably 5 and 6 carbon atoms in the ring.
  • the rings can be substituted by alkyl groups with 1-4 carbon atoms. Examples include cyclopentyl, cyclohexyl, methylcyclohexyl and adamantyl.
  • Suitable heterocyclic groups R 2 are 5- and 6-membered heterocycles which contain at least 1 heteroatom, preferably nitrogen, oxygen or sulfur.
  • Examples include 2-furyl, 2-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, oxazolyl, thiazolyl, pyrimidinyl, pyridazinyl, pyrazinyl, 3-FuryI, 3-thienyl, 2-tetrazolyl and others
  • Suitable acids are organic carboxylic acids and sulfonic acids with 1-15 carbon atoms, which belong to the aliphatic, cycloaliphatic, aromatic, aromatic-aliphatic and heterocyclic series. These acids can be saturated, unsaturated and / or polybasic and / or substituted in the usual way. Examples of the substituents are alkyl, hydroxyl, alkoxy, oxo or amino groups or halogen atoms.
  • Examples include the following carboxylic acids: formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid, caproic acid, oenanthic acid, caprylic acid, pelargonic acid, capric acid, ündecyl acid, lauric acid, tridecyl acid, myristic acid, pentadecyl acid, diethyl acetic acid, trimethyl acetic acid, trimethyl acetic acid, trimethyl acetic acid, trimethyl acetic acid, trimethyl acetic acid, trimethyl acetic acid, trimethyl acetic acid, trimethyl acetic acid, trimethyl acetic acid, trimethyl acetic acid, trimethyl acetic acid, trimethyl acetic acid, trimethyl acetic acid, trimethyl acetic acid, trimethyl acetic acid, trimethyl acetic acid, trimethyl acetic acid, trimethyl acetic acid, trimethyl acetic acid, trimethyl
  • Preferred acyl residues are those with up to 10 carbon atoms.
  • sulfonic acids are alkanesulfonic acids with 1-10 C atoms, such as methanesulfonic acid, ethanesulfonic acid, isopropanesulfonic acid and butanesulfonic acid, and also ⁇ -chloroethanesulfonic acid, cyclopentanesulfonic acid, cyclohexanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, p-chlorobenzenesulfonic acid, NN-dimethylaminosulfonic acid, NN-dimethylaminosulfonic acid, Bis- (ß-chloroethyl) aminosulfonic acid, NN-diisobutylaminosulfonic acid, NN-dibutylaminosulfonic acid, pyrrolidino, piperidino, piperazin
  • the hydroxyl groups in W and R 4 can be functionally modified, for example by etherification or esterification, it also being possible for the modified hydroxyl group in W to be ⁇ or ⁇ , with free hydroxyl groups being preferred.
  • ether and acyl radicals are suitable as ether and acyl radicals. Easily removable ether residues are preferred, such as, for example, the tetrahydropyranyl, tetrahydrofuranyl, ⁇ -ethoxyethyl, trimethylsilyl, dimethyl-tert-butyl-silyl and tribenzyl-silyl radicals.
  • Suitable acyl radicals are the same as those mentioned for R 3 under organic carboxylic acids, for example acetyl, propionyl, butyryl and 4enzoyl.
  • Suitable alkyl and alkenyl groups R 5 are straight-chain and branched-chain alkyl having 1-10 and alkenyl radicals having 2-10, in particular 1-6 or 2-6, carbon atoms, which are optionally substituted by optionally substituted phenyl, alkyl 1-4 carbon atoms or halogen can be substituted.
  • Examples include methyl, ethyl, propyl, isobutyl, tert-butyl, pentyl, hexyl, heptyl, octyl, butenyl, isobutenyl, propenyl, pentenyl, hexenyl and benzyl, and in the event that D and E together represent a direct compound, optionally substituted in the 1-position by fluorine or C 1 -C 4 alkyl alkynyl having 2-6 C atoms.
  • Possible alkynyl radicals are: ethynyl, propin-1-yl, propin-2-yl, 1-methylpropin-2-yl, 1-fluoropropyn-2-yl, 1-ethylpropin-2-yl, 1-fluorobutin-2- yl, butin-2-yl, butin-3-yl, 1-methyl-butin-3-yl, l-methylpentin-3-yl, 1-fluoropentin-3-yl, 1-methylpentin-2- yl, 1-Fluorpentin-2-yl, 1-Methylpentin-4-yl, 1-Fluorpentin-4-yI, Hexin-1-yl, 1-Methylhexin-2-yl, 1-Fluorhexin-2-yl, 1- Methylhexin-3-yl, 1-methylhexin-4-yl, hexin-3-yl, 1, 1-dimethylpropin-2-yl, 1,1
  • the cycloalkyl group R 5 can contain 3-10, preferably 3-6 carbon atoms in the ring.
  • the rings can be substituted by alkyl groups with 1-4 carbon atoms. Examples include cyclopropyl, cyclobutyl,
  • Cyclopentyl, cyclohexyl, methyl-cyclohexyl and adamantyl examples include: phenyl, 1-naphthyl and 2-naphthyl, which can each be substituted by 1-3 halogen atoms, one phenyl group, 1-3 alkyl groups each having 1-4 C atoms, a chloromethyl, fluoromethyl, trifluoromethyl, carboxyl, alkoxy or hydroxy group.
  • the substitution in the 3- and 4-position on the phenyl ring is preferred, for example by fluorine, chlorine, alkoxy or trifluoromethyl or in the 4-position by hydroxy.
  • Suitable heterocyclic groups R 5 are 5- and 6-membered heterocycles which contain at least 1 heteroatom, preferably nitrogen, oxygen or sulfur. Examples include 2-furyl, 2-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, oxazolyl, thiazolyl, pyrimidinyl, pyridazinyl, pyrazinyl, 3-furyl, 3-thienyl, among others
  • Suitable alkylene groups D are straight-chain or branched-chain, ring-shaped, saturated and unsaturated alkylene radicals, preferably saturated with 1-10, in particular 1-5, carbon atoms, which can optionally be substituted by fluorine atoms.
  • Examples include: methylene, fluoromethylene, difluoromethylene, ethylene, 1,2-propylene, ethylethylene, trimethylene, tetramethylene, pentamethylene, 1,1-difluoroethylene, 1-fluoroethylene, 1-methyltetramethylene, 1-methyl-tri-methylene, 1-methylene- ethylene, 1-methylene-tetra-methylene, 2-methyl-trimethylene, 2-methyltetramethylene, 1,1-trimethylene-ethylene, 1, 2-methylene-ethylene. If a double bond is present, it is in the 2-, 3- or 4-position in the alkylene radicals.
  • Inorganic and organic bases are suitable for salt formation, as are known to the person skilled in the art for the formation of physiologically compatible salts.
  • alkali hydroxides such as sodium and potassium hydroxide
  • alkaline earth hydroxides such as calcium hydroxide
  • ammonia amines, such as ethanolamine, diethanolamine, triethanolamine, N-methylglucamine, morpholine, tris (hydroxymethyl) methylamine, etc.
  • the invention also relates to a process for the preparation of the 9-halogen prostane derivatives of the formula I according to the invention, characterized in that a compound of the formula II
  • Radical with R 3 meaning an acid rest, an alkyl, cycloalkyl, aryl or one represents heterocyclic radical and
  • reaction of the compounds of the formula II to the compounds of the formula I with carbon tetrachloride and triphenylphosphine or hexachloroethane / triphenylphosphine is carried out in an inert solvent such as, for example, dirnethylformamide, dirnethylacetamide, acetonitrile, methylene chloride at temperatures between 0 ° C and 80 ° C, preferably 20 ° C to 45 ° C in the presence of a base such as pyridine, triethylamine, etc.
  • an inert solvent such as, for example, dirnethylformamide, dirnethylacetamide, acetonitrile, methylene chloride at temperatures between 0 ° C and 80 ° C, preferably 20 ° C to 45 ° C in the presence of a base such as pyridine, triethylamine, etc.
  • the reaction of the compounds of formula II to the compounds of formula I with shark meaning a fluorine atom is carried out with diethylaminosulfur trifluoride in a solvent such as dichloromethane at temperatures between -120 ° C and 0 ° C, preferably at -70 ° C, optionally in the presence of a base such as pyridine. If an alcohol of the formula II with a ⁇ -position 9-hydroxy group is used, compounds of the formula I with a 9-position halogen atom are obtained, if an alcohol with an ⁇ -position hydroxy group is used, compounds with 9 are obtained -ß-permanent halogen atom.
  • the reduction to the compounds of the formula I with R 1 in the meaning of a —CH 2 OH group is carried out using a reducing agent suitable for the reduction of esters or carboxylic acids, such as, for example, lithium aluminum hydride, diisobutylaluminum hydride, etc. Diethyl ether, tetrahydrofuran, dimethoxyethane, tolual, etc. are suitable as solvents.
  • the reduction is carried out at temperatures from -30 ° C to the boiling point of the solvent used, preferably 0 ° C to 30 ° C.
  • the functionally modified hydroxy groups are released by known methods.
  • the removal of hydroxyl protective groups such as the tetrahydropyranyl radical, is carried out in an aqueous solution of an organic acid, such as oxalic acid, acetic acid, propionic acid, etc., or in an aqueous solution of an inorganic acid, such as hydrochloric acid.
  • an inert organic miscible with water is expediently used Solvent added.
  • Suitable organic solvents are, for example, alcohols, such as methanol and ethanol, and ethers, such as dirthhoxyethane, dioxane and tetrahydrofuran. Tetrahydrofuran is preferred.
  • the cleavage is preferably carried out at temperatures between 20 ° C and 80 ° C.
  • the saponification of the acyl groups takes place, for example, with alkali or alkaline earth carbonates or hydroxides in an alcohol or in the aqueous solution of an alcohol.
  • Aliphatic alcohols are suitable as alcohols, e.g. Methanol, ethanol, butanol, etc., preferably methanol.
