USRE45414E1 - Continuous casting of bulk solidifying amorphous alloys - Google Patents
Continuous casting of bulk solidifying amorphous alloys Download PDFInfo
- Publication number
- USRE45414E1 USRE45414E1 US13/597,909 US200413597909A USRE45414E US RE45414 E1 USRE45414 E1 US RE45414E1 US 200413597909 A US200413597909 A US 200413597909A US RE45414 E USRE45414 E US RE45414E
- Authority
- US
- United States
- Prior art keywords
- alloy
- bulk solidifying
- solidifying amorphous
- amorphous alloy
- casting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 103
- 239000000956 alloy Substances 0.000 title claims abstract description 103
- 238000009749 continuous casting Methods 0.000 title claims abstract description 11
- 229910000808 amorphous metal alloy Inorganic materials 0.000 claims abstract description 54
- 238000000034 method Methods 0.000 claims abstract description 33
- 238000005266 casting Methods 0.000 claims description 42
- 229910052751 metal Inorganic materials 0.000 claims description 27
- 239000002184 metal Substances 0.000 claims description 27
- 238000001816 cooling Methods 0.000 claims description 22
- 239000007787 solid Substances 0.000 claims description 21
- 238000010791 quenching Methods 0.000 claims description 19
- 238000002844 melting Methods 0.000 claims description 17
- 230000008018 melting Effects 0.000 claims description 16
- 229910052802 copper Inorganic materials 0.000 claims description 15
- 239000010949 copper Substances 0.000 claims description 15
- 239000000758 substrate Substances 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 8
- 239000002244 precipitate Substances 0.000 claims description 7
- 230000000171 quenching effect Effects 0.000 claims description 6
- 238000002425 crystallisation Methods 0.000 claims description 5
- 230000008025 crystallization Effects 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 238000004881 precipitation hardening Methods 0.000 claims description 5
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 4
- DMFGNRRURHSENX-UHFFFAOYSA-N beryllium copper Chemical compound [Be].[Cu] DMFGNRRURHSENX-UHFFFAOYSA-N 0.000 claims description 4
- ZTXONRUJVYXVTJ-UHFFFAOYSA-N chromium copper Chemical compound [Cr][Cu][Cr] ZTXONRUJVYXVTJ-UHFFFAOYSA-N 0.000 claims description 4
- 230000000087 stabilizing effect Effects 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000011651 chromium Substances 0.000 claims description 2
- 229910052735 hafnium Inorganic materials 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- 229910052723 transition metal Inorganic materials 0.000 claims description 2
- 150000003624 transition metals Chemical class 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- 230000008569 process Effects 0.000 abstract description 10
- 239000000155 melt Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 238000007711 solidification Methods 0.000 description 7
- 230000008023 solidification Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 5
- 239000007788 liquid Substances 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 239000005300 metallic glass Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 230000005574 cross-species transmission Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910017532 Cu-Be Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000005524 ceramic coating Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- -1 ferrous metals Chemical class 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008450 motivation Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/001—Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/045—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for horizontal casting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
- B22D11/0611—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
- B22D11/0622—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two casting wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
- B22D11/0631—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a travelling straight surface, e.g. through-like moulds, a belt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/11—Making amorphous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C45/00—Amorphous alloys
Definitions
- This invention relates to continuous sheet casting of bulk-solidifying amorphous alloys, and, more particularly, to a method of continuous sheet casting amorphous alloy sheets having a large thickness.
- Amorphous alloys have non-crystalline (amorphous) atomic structures generally formed by fast cooling the alloy from the molten liquid state to a solid state without the nucleation and growth of crystalline phases.
- amorphous alloys have high mechanical strength and good elasticity, while also exhibiting good corrosion resistance. Therefore, there is strong motivation in the materials field to find new applications for these materials in a variety of industries.
- amorphous alloys require rapid cooling rates as they are solidified from temperatures above the melting state, it typically has only been possible to produce very thin ribbons or sheets of the alloys on a commercial scale, usually by a melt spin process wherein a stream of molten metal is rapidly quenched.
- FIGS. 1a and 1b show partial cross sectional schematic side views of a conventional continuous sheet casting apparatus.
- a conventional continuous sheet casting process and apparatus 1 as shown in FIG. 1a , there is an orifice 3 through which molten alloy from a reservoir 5 is injected onto a chilled rotating wheel 7 to form a solidified sheet 9 .
- the orifice slit size To provide a steady state flow of melt through the orifice, there are some complex relations that need to be satisfied between the applied pressure (or gravitational pull-down), the orifice slit size, the surface tension of the melt, the viscosity of the melt, and the pull-out speed of the solidification front.
- the pull-out speed of the solidification front is primarily determined by the speed 11 of rotating wheel 7 .
- the chill body wheel 7 travels in a clockwise direction in close proximity to a slotted nozzle 3 defined by a left side lip 13 and a right side lip 15 .
- a slotted nozzle 3 defined by a left side lip 13 and a right side lip 15 .
- the metal flows onto the chill body 7 it solidifies forming a solidification front 17 .
- Above the solidification front 17 a body of molten metal 19 is maintained.
- the left side lip 13 supports the molten metal essentially by a pumping action which results from the constant removal of the solidified sheet 9 .
- the rate of flow of the molten metal is primarily controlled by the viscous flow between the right side lip 15 and solidified sheet 9 .
- the surface of the chill body 7 In order to obtain a sufficiently high quench-rate to ensure that the formed sheet is amorphous, the surface of the chill body 7 must move at a velocity of at least about 200 meters per minute. This speed of rotation in turn limits the thickness of the sheets formed by the conventional process to less than about 0.02 millimeter.
- the present invention is directed to a process and apparatus for continuous casting of amorphous alloy sheets having large sheet thickness using bulk solidifying amorphous alloys.
- the sheet is formed using conventional single roll, double roll, or other chill-body forms.
- the amorphous alloy sheets have sheet thicknesses of from 0.1 mm to 10 mm.
- the casting temperature is stabilized in a viscosity regime of 0.1 to 10,000 poise, preferably 1 to 1,000 poise, and more preferably 10 to 100 poise.
- the extraction of continuous sheet is preferably done at speeds of 0.1 to 50 cm/sec, and preferably 0.5 to 10 cm/sec, and more preferably of 1 to 5 cm/sec.
- FIG. 1a is a side view in partial cross section of an exemplary conventional prior art apparatus for forming sheets of a molten metal.
- FIG. 1b is a close-up of the formation of the sheet of molten metal shown in FIG. 1a .
- FIG. 2 is a side view in partial cross section of an exemplary apparatus for forming sheets of a bulk solidifying amorphous alloy in accordance with the current invention.
- FIG. 3 is block flow diagram of an exemplary method for continuous casting bulk solidifying amorphous alloys in accordance with the current invention.
- FIG. 4 is a temperature-viscosity of an exemplary bulk solidifying amorphous alloy in accordance with the current invention.
- FIG. 5 is a time-temperature transformation diagram for an exemplary continuous casting sequence in accordance with the current invention.
- the present invention is directed to a continuous casting process and apparatus for forming an amorphous alloy sheet having a large sheet thickness using a bulk solidifying amorphous alloy.
- the invention recognizes that it is possible to form a sheet of large thickness using bulk-solidifying amorphous alloys at high viscosity regimes.
- amorphous means at least 50% by volume of the alloy is in amorphous atomic structure, and preferably at least 90% by volume of the alloy is in amorphous atomic structure, and most preferably at least 99% by volume of the alloy is in amorphous atomic structure.
- Bulk solidifying amorphous alloys are a recently discovered family of amorphous alloys, which can be cooled at substantially lower cooling rates, of about 500 K/sec or less, and substantially retain their amorphous atomic structure. As such, they can be produced in thicknesses of 1.0 mm or more, substantially thicker than conventional amorphous alloys, which are typically limited to thicknesses of 0.020 mm, and which require cooling rates of 10 5 K/sec or more.
- One exemplary family of bulk solidifying amorphous alloys can be described as (Zr,Ti) a (Ni,Cu,Fe) b (Be,Al,Si,B) c , where a is in the range of from 30 to 75, b is in the range of from 5 to 60, and c in the range of from 0 to 50 in atomic percentages. Furthermore, these basic alloys can accommodate substantial amounts (up to 20% atomic, and more) of other transition metals, such as Hf, Ta, Mo, Nb, Cr, V, Co.
- a preferable alloy family is (Zr,Ti) a (Ni,Cu) b (Be) c , where a is in the range of from 40 to 75, b is in the range of from 5 to 50, and c in the range of from 5 to 50 in atomic percentages. Still, a more preferable composition is (Zr,Ti) a (Ni,Cu) b (Be) c , where a is in the range of from 45 to 65, b is in the range of from 7.5 to 35, and c in the range of from 10 to 37.5 in atomic percentages.
- Another preferable alloy family is (Zr) a (Nb,Ti) b (Ni,Cu) c (Al) d , where a is in the range of from 45 to 65, b is in the range of from 0 to 10, c is in the range of from 20 to 40 and d in the range of from 7.5 to 15 in atomic percentages.
