WO1984000193A1 - Exhaust heat boiler - Google Patents

Exhaust heat boiler Download PDF

Info

Publication number
WO1984000193A1
WO1984000193A1 PCT/FI1983/000042 FI8300042W WO8400193A1 WO 1984000193 A1 WO1984000193 A1 WO 1984000193A1 FI 8300042 W FI8300042 W FI 8300042W WO 8400193 A1 WO8400193 A1 WO 8400193A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
boiler
exhaust heat
pass channel
heat boiler
Prior art date
Application number
PCT/FI1983/000042
Other languages
English (en)
French (fr)
Inventor
Tapio Mathias Heinioe
Mauri Eino Olavi Kontu
Ari Jarmo Mikael Mikola
Original Assignee
Rauma Repola Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rauma Repola Oy filed Critical Rauma Repola Oy
Publication of WO1984000193A1 publication Critical patent/WO1984000193A1/en
Priority to DK069284A priority Critical patent/DK152069B/da

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/024Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/06Derivation channels, e.g. bypass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the boilers are constructed either for a natural circulation of water or for a forced circulation. At present, e.g. a majority of ships use exhaust heat boilers.
  • Known exhaust heat boilers are either of a fire tube or water tube construction. Boilers of a water tube construction are often preferred because of their better heating surface/weight ratio.
  • the exhaust heat boilers of a water tube construction in use comprise both boilers with smooth tubes and boilers with ribbed tubes for promoting the heat transfer.
  • Exhaust heat boilers are generally either of rectangular or of cylindrical ' shape. Exhaust heat boilers provided with smooth tubes are in general cylindrical because the manufacture of helical water tubes is easy. The boiler according to the invention is preferably of this type.
  • the boiler is divided into blocks of which a part can be held dry when it is desired to reduce the output of the boiler.
  • the method suffers from the disadvantage that the control is stepped and thermal expansion causes stresses in the boiler.
  • By-passing of the exhaust gases is used as a third control adjustment method.
  • only a part of the exhaust gases are fed into the exhaust heat boiler.
  • the by-pass channel of an exhaust heat boiler is generally arranged outside the boiler, and the damper plate is made in two parts whereby one of the plates controls the flow going into the boiler and the other plate the flow going into the by-pass channel.
  • the disadvantage in such a mechanism is the fact that both plates can be closed simultaneously whereby the exhaust channel is unserviceable.
  • a sound damper is often positioned in the exhaust channel after the exhaust heat boiler and the by-pass channel whereby a sufficient sound damping is guaranteed also when running the exhaust heat boiler.
  • This system suffers from the disadvantages of being expensive, requiring a large space and of being heavy in construction due to a plurality of parts.
  • the object of the invention is to provide a new, simpler and more economical exhaust heat boiler.
  • the invention relates to an exhaust heat boiler comprising a convection section containing helical water tubes, and the exhaust heat boiler is mainly characterized in that the convection section is formed as an annular space, that a by-pass channel for exhaust gases is formed in the cylinder surrounded by the annular space, and that the walls of the by-pass channel are lined with a sound absorbing material so that the by-pass channel at the same time functions as a sound damper.
  • the space required by the boiler according to the invention is considerably smaller, for example, the height required by the aggregate is about one half of the space required by a boiler and sound damper arranged one after the other.
  • a spark breaker is used as a support structure, which also reduces the total weight.
  • a simple flap valve is used as damper plate, which is reliable in operation and has good regulating properties .
  • Figure 1 is a side view of the boiler.
  • Figure 2 is a top view of the boiler.
  • Figure 3 is a longitudinal section of the boiler.
  • reference numeral 1 denotes the outer shell of a boiler.
  • Numerals 2 and 3 denote inlet and outlet openings for exhaust gases .