  • Potassium and sodium salts may be mentioned as alkali carbonates and hydroxides. The potassium salts are preferred.
  • Suitable alkaline earth carbonates and hydroxides are, for example, calcium carbonate, calcium hydroxide and barium carbonate.
  • the reaction is carried out at -10 ° C to + 70 ° C, preferably at + 25 ° C.
  • the 1-carboxy compounds are reacted, for example, with diazo hydrocarbons in a manner known per se.
  • the esterification with diazo hydrocarbons is carried out, for example, by mixing a solution of the diazo hydrocarbon in an inert solvent, preferably in diethyl ether, with the 1-carboxy compound in the same or in another inert solvent, such as methylene chloride.
  • the reaction has ended in 1 to 30 minutes, the solvent is removed and the ester is purified in the customary manner.
  • Diazoalkanes are diazoalkanes.
  • ester group for R 1 at which R 2 represents a substituted or unsubstituted aryl group takes place according to the methods known to the person skilled in the art.
  • the 1-carboxy compounds are reacted with the corresponding arylhydroxy compounds with dicyclohexylcarbodiimide in the presence of a suitable base, for example pyridine, DMAP, triethylamine, in an inert solvent.
  • suitable base for example pyridine, DMAP, triethylamine
  • Suitable solvents are methylene chloride, ethylene chloride, chloroform, ethyl acetate, tetrahydrofuran, preferably chloroform.
  • the reaction is carried out at temperatures between -30 ° C and +50 ° C, preferably at 10 ° C.
  • the prostaglandin derivatives of the formula I with R 2 in the meaning of a hydrogen atom can be converted into a salt with suitable amounts of the corresponding inorganic base with neutralization.
  • the solid inorganic salt is obtained after the water has been evaporated off or after the addition of a water-miscible solvent, for example alcohol or acetone.
  • the PG acid is e.g. dissolved in a suitable solvent, for example ethanol, acetone, diethyl ether, acetonitrile or benzene, and at least the stoichiometric amount of the amine is added to this solution.
  • a suitable solvent for example ethanol, acetone, diethyl ether, acetonitrile or benzene
  • the salt is usually obtained in solid form or is isolated in a conventional manner after evaporation of the solvent.
  • the amide group for R 1 is introduced after the methods known to those skilled in the art.
  • a tertiary amine such as, for example, triethylamine
  • a tertiary amine such as triethylamine or pyridine.
  • the reaction can be carried out without a solvent or in an inert solvent, preferably acetonitrile, tetrahydrofuran, acetone, dimethylacetamide, methylene chloride, diethyl ether, toluene, at temperatures between -80 ° C to 100 ° C, preferably at 0 to 30 ° C.
  • the starting product contains OH groups in the prostane residue, these OH groups are also reacted. If end products are ultimately desired which contain free hydroxyl groups in the prostane residue, one expediently starts from starting products in which these are temporarily protected by ether or acyl residues, which can preferably be split off.
  • the compounds of formula II serving as starting material with a 9 ⁇ -hydroxy group are either known or can be prepared by the process specified in DE-OS 26 27 910.
  • the compounds of the formula II with a 9 ⁇ -hydroxy group are obtained from the 9 ⁇ -hydroxy compounds by an inversion reaction, as described e.g. in Synthesis, 292-294 (1980).
  • the new prostaglandin analogues are characterized by greater stability.
  • the new prostaglandin analogs of Formula I are valuable pharmaceuticals because they have similar effects spectrum have a significantly improved (higher specificity) and, above all, a much longer effect than the corresponding natural prostaglandins.
  • the new prostaglandin analogs have a strong luteolytic effect, i.e. To trigger luteolysis, much lower doses are required than with the corresponding natural prostaglandins.
  • the substances according to the invention are considerably more effective and their effects last longer than with natural prostaglandins.
  • the new prostaglandin derivatives are suitable for inducing menstruation or interrupting pregnancy after a single enteral or parenteral application. They are also suitable for synchronizing the sexual cycle in female mammals such as rabbits, cattle, horses, pigs, etc.
  • the prostaglandx derivatives according to the invention are suitable for cervical dilatation as a preparation for diagnostic or therapeutic interventions.
  • the good tissue specificity of the antifertile substances according to the invention is evident in the examination on other smooth muscular organs, such as on the guinea pig ileum or on the isolated one Rabbit trachea, where there is much less stimulation than natural prostaglandins.
  • the substances according to the invention also have a bronchospasmolytic effect. They also cause the nasal mucosa to swell.
  • the active substances according to the invention inhibit gastric acid secretion, show a cytoprotective and ulcer healing effect and thus counteract the undesirable consequences of nonsteroidal anti-inflammatory substances (prostaglandin synthesis inhibitors). They also have a cytoprotective effect on the liver, kidney and also on the pancreas.
  • the new prostaglandins can also be used in combination, e.g. with ß-blockers, diuretics, phospho-diesterase inhibitors, calcium antagonists and antigestagens.
  • the dose of the compounds is 1-1500 ⁇ g / kg / day when administered to the human patient.
  • the active ingredients can be converted into a form suitable for inhalation, for oral, parenteral or local (e.g. vaginal) application.
  • Aeration solutions are expediently prepared for inhalation.
  • Tablets, coated tablets or capsules, for example, are suitable for oral administration.
  • Sterile, injectable, aqueous or oily solutions are used for parenteral administration.
  • the invention thus also relates to medicaments based on the compounds of the formula I and customary auxiliaries and carriers, including cyclodextrin clathrates.
  • the active compounds according to the invention are to be used in conjunction with the auxiliaries known and customary in galenics, e.g. B. for the preparation of preparations for inducing an abortion, for cycle control, for the initiation of childbirth, for the treatment of hypertension or for the treatment of gastrointestinal disorders, such as to heal gastric and duodenal ulcers.
  • the preparations can contain 0.01-100 mg of the active compound.
  • the ester obtained is stirred with 15 ml of a mixture of acetic acid / water / tetrahydrofuran (65/35/10) at 20 ° C. for 24 hours. It is then diluted with ice water, mixed with dilute sodium hydroxide solution to the neutral point and extracted several times with dichloromethane. The combined extracts are shaken with brine, dried over magnesium sulfate and evaporated in vacuo. For purification, chromatographed on silica gel with hexane / 10-40% ethyl acetate and 580 mg of the title compound is obtained as an oil. IR; 3600, 3410, 2958, 1958, 1732, 1135, 1020, 976 / cm.
  • the 9 ⁇ -alcohol used as the starting material is obtained as follows: 1a)
  • IR 3600, 3405, 2956, 1977, 1735, 1135, 1021, 976 / cm.
  • the 9 ⁇ -alcohol used as the starting material is produced as follows: 2a)
  • IR 3600, 3420, 2955, 1976, 1712, 1178, 1022, 976 / cm.
  • IR 3600, 3405, 2958, 2885, 1976, 1732, 1021, 976 / cm.
  • Example 3 Analogously to Example 3, the title compound is obtained as an oil from (9R, 11R, 15S, 16RS) - 9-chloro-11,15-dihydroxy-16-methyl-prosta-4,5,13-trans-trienoic acid.
  • IR 3600, 3420, 2948, 1978, 1710, 1021, 978 / cm.
  • IR 3600, 3402, 2954, 2888, 1978, 1732, 1600, 1535, 1021,
  • the starting material for the preparation of the title compound is obtained from (2RS, 3aR, 4R, 5R, 6aS) -4 - [(E) - (3R) -4-phenoxy-3- (tetrahydopyran-2-yloxy) -1-butenyl ] -5- (tetrahydropyran-2-yloxy) perhydrocyclopenta [b] furan-2-ol according to Example 1a.
  • the starting material for the preparation of the title compound is obtained from (2RS, 3aR, 4R, 5R, 6aS) -4 - [(E) - (3R) -3- (tetrahydropyran-2-yloxy) -4,4-trimethylene-1 -octenyl] -5- (tetrahydropyran-2-yloxy) -perhydr ⁇ cyclopenta [b] furan-2-ol.
  • Example 3 Analogously to Example 3, the title compound is obtained as an oil from (9R, 11R, 15R) - 9-chloro-11,15-dihydroxy-16,16-trimethylene-prosta-4,5,13-trans-trienoic acid.
  • IR 3600, 3420, 2952, 2884, 1976, 1712, 1022, 976 / cm.
  • IR 3600, 3415, 2955, 2884, 1978, 1710, 1022, 974 / cm.
  • IR 3600, 3400, 2955, 1978, 1732, 1022, 976 / cm.
  • the starting material for the preparation of the title compound is obtained according to Example la from (2RS, 3aR, 4R, 5R, 6aS) -4 - [(E) - (33.4RS) -4-methyl-3- (tetrahydropyran-2-yloxy ) -1-nonen-6-ynyl] -5- (tetrahydropyran-2-yloxy) -perhydrocyclo ⁇ penta [b] furan-2-ol.
  • IR 3600, 3409, 2952, 2880, 1978, 1711, 1023, 976 / cm.
  • IR 3600, 3418, 2949, 2322, 1976, 1710, 1023, 978 / cm.
  • IR 3600, 3010, 2948, 1978, 1708 (wide), 1500, 1588, 1139, 1022, 974 / cm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