- ferrous metals Fe, Ni, Co
- ferrous metal content is more than 50% by weight.
- Examples of such compositions are disclosed in U.S. Pat. No. 6,325,868 and in publications to (A. Inoue et. al., Appl. Phys. Lett., Volume 71, p 464 (1997)), (Shen et. al., Mater. Trans., JIM, Volume 42, p 2136 (2001)), and Japanese patent application 2000126277 (Publ. # 2001303218 A), all of which are incorporated herein by reference.
- One exemplary composition of such alloys is Fe 72 Al 5 Ga 2 P 11 C 6 B 4 .
- Another exemplary composition of such alloys is Fe 72 Al 7 Zr 10 Mo 5 W 2 B 15 .
- these alloy compositions are not processable to the degree of the Zr-base alloy systems, they can still be processed in thicknesses of 1.0 mm or more, sufficient enough to be utilized in the current invention.
- crystalline precipitates in bulk amorphous alloys are highly detrimental to the properties of amorphous alloys, especially to the toughness and strength of these alloys, and as such it is generally preferred to minimize the volume fraction of these precipitates.
- ductile crystalline phases precipitate in-situ during the processing of bulk amorphous alloys, which are indeed beneficial to the properties of bulk amorphous alloys, especially to the toughness and ductility of the alloys.
- Such bulk amorphous alloys comprising such beneficial precipitates are also included in the current invention.
- One exemplary case is disclosed in (C. C. Hays et. al, Physical Review Letters, Vol. 84, p 2901, 2000), the disclosure of which is incorporated herein by reference.
- the present invention is directed to an apparatus for forming amorphous alloy sheets having large thicknesses of from 0.1 mm to 10 mm and having good ductility.
- the sheet may be formed using a conventional single roll, double roll or other chill-body forms. Schematic diagrams of such conventional single roll apparatus are provided in FIGS. 1a and 1b .
- the continuous casting apparatus has a chill body 7 which moves relative to a injection orifice 3 , through which the melt 19 is introduced.
- the apparatus is described with reference to the section of a casting wheel 7 which is located at the wheel's periphery and serves as a quench substrate as used in the prior art. It will be appreciated that the principles of the invention are also applicable, as well, to other conventional quench substrate configurations such as a belt, double-roll wheels, wheels having shape and structure different from those of a wheel, or to casting wheel configurations in which the section that serves as a quench substrate is located on the face of the wheel or another portion of the wheel other than the wheel's periphery.
- the invention is also directed to apparatuses that quench the molten alloy by other mechanisms, such as by providing a flow of coolant fluid through axial conduits lying near the quench substrate.
- FIG. 2 there is shown generally an apparatus for continuous casting of metallic sheet in accordance with an exemplary embodiment of the current invention.
- the apparatus has an annular casting wheel 20 rotatably mounted on its longitudinal axis, a reservoir 21 for holding molten metal 23 .
- the reservoir 21 is in communication with a slotted nozzle 25 , which is mounted in proximity to the substrate 27 of the annular casting wheel 20 .
- the reservoir 21 is further equipped with means for pressurizing the molten metal contained therein to effect expulsion thereof through the nozzle 25 .
- molten metal maintained under pressure in the reservoir 21 is ejected through nozzle 25 onto the rapidly moving casting wheel substrate 27 , whereon it solidifies to form a continuous sheet 29 . After solidification, the sheet 29 separates from the casting wheel 20 and is flung away therefrom to be collected by a winder or other suitable collection device (not shown).
- the casting wheel quench substrate 27 may be comprised of copper or any other metal or alloy having relatively high thermal conductivity.
- Preferred materials of construction for the substrate 27 include fine, uniform grain-sized precipitation hardening copper alloys such as chromium copper or beryllium copper, dispersion hardening alloys, and oxygen-free copper.
- the substrate 27 may be highly polished or chrome-plated, or the like to obtain a sheet having smooth surface characteristics.
- the surface of the casting wheel may be coated in a conventional way using a suitably resistant or high-melt coating.
- a ceramic coating or a coating of a corrosion-resistant, high-melting temperature metal may be applied provided that the wettability of the molten metal or alloy being cast on the chill surface is adequate.
- the present invention is also directed to a processing method for making continuous amorphous alloy sheets with large thickness from bulk-solidifying amorphous alloys.
- a flow chart of this general process is shown in FIG. 3 , and the process comprises the following general steps:
- a charge of the bulk solidifying amorphous alloy is provided.
- Viscosity and temperature processing parameters for an exemplary bulk solidifying amorphous alloy are provided in FIGS. 4 and 5 .
- Such alloys can be cooled from the above the casting temperatures at relatively low cooling rates, on the order of about 1000° C. per second or less, yet retain a substantially amorphous structure after cooling.
- FIG. 5 shows the time-temperature cooling curve of an exemplary bulk solidifying amorphous alloy, or TTT diagram.
- Bulk-solidifying amorphous metals do not experience a liquid/solid crystallization transformation upon cooling, as with conventional metals. Instead, the highly fluid, non crystalline form of the metal found at high temperatures becomes more viscous as the temperature is reduced, eventually taking on the outward physical properties of a conventional solid. This ability to retain an amorphous structure even at a relatively slow cooling rate is to be contrasted with the behavior of other types of amorphous metals that require cooling rates of at least about 10 4 ⁇ 10 6 ° C. per second to retain their amorphous structure upon cooling.
- a “melting temperature” Tm may be defined as the thermodynamic liquidus temperature of the corresponding crystalline phase.
- the viscosity of bulk-solidifying amorphous alloys at the melting temperature lay in the range of about 0.1 poise to about 10,000 poise, which is to be contrasted with the behavior of other types of amorphous metals that have the viscosities at the melting temperature under 0.01 poise.
- higher values of viscosity can be obtained for bulk solidifying amorphous alloys by undercooling the alloy below the melting temperature, whereas ordinary amorphous alloys will tend to crystallize rather rapidly when undercooled.
- FIG. 4 shows a viscosity-temperature graph of an exemplary bulk solidifying amorphous alloy, from the VIT-001 series of Zr—Ti—Ni—Cu—Be family manufactured by Liquidmetal Technology. It should be noted that there is no clear liquid/solid transformation for a bulk solidifying amorphous metal during the formation of an amorphous solid. The molten alloy becomes more and more viscous with increasing undercooling until it approaches solid form around the glass transition temperature. Accordingly, the temperature of solidification front for bulk solidifying amorphous alloys can be around glass transition temperature, where the alloy will practically act as a solid for the purposes of pulling out the quenched amorphous sheet product.
- the charge in the next steps of the process is first heated above Tm, and then stabilized at the casting temperature in the reservoir such that the viscosity of the melt is around about 0.1 to 10,000 poise.
- the charge is then ejected from the reservoir through the nozzle onto the moving surface of the chill body.
- the viscosity of the alloy is about 0.1 to about 10,000 poise, as shown in FIG. 4 .
- the step of ejecting the molten amorphous alloy is preferably carried out below the Tm to ensure increased viscosity and thickness. For larger thicknesses of amorphous alloy sheet a higher viscosity is preferred, and accordingly, greater undercooling below Tm is employed.
- the viscosity stabilization should be done at temperatures above Tnose as shown in the TTT diagram of FIG. 5 .
- the ejection temperature can be chosen to provide a specified thickness of cast sheet. Regardless of the cast temperature, the extraction of a continuous sheet is preferably done at speeds of 0.1 to 50 cm/sec, and preferably 0.5 to 10 cm/sec, and more preferably of 1 to 5 cm/sec.
- the charge of amorphous alloy on the surface of chill body is cooled to temperatures below the glass transition temperature at a rate such that the amorphous alloy retains the amorphous state upon cooling.
- the cooling rate is less than 1000° C. per second, but is sufficiently high to retain the amorphous state in the bulk solidifying amorphous alloy upon cooling.