  • the distributing means of the boiler are denoted by numeral 4 and a safety valve by numeral 5.
  • Fastening lugs of the boiler are denoted by numeral 6 and a pressure gauge by numeral 7.
  • the drive mechanism of a by-pass damper plate 12 is denoted by numeral 3 and gates, for maintenance, on top of the boiler by numeral 9.
  • a manifold 10 from which the wash water of the boiler and the water leaking from the convection section flow out.
  • the convection section 21 containing helical water tubes 11 is seen in Figure 3.
  • the convection section 21 is of annular form whereby an exhaust gas by-pass channel 13 is formed in the cylinder 22 surrounded by section 21.
  • the cylinder 22 is lined with a sound absorbing material 16, for example, glass wool, on top of which a protecting membrane and a perforated steel plate 14 are arranged.
  • a second cylinder 23 with a sound absorbing material 16 and protective covers 15 is arranged inside the cylinder 22.
  • the by-pass damper plate or flap 12 is mounted in " a tube 20 connected to the upper end of the by-pass channel sound damper 13 whereby the shaft of the plate 12 is short and the bearings can be placed outside the boiler.
  • Blades 17 in the lower end of the sound damper 13 function as spark breakers.
  • the blades 17 are preferably mounted as a support structure for the innermost cylinder, either directly or, according to Figure 3, through the protective part 15; the latter is in most practical embodiments sufficiently sturdy for the mounting purpose.
  • the blades 17 can be mounted to the protective part 14 or to the cylinder 22.
  • An exhaust gas inlet channel .18 terminates in front of the spark breaker 17 and is of a smaller diameter than the sound damper 13 so that a connection 19 is established from the inlet channel 18 to the convection section 21.
  • the exhaust heat boiler operates in the following manner: When the damper plate 12 is open, exhaust gases pass from the inlet channel through the spark breaker
  • the damper plate 12 When the damper plate 12 is turned towards closed position, the by-pass flow resistance increases and a part of the exhaust gases are deflected through the opening 1 to the convection section formed by the tube spirals 11. When the damper plate 12 is in the closed position, all exhaust gases pass through the convection section.
  • the size of the opening 19 between the sound damper and the inlet channel is determined on the basis of the resistance of the exhaust channel system and the properties of the engine.
  • the opening 19 is dimensioned as small as possible so that the flow to the convection section will be small when the by-pass is in open position. Even in the case that the damper plate 12 is entirely closed, a very efficient sound damping is achieved thanks to the changes of the gas flow directions taking place in the lower part of the exhaust heat boiler and the sound damper.
  • the upper part of the boiler is shaped so that the flow resistance at the junction of the by-pass channel and the convection section is negative, which prevents the flow of exhaust gases in the wrong direction.
  • the device according to the invention may vary in details.
  • the spark breaker 17 can be of another type, the inner cone 23 can be omitted from the sound damper 13, or the flow to the convection section can be prevented by a damper plate which closes the flow both in the by-pass and the convection section.
  • the invention may, of course, also be applied to a boiler of a rectangular shape; thus, the concept "annular space" is not limited to a circular ring only.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Exhaust Silencers (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
PCT/FI1983/000042 1982-07-01 1983-06-03 Exhaust heat boiler WO1984000193A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DK069284A DK152069B (da) 1982-07-01 1984-02-15 Udstoedsgaskedel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FI822342A FI64978C (fi) 1982-07-01 1982-07-01 Avgaspanna

Publications (1)

Publication Number Publication Date
WO1984000193A1 true WO1984000193A1 (en) 1984-01-19

Family

ID=8515768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FI1983/000042 WO1984000193A1 (en) 1982-07-01 1983-06-03 Exhaust heat boiler

Country Status (11)