Neue 9-halogen-prostaglandine
Die vorliegende Erfindung betrifft neue 9-Halogen-prostaglandinderivate, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Arzneimittel.
Aus dem sehr umfangreichen Stand der Technik der Prostaglandine und ihrer Analoga weiß man, daß diese Stoffklasse aufgrund ihrer biologischen und pharmakologischen Eigenschaften zur Behandlung von Säugetieren, einschließlich des Menschen, geeignet ist. Ihre Verwendung als Arzneimittel stößt jedoch häufig auf Schwierigkeiten. Die meisten natürlichen Prostaglandine besitzen eine für therapeutische Zwecke zu kurze Wirkungsdauer, da sie zu rasch durch verschiedene enzymatische Prozesse metabolisch abgebaut werden. Alle Strukturveränderungen haben das Ziel, die Wirkungsdauer sowie die Selektivität der Wirksamkeit zu steigern.
Es wurde nun gefunden, daß die neuen 9-Halogen-prostaglandinderivate eine hervorragende Wirkungsspezifität, bessere Wirksamkeit, längere Wirkungsdauer als natürliche Prostaglandine und deren Derivate besitzen und besonders für die orale Applikation geeignet sind.
Die Erfindung betrifft 9-Halogen-prostanderivate der Formel
Figure imgf000003_0001
worin Hai ein α- oder ß-ständiges Chlor- oder Fluoratom, R1 den Rest CH2OH oder mit R2 in der Bedeutung
Figure imgf000004_0001
eines Wasserstoffatoms, eines Alkyl-Cycloalkyl-, Aryl- oder heterocyclischen Restes oder
R1 den Rest mit R3 in der Bedeutung eines
Figure imgf000004_0002
Säurerestes oder des Restes R2 und
A eine -CH2-CH2-, eine trans-CH=CH- oder eine -C≡C- Gruppe,
W eine freie oder funktionell abgewandelte Hydroxymethylengruppe oder eine freie oder funktionell abgewandelte
wobei die OH-Gruppe α- oder ß-ständig
Figure imgf000004_0003
sein kann, D und E gemeinsam eine direkte Bindung oder D eine geradkettige, verzweigtkettige oder ringförmige
Alkylengruppe mit 1-10 C-Atomen, die gegebenenfalls durch Fluoratome substituiert ist, und E ein Sauerstoff- oder Schwefelatom, eine direkte Bindung. eine -C≡C-Bindung oder eine -CR6=CR7-Gruppe darstellt, wobei R6 und R7 sich unterscheiden und ein Vasserstoffatom, ein Chloratom oder eine C1-C4-Alkylgruppe bedeuten, R4 eine freie oder funktionell abgewandelte Hydroxygruppe. R5 ein Wasserstoffatom, eine Alkyl-, eine Halogen -substituierte Alkyl-, eine Cycloalkyl-, eine gegebenenfalls substituierte Aryl- oder eine heterocyclische Gruppe, und falls R2 die Bedeutung eines Wasserstoffatoms hat, deren Salze mit physiologisch verträglichen Basen bedeuten. Als Alkylgruppen R2 sind gerade oder verzweigte Alkylgruppen mit 1-10 C-Atomen zu betrachten, wie beispielsweise Methyl, Äthyl, Propyl, Butyl, Isobutyl, tert.-Butyl, Pentyl, Neopentyl, Hexyl, Heptyl, Decyl. Die Alkylgruppen R2 können gegebenenfalls ein- bis mehrfach substituiert sein durch Halogenatome, Alkoxygruppen, gegebenenfalls substituierte Aryl- bzw. Aroylgruppen, Dialkylaraino und Trialkylammonium, wobei die einfache Substitution bevorzugt sein soll. Als Substituenten seien beispielsweise genannt Fluor, Chlor oder Brom, Phenyl, Dimethylamino, Diäthylamino, Methoxy, Äthoxy. Als bevorzugte Alkylgruppen R 2 sind solche mit 1-4 C-Atomen, wie z.B. Methyl, Äthyl, Propyl, Dimethylaminopropyl, Isobutyl, Butyl zu nennen.
AIs Arylgruppen R2 kommen sowohl substituierte wie auch unsubstituierte Arylgruppen in Betracht, wie beispielsweise Phenyl, 1-Naphthyl und 2-Naphthyl, die jeweils substituiert sein können durch 1-3 Halogenatome, eine Phenylgruppe, 1-3 Alkylgruppen mit jeweils 1-4 C-Atomen, eine Chlormethyl-, Fluormethyl-, Trifluormethyl-, Carboxyl-, Hydroxy- oder Alkoxygruppe mit 1-4 C-Atomen. Bevorzugt sind die Substituenten in 3- und 4-Stellung am Phenylring, zum Beispiel durch Fluor, Chlor, Alkoxy oder Trifluormethyl oder in 4-Stellung durch Hydroxy.
Die Cycloalkylgruppe R2 kann im Ring 3-10, vorzugsweise 5 und 6 Kohlenstoffatome enthalten. Die Ringe können durch Alkylgruppen mit 1-4 Kohlenstoffatonen substituiert sein. Beispielsweise seien genannt Cyclopentyl-, Cyclohexyl, Methylcyclohexyl und Adamantyl. Als heterocyclische Gruppen R2 kommen 5- und 6-gliedrige Heterocyclen in Frage, die wenigstens 1 Heteroatom, vorzugsweise Stickstoff, Sauerstoff oder Schwefel enthalten. Beispielsweise seien genannt 2-Furyl, 2-Thienyl, 2-Pyridyl, 3-Pyridyl, 4-Pyridyl, Oxazolyl, Thiazolyl, Pyrimidinyl, Pyridazinyl, Pyrazinyl, 3-FuryI, 3-Thienyl, 2-Tetrazolyl u.a.
Als Säurerest R 3 kommen physiologisch verträgliche Säurereste in Frage. Als Säuren sind organische Carbonsäuren und Sulfonsäuren mit 1-15 Kohlenstoffatomen geeignet, die der aliphatischen, cycloaliphatischen, aromatischen, aromatiseh-aliphatischen und heterocyclischen Reihe angehören. Diese Säuren können gesättigte, ungesättigte und/oder mehrbasisch und/oder in üblicher Weise substituiert sein. Als Beispiele für die Substituenten seien Alkyl-, Hydroxy-, Alkoxy-, Oxo- oder Aminogruppen oder Halogenatome erwähnt. Beispielsweise seien folgende Carbonsäuren genannt: Ameisensäure, Essigsäure, Propionsäure, Buttersäure, Isobuttersäure, Valeriansäure, Isovaleriansäure, Capronsäure, Önanthsäure, Caprylsäure, Pelargonsäure, Caprinsäure, ündecylsäure, Laurinsäure, Tridecylsäure, Myristinsäure, Pentadecylsäure, Trimethylessigsäure, Diäthylessigsäure, tert.-Butylessigsäure, Cyclopropylessigsäure, Cyclopentylessigsäure, Cyelohexyl- essigsäure, Cyclopropancarbonsäure, Cyclohexancarbonsäu- re, Phenylessigsäure, Phenoxyessigsäure, Methoxyessigsäure, Äthoxyessigsäure, Mono-, Di- und Trichloressigsaure, Aminoessigaäure, Diäthylaminoessigsäure, Piperidinoessigsäure, Morpholinoessigsäure, Milchsäure, Bernsteinsäure, Adipinsäure, Benzoesäure, mit Halogen-, Trifluormethyl-, Hydroxy-, Alkoxy- oder Carboxy-Gruppen substituierte Benzoesäuren, Nikotinsäure, Isonikotinsäure, Furan-2-carbonsäure, Cyclopentylpropionsäure. Als bevorzugte Acylreste werden solche mit bis zu 10 Kohlenstoffatomen betrachtet. Als Sulfonsäuren kommen beispielsweise Alkansulfonsäuren mit 1-10 C-Atomen wie z.B. Methansulfonsäure, Äthansulfonsäure, Isopropansulfonsäure und Butansulfonsäure sowie ß-Chloräthansulfonsäure, Cyclopentansulfonsäure, Cyclohexansulfonsäure, Benzolsulfonsäure, p-Toluolsulfonsäure, p-Chlorbenzolsulfonsäure, N.N-Dimethylaminosulfonsäure, N.N-Diäthylaminosulfonsäure, N.N-Bis-(ß-chloräthyl)-aminosulfonsäure, N.N-Diisobutylaminosulfonsäure, N.N-Dibutylaminosulfonsäure, Pyrrolidino-, Piperidino-, Piperazino-, N-Methylpiperazino- und Morpholinosulfonsäure in Frage. Besonders bevorzugt sind Acylreste bzw. Alkansulfonsäurereste mit 1-4 C-Atomen.
Die Hydroxygruppen in W und R4 können funktionell abgewandelt sein, beispielsweise durch Verätherung oder Veresterung, wobei auch die abgewandelte Hydroxygruppe in W α- oder ß-ständig sein kann, wobei freie Hydroxygruppen bevorzugt sind.
Als Äther- und Acylreste kommen die dem Fachmann bekannten Reste in Betracht. Bevorzugt sind leicht abspaltbare Ätherreste, wie beispielsweise der Tetrahydropyranyl-, Tetrahydrofuranyl-, α-Äthoxyäthyl-, Trimethylsilyln Dimethyl-tert.-butyl-silyl- und Tribenzyl-silylrest. Als Acylreste kommen die gleichen wie für R3 unter organischen Carbonsäuren genannt in Frage, namentlich genannt seien beispielsweise Acetyl, Propionyl, Butyryl und 4enzoyl. Als Alkyl- und Alkenylgruppen R5 kommen gerad- und verzweigtkettige Alkyl- mit 1-10 und Alkenylreste mit 2-10, insbesondere 1-6 bzw. 2-6 C-Atomen, in Frage, die gegebenenfalls durch gegebenenfalls substituiertes Phenyl, Alkyl mit 1-4 C-Atomen oder Halogen substituiert sein können. Beispielsweise genannt seien Methyl, Äthyl, Propyl, Isobutyl, tert.-Butyl, Pentyl, Hexyl, Heptyl, Octyl, Butenyl, Isobutenyl, Propenyl, Pentenyl, Hexenyl sowie Benzyl, und für den Fall, daß D und E gemeinsam eine Direktverbindung bedeuten, gegebenenfalls in 1-Stellung durch Fluor oder C1-C4-Alkyl substituiertes Alkinyl mit 2-6 C-Atomen. Als Alkinylreste kommen in Betracht: Äthinyl, Propin-1-yl, Propin-2-yl, 1-Methylpropin-2-yl, 1-Fluorpropin-2-yl, 1-Äthylpropin-2-yl, 1-Fluorbutin-2-yl, Butin-2-yl, Butin-3-yl, 1-Methyl-butin-3-yl, l-Methylpentin-3-yl, 1-Fluor-pentin-3-yl, 1-Hethyl-pentin-2-yl, 1-Fluorpentin-2-yl, 1-Methylpentin-4-yl, 1-Fluorpentin-4-yI, Hexin-1-yl, 1-Methylhexin-2-yl, 1-Fluorhexin-2-yl, 1-Methylhexin-3-yl, 1-Methylhexin-4-yl, Hexin-3-yl, 1 ,1-Dimethylpropin-2-yl , 1,1-Dimethylbutin-3-yl , 1,1-Dimethylpentin-3-yl, 1,1-Dimethylpentin-4-yl, 1,1-Dimethylhexin-3-yl, 1,1-Dimethylhexin-4-yl usw.. Für Halogen als Substituent der Alkyl- und Alkenylgruppen R5 kommen Brom, Chlor und Fluor in Betracht. Bevorzugt sind Chlor und Fluor.