- cooling rate for any specific alloy cannot be specified herein as a fixed numerical value, because that value varies depending on the metal compositions, materials, and the shape and thickness of the sheet being formed. However, the value can be determined for each case using conventional heat flow calculations.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Continuous Casting (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/597,909 USRE45414E1 (en) | 2003-04-14 | 2004-04-14 | Continuous casting of bulk solidifying amorphous alloys |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US46292903P | 2003-04-14 | 2003-04-14 | |
US10/552,667 US7575040B2 (en) | 2003-04-14 | 2004-04-14 | Continuous casting of bulk solidifying amorphous alloys |
PCT/US2004/011559 WO2004092428A2 (fr) | 2003-04-14 | 2004-04-14 | Procede et appareil pour la coulee en continu de toles d'alliages amorphes se solidifiant de façon massive |
US13/597,909 USRE45414E1 (en) | 2003-04-14 | 2004-04-14 | Continuous casting of bulk solidifying amorphous alloys |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE45414E1 true USRE45414E1 (en) | 2015-03-17 |
Family
ID=33300013
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/597,909 Expired - Lifetime USRE45414E1 (en) | 2003-04-14 | 2004-04-14 | Continuous casting of bulk solidifying amorphous alloys |
US10/552,667 Ceased US7575040B2 (en) | 2003-04-14 | 2004-04-14 | Continuous casting of bulk solidifying amorphous alloys |
US13/212,410 Expired - Fee Related USRE44425E1 (en) | 2003-04-14 | 2004-04-14 | Continuous casting of bulk solidifying amorphous alloys |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/552,667 Ceased US7575040B2 (en) | 2003-04-14 | 2004-04-14 | Continuous casting of bulk solidifying amorphous alloys |
US13/212,410 Expired - Fee Related USRE44425E1 (en) | 2003-04-14 | 2004-04-14 | Continuous casting of bulk solidifying amorphous alloys |
Country Status (2)
Country | Link |
---|---|
US (3) | USRE45414E1 (fr) |
WO (1) | WO2004092428A2 (fr) |
Families Citing this family (102)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1545814B1 (fr) * | 2002-09-27 | 2012-09-12 | Postech Foundation | Procede et appareil pour produire un film d'alliage amorphe et film d'alliage amorphe ainsi produit |
USRE44426E1 (en) * | 2003-04-14 | 2013-08-13 | Crucible Intellectual Property, Llc | Continuous casting of foamed bulk amorphous alloys |
WO2006047552A1 (fr) * | 2004-10-22 | 2006-05-04 | Liquidmetal Technologies, Inc. | Crochets en alliages amorphes et procedes de fabrication de ces crochets |
GB2441330B (en) | 2005-06-30 | 2011-02-09 | Univ Singapore | Alloys, bulk metallic glass, and methods of forming the same |
KR101165892B1 (ko) | 2007-07-12 | 2012-07-13 | 애플 인크. | 금속 베젤에 유리 인서트를 일체형으로 트랩하기 위한 방법 및 제조된 전자 디바이스 |
EP2247527A4 (fr) * | 2008-02-07 | 2014-10-29 | Univ Queensland | Fabrication de timbre transdermique |
US9539628B2 (en) | 2009-03-23 | 2017-01-10 | Apple Inc. | Rapid discharge forming process for amorphous metal |
US8545994B2 (en) * | 2009-06-02 | 2013-10-01 | Integran Technologies Inc. | Electrodeposited metallic materials comprising cobalt |
JP4783934B2 (ja) * | 2009-06-10 | 2011-09-28 | 株式会社丸ヱム製作所 | 金属ガラス締結ねじ |
US8486319B2 (en) | 2010-05-24 | 2013-07-16 | Integran Technologies Inc. | Articles with super-hydrophobic and/or self-cleaning surfaces and method of making same |
US9303322B2 (en) | 2010-05-24 | 2016-04-05 | Integran Technologies Inc. | Metallic articles with hydrophobic surfaces |
US8858868B2 (en) | 2011-08-12 | 2014-10-14 | Crucible Intellectual Property, Llc | Temperature regulated vessel |
JP5934366B2 (ja) | 2011-09-16 | 2016-06-15 | クルーシブル インテレクチュアル プロパティ エルエルシーCrucible Intellectual Property Llc | バルク凝固アモルファス合金とアモルファス合金を含有する複合材料の成形及び分離 |
KR20140065451A (ko) | 2011-09-19 | 2014-05-29 | 크루서블 인텔렉츄얼 프라퍼티 엘엘씨. | 인증 및 텍스처화를 위한 나노복제 및 미세복제 |
WO2013043156A1 (fr) | 2011-09-20 | 2013-03-28 | Crucible Intellectual Property Llc | Écran d'induction et procédé d'utilisation de cet écran dans un système |
CN108796396A (zh) | 2011-09-29 | 2018-11-13 | 科卢斯博知识产权有限公司 | 辐射屏蔽结构 |
US9945017B2 (en) | 2011-09-30 | 2018-04-17 | Crucible Intellectual Property, Llc | Tamper resistant amorphous alloy joining |
US20140284019A1 (en) | 2011-09-30 | 2014-09-25 | John Kang | Injection molding of amorphous alloy using an injection molding system |
KR20140090631A (ko) | 2011-10-14 | 2014-07-17 | 크루서블 인텔렉츄얼 프라퍼티 엘엘씨. | 일렬식 온도 제어 용융을 위한 봉쇄 게이트 |
EP2769408A1 (fr) | 2011-10-20 | 2014-08-27 | Crucible Intellectual Property, LLC | Dissipateur de chaleur en alliage amorphe en vrac |
CN103889613B (zh) | 2011-10-21 | 2016-02-03 | 苹果公司 | 使用加压流体成形来接合块体金属玻璃片材 |
US9586259B2 (en) | 2011-11-11 | 2017-03-07 | Crucible Intellectual Property, Llc | Ingot loading mechanism for injection molding machine |
CN104039480B (zh) | 2011-11-11 | 2016-04-06 | 科卢斯博知识产权有限公司 | 用于注塑系统中受控输送的双柱塞杆 |
US9302320B2 (en) | 2011-11-11 | 2016-04-05 | Apple Inc. | Melt-containment plunger tip for horizontal metal die casting |
CN102489677A (zh) * | 2011-12-26 | 2012-06-13 | 大连理工大学 | 一种块体非晶合金板材连续铸造装置和方法 |
US9544949B2 (en) | 2012-01-23 | 2017-01-10 | Apple Inc. | Boat and coil designs |
CN104736272B (zh) | 2012-03-22 | 2017-05-03 | 苹果公司 | 用于凝壳捕集的方法、系统与柱塞 |
CN104641010B (zh) | 2012-03-23 | 2018-05-22 | 苹果公司 | 给料或组成部分的无定形合金辊轧成形 |
WO2013141878A1 (fr) | 2012-03-23 | 2013-09-26 | Crucible Intellectual Property Llc | Fixations en alliage amorphe massif |
WO2013141880A1 (fr) | 2012-03-23 | 2013-09-26 | Crucible Intellectual Property Llc | Traitement d'une matière première en poudre d'alliage amorphe |
CN104582877A (zh) | 2012-03-23 | 2015-04-29 | 苹果公司 | 无定形合金铸块的连续无模制造 |
US9604279B2 (en) | 2012-04-13 | 2017-03-28 | Apple Inc. | Material containing vessels for melting material |
WO2013158069A1 (fr) | 2012-04-16 | 2013-10-24 | Apple Inc. | Moulage par injection et coulée de matériau à l'aide d'un système de moulage par injection verticale |
US20150139270A1 (en) | 2012-04-23 | 2015-05-21 | Apple Inc. | Non-destructive determination of volumetric crystallinity of bulk amorphous alloy |
WO2013162504A2 (fr) | 2012-04-23 | 2013-10-31 | Apple Inc. | Procédés et systèmes de formation d'un élément encastré en verre dans une monture à base d'alliage métallique amorphe |
US20150300993A1 (en) | 2012-04-24 | 2015-10-22 | Christopher D. Prest | Ultrasonic inspection |
US20160237537A1 (en) | 2012-04-25 | 2016-08-18 | Crucible Intellectual Property, Llc | Articles containing shape retaining wire therein |
WO2013165441A1 (fr) | 2012-05-04 | 2013-11-07 | Apple Inc. | Port pour appareil électronique de grande consommation ayant un noyau en alliage amorphe en masse et un revêtement ductile |
US20150298207A1 (en) | 2012-05-04 | 2015-10-22 | Apple Inc. | Inductive coil designs for the melting and movement of amorphous metals |
US9056353B2 (en) | 2012-05-15 | 2015-06-16 | Apple Inc. | Manipulating surface topology of BMG feedstock |
US8485245B1 (en) | 2012-05-16 | 2013-07-16 | Crucible Intellectual Property, Llc | Bulk amorphous alloy sheet forming processes |
US9375788B2 (en) | 2012-05-16 | 2016-06-28 | Apple Inc. | Amorphous alloy component or feedstock and methods of making the same |
US9302319B2 (en) | 2012-05-16 | 2016-04-05 | Apple Inc. | Bulk metallic glass feedstock with a dissimilar sheath |
US9044805B2 (en) | 2012-05-16 | 2015-06-02 | Apple Inc. | Layer-by-layer construction with bulk metallic glasses |