Country Link
JP (1) JPS59501226A (no)
KR (1) KR840005537A (no)
DE (1) DE3390066T1 (no)
DK (1) DK152069B (no)
ES (1) ES523649A0 (no)
FI (1) FI64978C (no)
FR (1) FR2529656A1 (no)
NO (1) NO154064C (no)
SE (1) SE454284B (no)
SU (1) SU1371506A3 (no)
WO (1) WO1984000193A1 (no)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5097801A (en) * 1989-08-11 1992-03-24 Burns Daniel E Waste energy hot water heater
DE29714478U1 (de) * 1997-08-13 1997-10-09 Heinrich Gillet Gmbh & Co Kg, 67480 Edenkoben Wärmetauscher in Abgassystemen von Verbrennungsmotoren
EP2577031A1 (en) * 2010-06-01 2013-04-10 Delphi Technologies, Inc. Exhaust gas heat recovery heat exchanger
US20130239571A1 (en) * 2012-03-15 2013-09-19 Eberspächer Exhaust Technology GmbH & Co. KG Steam generator for a rankine cycle
US9239001B2 (en) 2012-09-14 2016-01-19 Eberspächer Exhaust Technology GmbH & Co. KG Heat exchanger
EP3879083A1 (en) * 2020-03-10 2021-09-15 Alfa Laval Corporate AB Boiler and method of operating a boiler

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI101737B (fi) * 1996-10-24 1998-08-14 Pipemasters Oy Ltd Säätävä pakokaasukattila
DE19962863B4 (de) * 1999-12-24 2013-09-19 Behr Gmbh & Co. Kg Wärmeübertrager
GB0001283D0 (en) 2000-01-21 2000-03-08 Serck Heat Transfer Limited Twin flow valve gas cooler
ATE391844T1 (de) * 2000-12-19 2008-04-15 Valeo Termico Sa Wärmetauschermodul, das insbesondere für ein abgasrückführsystem ausgelegt ist
DE102012108944A1 (de) * 2012-09-21 2014-05-28 Bio-System Gesellschaft Für Anwendungen Biologischer Verfahren Mbh Dampferzeuger

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1008055B (de) * 1956-02-08 1957-05-09 Nordseewerke Emden G M B H Als Schalldaempfer ausgebildeter Abgaskessel fuer Brennkraftmaschinen
DE1143059B (de) * 1957-07-11 1963-01-31 Spanner Boilers Ltd Einrichtung zur Schalldaempfung von Auspuffgasen und zur Abwaermegewinnung an Brennkraftmaschinen

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB689914A (en) * 1950-06-22 1953-04-08 Samuel Henry Titterton A new or improved heat exchanging device, applicable also to an exhaust-silencing device
FR1166089A (fr) * 1956-02-08 1958-11-03 Nordseewerke Emden G M B H Chaudière à gaz d'échappement agencée en silencieux pour moteurs à combustion interne
DE1100386B (de) * 1957-06-17 1961-02-23 Goetaverken Ab Mit einem Abgaskessel kombinierter Schalldaempfer
FR1182978A (fr) * 1957-09-19 1959-07-01 Const Mecanique Chaudière de récupération alimentée par des gaz chauds sous pression
US3231016A (en) * 1963-11-26 1966-01-25 American Mach & Foundry Heat recovery silencer
GB1166066A (en) * 1966-11-07 1969-10-01 Steinmueller Gmbh L & C Waste Heat Boiler
DE2904700A1 (de) * 1979-02-08 1980-08-28 Laengerer & Reich Kuehler Vorrichtung zum austauschen der waerme zwischen einem gas und einem fluessigen oder gasfoermigen stroemungsmittel und zum daempfen des durch das gas bewirkten schalls, insbesondere fuer eine brennkraftmaschine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1008055B (de) * 1956-02-08 1957-05-09 Nordseewerke Emden G M B H Als Schalldaempfer ausgebildeter Abgaskessel fuer Brennkraftmaschinen
DE1143059B (de) * 1957-07-11 1963-01-31 Spanner Boilers Ltd Einrichtung zur Schalldaempfung von Auspuffgasen und zur Abwaermegewinnung an Brennkraftmaschinen