Die Cycloalkylgruppe R 5 kann im Ring 3-10, vorzugsweise 3-6 Kohlenstoffatome enthalten. Die Ringe können durch Alkylgruppen mit 1-4 Kohlenstoffatomen substituiert sein. Beispielsweise genannt seien Cyclopropyl, Cyclobutyl,
Cyclopentyl, Cyclohexyl, Methyl-cyclohexyl und Adamantyl. Als substituierte bzw. unsubstituierte Arylgruppen R5 kommen beispielsweise in Betracht: Phenyl, 1 -Naphthyl und 2-Naphthyl, die jeweils substituiert sein können durch 1-3 Halogenatome, eine Phenylgruppe, 1-3 Alkylgruppen mit jeweils 1-4 C-Atomen, eine Chlormethyl-, Fluormethyl-, Trifluormethyl-, Carboxyl-, Alkoxy- oder Hydroxygruppe. Bevorzugt ist die Substitution in 3- und 4-Stellung am Phenylring zum Beispiel durch Fluor, Chlor, Alkoxy oder Trifluormethyl oder in 4-Stellung durch Hydroxy.
Als heterocyclische Gruppen R5 kommen 5- und 6-gliedrige Heterocyclen in Frage, die wenigstens 1 Heteroatom, vorzugsweise Stickstoff, Sauerstoff oder Schwefel enthalten. Beispielsweise seien genannt 2-Furyl, 2-Thienyl, 2-Pyridyl, 3-Pyridyl, 4-Pyridyl, Oxazolyl, Thiazolyl, Pyrimidinyl, Pyridazinyl, Pyrazinyl, 3-Furyl, 3-Thienyl, u.a.
Als Alkylengruppe D kommen geradkettige oder verzweigtkettige, ringförmige, gesättigte und ungesättigte Alkylenreste, vorzugsweise gesättigte mit 1-10, insbesondere 1-5 C-Atomen, in Frage, die gegebenenfalls durch Fluoratome substituiert sein können. Beispielsweise seien genannt: Methylen, Fluormethylen, Difluormethylen, Äthylen, 1,2-Propylen, Äthyläthylen, Trimethylen, Tetramethylen, Pentamethylen, 1.1-Difluoräthylen, 1 -Fluoräthylen, 1-Methyltetramethylen, 1-Methyl-tri-methylen, 1 -Methylen-äthylen, 1-Methylen-tetra-methylen, 2-Methyl-trimethylen, 2-Methyltetramethylen, 1,1-Trimethylen-äthylen, 1 , 2-Methylenäthylen. Wenn eine Doppelbindung vorliegt, befindet sie sich in den Alkylenresten in 2-, 3- oder 4-Stellung. Zur Salzbildung sind anorganische und organische Basen geeignet, wie sie dem Fachmann zur Bildung physiologisch verträglicher Salze bekannt sind. Beispielsweise seien genannt Alkalihydroxide, wie Natrium- und Kaliumhydroxid, Erdalkalihydroxide, wie Calciumhydroxid, Ammoniak, Amine, wie Äthanolamin, Diäthanolamin, Triäthanolamin, N-Methylglucamin, Morpholin, Tris-(hydroxymethyl)-methylamin usw.
Die Erfindung betrifft außerdem ein Verfahren zur Herstellung der erfindungsgemäßen 9-Halogen-prostanderivate der Formel I, dadurch gekennzeichnet, daß man in an sich bekannter Weise eine Verbindung der Formel II
Figure imgf000010_0001
worin die 9-OH-Gruppe α- oder ß-ständig sein kann und R 1 den Rest mit R2 in der Bedeutung von Alkyl,
Figure imgf000010_0002
Cycloalkyl, Aryl oder heterocyclischer Rest oder den
Rest mit R3 in der Bedeutung eines Säure
Figure imgf000010_0003
restes, eines Alkyl-, Cycloalkyl-, Aryl- oder eines heterocyclischen Restes darstellt und
A, D, E und R5 die bereits oben angegebenen Bedeutungen haben, nach vorherigem Schutz freier OH-Gruppen in R4 und W mit Tetrachlorkohlenstoff/Triphenylphosphin, Hexachlorethan/Triphenylphosphin oder Diethylaminoschwefeltrifluorid oder nach Umwandlung der 9-Hydroxygruppe in einen 9-Sulfonsäureester mit Tetra-n-butylammoniumfluorid umsetzt und anschließend in beliebiger Reihenfolge geschützte Hydroxygruppen freisetzt und/oder freie Hydroxygruppen verestert, veräthert und/oder Doppelbindungen hydriert und/oder eine veresterte Carboxylgruppe
Figure imgf000011_0001
verseift und/oder eine freie Carboxylgruppe (R2 = H) in ein Amid
Figure imgf000011_0002
überführt und/oder eine freie oder veresterte Carboxylgruppe
Figure imgf000011_0003
reduziert.
Die Umsetzung der Verbindungen der Formel II zu den Verbindungen der Formel I mit Tetrachlorkohlenstoff und Triphenylphosphin oder Hexachlorethan/Triphenylphosphin erfolgt in einem inerten Lösungsmittel wie beispielsweise Dirnethylformamid, Dirnethylacetamid, Acetonitril, Methylenchlorid bei Temperaturen zwischen 0 ºC und 80 ºC, vorzugsweise 20 ºC bis 45 ºC in Gegenwart einer Base wie beispielsweise Pyridin, Triäthylamin usw.
Die Umsetzung der Verbindungen der Formel II zu den Verbindungen der Formel I mit Hai in der Bedeutung eine Fluoratoms erfolgt mit Diethylaminoschwefeltrifluorid in einem Lösungsmittel wie beispielsweise Dichlormethan bei Temperaturen zwischen -120 ºC und 0 ºC, vorzugsweise bei -70 ºC, gegebenenfalls in Gegenwart einer Base wie beispielsweise Pyridin. Setzt man einen Alkohol der Formel II mit einer ß-ständigen 9-Hydroxygruppe ein, so erhält man Verbindungen der Formel I mit 9-α-ständigem Halogenatom, setzt man einen Alkohol mit einer α-ständigen Hydroxygruppe ein, so erhält man Verbindungen mit 9-ß-ständigem Halogenatom.
Die Reduktion zu den Verbindungen der Formel I mit R1 in der Bedeutung einer -CH2OH-Gruppe wird mit einem für die Reduktion von Estern oder Carbonsäuren geeigneten Reduktionsmittel wie beispielsweise Lithiumaluminiumhydrid, Diisobutylaluminiurnhydrid usw. durchgeführt. Als Lösungsmittel kommen Diäthyläther, Tetrahydrofuran, Dimethoxyäthan, Tolual usw. in Frage. Die Reduktion wird bei Temperaturen von -30ºC bis zur Siedetemperatur des verwendeten Lösungsmittels, vorzugsweise 0 ºC bis 30 ºC vorgenommen.
Die Freisetzung der funktionell abgewandelten Hydroxygruppen erfolgt nach bekannten Methoden. Beispielsweise wird die Abspaltung von Hydroxyschutzgruppen, wie beispielsweise des Tetrahydropyranylrestes, in einer wässrigen Lösung einer organischen Säure, wie z.B. Oxalsäure, Essigsäure, Propionsäure u.a., oder in einer wässrigen Losung einer anorganischen Säure, wie z.B. Salzsäure, durchgeführt. Zur Verbesserung der Löslichkeit wird zweckmässigerweise ein mit Wasser mischbares inertes organisches Lösungsmittel zugesetzt. Geeignete organische Lösungsmittel sind z.B. Alkohole, wie Methanol und Äthanol, und Äther, wie Dirnethoxyäthan, Dioxan und Tetrahydrofuran. Tetrahydrofuran wird bevorzugt angewendet. Die Abspaltung wird vorzugsweise bei Temperaturen zwischen 20 ºC und 80 ºC durchgeführt.
Die Verseifung der Acylgruppen erfolgt beispielsweise mit Alkali- oder Erdalkali-carbonaten oder -hydroxyden in einem Alkohol oder in der wässrigen Lösung eines Alkohols. Als Alkohole kommen aliphatische Alkohole in Betracht, wie z.B. Methanol, Äthanol, Butanol usw., vorzugsweise Methanol. Als Alkalicarbonate und -hydroxyde seien Kalium- und Natriumsalze genannt. Bevorzugt sind die Kaliumsalze.
Als Erdalkalicarbonate und -hydroxyde sind beispielsweise geeignet Calciumcarbonat, Calciumhydroxyd und Bariumcarbonat. Die Umsetzung erfolgt bei -10 ºC bis + 70 ºC, vorzugsweise bei + 25 ºC.
Die Einführung der Estergruppe für R1 , bei wel ¬
Figure imgf000013_0001