US8961091B2 (en) | 2012-06-18 | 2015-02-24 | Apple Inc. | Fastener made of bulk amorphous alloy |
WO2014004704A1 (fr) | 2012-06-26 | 2014-01-03 | California Institute Of Technology | Systèmes et procédés pour mettre en œuvre des roues dentées en verre métallique brut à échelle macroscopique |
US20140007985A1 (en) * | 2012-07-03 | 2014-01-09 | Christopher D. Prest | Indirect process condition monitoring |
US9279733B2 (en) | 2012-07-03 | 2016-03-08 | Apple Inc. | Bulk amorphous alloy pressure sensor |
US9587296B2 (en) | 2012-07-03 | 2017-03-07 | Apple Inc. | Movable joint through insert |
US9033024B2 (en) | 2012-07-03 | 2015-05-19 | Apple Inc. | Insert molding of bulk amorphous alloy into open cell foam |
US9027630B2 (en) | 2012-07-03 | 2015-05-12 | Apple Inc. | Insert casting or tack welding of machinable metal in bulk amorphous alloy part and post machining the machinable metal insert |
US9909201B2 (en) | 2012-07-04 | 2018-03-06 | Apple Inc. | Consumer electronics machined housing using coating that exhibit metamorphic transformation |
US9771642B2 (en) | 2012-07-04 | 2017-09-26 | Apple Inc. | BMG parts having greater than critical casting thickness and method for making the same |
US9103009B2 (en) | 2012-07-04 | 2015-08-11 | Apple Inc. | Method of using core shell pre-alloy structure to make alloys in a controlled manner |
US20140007713A1 (en) * | 2012-07-04 | 2014-01-09 | Christopher D. Prest | Mechanical testing of test plaque formed on an alloy part and mechanical proof testing |
US8829437B2 (en) | 2012-07-04 | 2014-09-09 | Apple Inc. | Method for quantifying amorphous content in bulk metallic glass parts using thermal emissivity |
US9963769B2 (en) | 2012-07-05 | 2018-05-08 | Apple Inc. | Selective crystallization of bulk amorphous alloy |
US9314839B2 (en) | 2012-07-05 | 2016-04-19 | Apple Inc. | Cast core insert out of etchable material |
US9430102B2 (en) | 2012-07-05 | 2016-08-30 | Apple | Touch interface using patterned bulk amorphous alloy |
US9004151B2 (en) | 2012-09-27 | 2015-04-14 | Apple Inc. | Temperature regulated melt crucible for cold chamber die casting |
US8826968B2 (en) | 2012-09-27 | 2014-09-09 | Apple Inc. | Cold chamber die casting with melt crucible under vacuum environment |
US8813816B2 (en) | 2012-09-27 | 2014-08-26 | Apple Inc. | Methods of melting and introducing amorphous alloy feedstock for casting or processing |
US8833432B2 (en) | 2012-09-27 | 2014-09-16 | Apple Inc. | Injection compression molding of amorphous alloys |
US8701742B2 (en) | 2012-09-27 | 2014-04-22 | Apple Inc. | Counter-gravity casting of hollow shapes |
US8813817B2 (en) | 2012-09-28 | 2014-08-26 | Apple Inc. | Cold chamber die casting of amorphous alloys using cold crucible induction melting techniques |
US8813814B2 (en) | 2012-09-28 | 2014-08-26 | Apple Inc. | Optimized multi-stage inductive melting of amorphous alloys |
US9725796B2 (en) | 2012-09-28 | 2017-08-08 | Apple Inc. | Coating of bulk metallic glass (BMG) articles |
US8813813B2 (en) | 2012-09-28 | 2014-08-26 | Apple Inc. | Continuous amorphous feedstock skull melting |
US10197335B2 (en) | 2012-10-15 | 2019-02-05 | Apple Inc. | Inline melt control via RF power |
CN103911563B (zh) * | 2012-12-31 | 2017-06-06 | 比亚迪股份有限公司 | 锆基非晶合金及其制备方法 |
CN103056319B (zh) * | 2013-01-28 | 2014-12-31 | 青岛云路新能源科技有限公司 | 一种非晶结晶器铜套结构 |
US20140261898A1 (en) | 2013-03-15 | 2014-09-18 | Apple Inc. | Bulk metallic glasses with low concentration of beryllium |
US20140342179A1 (en) * | 2013-04-12 | 2014-11-20 | California Institute Of Technology | Systems and methods for shaping sheet materials that include metallic glass-based materials |
US9445459B2 (en) | 2013-07-11 | 2016-09-13 | Crucible Intellectual Property, Llc | Slotted shot sleeve for induction melting of material |
US9925583B2 (en) | 2013-07-11 | 2018-03-27 | Crucible Intellectual Property, Llc | Manifold collar for distributing fluid through a cold crucible |
US10065396B2 (en) | 2014-01-22 | 2018-09-04 | Crucible Intellectual Property, Llc | Amorphous metal overmolding |
US9970079B2 (en) | 2014-04-18 | 2018-05-15 | Apple Inc. | Methods for constructing parts using metallic glass alloys, and metallic glass alloy materials for use therewith |
US10161025B2 (en) | 2014-04-30 | 2018-12-25 | Apple Inc. | Methods for constructing parts with improved properties using metallic glass alloys |
US10056541B2 (en) | 2014-04-30 | 2018-08-21 | Apple Inc. | Metallic glass meshes, actuators, sensors, and methods for constructing the same |
US9849504B2 (en) | 2014-04-30 | 2017-12-26 | Apple Inc. | Metallic glass parts including core and shell |
US10000837B2 (en) | 2014-07-28 | 2018-06-19 | Apple Inc. | Methods and apparatus for forming bulk metallic glass parts using an amorphous coated mold to reduce crystallization |
US9873151B2 (en) | 2014-09-26 | 2018-01-23 | Crucible Intellectual Property, Llc | Horizontal skull melt shot sleeve |
US10151377B2 (en) | 2015-03-05 | 2018-12-11 | California Institute Of Technology | Systems and methods for implementing tailored metallic glass-based strain wave gears and strain wave gear components |
US10174780B2 (en) | 2015-03-11 | 2019-01-08 | California Institute Of Technology | Systems and methods for structurally interrelating components using inserts made from metallic glass-based materials |
US10155412B2 (en) | 2015-03-12 | 2018-12-18 | California Institute Of Technology | Systems and methods for implementing flexible members including integrated tools made from metallic glass-based materials |
TWI690468B (zh) | 2015-07-13 | 2020-04-11 | 美商恩特葛瑞斯股份有限公司 | 具有強化圍阻的基板容器 |
JP6296036B2 (ja) * | 2015-10-13 | 2018-03-20 | トヨタ自動車株式会社 | 溶湯温度管理方法 |
US10968527B2 (en) | 2015-11-12 | 2021-04-06 | California Institute Of Technology | Method for embedding inserts, fasteners and features into metal core truss panels |
CN106244999B (zh) * | 2016-08-30 | 2019-02-19 | 南通壹选工业设计有限公司 | 一种块体无定形合金的制备方法 |
CN106270427B (zh) * | 2016-11-01 | 2018-06-29 | 东莞市逸昊金属材料科技有限公司 | 一种非晶母合金锭连铸系统及其使用方法 |
CN106623866A (zh) * | 2016-12-19 | 2017-05-10 | 南京理工大学 | 一种各向异性块体金属玻璃的制备方法 |
US11198181B2 (en) | 2017-03-10 | 2021-12-14 | California Institute Of Technology | Methods for fabricating strain wave gear flexsplines using metal additive manufacturing |
WO2018218077A1 (fr) | 2017-05-24 | 2018-11-29 | California Institute Of Technology | Matériaux à base de métal amorphe hypoeutectique pour fabrication additive |
EP3630392A4 (fr) | 2017-05-26 | 2021-03-03 | California Institute of Technology | Composites à matrice métallique à base de titane renforcé par des dendrites |
CN106947924A (zh) * | 2017-06-01 | 2017-07-14 | 山东华晶新材料股份有限公司 | 一种非晶合金带材加工装置 |
KR102493233B1 (ko) | 2017-06-02 | 2023-01-27 | 캘리포니아 인스티튜트 오브 테크놀로지 | 적층 가공을 위한 고강인성 금속성 유리-기반 복합물 |
DE102018101453A1 (de) * | 2018-01-23 | 2019-07-25 | Borgwarner Ludwigsburg Gmbh | Heizvorrichtung und Verfahren zum Herstellung eines Heizstabes |
US11680629B2 (en) | 2019-02-28 | 2023-06-20 | California Institute Of Technology | Low cost wave generators for metal strain wave gears and methods of manufacture thereof |
US11859705B2 (en) | 2019-02-28 | 2024-01-02 | California Institute Of Technology | Rounded strain wave gear flexspline utilizing bulk metallic glass-based materials and methods of manufacture thereof |
US11591906B2 (en) | 2019-03-07 | 2023-02-28 | California Institute Of Technology | Cutting tool with porous regions |
CN109865808B (zh) * | 2019-04-08 | 2020-09-25 | 东北大学 | 一种厚度为200~1500μm宽幅非晶薄带水平连铸的方法 |