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5097801A (en) * 1989-08-11 1992-03-24 Burns Daniel E Waste energy hot water heater
DE29714478U1 (de) * 1997-08-13 1997-10-09 Heinrich Gillet Gmbh & Co Kg, 67480 Edenkoben Wärmetauscher in Abgassystemen von Verbrennungsmotoren
EP2577031A1 (en) * 2010-06-01 2013-04-10 Delphi Technologies, Inc. Exhaust gas heat recovery heat exchanger
EP2577031A4 (en) * 2010-06-01 2014-12-31 Delphi Tech Inc HEAT EXCHANGER FOR RECOVERING EXHAUST GAS HEAT
US20130239571A1 (en) * 2012-03-15 2013-09-19 Eberspächer Exhaust Technology GmbH & Co. KG Steam generator for a rankine cycle
US9140146B2 (en) * 2012-03-15 2015-09-22 Eberspächer Exhaust Technology GmbH & Co. KG Steam generator for a rankine cycle
US9239001B2 (en) 2012-09-14 2016-01-19 Eberspächer Exhaust Technology GmbH & Co. KG Heat exchanger
EP3879083A1 (en) * 2020-03-10 2021-09-15 Alfa Laval Corporate AB Boiler and method of operating a boiler
WO2021180456A1 (en) * 2020-03-10 2021-09-16 Alfa Laval Corporate Ab Boiler and method of operating a boiler
CN115210455A (zh) * 2020-03-10 2022-10-18 阿法拉伐股份有限公司 锅炉和操作锅炉的方法
CN115210455B (zh) * 2020-03-10 2024-01-30 阿法拉伐股份有限公司 锅炉和操作锅炉的方法

Also Published As

Publication number Publication date
DE3390066T1 (de) 1985-01-24
NO154064C (no) 1986-07-16
JPS59501226A (ja) 1984-07-12
DK152069B (da) 1988-01-25
SE8403944D0 (sv) 1984-08-01
DK69284A (da) 1984-02-15
FR2529656A1 (fr) 1984-01-06
SE8403944L (sv) 1984-08-01
ES8404492A1 (es) 1984-05-16
NO840661L (no) 1984-02-22
DK69284D0 (da) 1984-02-15
FI822342A0 (fi) 1982-07-01
KR840005537A (ko) 1984-11-14
SU1371506A3 (ru) 1988-01-30
FI64978B (fi) 1983-10-31
FI64978C (fi) 1984-02-10
ES523649A0 (es) 1984-05-16
NO154064B (no) 1986-04-01
SE454284B (sv) 1988-04-18

Similar Documents

Publication Publication Date Title
WO1984000193A1 (en) Exhaust heat boiler
US20030192737A1 (en) Outlet silencer and heat recovery structures for gas turbine
US20070062463A1 (en) Fuel-fired dual tank water heater having dual pass condensing type heat exchanger
US4351276A (en) Heat recovery device for boilers
US4449485A (en) Separable combination boiler
RU1836602C (ru) Установка дл сжигани
US4549526A (en) Combination wood-fired boiler and storage apparatus
US20070051359A1 (en) Looped system fuel-fired fluid heating/storage device
AU715484B2 (en) Waste heat boiler with variable output
CN201093900Y (zh) 紧凑式两回程烟管烟气冷凝节能器
CN104676617A (zh) 一种焚烧锅炉烟道防积灰结构
US4188917A (en) Method and device for improving the efficiency of heat generators
US3580225A (en) Economizer
SU987355A1 (ru) Теплообменник
CN2398508Y (zh) 水冷旋风分离器
JPS6219652B2 (no)
JPH074601A (ja) 排ガスボイラの排ガス出入口構造
CN213599347U (zh) 一种燃生物质的蒸发器本体
CN209541498U (zh) 一种烟道换热设备
CN213599344U (zh) 一种燃生物质蒸发器的蒸发器本体
MXPA99003785A (en) Waste heat boiler with variable output
JPH0243010Y2 (no)
JPS61161333A (ja) 空気予熱器
CN2057740U (zh) 板管结构组合式热风炉
JPH074604A (ja) コンポジットボイラの水管配列構造

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): DE DK JP NO SE SU US

Kind code of ref document: A1

Designated state(s): DE DK JP NO SE SU US

RET De translation (de og part 6b)

Ref document number: 3390066

Country of ref document: DE

Date of ref document: 19850124

WWE Wipo information: entry into national phase

Ref document number: 3390066

Country of ref document: DE