cher R2 eine Alkylgruppe mit 1-10 C-Atomen darstellt, erfolgt nach den dem Fachmann bekannten Methoden. Die 1- Carboxy-Verbindungen werden beispielsweise mit Diazokohlenwasserstoffen in an sich bekannter Weise umgesetzt. Die Veresterung mit Diazokohlenwasserstoffen erfolgt z.B. dadurch, dass man eine Lösung des Diazokohlenwasserstoffes in einem inerten Lösungsmittel, vorzugsweise in Diäthyläther, mit der 1-Carboxyverbindung in dem gleichen oder in einem anderen inerten Lösungsmittel, wie z.B. Methylenchlorid, vermischt. Nach beendeter Umsetzung in 1 bis 30 Minuten wird das Lösungsmittel entfernt und der Ester in üblicher Weise gereinigt. Diazoalkane sind. entweder bekannt oder können nach bekannten Methoden hergestellt werden ^Örg.Reactions Bd. 8, Seiten 389-394 (1954)]. Die Einführung der Estergruppe für R1 , bei
Figure imgf000014_0001
welcher R2 eine substituierte oder unsubstituierte Arylgruppe darstellt, erfolgt nach den dem Fachmann bekannten Methoden. Beispielsweise werden die 1-Carboxyverbindungen mit den entsprechenden Arylhydroxyverbindungen mit Dicyclohexylcarbodiimid in Gegenwart einer geeigneten Base, beispielsweise Pyridin, DMAP, Triäthylamin, in einem inerten Lösungsmittel umgesetzt. Als Lösungsmittel kommen Methylenchlorid, Äthylenchlorid, Chloroform, Essigester, Tetrahydrofuran, vorzugsweise Chloroform in Frage. Die Reaktion wird bei Temperaturen zwischen -30 ºC ind +50 ºC, vorzugsweise bei 10 ºC, durchgeführt.
Die Prostaglandinderivate der Formel I mit R2 in der Bedeutung eines Wasserstoffatoms können mit geeigneten Mengen der entsprechenden anorganischen Base unter Neutralisierung in ein Salz überführt werden. Beispielsweise erhält man beim Losen der entsprechenden PG-Säuren in Wasser, das die stδchiometrische Menge der Base enthält, nach Abdampfen des Wassers oder nach Zugabe eines mit Wasser mischbaren Lösungsmittels, z.B. Alkohol oder Aceton, das feste anorganische Salz.
Zur Herstellung eines Aminsalzes, die in üblicher Weise erfolgt, wird die PG-Säure z.B. in einem geeigneten Lösungsmittel, beispielsweise Äthanol, Aceton, Diäthyläther, Acetonitril oder Benzol gelöst und mindestens die stöchiometrische Menge des Amins dieser Lösung zugesetzt. Dabei fällt das Salz gewöhnlich in fester Form an oder wird nach Verdampfen des Lösungsmittels in üblicher Weise isoliert.
Die Einführung der Amidgruppe für R1 erfolgt nach
Figure imgf000015_0001
den dem Fachmann bekannten Methoden. Die Carbonsäuren der Formel I (R2=H) , werden zunächst in Gegenwart eines tertiären Amins, wie beispielsweise Triäthylamin, mit Chlorameisensäureisobutylester in das gemischte Anhydrid überführt. Die Umsetzung des gemischten Anhydrids mit dem Alkaliaalz des entsprechenden Amids oder mit Ammoniak (R3=H) oder des entsprechenden Amins erfolgt in einem inerten Lösungsmittel oder Lösungsmittelgemisch, wie beispielsweise Tetrahydrofuran, Dimethoxyäthan, Dimethylformsunid, Hexamethylphosphorsäuretriamid , bei Temperaturen zwischen -30 ºC und +60ºC, vorzugsweise bei 0ºC bis 30ºC.
Eine weitere Möglichkeit für die Einführung der Amidgruppe
Figure imgf000015_0002
für R1 mit R3 in der Bedeutung eines Säurerestes besteht in der Umsetzung einer 1-Garbonsäure der Formel I (R2=H), in der freie Hydroxygruppen gegebenenfalls intermediär geschützt sind, mit Verbindungen der Formel III
O = C = N - R3 (III),
worin R3 die obenangegebene Bedeutung hat. Die Umsetzung der Verbindung der Formel I (R2=H) mit einem Isocyanat der Formel III folgt gegebenenfalls unter Zusatz eines tertiären Amins, wie z.B. Triäthylamin oder Pyridin. Die Umsetzung kann ohne Lösungsmittel oder in einem inerten Lösungsmittel, vorzugsweise Acetonitril, Tetrahydrofuran, Aceton, Dimethylacetamid, Methylenchlorid, Diäthyläther, Toluol, bei Temperaturen zwischen -80°C bis 100°C, vorzugsweise bei O bis 30 ºC , vorgenommen werden .
Enthält das Ausgangsprodukt OH-Gruppen im Prostanrest, so werden diese OH-Gruppen auch zur Reaktion gebracht. Werden letztlich Endprodukte gewünscht, die freie Hydroxylgruppen im Prostanrest enthalten, geht man zweckmässigerweise von Ausgangsprodukten aus, in denen dies durch vorzugsweise leicht abspaltbare Äther- oder Acylreste intermediär geschützt sind.
Die als Ausgangsmaterial dienenden Verbindungen der Formel II mit einer 9α-Hydroxygruppe sind entweder bekannt oder können nach dem in DE-OS 26 27 910 angegebenen Verfahren hergestellt werden.
Die Verbindungen der Formel II mit einer 9ß-Hydroxygruppe erhält man aus den 9α-Hydroxyverbindungen durch eine Inversionsreaktion, wie sie z.B. in Synthesis, 292-294 (1980) beschrieben wurde.
Im Vergleich zu PGE-Derivaten zeichnen sich die neuen Prostaglandinanaloga durch größere Stabilität aus.
Die neuen Prostaglandinanaloga der Formel I sind wertvolle Pharmaka, da sie bei ähnlichen Wirkungs sprektrum eine wesentlich verbesserte (höhere Spezifität) und vor allem wesentlich längere Wirkung aufweisen als die entsprechenden natürlichen Prostaglandine.
Die neuen Prostaglandin-Analoga wirken stark luteolytisch, d.h. zur Auslösung einer Luteolyse benötigt man wesentlich geringere Dosierungen als bei den entsprechenden natürlichen Prostaglandinen.
Auch zur Auslösung von Aborten, insbesondere nach oraler oder intravaginaler Applikation, sind wesentlich geringere Mengen der neuen Prostaglandinanaloga im Vergleich zu den natürlichen Prostaglandinen erforderlich.
Bei der Registrierung der isotonxschen Unteruskontraktion an der narkotisierten Ratte und am isolierten Rattenuterus zeigt sich, dass die erfindungsgemässen Substanzen wesentlich wirksamer sind und ihre Wirkungen länger anhalten als bei den natürlichen Prostaglandinen. Die neuen Prostaglandinderivate sind geeignet, nach einmaliger enteraler oder parenteraler Applikation eine Menstruation zu induzieren oder eine Schwangerschaft zu unterbrechen. Sie eignen sich ferner zur Synchronisation des Sexualzyklus bei weiblichen Säugetieren wie Kaninchen, Rindern, Pferden, Schweinen usw. Ferner eignen sich die erfindungsgemässen Prostaglandxn-Derivate zur Cervixdilatation als Vorbereitung für diagnostische oder therapeutische Eingriffe.
Die gute Gewebsspezifität der erfindungsgemässen antifertil wirksamen Substanzen zeigt sich bei der Untersuchung an anderen glattmuskulären Organen, wie beispielsweise am Meerschweinchen-Ileum oder an der isolierten Kaninchen-Trachea, wo eine wesentlich geringere Stimulierung zu beobachten ist als durch die natürlichen Prostaglandine. Die erfindungsgemässen Substanzen wirken auch bronchospasmolytisch. Ausserdem bewirken sie eine Abschwellung der Nasenschleimhaut.
Die erfindungsgemässen Wirkstoffe hemmen die Magensäuresekretion, zeigen einen zytoprotektiven und ulcusheilenden Effekt und wirken damit den unerwünschten Folgen nichtsteroidaler Entzündungshemmstoffe (Prostaglandinsynthese - Inhibitoren) entgegen. Sie wirken ausserdem an der Leber, Niere und auch an der Bauchspeicheldrüse zytoprotektiv.
Einige der Verbindungen wirken blutdrucksenkend, regulierend bei Herzrhytmusstörungen und hemmend auf die Plättchenaggregation mit den sich daraus ergebenden Einsatzmöglichkeiten. Die neuen Prostaglandine können auch in Kombination, z.B. mit ß-Blockern, Diuretika, Phospho - diesterasehemmern, Calciumantagonisten und Antigestagenen, verwendet werden.
Die Dosis der Verbindungen ist 1-1500 μg/kg/Tag, wenn sie am menschlichen Patienten verabreicht werden.
Für die medizinische Anwendung können die Wirkstoffe in eine für die Inhalation, für orale, parenterale oder lokale (z.B. vaginale) Applikation geeignete Form überführt werden.
Zur Inhalation werden zweckmässigerweise Ärosollösungen hergestellt.
Für die orale Applikation sind beispielsweise Tabletten, Dragees oder Kapseln geeignet. Für die parenterale Verabreichung werden sterile, injizierbare, wäßrige oder ölige Lösungen benutzt.
Für die vaginale Applikation sind z.B. Zäpfchen geeignet und üblich.
Die Erfindung betrifft damit auch Arzneimittel auf Basis der Verbindungen der Formel I und üblichen Hilfs- und Trägerstoffe, einschließlich Cyclodextrinclathraten.