CN111014599B (zh) * | 2019-12-24 | 2021-07-13 | 江苏集萃安泰创明先进能源材料研究院有限公司 | 一种制备低残余热应力非晶合金的工艺方法 |
Citations (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2190611A (en) | 1938-02-23 | 1940-02-13 | Sembdner Gustav | Machine for applying wear-resistant plating |
US3989517A (en) | 1974-10-30 | 1976-11-02 | Allied Chemical Corporation | Titanium-beryllium base amorphous alloys |
US4050931A (en) | 1975-08-13 | 1977-09-27 | Allied Chemical Corporation | Amorphous metal alloys in the beryllium-titanium-zirconium system |
US4064757A (en) | 1976-10-18 | 1977-12-27 | Allied Chemical Corporation | Glassy metal alloy temperature sensing elements for resistance thermometers |
US4067732A (en) | 1975-06-26 | 1978-01-10 | Allied Chemical Corporation | Amorphous alloys which include iron group elements and boron |
US4099961A (en) | 1976-12-21 | 1978-07-11 | The United States Of America As Represented By The United States Department Of Energy | Closed cell metal foam method |
US4113478A (en) | 1977-08-09 | 1978-09-12 | Allied Chemical Corporation | Zirconium alloys containing transition metal elements |
US4116687A (en) | 1976-12-13 | 1978-09-26 | Allied Chemical Corporation | Glassy superconducting metal alloys in the beryllium-niobium-zirconium system |
US4116682A (en) | 1976-12-27 | 1978-09-26 | Polk Donald E | Amorphous metal alloys and products thereof |
US4126449A (en) | 1977-08-09 | 1978-11-21 | Allied Chemical Corporation | Zirconium-titanium alloys containing transition metal elements |
US4135924A (en) | 1977-08-09 | 1979-01-23 | Allied Chemical Corporation | Filaments of zirconium-copper glassy alloys containing transition metal elements |
US4157327A (en) | 1977-12-27 | 1979-06-05 | United Technologies Corporation | Thermally conductive caulk |
US4289009A (en) | 1978-06-02 | 1981-09-15 | Swiss Aluminium Ltd. | Process and device for the manufacture of blisters with high barrier properties |
JPS5913056A (ja) | 1983-06-06 | 1984-01-23 | Res Inst Iron Steel Tohoku Univ | 高強度、耐疲労、耐全面腐食、耐孔食、耐隙間腐食、耐応力腐食割れ、耐水素脆性用アモルフアス鉄合金 |
US4472955A (en) | 1982-04-20 | 1984-09-25 | Amino Iron Works Co., Ltd. | Metal sheet forming process with hydraulic counterpressure |
US4478918A (en) | 1981-12-25 | 1984-10-23 | Tokyo Shibaura Denki Kabushiki Kaisha | Fuel cell stack |
JPS61238423A (ja) | 1985-04-16 | 1986-10-23 | Sumitomo Light Metal Ind Ltd | 超塑性金属板の成形方法 |
US4621031A (en) | 1984-11-16 | 1986-11-04 | Dresser Industries, Inc. | Composite material bonded by an amorphous metal, and preparation thereof |
US4623387A (en) | 1979-04-11 | 1986-11-18 | Shin-Gijutsu Kaihatsu Jigyodan | Amorphous alloys containing iron group elements and zirconium and articles made of said alloys |
US4648437A (en) * | 1984-01-12 | 1987-03-10 | Olin Corporation | Method for producing a metal alloy strip |
US4648609A (en) | 1985-01-22 | 1987-03-10 | Construction Robotics, Inc. | Driver tool |
US4710235A (en) | 1984-03-05 | 1987-12-01 | Dresser Industries, Inc. | Process for preparation of liquid phase bonded amorphous materials |
US4721154A (en) | 1986-03-14 | 1988-01-26 | Sulzer-Escher Wyss Ag | Method of, and apparatus for, the continuous casting of rapidly solidifying material |
US4743513A (en) | 1983-06-10 | 1988-05-10 | Dresser Industries, Inc. | Wear-resistant amorphous materials and articles, and process for preparation thereof |
US4768458A (en) * | 1985-12-28 | 1988-09-06 | Hitachi, Metals Inc. | Method of producing thin metal ribbon |
US4791979A (en) * | 1986-07-18 | 1988-12-20 | Allied-Signal Inc. | Gas assisted nozzle for casting metallic strip directly from the melt |
US4854370A (en) | 1986-01-20 | 1989-08-08 | Toshiba Kikai Kabushiki Kaisha | Die casting apparatus |
US4976417A (en) | 1989-08-14 | 1990-12-11 | General Motors Corporation | Wrap spring end attachment assembly for a twisted rope torsion bar |
US4978590A (en) | 1989-09-11 | 1990-12-18 | The United States Of America As Represented By The Department Of Energy | Dry compliant seal for phosphoric acid fuel cell |
US4987033A (en) | 1988-12-20 | 1991-01-22 | Dynamet Technology, Inc. | Impact resistant clad composite armor and method for forming such armor |
US4990198A (en) | 1988-09-05 | 1991-02-05 | Yoshida Kogyo K. K. | High strength magnesium-based amorphous alloy |
GB2236325A (en) | 1989-08-31 | 1991-04-03 | Tsuyoshi Masumoto | Thin-aluminium-based alloy foil and wire |
US5032196A (en) | 1989-11-17 | 1991-07-16 | Tsuyoshi Masumoto | Amorphous alloys having superior processability |
US5053084A (en) | 1987-08-12 | 1991-10-01 | Yoshida Kogyo K.K. | High strength, heat resistant aluminum alloys and method of preparing wrought article therefrom |
US5053085A (en) | 1988-04-28 | 1991-10-01 | Yoshida Kogyo K.K. | High strength, heat-resistant aluminum-based alloys |
US5074935A (en) | 1989-07-04 | 1991-12-24 | Tsuyoshi Masumoto | Amorphous alloys superior in mechanical strength, corrosion resistance and formability |
US5117894A (en) | 1990-04-23 | 1992-06-02 | Yoshinori Katahira | Die casting method and die casting machine |
US5131279A (en) | 1990-05-19 | 1992-07-21 | Flowtec Ag | Sensing element for an ultrasonic volumetric flowmeter |
US5144999A (en) * | 1989-08-31 | 1992-09-08 | Alps Electric Co., Ltd. | Apparatus for making amorphous metal strips |
US5169282A (en) | 1988-12-02 | 1992-12-08 | Mitsubishi Jukogyo Kabushiki Kaisha | Method for spreading sheets |
US5213148A (en) | 1990-03-02 | 1993-05-25 | Tsuyoshi Masumoto | Production process of solidified amorphous alloy material |
US5225004A (en) | 1985-08-15 | 1993-07-06 | Massachusetts Institute Of Technology | Bulk rapidly solifidied magnetic materials |
US5250124A (en) | 1991-03-14 | 1993-10-05 | Yoshida Kogyo K.K. | Amorphous magnesium alloy and method for producing the same |
US5279349A (en) | 1989-12-29 | 1994-01-18 | Honda Giken Kogyo Kabushiki Kaisha | Process for casting amorphous alloy member |
US5288344A (en) | 1993-04-07 | 1994-02-22 | California Institute Of Technology | Berylllium bearing amorphous metallic alloys formed by low cooling rates |
US5296059A (en) | 1991-09-13 | 1994-03-22 | Tsuyoshi Masumoto | Process for producing amorphous alloy material |
US5302471A (en) | 1991-04-08 | 1994-04-12 | Sanyo Electric Co. Ltd. | Compact phosphoric acid fuel cell system and operating method thereof |
US5306463A (en) | 1990-04-19 | 1994-04-26 | Honda Giken Kogyo Kabushiki Kaisha | Process for producing structural member of amorphous alloy |
US5312495A (en) | 1991-05-15 | 1994-05-17 | Tsuyoshi Masumoto | Process for producing high strength alloy wire |
US5324368A (en) | 1991-05-31 | 1994-06-28 | Tsuyoshi Masumoto | Forming process of amorphous alloy material |
JPH06264200A (ja) | 1993-03-12 | 1994-09-20 | Takeshi Masumoto | Ti系非晶質合金 |
US5368659A (en) | 1993-04-07 | 1994-11-29 | California Institute Of Technology | Method of forming berryllium bearing metallic glass |
US5380375A (en) | 1992-04-07 | 1995-01-10 | Koji Hashimoto | Amorphous alloys resistant against hot corrosion |
US5384203A (en) | 1993-02-05 | 1995-01-24 | Yale University | Foam metallic glass |
US5390724A (en) | 1992-06-17 | 1995-02-21 | Ryobi Ltd. | Low pressure die-casting machine and low pressure die-casting method |
US5449425A (en) | 1992-07-31 | 1995-09-12 | Salomon S.A. | Method for manufacturing a ski |
US5482580A (en) | 1994-06-13 | 1996-01-09 | Amorphous Alloys Corp. | Joining of metals using a bulk amorphous intermediate layer |