Die erfindungsgemäßen Wirkstoffe sollen in Verbindung mit den in der Galenik bekannten und üblichen Hilfsstoffen, z. B. zur Herstellung von Präparaten zur Auslösung eines Abortes, zur Zyklussteuerung, zur Einleitung einer Geburt, zur Behandlung der Hypertonie oder zur Behandlung von gastrointestinalen Störungen, wie z.B. zur Abheilung von Magen- und Zwölffingerdarmgeschwüren, dienen. Für diesen Zweck aber auch für die übrigen Anwendungen können die Präparate 0,01 - 100 mg der aktiven Verbindung enthalten.
Die folgenden Beispiele sollen die Erfindung näher erläutern, ohne daß damit eine Begrenzung vorgenommen wird.
Beispiel 1
(9R, 11R, 15R)-9-Chlor-11,15-dihvdroxy-16,16-dimethyl-prosta- 4, 5,15-trans-triensäuremethylester
Zu einer Lösung aus 1, 80 g ( 9S , 11R, 15R) -16 , 16-Dimethyl-9-hydroxy-11,15-bis(tetrahydropyran-2-yloxy)-prosta-4,5,13-trans-triensäuremethylester und 3,37 g Triphenylphosphin in 60 ml 1,2-Dichlorethan tropft man bei 0°C eine Lösung von 3 , 20 g Hexachlorethan und 3,80 ml Triethylamin in 60 ml 1,2 Dichloräthan. Man rührt 1 Stunde bei 20°C, verdünnt dann mit 200 ml Dichlormethan, schüttelt nacheinander mit Natriumhydrogencarhonatlösung und Sole, trocknet über MgSO4 und dampft im Vakuum ein. Der Rückstand wird an Kieselgel mit Toluol/Ethylacetat (95:5) chromatographiert. Man erhält 1,05 g öligen (9R,11R,15R)-9-Chlor-16,16-dimethyl- 11 ,15-bis(tetrahydropyran-2-yloxy)-prosta-4, 5, 13-transtriensäuremethylester. Zur Abspaltung der Schutzgruppen rührt man den erhaltenen Ester mit 15 ml einer Mischung aus Essigsäure/Wasser/Tetrahydrofuran (65/35/10) 24 Stunden bei 20°C. Man verdünnt dann mit Eiswasser, versetzt bis zum Neutralpunkt mit verdünnter Natronlauge und extrahiert mehrmals mit Dichlormethan. Die vereinigten Extrakte werden mit Sole geschüttelt, über Magnesiumsulfat getrocknet und im Vakuum eingedampft. Zur Reinigung chromatographiert man an Kieselgel mit Hexan/10-40% Ethylacetat und erhält 580 mg der Titelverbindung als Öl. IR; 3600, 3410, 2958, 1958, 1732, 1135, 1020, 976/cm.
Der als Ausgangsmaterial verwendete 9α-Alkohol wird wie folgt erhalten: 1a)
(6RS,9S,11R,15R )-6,9-Dihydroxy-16,16-dimethyl-11,15-bis (tetrahydropyran-2-yloxy)-prost-4-in-15-trans-ensäuremethylester
Man löst 7,29g Diisopropylamin in 100 ml Ether mit 12,90 g Hexamethylphosphorsäuretriainid, kühlt auf -20°C ab und tropft unter Argon 48 ml einer 1,5 M etherischen Lösung von Methyllithium zu. Anschließend kühlt man auf -70°C ab und tropft 3 , 53 g 4 -Pentinsäure gelöst in 70ml Ether zu. man rührt weitere 2 Stunden bei 20°C und tropft dann eine Lösung von 2,80 g (2RS,3aR,4R,5R,6aS)-4-[(E)-(3R)-4,4-dimethyl-3-(tetrahydropyran-2-yloxy)-1-octenyl]-5-(tetra-hydropyran-2-yloxy)-perhydrocyclopenta[b]furan-2-ol in 60 ml Ether zu. Man rührt 48 Stunden bei 20°C, verdünnt mit Wasser und säuert mit Zitronensäure auf pH 4 an. Man extrahiert mehrmals mit Dichlormethan, wäscht mit Sole, trocknet über Magnesiumsulfat und dampft im Vakuum ein. Der Rückstand wird 15 Minuten mit überschüssigem etherischen Diazomethan behandelt und die Lösung zur Trockne gedampft. Der ölige Rückstand wird an Kieselgel mit Hexan/Ethylacetat (1:1) chromatographiert. Man erhält 2,15 g der Titelverbindung als Öl. IR: 3600, 2955, 2130, 1735, 1153, 1020, 980/cm.
1b)
(6R3,9S,11R,15R)-6,9-Diacetoxy-l6,16-dimethyl-11,15-bis- (tetrahydropyran-2-yloxy)-prost-4-in-15-trans-ensäure-methylester
Zu einer Lösung von 2,10 g (6R3,93,11R,15R)-6,9-Dihydroxy- 16,16-dimethyl-11,15-bis(tetrahydropyran-2-yloxy)-prost- 4-in-13-trans-ensäureiüethylestfer in 15 ml Pyridin gibt man 4 ml Essigsäureanhydrid und läßt 16 Stunden bei 20°C stehen. Man engt dann im Vakuum ein, verdünnτ mit Äther, wäscht mit Wasser, trocknet über Magnesiumsulfat und dampft im Vakuum ein. Zur Reinigung filtriert man mit Hexan/Ethylacetat (7:3) über Kieselgel und erhält 2,19 g der Titelverbindung als Öl. IR: 2958, 2125, 1738, 1252, 1023, 976/cm.
1c)
(95, 11R, 15R) -9-Acetoxy-16 , 16-dimethyl-11, 15-bis-(tetra-hydropyran-2-yloxy)-prosta-4,5,15-trans-triensäuremethylester
Zu einer auf -10ºC gekühlten Suspension von 3,02 g Kupfer (I) jodid in 50 ml Ether tropft man unter Rühren 23, 2 ml einer 1.5 M Lösung von Methyllithium in Ether. Man kühlt dann auf -75°C ab und tropft 50 ml einer etherischen Lösung von 2,10 g (6RS,93, 11R,15R)-6,9-Diacetoxy-16,16-dimethyl-11,15-bis-(tetrahydropyran-2-yloxy)-prost-4-in-13-transensäuremethylester innerhalb von 15 Minuten zu. Man rührt 5 Stunden bei -75°C, verdünnt dann mit Ammoniumchloridlösung, rührt 1 Stunde bei 20°C und extrahiert mit Äther. Den Extrakt wäscht man mit Sole, trocknet über Magnesiumsulfat und dampft im Vakuum ein. Den Rückstand chromatographiert man an Kieselgel mit Hexan/20-70% Ethylacetat und erhält 1,10 g der Titelverbindung als Öl. IR: 2951, 1977, 1738. 1248, 1021, 973/cm.
1d)
( 9S , 11R.15R) -16 , 16-Dimethyl-9-hvdroxy-11, 15-bis-(tetrahydropyran-2-yloxy)-prosta-4,5,15-trans-triensäuremethylester Zu einer Lösung von 1, 05 g ( 93 , 11R, 15R)-9-Acetoxy-16 , 16-dimethyl-11,15-bis-(tetrahydropyran-2-yloxy)-prosta-4,5,13-trans-triensäuremethylester in 20 ml Methanol gibt man 300 mg wasserfreies Kaliumcarbonat und rührt 3 Stunden bei Raumtemperatur. Man engt bei 30°C im Vakuum ein, verdünnt mit Wasser und extrahiert mehrmals mit Dichlormethan. Die vereinigten Extrakte werden mit Sole geschüttelt, über Magnesiumsulfat getrocknet und im Vakuum eingedampft. Man erhält 920 mg der Titelverbindung als Öl. IR: 3600, 2945, 1980. 1736, 1021, 976/cm.
Beispiel 2
(9S,11R,15R)-9-Chlor-11,15-dihydroxy-16,16-dimethyl-prosta- 4,5,15-trans-triensäuremethylester
In Analogie zu Beispiel 1 erhält man aus 500 mg (9R, 11R,
15R )-16,16-Dimethyl-9-hydroxy-11,15-bis-(tetrahydropyran- 2-yloxy)-prosta-4,5,13-trans-triensäuremethylester 145 mg der Titelverbindung als Öl.
IR: 3600, 3405, 2956, 1977, 1735, 1135, 1021, 976/cm.
Der als Ausgangsmaterial verwendete 9ß-Alkohol wird wie folgt hergestellt: 2a)
(9R,11R, 15R )-16,16-Dimethyl-9-hydroxy-11,15-bis-(tetrahydropyran-2-yloxy)-prosta-4,5,15-trans-triensäuremethylester Zu einer Lösung von 1,69 g (93,11R,15R)-16,16-Dimethyl-9-hydroxy-11,15-bis-(tetrahydropyran-2-yloxy)-prosta-4,5,13-trans-triensäuremethylester in 25 ml Pyridin gibt man bei 0° 1,15 g p-Toluolsulfonsäurechlorid. Nach 1 Stunde entfernt man das Eisbad und läßt 43 Stunden bei 20°C stehen. Man kühlt dann wieder auf 0°, versetzt mit 0,1 ml Wasser und rührt 1 Stunde. Zur Aufarbeitung verdünnt man mit eiskaltem Äther, schüttelt nacheinander mit eiskalter 10%iger Schwefelsäure, Natriumhydrogencarbonatlösung und Sole, trocknet über Magnesiumsulfat und dampft im Vakuum ein. Man erhält 2,30 g öliges 9-Tosylat, das man in 80 ml Dimethylsulfoxid löst, mit 6 g Kaliumnitrit versetzt und 3 Stunden auf 80°C erhitzt. Man verdünnt dann mit Wasser, extrahiert mit Ether, wäscht den Extrakt mit Sole, trocknet über Magnesiumsulfat und dampft im Vakuum ein. Den Rückstand reinigt man durch Chromatographie an Kieselgel mit Hexan/Ethylacetat (20-50%) und erhält 1,01 g der Titelverbindung als Öl. IR: 3600, 3410, 1973, 1735, 1181, 1025, 972/cm.
Beispiel 3
(9R,11R,15R)-9-Chlor-11,15-dihydroxy-16,16-disιethyl-prosta- 4,5,15-trans-triensäure
Zu einer Lösung von 100 mg (9R,11R,15R)-9-Chlor-11,15-dihydroxy-16,16-dimethyl-prosta-4,5,13-trans-triensäuremethylester in 10 ml Methanol gibt man 150 mg Kaliuiahydroxid gelöst in 1 ml Wasser und läßt 5 Stunden bei 20°C stehen. Nach Einengen im Vakuum verdünnt man mit Wasser, säuert mit Zitronensäure auf pH 4 an und extrahiert mit
Ethylacetat. Den Extrakt wäscht man mit Sole, trocknet über
Magnesiumsulfat und dampft im Vakuum ein. Man erhält 85 mg der Titelverbindung als Öl.
IR: 3600, 3420, 2955, 1976, 1712, 1178, 1022, 976/cm.
Beispiel 4
(9R,11R,15S,16RS)-9-Chlor-11,15-dihydroxy-16-aethyl-prosta- 4,5,15-trans-triensäuremethylester
In Analogie zu Beispiel 1 erhält man aus 1,25 g (9S,11R,15S,
16RS)-9-Hydroxy-16-methyl-11,15-bis-(tetrahydropyran-2-yloxy)-prosta-4,5 , 13-trans-triensäure-methylester 410 mg der Titelverbindung als Öl.
IR: 3600, 3405, 2958, 2885, 1976, 1732, 1021, 976/cm.
Das Ausgangsmaterial für die Herstellung der Titelverbindung erhält man gemäß Beispiel 1a aus (2R3,3aR,4R,5R,6aS)- 4-[(2)-(33,4RS)-4-methyl-3-(tetrahydropyran-2-yloxy)-1-oct- enyl]-5-(tetrahydropyran-2-yloxy)-perhydrocyclopenta[b]furan-2-ol. Beispiel 5
(9R,11R,15S,16RS)-9-Chlor-11,15-dihydroxy-16-methyl-prosta- 4,5,13-trans-triensäure
In Analogie zu Beispiel 3 erhält man aus (9R,11R,15S,16RS)- 9-Chlor-11,15-dihydroxy-16-methyl-prosta-4,5,13-trans-triensäuremethylester die Titelverbindung als Öl.
IR: 3600, 3420, 2948, 1978, 1710, 1021, 978/cm.
Beispiel 6
(9R,11R,15R)-9-Chlor-11,15-dihydroxy-16-phenoxy-17,18,19,
20-tetranor-prosta-4,5,15-trans-triensäuremethylester
In Analogie zu Beispiel 1 erhält man aus 950 mg (9S,11R,
15R)-9-Hydroxy-16-phenoxy-11,15-bis(tetrahydropyran-2-yloxy)-17,18,19,20-tetranor-prosta-4,5,13-trans-triensäuremethylester 310 mg der Titelverbindung als farbloses Öl.
IR: 3600, 3402, 2954, 2888, 1978, 1732, 1600, 1535, 1021,
978/cm.
Das Ausgangsmaterial für die Herstellung der Titelverbindung erhält man aus (2RS, 3aR,4R,5R,6aS)-4-[(E)-(3R)-4-Phenoxy-3-(tetrahydopyran-2-yloxy)-1-butenyl]-5-(tetrahydropyran-2-yloxy)-perhydrocyclopenta[b]furan-2-ol gemäß Beispiel 1a.
Beispiel 7
( 9R,11R, 15R)-9-Chlor-11,15-dihydroxy-16-phenoxy-17,18,19,20-tetranor-prosta-4,5,15-trans-triensäure In Analogie zu Beispiel 3 erhält man aus ( 9R, 11R, 15R ) -9-Chlor-11,15-dihydroxy-16-phenoxy-17,18,19,20-tetranor-prosta-4,5,13-trans-triensäuremethylester die Titelverbindung als Öl.
IR: 3600, 3420, 2960, 2885, 1976, 1711, 1600, 1588, 1022, 977/cm. Beispiel 8
(9R,11R,15R)-9-Chlor-11,15-dihydroxy-16,16-trimethylen-prosta-4,5,15-trans-triensäuremethylester
In Analogie zu Beispiel 1 erhält man aus 1,20 g (9S,11R,
15R)-9-Kydroxy-11,15-bis-(tetrahydropyran-2-yloxy)-16,16-trimethylen-prosta-4,5,13-trans-triensäuremethylester
390 mg der Titelverbindung als Öl.
IR: 3600, 3405, 2948, 2882, 1975, 1735, 1021, 976/cm.
Das Ausgangsmaterial für die Herstellung der Titelverbindung erhält man aus (2RS,3aR,4R,5R,6aS)-4-[(E)-(3R)-3- (tetrahydropyran-2-yloxy)-4,4-trimethylen-1-octenyl]-5-(tetrahydropyran-2-yloxy)-perhydrαcyclopenta[b]furan-2-ol.
Beispiel 9
(9R,11R,15R)-9-Chlor-11,15-dihydroxy-16,16-trimethylen- prosta-4,5,15-trans-triensäure
In Analogie zu Beispiel 3 erhält man aus (9R,11R,15R)- 9-Chlor-11,15-dihydroxy-16,16-trimethylen-prosta-4,5,13-trans-triensäuremethylester die Titelverbindung als Öl.
IR: 3600, 3420, 2952, 2884, 1976, 1712, 1022, 976/cm.
Beispiel 10
(9R,11R,153,16RS)-9-Chlor-11,15-dihydroxy-16-methyl-prosta- 4,5,15-trans-trien-18-insäuremethylester
In Analogie zu Beispiel 1 erhält man aus 935 mg (9S,11R,
15S ,16RS)-9-Hydroxy-16-methyl-11,15-bis-(tetrahydropyran- 2-yloxy)-prosta-4,5,13-trans-trien-13-insäuremethylester
320 mg der Titelverbindung als Öl.
IR: 3600, 3405, 2050, 1973, 1734, 1021, 974/cm. Das Ausgangsmaterial für die Herstellung der Titelverbindung erhält man gemäß Beispiel la aus (2RS,3aR,4R,5R,6aS)- 4-[(E)-(33,4RS)-4-methyl-3-(tetrahydropyran-2-yloxy)-1- octen-6-inyl]-5-(tetrahydropyran-2-yloxy)-perhydrocyclopenta[b]furan-2-ol.
Beispiel 11
(9R,11R,15S,16R5)-9-Chlor-11,15-dihydroxy-16-methyl-prosta- 4,5,15-trans-trien-18-insäure
In Analogie zu Beispiel 3 erhält man aus(9R,11R,15S,16RS)- 9-Chlor-11,15-dihydroxy-16-methyl-prosta-4,5,13-transtrien-18-insäuremethylester die Titelverbindung als Öl.
IR: 3600, 3415 , 2955 , 2884, 1978, 1710, 1022, 974/cm.
Beispiel 12
(9R,11R,15S,16R5)-9-Chlor-11,15-dihydroxy-16,20-dimethyl-prosta-4,5,15-trans-trien-18-insäuremethylester
In Analogie zu Beispiel 1 erhält man aus 1,20 g (9S,11R,
153,16RS)-16, 20-Dimethyl-9-hydroxy-ll,15-bis-(tetrahydro- pyran-2-yloxy)-prosta-4,5,13-trans-trien-18-insäuremethylester 330 mg der Titelverbindung als Öl.
IR: 3600, 3400, 2955, 1978, 1732, 1022, 976/cm.
Das Ausgangsmaterial für die Herstellung der Titelverbindung erhält man gemäß Beispiel la aus (2RS,3aR,4R,5R,6aS)-4-[(E)-(33,4RS)-4-methyl-3-(tetrahydropyran-2-yloxy)-1-nonen-6-inyl]-5-(tetrahydropyran-2-yloxy)-perhydrocyclo¬penta[b]furan-2-ol. Beispiel 15
(9R,11R,153,16R5)-9-Chlor-11,15-dihydroxy-16,20-dimethyl-prosta-4,5,15-trans-trien-18-insäure
In Analogie zu Beispiel 3 erhält man aus (9R,11R,153,16RS)- 9-Chlor-11,15-dihydroxy-16,20-dimethyl-prosta-4,5,13-trans-trien-18-insäuremethylester die Titelverbindung als Öl.
IR: 3600, 3409, 2952, 2880, 1978, 1711, 1023, 976/cm.
Beispiel 14
(9R,11R,15R)-11,15-Dihydroxy-16,16-dimethyl-9-fluor-prosta-4,5,15-trans-triensäure
Zu einer Lösung von 1,25 g (9S,11R,15R)-16,16-Dimethyl-9-hydroxy-11,15-bis-(tetrahydropyran-2-yloxy)-prosta-4,-5,13-trans-triensäuremethylester in 20 ml Dichlormethan und 0,5 ml Pyridin gibt man bei -70°C 0,3 ml Diethylaminoschwefeltrifluorid (DAST) und nach 15 Minuten nochmals 0,1 ml DA3T. Nach weiteren 15 Minuten wird mit 50 ml 5%iger Natriumhydrogencarbonatlösung versetzt, das Kältebad entfernt, 10 Minuten bei 20° kräftig gerührt, dann mit Dichlormethan extrahiert, der Extrakt mit Sole gewaschen, über Magnesiumsulfat getrocknet und im Vakuum eingedampft. Den Rückstand rührt man 24 Stunden mit 20 ml einer Mischung aus Essigsäure-Wasser-Tetrahydrofuran (65/35/10), dampft im Vakuum ein und reinigt das Rohprodukt durch Chromatographie an Kieselgel mit Hexan/Diethylether (1:1). Man erhält 410 mg ( 9R, 11R, 15R) -11, 15-Dihydroxy-16 , 16-dimethyl-9-fluor-prosta-4,5,13-trans-triensäuremethylester als Öl. Zur Verseifung des Esters löst man in 20ml Methanol, versetzt mit 500 mg Kaliumhydroxid gelöst in 2 ml Wasser und läßt 4 Stunden bei 20° stehen. Anschließend engt man im Vakuum ein, verdünnt mit Wasser, säuert mit Zitronensäure auf pH4 an und extrahiert mit Dichlormethan. Den Extrakt wäscht man mit Sole, trocknet über Magnesiumsulfat und dampft im Vakuum ein. Man erhält 370 mg der Titelverbindung als Öl. IR: 3600, 3420, 2948, 2878, 1976, 1710, 1022, 978/cm. Beispiel 15
(9R,11R,15R)-11,15-Dihydroxy-9-fluor-16-phenoxy-17,13,19, 20-tetranor-prosta-4,5,15-trans-triensäure In Analogie zu Beispiel 14 erhält man aus 1,15 g (9S,11R, 15R)-9-Hydroxy-16-phenoxy-11,15-bis-(tetrahydropyran- 2-yloxy)-17,18,19,20-tetranor-prosta-4,5,13-tιans-triensäure-methylester 335 mg der Titelverbindung als Öl. IR: 3600, 3420, 2955, 2839, 1973, 1708, 1601, 1538, 1023, 976/cm.
Beispiel 16
(9R,11R,15S,16RS)-11,15-Dihydroxy-16,20-dimethyl-9-fluor-prosta-4,5,15-trans-trien-18-insäure
In Analogie zu Beispiel 14 erhält man aus 810 mg (93,11R,
153,16R3)-16,20-Dimethyl-9-hydroxy-11,15-bis-(tetrahydropyran-2-yloxy)-prosta-4,5,13-trans-trien-18-insäuremethylester 235 mg der Titelverbindung als Öl.
IR: 3600, 3418, 2949, 2322, 1976, 1710, 1023, 978/cm.
Beispiel 17
(9R,11R,15R)-11,15-Dihydroxy-9-fluor-16-phenoxy-17,18,19,20 tetranor-prosta-4,5,15-trans-triensäure-phenacylester Man löst 210 mg (9R, 11R, 15R) -11, 15-Dihydroxy-9-fluor-16-phenoxy-17,18,19,20-tetranor-prosta-4,5,13-trans-triensäure in 10 ml Aceton, versetzt mit 139 mg ω-Bromacetophenon und 1,5 ml Triäthylamin und rührt über Nacht bei 20°C. Man verdünnt mit Äther,schüttelt nacheinander mit Wasser und Sole, trocknet über Magnesiumsulfat und dampft im Vakuum ein. Den Rückstand reinigt man durch Chromatographie an Kieselgel mit Dichlormethan/10% Aceton und erhält 195 mg der Titelverbindung als Öl.
IR: 3600, 3010, 2948, 1978, 1708(breit), 1500, 1588, 1139, 1022, 974/cm.