US5567251A (en) | 1994-08-01 | 1996-10-22 | Amorphous Alloys Corp. | Amorphous metal/reinforcement composite material |
US5589012A (en) | 1995-02-22 | 1996-12-31 | Systems Integration And Research, Inc. | Bearing systems |
US5618359A (en) | 1995-02-08 | 1997-04-08 | California Institute Of Technology | Metallic glass alloys of Zr, Ti, Cu and Ni |
US5634989A (en) | 1987-05-07 | 1997-06-03 | Mitsubishi Materials Corporation | Amorphous nickel alloy having high corrosion resistance |
US5647921A (en) * | 1993-08-23 | 1997-07-15 | Mitsui Petrochemical Industries, Ltd. | Process for producing and amorphous alloy resin |
US5711363A (en) | 1996-02-16 | 1998-01-27 | Amorphous Technologies International | Die casting of bulk-solidifying amorphous alloys |
US5735975A (en) | 1996-02-21 | 1998-04-07 | California Institute Of Technology | Quinary metallic glass alloys |
US5797443A (en) | 1996-09-30 | 1998-08-25 | Amorphous Technologies International | Method of casting articles of a bulk-solidifying amorphous alloy |
US5886254A (en) | 1998-03-30 | 1999-03-23 | Chi; Jiaa | Tire valve pressure-indicating cover utilizing colors to indicate tire pressure |
US5950704A (en) | 1996-07-18 | 1999-09-14 | Amorphous Technologies International | Replication of surface features from a master model to an amorphous metallic article |
US6021840A (en) | 1998-01-23 | 2000-02-08 | Howmet Research Corporation | Vacuum die casting of amorphous alloys |
US6044893A (en) | 1997-05-01 | 2000-04-04 | Ykk Corporation | Method and apparatus for production of amorphous alloy article formed by metal mold casting under pressure |
JP2000256811A (ja) | 1999-03-12 | 2000-09-19 | Tanaka Kikinzoku Kogyo Kk | 装飾材料用過冷金属及び過冷金属用合金 |
JP2000277127A (ja) | 1999-03-25 | 2000-10-06 | Tomoe Engineering Co Ltd | 燃料電池用セパレータ及びその製造法 |
US6200685B1 (en) | 1997-03-27 | 2001-03-13 | James A. Davidson | Titanium molybdenum hafnium alloy |
US6203936B1 (en) | 1999-03-03 | 2001-03-20 | Lynntech Inc. | Lightweight metal bipolar plates and methods for making the same |
US6258183B1 (en) | 1997-08-08 | 2001-07-10 | Sumitomo Rubber Industries, Ltd. | Molded product of amorphous metal and manufacturing method for the same |
US6306228B1 (en) | 1998-07-08 | 2001-10-23 | Japan Science And Technology Corporation | Method of producing amorphous alloy excellent in flexural strength and impact strength |
JP2001303218A (ja) | 2000-04-20 | 2001-10-31 | Japan Science & Technology Corp | 高耐蝕性・高強度Fe−Cr基バルクアモルファス合金 |
US6325868B1 (en) | 2000-04-19 | 2001-12-04 | Yonsei University | Nickel-based amorphous alloy compositions |
US20010052406A1 (en) | 2000-04-05 | 2001-12-20 | Kohei Kubota | Method for metallic mold-casting of magnesium alloys |
JP2002056811A (ja) | 2000-05-30 | 2002-02-22 | Japan Storage Battery Co Ltd | 高圧蒸気放電灯 |
US20020036034A1 (en) | 2000-09-25 | 2002-03-28 | Li-Qian Xing | Alloy with metallic glass and quasi-crystalline properties |
US6376091B1 (en) | 2000-08-29 | 2002-04-23 | Amorphous Technologies International | Article including a composite of unstabilized zirconium oxide particles in a metallic matrix, and its preparation |
US20020050310A1 (en) | 2000-06-09 | 2002-05-02 | Kundig Andreas A. | Casting of amorphous metallic parts by hot mold quenching |
US6408734B1 (en) | 1998-04-14 | 2002-06-25 | Michael Cohen | Composite armor panel |
US6446558B1 (en) | 2001-02-27 | 2002-09-10 | Liquidmetal Technologies, Inc. | Shaped-charge projectile having an amorphous-matrix composite shaped-charge liner |
US20020153123A1 (en) * | 2001-02-20 | 2002-10-24 | Ali Unal | Continuous casting of aluminum |
US6491592B2 (en) | 1999-11-01 | 2002-12-10 | Callaway Golf Company | Multiple material golf club head |
US20020187379A1 (en) | 2000-11-09 | 2002-12-12 | Sanyo Electrico Co., Ltd. | Separator used for fuel cell, method for manufacturing the separator, and the fuel cell |
US20030024616A1 (en) | 2001-08-02 | 2003-02-06 | Kim Choongnyun Paul | Joining of amorphous metals to other metals utilizing a cast mechanical joint |
US6585033B2 (en) * | 2001-02-19 | 2003-07-01 | Fukuda Metal Foil & Powder Co., Ltd. | Process for producing vanadium alloy foil |
US20030222122A1 (en) * | 2002-02-01 | 2003-12-04 | Johnson William L. | Thermoplastic casting of amorphous alloys |
US6771490B2 (en) | 2001-06-07 | 2004-08-03 | Liquidmetal Technologies | Metal frame for electronic hardware and flat panel displays |
US20050006046A1 (en) * | 1999-04-21 | 2005-01-13 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd) | Method and apparatus for injection molding light metal alloy |
US6843496B2 (en) | 2001-03-07 | 2005-01-18 | Liquidmetal Technologies, Inc. | Amorphous alloy gliding boards |
US6887586B2 (en) | 2001-03-07 | 2005-05-03 | Liquidmetal Technologies | Sharp-edged cutting tools |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5325368A (en) * | 1991-11-27 | 1994-06-28 | Ncr Corporation | JTAG component description via nonvolatile memory |
USRE44426E1 (en) * | 2003-04-14 | 2013-08-13 | Crucible Intellectual Property, Llc | Continuous casting of foamed bulk amorphous alloys |
-
2004
- 2004-04-14 US US13/597,909 patent/USRE45414E1/en not_active Expired - Lifetime
- 2004-04-14 WO PCT/US2004/011559 patent/WO2004092428A2/fr active Application Filing
- 2004-04-14 US US10/552,667 patent/US7575040B2/en not_active Ceased
- 2004-04-14 US US13/212,410 patent/USRE44425E1/en not_active Expired - Fee Related
Patent Citations (97)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2190611A (en) | 1938-02-23 | 1940-02-13 | Sembdner Gustav | Machine for applying wear-resistant plating |
US3989517A (en) | 1974-10-30 | 1976-11-02 | Allied Chemical Corporation | Titanium-beryllium base amorphous alloys |
US4067732A (en) | 1975-06-26 | 1978-01-10 | Allied Chemical Corporation | Amorphous alloys which include iron group elements and boron |
US4050931A (en) | 1975-08-13 | 1977-09-27 | Allied Chemical Corporation | Amorphous metal alloys in the beryllium-titanium-zirconium system |
US4064757A (en) | 1976-10-18 | 1977-12-27 | Allied Chemical Corporation | Glassy metal alloy temperature sensing elements for resistance thermometers |
US4116687A (en) | 1976-12-13 | 1978-09-26 | Allied Chemical Corporation | Glassy superconducting metal alloys in the beryllium-niobium-zirconium system |
US4099961A (en) | 1976-12-21 | 1978-07-11 | The United States Of America As Represented By The United States Department Of Energy | Closed cell metal foam method |
US4116682A (en) | 1976-12-27 | 1978-09-26 | Polk Donald E | Amorphous metal alloys and products thereof |
US4135924A (en) | 1977-08-09 | 1979-01-23 | Allied Chemical Corporation | Filaments of zirconium-copper glassy alloys containing transition metal elements |
US4126449A (en) | 1977-08-09 | 1978-11-21 | Allied Chemical Corporation | Zirconium-titanium alloys containing transition metal elements |
US4148669A (en) | 1977-08-09 | 1979-04-10 | Allied Chemical Corporation | Zirconium-titanium alloys containing transition metal elements |
US4113478A (en) | 1977-08-09 | 1978-09-12 | Allied Chemical Corporation | Zirconium alloys containing transition metal elements |
US4157327A (en) | 1977-12-27 | 1979-06-05 | United Technologies Corporation | Thermally conductive caulk |
US4289009A (en) | 1978-06-02 | 1981-09-15 | Swiss Aluminium Ltd. | Process and device for the manufacture of blisters with high barrier properties |
US4623387A (en) | 1979-04-11 | 1986-11-18 | Shin-Gijutsu Kaihatsu Jigyodan | Amorphous alloys containing iron group elements and zirconium and articles made of said alloys |
US4478918A (en) | 1981-12-25 | 1984-10-23 | Tokyo Shibaura Denki Kabushiki Kaisha | Fuel cell stack |
US4472955A (en) | 1982-04-20 | 1984-09-25 | Amino Iron Works Co., Ltd. | Metal sheet forming process with hydraulic counterpressure |
JPS5913056A (ja) | 1983-06-06 | 1984-01-23 | Res Inst Iron Steel Tohoku Univ | 高強度、耐疲労、耐全面腐食、耐孔食、耐隙間腐食、耐応力腐食割れ、耐水素脆性用アモルフアス鉄合金 |
US4743513A (en) | 1983-06-10 | 1988-05-10 | Dresser Industries, Inc. | Wear-resistant amorphous materials and articles, and process for preparation thereof |
US4648437A (en) * | 1984-01-12 | 1987-03-10 | Olin Corporation | Method for producing a metal alloy strip |
US4710235A (en) | 1984-03-05 | 1987-12-01 | Dresser Industries, Inc. | Process for preparation of liquid phase bonded amorphous materials |
US4621031A (en) | 1984-11-16 | 1986-11-04 | Dresser Industries, Inc. | Composite material bonded by an amorphous metal, and preparation thereof |
US4648609A (en) | 1985-01-22 | 1987-03-10 | Construction Robotics, Inc. | Driver tool |
JPS61238423A (ja) | 1985-04-16 | 1986-10-23 | Sumitomo Light Metal Ind Ltd | 超塑性金属板の成形方法 |
US5225004A (en) | 1985-08-15 | 1993-07-06 | Massachusetts Institute Of Technology | Bulk rapidly solifidied magnetic materials |
US4768458A (en) * | 1985-12-28 | 1988-09-06 | Hitachi, Metals Inc. | Method of producing thin metal ribbon |
US4854370A (en) | 1986-01-20 | 1989-08-08 | Toshiba Kikai Kabushiki Kaisha | Die casting apparatus |
US4721154A (en) | 1986-03-14 | 1988-01-26 | Sulzer-Escher Wyss Ag | Method of, and apparatus for, the continuous casting of rapidly solidifying material |
US4791979A (en) * | 1986-07-18 | 1988-12-20 | Allied-Signal Inc. | Gas assisted nozzle for casting metallic strip directly from the melt |
US5634989A (en) | 1987-05-07 | 1997-06-03 | Mitsubishi Materials Corporation | Amorphous nickel alloy having high corrosion resistance |
US5053084A (en) | 1987-08-12 | 1991-10-01 | Yoshida Kogyo K.K. | High strength, heat resistant aluminum alloys and method of preparing wrought article therefrom |
US5053085A (en) | 1988-04-28 | 1991-10-01 | Yoshida Kogyo K.K. | High strength, heat-resistant aluminum-based alloys |
US4990198A (en) | 1988-09-05 | 1991-02-05 | Yoshida Kogyo K. K. | High strength magnesium-based amorphous alloy |
US5169282A (en) | 1988-12-02 | 1992-12-08 | Mitsubishi Jukogyo Kabushiki Kaisha | Method for spreading sheets |
US4987033A (en) | 1988-12-20 | 1991-01-22 | Dynamet Technology, Inc. | Impact resistant clad composite armor and method for forming such armor |
US5074935A (en) | 1989-07-04 | 1991-12-24 | Tsuyoshi Masumoto | Amorphous alloys superior in mechanical strength, corrosion resistance and formability |
US4976417A (en) | 1989-08-14 | 1990-12-11 | General Motors Corporation | Wrap spring end attachment assembly for a twisted rope torsion bar |
US5144999A (en) * | 1989-08-31 | 1992-09-08 | Alps Electric Co., Ltd. | Apparatus for making amorphous metal strips |
GB2236325A (en) | 1989-08-31 | 1991-04-03 | Tsuyoshi Masumoto | Thin-aluminium-based alloy foil and wire |
US4978590A (en) | 1989-09-11 | 1990-12-18 | The United States Of America As Represented By The Department Of Energy | Dry compliant seal for phosphoric acid fuel cell |
US5032196A (en) | 1989-11-17 | 1991-07-16 | Tsuyoshi Masumoto | Amorphous alloys having superior processability |
US5279349A (en) | 1989-12-29 | 1994-01-18 | Honda Giken Kogyo Kabushiki Kaisha | Process for casting amorphous alloy member |
US5213148A (en) | 1990-03-02 | 1993-05-25 | Tsuyoshi Masumoto | Production process of solidified amorphous alloy material |
US5306463A (en) | 1990-04-19 | 1994-04-26 | Honda Giken Kogyo Kabushiki Kaisha | Process for producing structural member of amorphous alloy |
US5117894A (en) | 1990-04-23 | 1992-06-02 | Yoshinori Katahira | Die casting method and die casting machine |
US5131279A (en) | 1990-05-19 | 1992-07-21 | Flowtec Ag | Sensing element for an ultrasonic volumetric flowmeter |
US5250124A (en) | 1991-03-14 | 1993-10-05 | Yoshida Kogyo K.K. | Amorphous magnesium alloy and method for producing the same |
US5302471A (en) | 1991-04-08 | 1994-04-12 | Sanyo Electric Co. Ltd. | Compact phosphoric acid fuel cell system and operating method thereof |
US5312495A (en) | 1991-05-15 | 1994-05-17 | Tsuyoshi Masumoto | Process for producing high strength alloy wire |
US5324368A (en) | 1991-05-31 | 1994-06-28 | Tsuyoshi Masumoto | Forming process of amorphous alloy material |
US6027586A (en) | 1991-05-31 | 2000-02-22 | Tsuyoshi Masumoto | Forming process of amorphous alloy material |
US5296059A (en) | 1991-09-13 | 1994-03-22 | Tsuyoshi Masumoto | Process for producing amorphous alloy material |
US5380375A (en) | 1992-04-07 | 1995-01-10 | Koji Hashimoto | Amorphous alloys resistant against hot corrosion |
US5390724A (en) | 1992-06-17 | 1995-02-21 | Ryobi Ltd. | Low pressure die-casting machine and low pressure die-casting method |
US5449425A (en) | 1992-07-31 | 1995-09-12 | Salomon S.A. | Method for manufacturing a ski |
US5384203A (en) | 1993-02-05 | 1995-01-24 | Yale University | Foam metallic glass |
JPH06264200A (ja) | 1993-03-12 | 1994-09-20 | Takeshi Masumoto | Ti系非晶質合金 |
US5368659A (en) | 1993-04-07 | 1994-11-29 | California Institute Of Technology | Method of forming berryllium bearing metallic glass |
US5288344A (en) | 1993-04-07 | 1994-02-22 | California Institute Of Technology | Berylllium bearing amorphous metallic alloys formed by low cooling rates |
US5647921A (en) * | 1993-08-23 | 1997-07-15 | Mitsui Petrochemical Industries, Ltd. | Process for producing and amorphous alloy resin |
US5482580A (en) | 1994-06-13 | 1996-01-09 | Amorphous Alloys Corp. | Joining of metals using a bulk amorphous intermediate layer |
US5567251A (en) | 1994-08-01 | 1996-10-22 | Amorphous Alloys Corp. | Amorphous metal/reinforcement composite material |
US5618359A (en) | 1995-02-08 | 1997-04-08 | California Institute Of Technology | Metallic glass alloys of Zr, Ti, Cu and Ni |
US5589012A (en) | 1995-02-22 | 1996-12-31 | Systems Integration And Research, Inc. | Bearing systems |
US5711363A (en) | 1996-02-16 | 1998-01-27 | Amorphous Technologies International | Die casting of bulk-solidifying amorphous alloys |
US5735975A (en) | 1996-02-21 | 1998-04-07 | California Institute Of Technology | Quinary metallic glass alloys |
US5950704A (en) | 1996-07-18 | 1999-09-14 | Amorphous Technologies International | Replication of surface features from a master model to an amorphous metallic article |
US5797443A (en) | 1996-09-30 | 1998-08-25 | Amorphous Technologies International | Method of casting articles of a bulk-solidifying amorphous alloy |
US6200685B1 (en) | 1997-03-27 | 2001-03-13 | James A. Davidson | Titanium molybdenum hafnium alloy |
US6044893A (en) | 1997-05-01 | 2000-04-04 | Ykk Corporation | Method and apparatus for production of amorphous alloy article formed by metal mold casting under pressure |
US6371195B1 (en) | 1997-08-08 | 2002-04-16 | Sumitomo Rubber Industries, Ltd. | Molded product of amorphous metal and manufacturing method for the same |
US6258183B1 (en) | 1997-08-08 | 2001-07-10 | Sumitomo Rubber Industries, Ltd. | Molded product of amorphous metal and manufacturing method for the same |
US6021840A (en) | 1998-01-23 | 2000-02-08 | Howmet Research Corporation | Vacuum die casting of amorphous alloys |
US5886254A (en) | 1998-03-30 | 1999-03-23 | Chi; Jiaa | Tire valve pressure-indicating cover utilizing colors to indicate tire pressure |