Claims

Patentansprüche
1. 9-Halogen-prostanderivate der Formel I
Figure imgf000030_0001
worin Hai ein α- oder ß-ständiges Chlor- oder Fluoratom, R1 den Rest CH2OH oder mit R
Figure imgf000030_0002
2 in der Bedeutung eines Wasserstoffatoms, eines Alkyl-, Cycloalkyl-, Aryl- oder heterocyclischen Restes oder R1 den Rest mit R 3 in der Bedeutung eines
Figure imgf000030_0003
Säurerestes oder des Restes R 2 und
A eine -CH2-CH2-, eine trans-CH=CH- oder eine -C≡C- Gruppe,
W eine freie oder funktionell abgewandelte Hydroxymethylengruppe oder eine freie oder funktionell angewandelte
wobei die OH-Gruppe α- oder ß-ständig
Figure imgf000030_0004
sein kann, D und E gemeinsam eine direkte Bindung oder D eine geradkettige , verzireigtkettige oder ringförmige
Alkylengruppe mit 1-10 C-Atomen, die gegebenenfalls durch Fluoratome substituiert ist, und E ein Sauerstoff- oder Schwefelatom, eine direkte Bindung, eine -C≡C-Bindung oder eine -CR6=CR7-Gruppe darstellt, wobei R6 und R7 sich unterscheiden und ein Wasserstoffatom, ein Chloratom oder eine C1-C4-Alkylgruppe bedeuten, R4 eine frei oder funktionell abgewandelte Eydro-sygruppe, R5 ein Wasserstoffatom, eine Alkyl-, eine Halogen -substituierte Alkyl-, eine Cycloalkyl-, eine gegebenenfalls substituierte Aryl oder eine heterocyclische Gruppe, und falls R2 die Bedeutung eines Wasserstoffatoms hat, deren Salze mit physiologisch verträglichen Basen bedeuten.
2. Verfahren zur Herstellung der 9-Halogen-prostanderivate der Formel I, dadurch gekennzeichnet, daß man in an sich bekannter Weise eine Verbindung der Formel II
Figure imgf000031_0001
worin die 9-OH-Gruppe α- oder ß-ständig sein kann und R1 den Rest
Figure imgf000031_0002
mit R2 in der Bedeutung von Alkyl,
Cycloalkyl, Aryl oder heterocyclischer Rest oder den
Rest mit R 3 in der Bedeutung eines Säure
Figure imgf000031_0003
restes, eines Alkyl-, Cycloalkyl-, Aryl- oder eines heterocyclischen Restes darstellt und
A, D, E und R5 die bereits oben angegebenen Bedeutungen haben, nach vorherigem Schutz freier OH-Gruppen in R4 und W mit Tetrachlorkohlenstoff/Triphenylphosphin, Hexachlorethan/Triphenylphosphin oder Diethylaminoschwefeltrifluorid oder nach Umwandlung der 9- Hydroxygruppe in einen 9-Sulfonsäureester mit Tetra- n-butylammoniumfluorid umsetzt und anschließend in beliebiger Reihenfolge geschützte Hydroxygruppen freisetzt und/oder freie Hydroxygruppen verestert, veräthert und/oder Doppelbindungen hydriert und/oder eine veresterte Carboxylgruppe
Figure imgf000032_0001
verseift und/oder eine freie Carboxylgruppe (R2 = H) in ein Amid überführt und/oder eine
Figure imgf000032_0002
freie oder veresterte Carboxylgruppe
Figure imgf000032_0003
reduziert.
Arzneimittel, bestehend aus einer oder mehreren Verbindungen des Anspruchs 1 und üblichen Hilfs- und Trägerstoffen.
PCT/DE1985/000120 1984-04-13 1985-04-12 New 9-halogen-prostaglandine WO1985004656A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE8585901971T DE3586828D1 (de) 1984-04-13 1985-04-12 Neue 9-halogen-prostaglandine.
AT85901971T ATE82258T1 (de) 1984-04-13 1985-04-12 Neue 9-halogen-prostaglandine.
HU852186A HU196746B (en) 1984-04-13 1985-04-12 Process for producing in 6-position halogenated prostaglandins and pharmaceutical compositions comprising such active ingredient
DK578785A DK578785D0 (da) 1984-04-13 1985-12-13 9-halogen-prostanderivater og fremgangsmaade til fremstilling deraf

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19843414509 DE3414509A1 (de) 1984-04-13 1984-04-13 Neue 9-halogen-prostaglandine
DEP3414509.5 1984-04-13

Publications (1)

Publication Number Publication Date
WO1985004656A1 true WO1985004656A1 (en) 1985-10-24

Family

ID=6233830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1985/000120 WO1985004656A1 (en) 1984-04-13 1985-04-12 New 9-halogen-prostaglandine

Country Status (12)

Country Link
EP (1) EP0213129B1 (de)
JP (1) JPS61501915A (de)
AT (1) ATE82258T1 (de)
AU (1) AU583267B2 (de)
CA (1) CA1251201A (de)
DD (1) DD234668A5 (de)
DE (2) DE3414509A1 (de)
DK (1) DK578785D0 (de)
ES (1) ES8603172A1 (de)
HU (1) HU196746B (de)
IL (1) IL74877A0 (de)
WO (1) WO1985004656A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807892A (en) * 1994-09-30 1998-09-15 Alcon Laboratories, Inc. Use of certain prostaglandin analogues to treat glaucoma and ocular hypertension

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2206096A2 (de) * 1972-11-14 1974-06-07 Syntex Corp
EP0008003A1 (de) * 1978-07-10 1980-02-20 Syntex (U.S.A.) Inc. (dl)-16-Phenoxy- und 16-substituierte Phenoxy-9-keto Prostatriensäuren und Derivate, Verfahren zu deren Herstellung und ihre pharmazeutischen Zusammensetzungen
EP0030377A1 (de) * 1979-12-10 1981-06-17 Schering Aktiengesellschaft 9-Chlor-prostaglandinderivate, Verfahren zur Herstellung und Verwendung als Arzneimittel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES449162A1 (es) * 1975-06-23 1977-12-16 Syntex Inc Un procedimiento para la preparacion de un compuesto racemi-co u 8r-antimerico.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2206096A2 (de) * 1972-11-14 1974-06-07 Syntex Corp
EP0008003A1 (de) * 1978-07-10 1980-02-20 Syntex (U.S.A.) Inc. (dl)-16-Phenoxy- und 16-substituierte Phenoxy-9-keto Prostatriensäuren und Derivate, Verfahren zu deren Herstellung und ihre pharmazeutischen Zusammensetzungen
EP0030377A1 (de) * 1979-12-10 1981-06-17 Schering Aktiengesellschaft 9-Chlor-prostaglandinderivate, Verfahren zur Herstellung und Verwendung als Arzneimittel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807892A (en) * 1994-09-30 1998-09-15 Alcon Laboratories, Inc. Use of certain prostaglandin analogues to treat glaucoma and ocular hypertension

Also Published As

Publication number Publication date
IL74877A0 (en) 1985-07-31
DD234668A5 (de) 1986-04-09
DE3414509C2 (de) 1992-07-02
DE3414509A1 (de) 1985-10-24
AU583267B2 (en) 1989-04-27
EP0213129A1 (de) 1987-03-11
HUT38307A (en) 1986-05-28
ATE82258T1 (de) 1992-11-15
HU196746B (en) 1989-01-30
EP0213129B1 (de) 1992-11-11
CA1251201A (en) 1989-03-14
ES542173A0 (es) 1985-12-16
ES8603172A1 (es) 1985-12-16
AU4234585A (en) 1985-11-01
DK578785A (da) 1985-12-13
DE3586828D1 (de) 1992-12-17
DK578785D0 (da) 1985-12-13
JPS61501915A (ja) 1986-09-04

Similar Documents

Publication Publication Date Title
EP0299914B1 (de) 9-Halogen-(Z)-prostaglandinderivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel
EP0030377B1 (de) 9-Chlor-prostaglandinderivate, Verfahren zur Herstellung und Verwendung als Arzneimittel
EP0069696B1 (de) 9-Fluor-prostaglandinderivate, Verfahren zur Herstellung und Verwendung als Arzneimittel
EP0198829B1 (de) 9-halogen-prostaglandinderivate, verfahren zu ihrer herstellung und ihre verwendung als arzneimittel
EP0055208A2 (de) Neue Carbacycline, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel
DE2734791A1 (de) Neue prostaglandin-i tief 2 -derivate und verfahren zu ihrer herstellung
WO1985000367A1 (en) 11-halogene-prostane derivatives, process for obtaining them and utilization thereof as drugs
CH636082A5 (de) Prostanderivate, verfahren zu ihrer herstellung sowie diese verbindungen enthaltende arzneimittel.
EP0510154B1 (de) 9-HALOGEN-11(Beta)-HYDROXY-PROSTAGLANDINDERIVATE, VERFAHREN ZU IHRER HERSTELLUNG UND IHRE VERWENDUNG ALS ARZNEIMITTEL
EP0069049B1 (de) Delta 8,9-Prostaglandinderivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel
EP0105288B1 (de) Carbacycline, herstellung und verwendung
EP0057660A2 (de) Neue Prostacyclin-Derivate, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Arzneimittel
EP0213129B1 (de) Neue 9-halogen-prostaglandine
WO1986000895A1 (en) New carbacyclines, preparation thereof and drug containing them
DE2629834A1 (de) Neue prostansaeurederivate und verfahren zu ihrer herstellung
EP0081455B1 (de) 9-Brom-prostaglandinderivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel
EP0324815A1 (de) Neue 9-substituierte carbacyclinderivate, verfahren zu ihrer herstellung und ihre verwendung als arzneimittel
WO1987003283A1 (en) New carbacyclines, process for their production and their use as medicaments
EP0153274A1 (de) Neue Carbacycline, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel
DE3724190A1 (de) 9-halogen-3-oxa-(z)-(delta)(pfeil hoch)5(pfeil hoch)-prostaglandinderivate, verfahren zu ihrer herstellung und ihre verwendung als arzneimittel
EP0163672A1 (de) 20-alkyl-7-oxoprostacyclinderivate und verfahren zu ihrer herstellung.
DE3724189A1 (de) 9-halogen-(z)-(delta)(pfeil hoch)4(pfeil hoch)-prostaglandinderivate, verfahren zu ihrer herstellung und ihrer verwendung als arzneimittel
EP0155901A1 (de) Neue Carbacycline, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel
CH641447A5 (en) Process for preparing prostanoic acid derivatives

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1985901971

Country of ref document: EP

AK Designated states

Designated state(s): AU DK HU JP SU US

AL Designated countries for regional patents

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWP Wipo information: published in national office

Ref document number: 1985901971

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1985901971

Country of ref document: EP