US6408734B1 (en) | 1998-04-14 | 2002-06-25 | Michael Cohen | Composite armor panel |
US6306228B1 (en) | 1998-07-08 | 2001-10-23 | Japan Science And Technology Corporation | Method of producing amorphous alloy excellent in flexural strength and impact strength |
US6203936B1 (en) | 1999-03-03 | 2001-03-20 | Lynntech Inc. | Lightweight metal bipolar plates and methods for making the same |
JP2000256811A (ja) | 1999-03-12 | 2000-09-19 | Tanaka Kikinzoku Kogyo Kk | 装飾材料用過冷金属及び過冷金属用合金 |
JP2000277127A (ja) | 1999-03-25 | 2000-10-06 | Tomoe Engineering Co Ltd | 燃料電池用セパレータ及びその製造法 |
US20050006046A1 (en) * | 1999-04-21 | 2005-01-13 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd) | Method and apparatus for injection molding light metal alloy |
US6491592B2 (en) | 1999-11-01 | 2002-12-10 | Callaway Golf Company | Multiple material golf club head |
US20010052406A1 (en) | 2000-04-05 | 2001-12-20 | Kohei Kubota | Method for metallic mold-casting of magnesium alloys |
US6325868B1 (en) | 2000-04-19 | 2001-12-04 | Yonsei University | Nickel-based amorphous alloy compositions |
JP2001303218A (ja) | 2000-04-20 | 2001-10-31 | Japan Science & Technology Corp | 高耐蝕性・高強度Fe−Cr基バルクアモルファス合金 |
JP2002056811A (ja) | 2000-05-30 | 2002-02-22 | Japan Storage Battery Co Ltd | 高圧蒸気放電灯 |
US20020050310A1 (en) | 2000-06-09 | 2002-05-02 | Kundig Andreas A. | Casting of amorphous metallic parts by hot mold quenching |
US6376091B1 (en) | 2000-08-29 | 2002-04-23 | Amorphous Technologies International | Article including a composite of unstabilized zirconium oxide particles in a metallic matrix, and its preparation |
US20020036034A1 (en) | 2000-09-25 | 2002-03-28 | Li-Qian Xing | Alloy with metallic glass and quasi-crystalline properties |
US20020187379A1 (en) | 2000-11-09 | 2002-12-12 | Sanyo Electrico Co., Ltd. | Separator used for fuel cell, method for manufacturing the separator, and the fuel cell |
US6585033B2 (en) * | 2001-02-19 | 2003-07-01 | Fukuda Metal Foil & Powder Co., Ltd. | Process for producing vanadium alloy foil |
US20020153123A1 (en) * | 2001-02-20 | 2002-10-24 | Ali Unal | Continuous casting of aluminum |
US6446558B1 (en) | 2001-02-27 | 2002-09-10 | Liquidmetal Technologies, Inc. | Shaped-charge projectile having an amorphous-matrix composite shaped-charge liner |
US6843496B2 (en) | 2001-03-07 | 2005-01-18 | Liquidmetal Technologies, Inc. | Amorphous alloy gliding boards |
US6887586B2 (en) | 2001-03-07 | 2005-05-03 | Liquidmetal Technologies | Sharp-edged cutting tools |
US6771490B2 (en) | 2001-06-07 | 2004-08-03 | Liquidmetal Technologies | Metal frame for electronic hardware and flat panel displays |
US20030024616A1 (en) | 2001-08-02 | 2003-02-06 | Kim Choongnyun Paul | Joining of amorphous metals to other metals utilizing a cast mechanical joint |
US20030222122A1 (en) * | 2002-02-01 | 2003-12-04 | Johnson William L. | Thermoplastic casting of amorphous alloys |
Non-Patent Citations (18)
Title |
---|
Brochure entitled ProCAST . . . not just for castings!, UES, Inc., 1 page. |
Catalog Cover Entitled, Interbike Buyer Official Show Guide, 1995, 3 pages. |
Eshbach et al., "Section 12-Heat Transfer", Handbook of Engineering Fundamentals, 3d ed., 1975, pp. 1113-1119. |
Hasegawa et al., "Superconducting Properties of Be-Zr Glassy Alloys Obtained by Liquid Quenching", May 9, 1977, pp. 3925-3928. |
Inoue et al., "Zr-Al-Ni Amorphous Alloys with High Glass Transition Temperature and Significant Supercooled Liquid Region", Materials Transactions, JIM, 1990, vol. 31, No. 3, pp. 177-183. |
Inoue, et al., "Bulky La-Al-TM (TM=Transition Metal) Amorphous Alloys with High Tensile Strength Produced by a High-Pressure Die Casting Method", Materials Transactions, 1993, JIM, vol. 34, No. 4, pp. 351-358. |
Inoue, et al., "Mg-Cu-Y Bulk Amorphous Alloys with High Tensile Strength Produced by a High-Pressure Die Casting Method", Materials Transactions, 1992, JIM, vol. 33, No. 10, pp. 937-945. |
Jost et al., "The Structure of Amorphous Be-Ti-Zr Alloys", Zeitschrift fur Physikalische Chemie Neue Folge, Bd. 157, 1988, pp. 11-15. |
Kato et al., "Production of Bulk Amorphous Mg85Y10Cu5Alloy by Extrusion of Atomized Amorphous Powder", Materials Transactions, JIM, 1994, vol. 35, No. 2, pp. 125-129. |
Kawamura et al., Full Strength Compacts by Extrusion of Glassy Metal Powder at the Supercooled Liquid State, Appl. Phys. Lett. 1995, vol. 67, No. 14, pp. 2008-2010. |
Lyman et al., Metals Handbook, Forging and Casting, 8th ed., 1970, vol. 5, pp. 285-291 and 300-306. |
Maret et al., "Structural Study of Be43HfxZr57-x Metallic Glasses by X-Ray and Neutron Diffraction", J. Physique, 1986, vol. 47, pp. 863-871. |
Polk et al., "The Effect of Oxygen Additions on the Properties of Amorphous Transition Metal Alloys", Source and date unknown, pp. 220-230. |
Tanner et al., "Metallic Glass Formation and Properties in Zr and Ti Alloyed with Be-I The Binary Zr-Be and Ti-Be Systems", Acta Metallurgica, 1979, vol. 27, pp. 1727-1747. |
Tanner et al., "Physical Properties of Ti50Be40Zr10 Glass", Scripta Metallurgica, 1977, vol. 11, pp. 783-789. |
Tanner, L.E., "Physical Properties of Ti-Be-Si Glass Ribbons", Scripta Metallurgica, 1978, vol. 12, pp. 703-708. |
Tanner, L.E., "The Stable and Metastable Phase Relations in the Hf-Be Alloy System", Metallurgica, vol. 28, 1980, pp. 1805-1815. |
Zhang et al., "Amorphous Zr-Al-TM (TM=Co, Ni, Cu) Alloys with Significant Supercooled Liquid Region of Over 100 K", Materials Transactions, JIM, 1991, vol. 32, No. 11, pp. 1005-1010. |
Also Published As
Publication number | Publication date |
---|---|
WO2004092428A2 (fr) | 2004-10-28 |
USRE44425E1 (en) | 2013-08-13 |
WO2004092428A3 (fr) | 2005-03-24 |
US20060260782A1 (en) | 2006-11-23 |
US7575040B2 (en) | 2009-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE45414E1 (en) | Continuous casting of bulk solidifying amorphous alloys | |
US4781771A (en) | Amorphous Co-based metal filaments and process for production of the same | |
US5213148A (en) | Production process of solidified amorphous alloy material | |
EP0039169B1 (fr) | Filaments de métal amorphe et procédé pour leur fabrication | |
US4495691A (en) | Process for the production of fine amorphous metallic wires | |
Mizoguchi et al. | Formation of solidification structure in twin roll casting process of 18Cr-8Ni stainless steel | |
Waseda et al. | Formation and mechanical properties of Fe-and Co-base amorphous alloy wires produced by in-rotating-water spinning method | |
CN101027148A (zh) | 纳米晶体薄钢板 | |
US9004149B2 (en) | Counter-gravity casting of hollow shapes | |
Gögebakan et al. | Rapidly solidified Al–6.5 wt.% Ni alloy | |
US7588071B2 (en) | Continuous casting of foamed bulk amorphous alloys | |
Hagiwara et al. | Production techniques of alloy wires by rapid solidification | |
KR100586870B1 (ko) | 벌크응고 비정질합금의 연속주조방법 및 그 주조물 | |
JP4317930B2 (ja) | アモルファス合金粒子 | |
JPH0260752B2 (fr) | ||
JPS649909B2 (fr) | ||
JPS649907B2 (fr) | ||
KR100633255B1 (ko) | 니켈기 다원소 비정질 합금조성물 | |
JP2806539B2 (ja) | 金属細線の製造法 | |
KR100498569B1 (ko) | 니켈기 비정질 합금조성물 | |
Shingu et al. | Processing principles in rapid solidification | |
JPH0524209B2 (fr) | ||
Hagiwara et al. | Production Techniques of Alloy Wires by | |
Yang et al. | Evidence of refilled chamber gas pressure enhancing cooling rate during melt spinning of a Zr50 Cu40 Al10 alloy | |
JPH0360907B2 (fr) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |