USRE37126E1 - Multilevel cascade voltage source inverter with seperate DC sources - Google Patents

Multilevel cascade voltage source inverter with seperate DC sources Download PDF

Info

Publication number
USRE37126E1
USRE37126E1 US09/167,287 US16728798A USRE37126E US RE37126 E1 USRE37126 E1 US RE37126E1 US 16728798 A US16728798 A US 16728798A US RE37126 E USRE37126 E US RE37126E
Authority
US
United States
Prior art keywords
inverter
phase
full bridge
node
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/167,287
Other languages
English (en)
Inventor
Fang Zheng Peng
Jih-Sheng Lai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lockheed Martin Energy Systems Inc
Original Assignee
Lockheed Martin Energy Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lockheed Martin Energy Systems Inc filed Critical Lockheed Martin Energy Systems Inc
Priority to US09/167,287 priority Critical patent/USRE37126E1/en
Application granted granted Critical
Publication of USRE37126E1 publication Critical patent/USRE37126E1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1835Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
    • H02J3/1842Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters
    • H02J3/1857Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters wherein such bridge converter is a multilevel converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]

Definitions

  • the present invention relates to a multilevel voltage source inverter with separate DC sources, and more particularly to a multilevel voltage source inverter with separate DC sources including an apparatus and a method for use in flexible AC transmission system (FACTS) applications such as compensating reactive power and voltage balancing.
  • FACTS flexible AC transmission system
  • VAR reactive power
  • SVGs Static VAR generators
  • TSCs Thyristor Switched Capacitors
  • TCRs Thyristor Controlled Reactors
  • VAR volt-ampere-reactive
  • the state of the art VAR compensating approach uses transformer coupling voltage source inverters.
  • a transformer coupling voltage source inverter comprising eight six-pulse converters connected in either a zig-zag, wye or delta configuration has a 48-pulse or a 48-step staircase inverter output voltage waveform which dramatically reduces harmonics.
  • the major problem of using this transformer coupling approach resides in the transformer as a function of harmonic neutralizing magnetics.
  • inverter a multilevel voltage source inverter
  • the transformerless multilevel inverter can reach high voltage and minimize induced harmonics as a function of inverter structure.
  • a multilevel, referred to as M-level, diode clamped inverter can reach high performance without the benefit of transformers.
  • This inverter does, however, require the implementation of additional clamping diodes.
  • These clamping diodes not only increase the cost of the system but also cause packaging/layout problems and introduce parasitic inductances into the system. Thus, for practicality, the number of levels of a conventional multilevel diode clamped inverter is typically limited to seven or nine levels.
  • the multilevel flying capacitor inverter has the capability to solve the voltage balance problems and aforementioned problems associated with the multilevel diode clamped inverters.
  • the required number of flying capacitors for an M-level inverter, provided that the voltage rating of each capacitor used is the same as the main power switches is determined by the formula, (M ⁇ 1)*(M ⁇ 2)*3/2+(M ⁇ 1).
  • M ⁇ 1 the voltage rating of each capacitor used is the same as the main power switches
  • M ⁇ 1 the voltage rating of each capacitor used is the same as the main power switches.
  • M-level diode clamped inverter requires only (M ⁇ 1) capacitors. Therefore, the flying capacitor inverter requires capacitors of substantial size compared with the conventional inverter.
  • control is very complicated and higher switching frequency is required to balance the voltages between each capacitor in the inverter.
  • a multilevel cascade inverter with separate DC sources for reactive power compensation in AC power systems which is directed toward overcoming and is not susceptible to the above limitations and disadvantages is described herein.
  • the multilevel voltage source inverter having separate DC sources eliminates the excessively large number of transformers required by conventional multipulse inverters, clamping diodes required by multilevel diode-clamped inverters and flying capacitors required by multilevel flying-capacitor inverters.
  • the multilevel voltage source inverter having separate DC sources also has the following features:
  • the multilevel voltage source inverter having separate DC sources is more suitable to high voltage, high power applications than conventional inverters;
  • the multilevel voltage source inverter having separate DC sources generates a multistep staircase voltage waveform with the switching of each device only once per line cycle, thus reaching a nearly sinusoidal output voltage approximation by increasing the number of voltage levels;
  • a multiple voltage source inverter for connecting to an AC power system comprising a plurality of full bridge inverters having a primary node and a secondary node, each of the full bridge inverters having a positive node and a negative node, each of the full bridge inverters having a voltage supporting device electrically connected in a parallel relationship between the positive node and the negative node; at least one cascade inverter phase, each of the cascade inverter phases having a plurality of the full bridge inverters, each of the cascade inverter phases having a consistent number of the full bridge inverters with respect to each phase, each of the full bridge inverters in each cascade inverter phase interconnected in a series relationship with the secondary node of one of the full bridge inverters connected to the primary node of another full bridge inverter, the series interconnection defining a first full bridge inverter and a last full bridge inverter, each of the phases having an input node at the primary node of the
  • This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems ( FACTS ) including static VAR generation ( SVG ), power line conditioning, series compensation, phase shifting, voltage balancing, and fuel cell and photovoltaic utility interface systems.
  • FACTS flexible AC transmission systems
  • SVG static VAR generation
  • SVG static VAR generation
  • series compensation phase shifting
  • phase shifting phase shifting
  • voltage balancing voltage balancing
  • fuel cell and photovoltaic utility interface systems fuel cell and photovoltaic utility interface systems.
  • the multiple voltage source inverter may be configured in either a wye-connected or a delta-connected embodiment to address the requirements of multiple phase systems.
  • Yet another aspect of the present invention provides a method for inverting a plurality of DC voltage signals to approximate a sinusoidal voltage waveform comprising the steps of detecting the DC voltage levels of a plurality of DC voltage sources; averaging the DC voltage levels; comparing the average with a reference DC voltage; generating a first error signal from the comparison of the average with a reference DC voltage; comparing the average with the detected DC voltage levels; generating a second error signal from the comparison of the average with the detected DC voltage levels; generating a phase shift offset signal from the second error signal; generating an average phase shift signal from the first error signal; summing the phase shift offset signal and the average phase shift signal; detecting an AC line voltage having a period; generating a phase reference signal directly related to the period of the AC line voltage; generating a plurality of firing reference signals for a plurality of full bridge inverters using the phase reference signal and the sum of the phase shift offset signal and the average phase shift signal; determining a modulation index; providing a reference table for the modulation index
  • FIG. 1 is a schematic representation of a full bridge inverter.
  • FIG. 2 is a schematic representation of the single-phase embodiment of the multilevel DC voltage source inverter.
  • FIG. 3 is a graphical representation of the output voltage waveforms with respect to the input signals, v C1 , v C2 , v C3 and v C4 .
  • FIG. 4 is a schematic representation of the multiphase wye connected embodiment of the multilevel voltage source inverter.
  • FIG. 5 is a schematic representation of the multiphase delta connected embodiment of the multilevel voltage source inverter.
  • FIG. 6 is a control block diagram of a static VAR generatorcompensation system employing a three-phase multilevel cascade inverter having separate DC sources.
  • FIG. 7 a is a waveform representation wherein v S is the source voltage, i C is the current flowing into the inverter and v C is the inverter output voltage of the multilevel voltage source inverter used with the control system of FIG. 6 .
  • FIG. 7 b is a waverform representation wherein v Ci is the input wavform, shifted ahead by ⁇ Ci , a full bridge inverter of the multilevel voltage source inverter used with the control system of FIG. 6 .
  • FIG. 8 contains the experimental voltage waveforms showing the phase voltage results of the inverter and the line current waveform in the system of FIG. 6 at +1 kVAR output.
  • FIG. 9 contains the experimental voltage waveforms showing the phase voltages of the AC source and of the inverter and the line current waveform in the system of FIG. 6 at +1 kVAR output.
  • FIG. 10 contains the experimental voltage waveforms showing the line-to-line voltages of the AC source and of the inverter and the line current waveform of in the system of FIG. 6 at +1 kVAR output.
  • FIG. 11 contains the experimental voltage waveforms showing the phase voltages of the inverter and the line current in the system of FIG. 6 at 0 kVAR output.
  • FIG. 12 contains the experimental voltage waveforms showing the phase voltages of the inverter and the line current in the system of FIG. 6 at ⁇ 1 kVAR output.
  • FIG. 13 contains the experimental voltage waveforms showing the line-to-line voltages of the AC source and the inverter and the line current in the system of FIG. 6 at ⁇ 1 kVAR output.
  • FIG. 14 is a block diagram of a typical application of a multiphase, multilevel cascade inverter with separate DC sources connected to an AC load.
  • FIG. 1 a schematic representation showing the primary building block of the preferred embodiment of the apparatus of the present invention, a single-phase, full-bridge inverter (FBI) unit 50 .
  • a FBI unit comprises a primary node 1 and a secondary node 2 and an inverting means therebetween.
  • the inverting means comprises four switching means further comprising gate turn-off devices 10 , 20 , 30 and 40 and anti-parallel diodes 15 , 25 , 35 and 45 connected in an operable, oppositely biased, parallel relationship by conductors 17 , 18 , 27 , 28 , 37 , 38 , 47 and 48 , respectively.
  • the gate turn-off devices may be any of the components capable of switching such as gate turn-off thyristors, insulated gate bipolar transistors, power MOSFETs, MOSFET controlled thyristors, bipolar junction transistors, static induction transistors, static induction thyristors or MOSFET turn-off thyristors.
  • the first switching means is connected to the second switching means by conductors 22 and 24 through positive node 26 .
  • the second and third switching means are connected by conductors 23 and 33 through secondary node 2 .
  • the third and fourth switching means are connected by conductors 32 and 34 through negative node 36 .
  • the first and fourth switching means are connected by conductors 11 and 12 through primary node 1 .
  • a voltage supporting device 5 is connected between positive node 26 and negative node 36 by conductors 6 and 7 , respectively.
  • the voltage supporting device 5 may be any device, such as a DC voltage source or a capacitor, capable of maintaining a DC voltage for a sufficient period of time.
  • the FBI unit 50 can generate three level outputs; +V DC , 0 and ⁇ V DC at the respective primary node 1 . This is permitted by connecting the DC source 5 to the AC side of the FBI unit 50 via the four switching devices 10 , 20 , 30 and 40 . Each switching device 10 , 20 , 30 and 40 is switched, wherein switching is defined by the activation and deactivation of the respective switching device, only once per power line cycle in an alternating fashion commonly known to one of ordinary skill in the art to produce the +V DC , 0 and ⁇ V DC output voltages across the primary node 1 and the secondary node 2 . The switching action is generally controlled by an external control means using either analog or digital control signals in a manner commonly known to one of ordinary skill in the art.
  • FIG. 2 shows the single-phase embodiment 100 of the multilevel cascade inverter having separate DC voltage sources.
  • M is the number of output voltage levels generated by the multilevel cascade inverter during a half fundamental cycle.
  • FBI units 60 and 70 are interconnected between primary node 75 and secondary node 66 by conductor 51 .
  • FBI units 70 and 80 are interconnected between primary node 85 and secondary node 76 by conductor 52 .
  • FBI units 80 and 90 are interconnected between primary node 95 and secondary node 86 by conductor 53 .
  • the primary node 65 of the first FBI unit 60 in the multilevel cascade inverter functions as the output of the cascade inverter single-phase embodiment 100 .
  • the secondary node 96 of the last FBI unit 90 in the multilevel cascade inverter functions as the reference of the cascade inverter single-phase embodiment 100 .
  • the FBI units are provided with separate DC voltage sources 63 , 73 , 83 and 93 .
  • FIG. 3 shows the waveform response of the circuit shown in FIG. 2 wherein a DC voltage input was injected by independent voltage sources 63 , 73 , 83 and 93 .
  • the waveform v Cp is measured between node 65 and node 96 using the output waveforms shown as v C1 , v C2 , v C3 and v C4 , injected by 60 , 70 , 80 and 90 , respectively.
  • v C1 , v C2 , v C3 and v C4 are the respective voltage output levels of the each FBI unit in the single phase cascade inverter 100 as shown in FIG. 2 .
  • FIG. 4 shows the three-phase, wye connected embodiment 250 of the multilevel cascade inverter having separate DC voltage sources.
  • the wye connected embodiment 250 comprises three distinct phases 110 , 160 and 210 , each phase having a multilevel cascade inverter comprising a plurality of FBI units.
  • Each multilevel cascade is constructed as previously described in the single-phase embodiment discussion.
  • the primary nodes 115 , 165 and 215 of the first FBI units 120 , 170 and 220 in each phase of the multilevel cascade is the phase output for each of the respective phases 110 , 160 and 210 .
  • the secondary nodes 125 , 175 and 225 of the last FBI units 130 , 180 and 230 in each phase of the multilevel cascade are electrically connected to create a common node 200 therebetween.
  • FIG. 5 shows the three-phase, delta connected embodiment 400 of the multilevel cascade inverter having separate DC voltage sources.
  • the delta connected embodiment 400 comprises three distinct phases 260 , 310 and 360 , each phase having a multilevel cascade inverter comprising a plurality of FBI units.
  • Each multilevel cascade is constructed as previously described in the single-phase embodiment.
  • the primary nodes 265 , 315 and 365 of the first FBI units 270 , 320 and 370 in each phase of the multilevel cascade is the phase output for the respective phases 260 , 310 and 360 .
  • the primary node 265 of FBI unit 270 is electrically connected to the secondary node 375 of the FBI unit 380 by conductor 285 .
  • the primary node 315 of FBI unit 320 is electrically connected to the secondary node 275 of the FBI unit 280 by conductor 290 .
  • the primary node 365 of FBI unit 370 is electrically connected to the secondary node 325 of the FBI unit 330 by conductor 295 .
  • FIG. 6 shows a control block diagram of a SVG 405 employing a three-phase multilevel cascade inverter 410 having separate DC sources as described herein.
  • v s represents the source voltage
  • L s the source impedance
  • L C the inverter interface impedance, respectively.
  • the multilevel cascade inverter discussed in this example will be the inverter previously discussed for the multilevel, wye connected embodiment 250 . Variations therefrom utilizing other embodiments previously discussed will be obvious to one of ordinary skill in the relevant art.
  • the switching pattern table 415 contains switching timing data for the multilevel cascade inverter 410 to generate the desired phase output voltage as shown in FIG. 3 .
  • V C * is the amplitude command of the inverter output phase voltage and V Cmax is the maximum obtainable amplitude, i.e., the amplitude of the phase voltage when all switching angles, ⁇ i , are equal to zero.
  • each DC voltage supporting device in this case a capacitor, sees no real power. Even without real power imparted on the respective capacitors, the capacitor voltage can not be maintained due to switching device losses and capacitor losses. Therefore to maintain each DC capacitor voltage, the inverter must be controlled to allow some real power to influence the DC capacitors to maintain the DC command voltage V DC *.
  • the control block diagram shown in FIG. 6 includes two distinct control loops.
  • the outer loop defined by the influence of the DC command voltage V DC *, is to control total power flow to the FBI units, whereas the inner loop, defined by the feed back from the individual FBI units, is to offset power flow to the individual FBI units.
  • v s is the source voltage
  • i C is the current flowing into the inverter
  • each DC capacitor voltage can not be exactly balanced using the outer loop only. Referring to FIGS. 7 a and 7 b, if FBI unit I output voltage, v Ci , is as shown by trace 520 , then the average charge into the DC capacitor over each half cycle, the second shaded area 530 , will nearly equal zero.
  • each FBI unit DC capacitor voltage can be actively controlled by slightly shifting the switching pattern.
  • total power loss for the multilevel cascade inverter 410 is typically less than one percent.
  • V 2 is the source voltage
  • i C is the current flowing into the inverter
  • each DC capacitor voltage can not be exactly balanced using the outer loop only. Referring to FIGS. 7a and 7b, if FBI unit I output voltage, V C1 is as shown by trace 520 , then the average charge into the DC capacitor over each half cycle, the second shaded area 530 , will nearly equal zero.
  • each FBI unit DC capacitor voltage can be actively controlled by slightly shifting the switching pattern.
  • total power loss for the multilevel cascade inverter 410 is typically less than one percent.
  • the method used to control the automatic switching of the FBIs may be best described with reference to FIG. 6 .
  • the voltage supporting device DC voltage levels, V Ci are detected, summed and then averaged.
  • the average DC voltage level is then compared with a system reference DC voltage, V dc *.
  • an average phase shift signal, ⁇ C is generated from a first error signal describing the comparison between the average DC voltage level and the system reference DC voltage, V dc *.
  • the average DC voltage level is also compared with the respective detected DC voltage levels, V Ci .
  • a phase shift offset signal, ⁇ Ci is generated from a second error signal describing the comparison between the average DC voltage level and the respective detected DC voltage levels, V Ci .
  • the phase shift offset signal, ⁇ Ci , and said average phase shift signal, ⁇ C are then summed.
  • An AC line voltage, V S having a period is detected from which a phase reference signal, ⁇ 0 , directly related to the period of the AC line voltage, V S , is developed by comparison with the sum of the phase shift offset signal signal ⁇ Ci , and said average phase shift signal, ⁇ C .
  • Multiple firing reference signals, ⁇ Ci for the FBIs are generated by comparing the phase reference signal, ⁇ 0 , and the sum of phase shift offset signal, ⁇ Ci , and the average phase shift signal, ⁇ C .
  • a modulation index, MI may be selected by the user for which a corresponding reference table is provided.
  • Firing angle signals are generated for the FBIs using the firing reference signal in view of the reference table for the given modulation index, MI, whereby, the alternate activation of a plurality of gate turn-off devices in the FBIs may be controlled to construct an output voltage waveform having a sinusoidal approximation for use by an AC load.
  • I is the current rating of the inverter
  • is the given regulation factor of the DC voltage
  • ⁇ i is the switching timing angle of FBI unit I as shown in FIG. 3 . Note that:
  • ⁇ i is calculated for each MI value.
  • a SVG system as shown in FIG. 6 having an 11-level wye-connected cascade inverter with 5 FBI units per phase was constructed having the system parameters shown in Table 1.
  • the total capacitance is calculated:
  • An SVG system using the delta connected embodiment of a 21-level cascade inverter having 10 FBI units per phase is connected directly to a 13 kV distribution system.
  • the SVG capacity is ⁇ 50 MVAR.
  • [ ⁇ 1 , ⁇ 2 . . . ⁇ i ] [0.0334, 0.1840, 0.2491, 0.3469, 0.4275, 0.5381, 0.6692, 0.8539, 0.9840, 1.1613] rad.
  • FIG. 6 and Tables 1 and 2 show the experimental configuration and the corresponding parameters.
  • the control voltages for C 2 , C 3 and C 4 uses interpolating values of ⁇ C1 and ⁇ C5 .
  • FIGS. 8, 9 and 10 show the experimental results when the SVG generates +1 kVAR reactive power.
  • FIG. 11 shows experimental results at zero VAR output.
  • FIGS. 12 and 13 show the case of generating ⁇ 1 kVAR reactive power.
  • the inverter output phase voltage is an 11-level steplike waveform and the line-to-line voltage is a 21-level steplike waveform over a half cycle.
  • Each step has the same span, which means the voltage of each DC capacitor is well controlled and balanced.
  • FIG. 12 shows the experimental waveforms to generate zero reactive power or zero current with a different DC voltage and the same modulation index as that of FIGS. 8, 9 and 10 .
  • the inverter generates ⁇ 1 kVAR of reactive power, that is, the current, I Ca , is lagging the voltage, V Sa , by 90 degrees.
  • FIG. 14 shows a circuit diagram having a multiphase, multilevel cascade inverter with separate DC sources 701 connected to an AC load 790 through smoothing inductors 760 , 770 and 780 .
  • this circuit contains a set of separate DC voltage sources 710 , 720 , 730 and 740 which feed through a multilevel cascade inverter 701 to produce a step-like AC output voltage waveform.
  • the voltage is then filtered by small smoothing inductors 760 , 770 and 780 to produce a pure sinusoidal wave for an AC load 790 .
  • the smoothing inductors 760 , 770 and 780 may be removed from the circuit because the load motor has sufficient inductance to filter the input current. Examples of typical loads comprise motor drives, actuators and appliances.
  • the DC voltage sources 710 , 720 , 730 and 740 may be obtained from any type conventional voltage source such as batteries, capacitors, photocells, fuel cells and biomass.
US09/167,287 1995-09-14 1998-10-06 Multilevel cascade voltage source inverter with seperate DC sources Expired - Fee Related USRE37126E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/167,287 USRE37126E1 (en) 1995-09-14 1998-10-06 Multilevel cascade voltage source inverter with seperate DC sources

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/527,995 US5642275A (en) 1995-09-14 1995-09-14 Multilevel cascade voltage source inverter with seperate DC sources
US09/167,287 USRE37126E1 (en) 1995-09-14 1998-10-06 Multilevel cascade voltage source inverter with seperate DC sources

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/527,995 Reissue US5642275A (en) 1995-09-14 1995-09-14 Multilevel cascade voltage source inverter with seperate DC sources

Publications (1)

Publication Number Publication Date
USRE37126E1 true USRE37126E1 (en) 2001-04-03

Family

ID=24103826

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/527,995 Ceased US5642275A (en) 1995-09-14 1995-09-14 Multilevel cascade voltage source inverter with seperate DC sources
US09/167,287 Expired - Fee Related USRE37126E1 (en) 1995-09-14 1998-10-06 Multilevel cascade voltage source inverter with seperate DC sources

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/527,995 Ceased US5642275A (en) 1995-09-14 1995-09-14 Multilevel cascade voltage source inverter with seperate DC sources

Country Status (1)

Country Link
US (2) US5642275A (USRE037126-20010403-M00003.png)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6556461B1 (en) * 2001-11-19 2003-04-29 Power Paragon, Inc. Step switched PWM sine generator
US20050127853A1 (en) * 2003-12-12 2005-06-16 Gui-Jia Su Multi-level dc bus inverter for providing sinusoidal and pwm electrical machine voltages
US20090102288A1 (en) * 2007-10-17 2009-04-23 Edwin Arthur Blackmond Modular Power Supply
US20090302682A1 (en) * 2008-05-30 2009-12-10 Siemens Energy & Automation, Inc. Method and system for reducing switching losses in a high-frequency multi-cell power supply
US20100142234A1 (en) * 2008-12-31 2010-06-10 Mehdi Abolhassani Partial regeneration in a multi-level power inverter
US20100213921A1 (en) * 2009-02-26 2010-08-26 Mehdi Abolhassani Pre-Charging An Inverter Using An Auxiliary Winding
US7830681B2 (en) 2008-09-24 2010-11-09 Teco-Westinghouse Motor Company Modular multi-pulse transformer rectifier for use in asymmetric multi-level power converter
US20110019449A1 (en) * 2009-07-21 2011-01-27 Shuji Katoh Power converter apparatus
US20110235376A1 (en) * 2010-03-25 2011-09-29 Feng Frank Z Multi-level parallel phase converter
US8130501B2 (en) 2009-06-30 2012-03-06 Teco-Westinghouse Motor Company Pluggable power cell for an inverter
US20120081939A1 (en) * 2009-06-18 2012-04-05 Jean-Philippe Hasler Arrangement For Exchanging Power
US20120092906A1 (en) * 2009-06-18 2012-04-19 Jean-Philippe Hasler Arrangement for exchanging power
US20120212065A1 (en) * 2011-02-15 2012-08-23 George Shu-Xing Cheng Scalable and redundant mini-inverters
US8254076B2 (en) 2009-06-30 2012-08-28 Teco-Westinghouse Motor Company Providing modular power conversion
US8279640B2 (en) 2008-09-24 2012-10-02 Teco-Westinghouse Motor Company Modular multi-pulse transformer rectifier for use in symmetric multi-level power converter
US8536734B2 (en) 2010-04-14 2013-09-17 East Coast Research And Development, Llc Apparatus for inverting DC voltage to AC voltage
US8575479B2 (en) 2009-06-30 2013-11-05 TECO—Westinghouse Motor Company Providing a transformer for an inverter
US8601190B2 (en) 2011-06-24 2013-12-03 Teco-Westinghouse Motor Company Providing multiple communication protocols for a control system having a master controller and a slave controller
US20140016380A1 (en) * 2012-07-16 2014-01-16 Delta Electronics, Inc. Multi-level voltage converter
US8711530B2 (en) 2009-06-30 2014-04-29 Teco-Westinghouse Motor Company Pluggable power cell for an inverter
US20140252862A1 (en) * 2013-03-07 2014-09-11 Cyboenergy, Inc. Maximizing Power Production at Low Sunlight by Solar Power Mini-Inverters
US8976526B2 (en) 2009-06-30 2015-03-10 Teco-Westinghouse Motor Company Providing a cooling system for a medium voltage drive system
US9257916B2 (en) 2009-07-16 2016-02-09 Cyboenergy, Inc. Power inverters with multiple input channels
US9294003B2 (en) 2012-02-24 2016-03-22 Board Of Trustees Of Michigan State University Transformer-less unified power flow controller
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US9331488B2 (en) 2011-06-30 2016-05-03 Cyboenergy, Inc. Enclosure and message system of smart and scalable power inverters
US20160134201A1 (en) * 2014-11-06 2016-05-12 Delta Electronics, Inc. Control method and control device for inverter system
EP2667279A4 (en) * 2011-01-18 2016-12-21 Tokyo Inst Tech POWER CONVERTER AND METHOD FOR ITS CONTROL
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US10079558B2 (en) 2016-04-08 2018-09-18 American Superconductor Corporation Switching scheme for static synchronous compensators using cascaded H-bridge converters
US10193340B2 (en) 2017-03-15 2019-01-29 American Superconductor Corporation Multi-level cascaded H-bridge STATCOM circulating cooling fluid within enclosure
US11422200B2 (en) * 2019-01-30 2022-08-23 Delta Electronics, Inc. Cascade converter and online monitoring method thereof

Families Citing this family (203)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5889668A (en) * 1997-09-05 1999-03-30 Electric Power Research Institute, Inc. Three-phase DC-to-AC power inverter with three-level poles
AU2765599A (en) * 1998-02-13 1999-08-30 Wisconsin Alumni Research Foundation Hybrid topology for multilevel power conversion
US6075350A (en) * 1998-04-24 2000-06-13 Lockheed Martin Energy Research Corporation Power line conditioner using cascade multilevel inverters for voltage regulation, reactive power correction, and harmonic filtering
US6031738A (en) * 1998-06-16 2000-02-29 Wisconsin Alumni Research Foundation DC bus voltage balancing and control in multilevel inverters
US6072707A (en) * 1998-10-23 2000-06-06 Siemens Power Transmission & Distribution, Inc. High voltage modular inverter
WO2001005022A1 (es) * 1999-07-09 2001-01-18 Green Global, S.A. Sistema para generar corriente alterna a partir de corriente continua con un alto rendimiento
ES2189702B1 (es) * 1999-07-09 2004-11-16 Green Global, S.A. Sistema para generar corriente alterna a partir de corriente continua con un alto rendimiento.
US6205042B1 (en) 1999-10-27 2001-03-20 General Electric Company Indirect calculation of bus voltage for voltage source inverter
US6503649B1 (en) 2000-04-03 2003-01-07 Convergence, Llc Variable fuel cell power system for generating electrical power
SE521243C2 (sv) * 2001-02-07 2003-10-14 Abb Ab Omriktaranordning samt förfarande för styrning av en sådan
CN100413199C (zh) * 2001-02-28 2008-08-20 艾默生网络能源有限公司 用于多级叠加式高压变频器的脉宽调制控制方法
EP1253706B1 (de) * 2001-04-25 2013-08-07 ABB Schweiz AG Leistungselektronische Schaltungsanordnung und Verfahren zur Uebertragung von Wirkleistung
DE10233443A1 (de) * 2002-07-23 2004-01-29 Still Gmbh Flurförderzeug mit einem elektrischen Antrieb
US7040391B2 (en) * 2003-06-30 2006-05-09 Baker Hughes Incorporated Low harmonic diode clamped converter/inverter
US20060241880A1 (en) * 2003-07-18 2006-10-26 Forth J B Methods and apparatus for monitoring power flow in a conductor
US20070223258A1 (en) * 2003-11-25 2007-09-27 Jih-Sheng Lai Multilevel converters for intelligent high-voltage transformers
US20070230226A1 (en) * 2003-11-25 2007-10-04 Jih-Sheng Lai Multilevel intelligent universal auto-transformer
US6954366B2 (en) * 2003-11-25 2005-10-11 Electric Power Research Institute Multifunction hybrid intelligent universal transformer
US7050311B2 (en) * 2003-11-25 2006-05-23 Electric Power Research Institute, Inc. Multilevel converter based intelligent universal transformer
TWI239439B (en) * 2004-03-24 2005-09-11 Uis Abler Electronics Co Ltd Reactive power compensating device
US7972749B2 (en) * 2004-06-24 2011-07-05 GM Global Technology Operations LLC Low voltage power tap on high voltage stack
US7433216B2 (en) * 2005-11-14 2008-10-07 Hamilton Sundstrand Corporation Voltage control and harmonic minimization of multi-level converter
US7230837B1 (en) * 2006-03-27 2007-06-12 North Carolina State University Method and circuit for cascaded pulse width modulation
CN100449923C (zh) * 2006-07-12 2009-01-07 哈尔滨九洲电气股份有限公司 失电时继续运行的变频器
US7808125B1 (en) 2006-07-31 2010-10-05 Sustainable Energy Technologies Scheme for operation of step wave power converter
CN1929278B (zh) * 2006-08-16 2010-05-12 南京航空航天大学 级联型多电平双降压式半桥逆变器
DE102007018343A1 (de) * 2007-04-16 2008-10-30 Siemens Ag Aktivfilter mit einer Multilevel-Topologie
US8031495B2 (en) * 2007-06-04 2011-10-04 Sustainable Energy Technologies Prediction scheme for step wave power converter and inductive inverter topology
CN101911463B (zh) * 2008-01-08 2013-09-04 Abb技术有限公司 用于控制电压源转换器的方法和电压转换设备
DE102008007659A1 (de) * 2008-02-06 2009-02-19 Siemens Aktiengesellschaft Umrichter
EP2266198B1 (en) * 2008-03-20 2017-05-31 ABB Research Ltd. A voltage source converter
US7719864B2 (en) * 2008-04-02 2010-05-18 Array Converter, Inc. Pulse amplitude modulated current converter
US7929324B1 (en) * 2008-04-02 2011-04-19 Array Converter Inc. Blade architecture array converter
WO2009135528A1 (en) * 2008-05-07 2009-11-12 Abb Technology Ag A voltage source converter
WO2009149743A1 (en) 2008-06-09 2009-12-17 Abb Technology Ag A voltage source converter
US8665617B2 (en) * 2008-06-12 2014-03-04 Abb Technology Ag Plant for transmitting electric power
DE102008032813A1 (de) * 2008-07-11 2010-01-21 Siemens Aktiengesellschaft Netzanbindung von Solarzellen
WO2010040388A1 (en) * 2008-10-07 2010-04-15 Abb Technology Ag Multilevel converter and method for compensating active and reactive power in a high voltage network
FR2937477B1 (fr) * 2008-10-21 2011-02-25 Areva T & D Sa Systeme et procede de controle d'au moins un convertisseur de tension a plusieurs cellules en serie
AU2008363966B2 (en) * 2008-11-07 2015-08-13 Abb Power Grids Switzerland Ag Chain-link converter, method for starting chain-link converter and static compensator system
WO2010069399A1 (en) * 2008-12-19 2010-06-24 Abb Technology Ag A voltage source converter
WO2010069401A1 (en) * 2008-12-19 2010-06-24 Areva T&D Uk Ltd Current source element
US8144491B2 (en) 2008-12-31 2012-03-27 Drs Power & Control Technologies, Inc. Cascaded flying capacitor modular high voltage inverters
DE102009007476A1 (de) * 2009-01-30 2010-08-05 Siemens Aktiengesellschaft Verfahren zum Balancieren der Zwischenkreisspannungen in einem selbstgeführten Multilevel-Blindstromkompensator und selbstgeführter Multilevel-Blindstromkompensator
EP2244363A1 (en) * 2009-04-23 2010-10-27 Mitsubishi Electric R&D Centre Europe B.V. Method and an apparatus for controlling the output voltage of a boost converter
DE102009023626A1 (de) 2009-05-27 2010-12-02 Siemens Aktiengesellschaft Vorrichtung zur Kompensation von Oberschwingungen
CN101599708B (zh) * 2009-06-26 2011-01-26 华中科技大学 级联多电平逆变器的直流侧功率平衡控制方法
DE102009031574A1 (de) 2009-06-30 2011-01-05 Siemens Aktiengesellschaft Aufbau eines mehrstufigen Umrichters der Elektroenergieversorgung
US8482156B2 (en) * 2009-09-09 2013-07-09 Array Power, Inc. Three phase power generation from a plurality of direct current sources
US8395280B2 (en) 2010-02-16 2013-03-12 Infineon Technologies Ag Circuit arrangement including a multi-level converter
FR2956529B1 (fr) * 2010-02-17 2012-03-16 Inst Polytechnique Grenoble Systeme d'equilibrage par couplage magnetique d'une association serie d'elements de generation ou de stockage d'energie electrique
JP5163673B2 (ja) * 2010-03-11 2013-03-13 オムロン株式会社 制御回路、この制御回路を備えるパワーコンディショナ、ならびに太陽光発電システム
DE102010013862A1 (de) 2010-04-01 2011-10-06 Gottfried Wilhelm Leibniz Universität Hannover Transformatorloser Direktumrichter
DE102010027856B4 (de) * 2010-04-16 2023-12-14 Robert Bosch Gmbh Batterie mit integriertem Pulswechselrichter
DE102010018970A1 (de) 2010-04-27 2011-10-27 Siemens Aktiengesellschaft Submodul für einen modularen Mehrstufenumrichter
US8772965B2 (en) * 2010-06-29 2014-07-08 General Electric Company Solar power generation system and method
CN102013691A (zh) * 2010-07-22 2011-04-13 荣信电力电子股份有限公司 一种基于mmc模块化多电平逆变器的无变压器电池储能拓扑结构
CN102013685A (zh) * 2010-07-22 2011-04-13 荣信电力电子股份有限公司 一种基于mmc的无变压器statcom拓扑结构
WO2012016285A1 (en) * 2010-08-04 2012-02-09 Kevin Stephen Davies Solar power conversion system
US9035626B2 (en) 2010-08-18 2015-05-19 Volterra Semiconductor Corporation Switching circuits for extracting power from an electric power source and associated methods
DE102010046142A1 (de) 2010-09-15 2012-03-15 Converteam Gmbh Modularer Schalter für einen elektrischen Umrichter, elektrischer Umrichter sowie Verfahren zum Betreiben eines elektrischen Umrichters
DE102010041065A1 (de) * 2010-09-20 2012-03-22 Robert Bosch Gmbh System zum Laden eines Energiespeichers und Verfahren zum Betrieb des Ladesystems
DE102010041068A1 (de) * 2010-09-20 2012-03-22 Robert Bosch Gmbh System zum Laden eines Energiespeichers und Verfahren zum Betrieb des Ladesystems
DE102010064303A1 (de) 2010-12-29 2012-07-05 Robert Bosch Gmbh Batteriemodul
DE102010064301A1 (de) 2010-12-29 2012-07-05 Robert Bosch Gmbh Batteriezelle
US8952672B2 (en) 2011-01-17 2015-02-10 Kent Kernahan Idealized solar panel
DE102011003810A1 (de) 2011-02-08 2012-08-09 Robert Bosch Gmbh Steuerbarer Energiespeicher und Verfahren zum Betreiben eines steuerbaren Energiespeichers
DE102011003778A1 (de) * 2011-02-08 2012-08-09 Robert Bosch Gmbh Verfahren zum Betrieb eines Steuersystems für eine elektrische Maschine und System zum Steuern einer elektrischen Maschine
FR2972304A1 (fr) 2011-03-02 2012-09-07 Commissariat Energie Atomique Batterie avec gestion individuelle des cellules
WO2012130296A1 (de) 2011-03-30 2012-10-04 Siemens Aktiengesellschaft Hybridumrichter und verfahren zu seiner regelung
DE102011006762A1 (de) 2011-04-05 2012-10-11 Robert Bosch Gmbh Batteriedirektumrichter in Ringkonfiguration
DE102011006761A1 (de) 2011-04-05 2012-10-11 Robert Bosch Gmbh Schaltmatrix, System mit Schaltmatrix und Verfahren zum Ansteuern einer Schaltmatrix
DE102011075376A1 (de) * 2011-05-06 2012-11-08 Sb Limotive Company Ltd. Verfahren zur Steuerung einer Batterie sowie eine Batterie zur Ausführung des Verfahrens
DE102011076199A1 (de) * 2011-05-20 2012-11-22 Siemens Aktiengesellschaft Spannungseinstellvorrichtung
DE102011076515A1 (de) 2011-05-26 2012-11-29 Robert Bosch Gmbh Energiespeichereinrichtung und System mit Energiespeichereinrichtung
DE102011076571A1 (de) 2011-05-27 2012-11-29 Robert Bosch Gmbh Energieversorgungseinrichtung für Wechselrichterschaltungen
DE102011077264B4 (de) * 2011-06-09 2024-04-25 Robert Bosch Gmbh Heizeinrichtung für Energiespeichereinrichtung und Verfahren zum Anwärmen von Energiespeicherzellen einer Energiespeichereinrichtung
DE102011077270A1 (de) 2011-06-09 2012-12-13 Robert Bosch Gmbh Energiespeichereinrichtung, System mit Energiespeichereinrichtung und Verfahren zum Erzeugen einer Versorgungsspannung einer Energiespeichereinrichtung
US9124136B1 (en) * 2011-06-10 2015-09-01 The Florida State University Research Foundation, Inc. System and method for single-phase, single-stage grid-interactive inverter
EP2732527A4 (en) 2011-07-11 2015-10-07 Sinewatts Inc SYSTEMS AND METHOD FOR PHOTOVOLTAIC COLLECTION AND CONVERSION OF SOLAR ENERGY
AU2011379032B2 (en) * 2011-10-14 2015-06-18 Abb Technology Ag A multilevel converter and a method for controlling multilevel converter including balancing cell voltages
DE102011084698A1 (de) 2011-10-18 2013-04-18 Sb Limotive Company Ltd. Umrichtereinheit für eine Asynchronmaschine
US9112430B2 (en) 2011-11-03 2015-08-18 Firelake Acquisition Corp. Direct current to alternating current conversion utilizing intermediate phase modulation
DE102011086545A1 (de) 2011-11-17 2013-05-23 Robert Bosch Gmbh Energiespeichereinrichtung, System mit Energiespeichereinrichtung und Verfahren zum Ansteuern einer Energiespeichereinrichtung
US9071164B2 (en) 2011-12-09 2015-06-30 General Electric Company Multi-phase converter system and method
US9143056B2 (en) 2011-12-16 2015-09-22 Empower Micro Systems, Inc. Stacked voltage source inverter with separate DC sources
US9263971B2 (en) * 2011-12-16 2016-02-16 Empower Micro Systems Inc. Distributed voltage source inverters
US9099938B2 (en) 2011-12-16 2015-08-04 Empower Micro Systems Bi-directional energy converter with multiple DC sources
DE102011089309A1 (de) 2011-12-20 2013-06-20 Robert Bosch Gmbh System und Verfahren zum Ansteuern einer Energiespeichereinrichtung
DE102011089297B4 (de) 2011-12-20 2023-11-16 Robert Bosch Gmbh Energiespeichereinrichtung, System mit Energiespeichereinrichtung und Verfahren zum Ansteuern einer Energiespeichereinrichtung
DE102011089312A1 (de) 2011-12-20 2013-06-20 Robert Bosch Gmbh System und Verfahren zum Laden der Energiespeicherzellen einer Energiespeichereinrichtung
DE102011089648A1 (de) * 2011-12-22 2013-06-27 Robert Bosch Gmbh Energiespeichereinrichtung, System mit Energiespeichereinrichtung und Verfahren zum Ansteuern einer Energiespeichereinrichtung
KR101255959B1 (ko) * 2011-12-28 2013-04-23 주식회사 효성 전압원 컨버터를 보호하기 위한 보호 회로
KR101221159B1 (ko) * 2011-12-30 2013-01-10 연세대학교 산학협력단 멀티레벨 컨버터의 제어방법
DE102012200577A1 (de) * 2012-01-17 2013-07-18 Robert Bosch Gmbh Kraftfahrzeug, Batterie und Verfahren zum Steuern einer Batterie
KR101422905B1 (ko) * 2012-01-30 2014-07-23 엘에스산전 주식회사 고압인버터 제어장치 및 고압인버터 시스템
DE102012202853A1 (de) 2012-02-24 2013-08-29 Robert Bosch Gmbh Ladeschaltung für eine Energiespeichereinrichtung und Verfahren zum Laden einer Energiespeichereinrichtung
DE102012202856A1 (de) 2012-02-24 2013-08-29 Robert Bosch Gmbh Ladeschaltung für eine Energiespeichereinrichtung und Verfahren zum Laden einer Energiespeichereinrichtung
DE102012202867A1 (de) 2012-02-24 2013-08-29 Robert Bosch Gmbh Ladeschaltung für eine Energiespeichereinrichtung und Verfahren zum Laden einer Energiespeichereinrichtung
DE102012202868A1 (de) 2012-02-24 2013-08-29 Robert Bosch Gmbh Gleichspannungsabgriffsanordnung für eine Energiespeichereinrichtung und Verfahren zum Erzeugen einer Gleichspannung aus einer Energiespeichereinrichtung
DE102012202855A1 (de) 2012-02-24 2013-08-29 Robert Bosch Gmbh Gleichspannungsabgriffsanordnung für eine Energiespeichereinrichtung und Verfahren zum Erzeugen einer Gleichspannung aus einer Energiespeichereinrichtung
DE102012205109B4 (de) 2012-03-29 2022-11-10 Robert Bosch Gmbh Verfahren zum Betreiben einer Energiespeichereinrichtung, Energiespeichereinrichtung zum Erzeugen einer Versorgungsspannung für eine elektrische Maschine sowie Sytem mit einer Energiespeichereinrichtung
DE102012205119A1 (de) 2012-03-29 2013-10-02 Robert Bosch Gmbh Verfahren zum Aufheizen von Energiespeicherzellen einer Energiespeichereinrichtung und aufheizbare Energiespeichereinrichtung
US9444320B1 (en) 2012-04-16 2016-09-13 Performance Controls, Inc. Power controller having active voltage balancing of a power supply
US8619446B2 (en) 2012-04-27 2013-12-31 Rockwell Automation Technologies, Inc. Cascaded H-bridge (CHB) inverter level shift PWM with rotation
US8982593B2 (en) 2012-04-27 2015-03-17 Rockwell Automation Technologies, Inc. Cascaded H-Bridge (CHB) inverter level shift PWM with rotation
DE102012209179A1 (de) 2012-05-31 2013-12-05 Robert Bosch Gmbh Energiespeichereinrichtung, System mit Energiespeichereinrichtung und Verfahren zum Bereitstellen einer Versorgungsspannung
DE102012209392A1 (de) 2012-06-04 2013-12-05 Robert Bosch Gmbh Verfahren zum dynamischen Einstellen eines Kurzschlusszustands in einer Energiespeichereinrichtung
DE102012209652A1 (de) * 2012-06-08 2013-12-12 Robert Bosch Gmbh Verfahren zur Bestimmung eines ohmschen Innenwiderstandes eines Batteriemoduls, Batteriemanagementsystem und Kraftfahrzeug
DE102012210010A1 (de) 2012-06-14 2013-12-19 Robert Bosch Gmbh Energiespeichereinrichtung, System mit Energiespeichereinrichtung und Verfahren zum Bereitstellen einer Versorgungsspannung
DE102012212262A1 (de) * 2012-07-13 2014-01-16 Robert Bosch Gmbh Ansteuervorrichtung und Verfahren zum Laden eines elektrischen Energiespeichers
CN103580517A (zh) 2012-08-08 2014-02-12 Abb技术有限公司 用于运行功率电子电路的方法
US9425705B2 (en) 2012-08-13 2016-08-23 Rockwell Automation Technologies, Inc. Method and apparatus for bypassing cascaded H-bridge (CHB) power cells and power sub cell for multilevel inverter
US9007787B2 (en) 2012-08-13 2015-04-14 Rockwell Automation Technologies, Inc. Method and apparatus for bypassing Cascaded H-Bridge (CHB) power cells and power sub cell for multilevel inverter
CN102832841B (zh) * 2012-08-27 2014-09-17 清华大学 一种带辅助二极管模块化多电平变换器
DE102012215743A1 (de) 2012-09-05 2014-03-06 Robert Bosch Gmbh Steuereinrichtung und Verfahren zum Bestimmen des Ladungszustands von Energiespeicherzellen einer Energiespeichereinrichtung
DE102012216469A1 (de) 2012-09-14 2014-03-20 Robert Bosch Gmbh Energieversorgungssystem und Verfahren zum Ansteuern von Koppeleinrichtungen einer Energiespeichereinrichtung
CN102857136B (zh) * 2012-10-10 2015-04-08 范家闩 一种高压直流到交流变换的换流器
DE102012220376A1 (de) * 2012-11-08 2014-05-08 Robert Bosch Gmbh Vorrichtung und Verfahren zum Laden eines elektrischen Energiespeichers aus einer Wechselspannungsquelle
JP6139111B2 (ja) * 2012-11-15 2017-05-31 株式会社東芝 無効電力補償装置
DE102012222343A1 (de) 2012-12-05 2014-06-05 Robert Bosch Gmbh Verfahren zum Bereitstellen einer Versorgungsspannung und elektrisches Antriebssystem
DE102012222333A1 (de) 2012-12-05 2014-06-05 Robert Bosch Gmbh Energiespeichereinrichtung und System mit Energiespeichereinrichtung zum Bereitstellen einer Versorgungsspannung
CN104467397B (zh) * 2012-12-13 2017-01-11 国网山东省电力公司蒙阴县供电公司 矫正功率因数、提高变压器利用率的链式svg装置
CN103036238B (zh) * 2012-12-24 2015-02-04 珠海万力达电气自动化有限公司 一种链式有源电力滤波器链节单元旁路控制结构及方法
CN103066871A (zh) * 2013-01-15 2013-04-24 中国矿业大学(北京) 大功率级联式二极管h桥单位功率因数整流器
DE102013202650A1 (de) 2013-02-19 2014-08-21 Robert Bosch Gmbh Interne Energieversorgung von Energiespeichermodulen für eine Energiespeichereinrichtung und Energiespeichereinrichtung mit solchem
DE102013202652A1 (de) 2013-02-19 2014-08-21 Robert Bosch Gmbh Ladeschaltung für eine Energiespeichereinrichtung und Verfahren zum Laden einer Energiespeichereinrichtung
KR102201102B1 (ko) 2013-03-15 2021-01-12 디자인 플럭스 테크놀로지스, 엘엘씨 동적으로 재구성가능한 에너지 스토리지 장치를 생성하기 위한 방법 및 장치
DE102013204541A1 (de) * 2013-03-15 2014-09-18 Robert Bosch Gmbh Batteriezelleinheit mit Batteriezelle und ultraschneller Entladeschaltung und Verfahren zur Überwachung einer Batteriezelle
US9240731B2 (en) 2013-03-18 2016-01-19 Rockwell Automation Technologies, Inc. Power cell bypass method and apparatus for multilevel inverter
DE102013205562A1 (de) 2013-03-28 2014-10-02 Robert Bosch Gmbh Energiespeichereinrichtung und System mit einer Energiespeichereinrichtung
US9246407B2 (en) 2013-03-29 2016-01-26 General Electric Company Voltage balancing system and method for multilevel converters
DE102013206942A1 (de) 2013-04-17 2014-10-23 Robert Bosch Gmbh Batteriesystem mit in einem Batteriestrang angeordneten Batteriemodulen und Verfahren zur Ermittlung zumindest eines Betriebsparameters eines Batteriemoduls des Batteriesystems
DE102013208338A1 (de) 2013-05-07 2014-11-13 Robert Bosch Gmbh Antriebssystem mit Energiespeichereinrichtung und Transversalflussmaschine und Verfahren zum Betreiben einer Transversalflussmaschine
JP2014233126A (ja) * 2013-05-28 2014-12-11 株式会社東芝 電力変換装置
JP6149516B2 (ja) * 2013-06-03 2017-06-21 ミツミ電機株式会社 光走査装置、光走査制御装置及び光走査ユニット
BR112015030204A2 (pt) * 2013-06-07 2017-07-25 Abb Technology Ltd disposição de conversor para compensação de potência e método para controlar um conversor de potência
DE102013211094A1 (de) 2013-06-14 2014-12-18 Robert Bosch Gmbh Energiespeichermodul für eine Energiespeichereinrichtung und Energiespeichereinrichtung mit solchem
US9083230B2 (en) 2013-06-20 2015-07-14 Rockwell Automation Technologies, Inc. Multilevel voltage source converters and systems
DE102013212716A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Energiespeichereinrichtung mit Gleichspannungsversorgungsschaltung und Verfahren zum Bereitstellen einer Gleichspannung aus einer Energiespeichereinrichtung
DE102013212692A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Energiespeichereinrichtung mit Gleichspannungsversorgungsschaltung
DE102013212682B4 (de) 2013-06-28 2017-03-02 Robert Bosch Gmbh Energiespeichereinrichtung mit Gleichspannungsversorgungsschaltung und Verfahren zum Bereitstellen einer Gleichspannung aus einer Energiespeichereinrichtung
DE102013218081A1 (de) * 2013-09-10 2015-03-12 Robert Bosch Gmbh Batteriemoduleinrichtung und Verfahren zur Bestimmung einer komplexen Impedanz eines in einer Batteriemoduleinrichtung angeordneten Batteriemoduls
RU2016115720A (ru) * 2013-09-23 2017-10-30 Сименс Акциенгезелльшафт Новая топология четырехуровневой ячейки преобразователя для каскадных модульных многоуровневых преобразователей
DE102013221830A1 (de) 2013-10-28 2015-04-30 Robert Bosch Gmbh Ladeschaltung für eine Energiespeichereinrichtung und Verfahren zum Laden einer Energiespeichereinrichtung
DE102013224511A1 (de) 2013-11-29 2015-06-03 Robert Bosch Gmbh Elektrisches Antriebssystem mit Ladeschaltung für eine Energiespeichereinrichtung und Verfahren zum Betreiben einer Energiespeichereinrichtung
EP2881811B1 (en) 2013-12-06 2018-08-01 General Electric Technology GmbH A control apparatus for a voltage source converter comprising a redundant control system of two controllers
US9520800B2 (en) 2014-01-09 2016-12-13 Rockwell Automation Technologies, Inc. Multilevel converter systems and methods with reduced common mode voltage
US9325252B2 (en) 2014-01-13 2016-04-26 Rockwell Automation Technologies, Inc. Multilevel converter systems and sinusoidal pulse width modulation methods
DE102014201363A1 (de) * 2014-01-27 2015-07-30 Robert Bosch Gmbh Verfahren und Schaltungsanordnung zur Bestimmung des Coulomb-Wirkungsgrades von Batteriemodulen
DE102014201365A1 (de) * 2014-01-27 2015-07-30 Robert Bosch Gmbh Verfahren und Schaltungsanordnung zur Bestimmung des Coulomb-Wirkungsgrades von Batteriemodulen
DE102014201711A1 (de) 2014-01-31 2015-08-06 Robert Bosch Gmbh Energiespeichereinrichtung, System mit Energiespeichereinrichtung und Verfahren zum Ansteuern einer Energiespeichereinrichtung
US10248148B2 (en) 2014-05-22 2019-04-02 Siemens Aktiengesellschaft Converter for symmetrical reactive power compensation, and a method for controlling same
WO2015188877A1 (de) * 2014-06-13 2015-12-17 Siemens Aktiengesellschaft Umrichter zur blindleistungsabgabe sowie verfahren zu dessen regelung
US9667164B2 (en) * 2014-06-27 2017-05-30 Alstom Technology, Ltd. Voltage-source converter full bridge module IGBT configuration and voltage-source converter
CN106605348B (zh) * 2014-07-14 2020-09-18 亚力山大·菲利普·戴维斯 一种控制功率转换系统的方法
DE102014218063A1 (de) 2014-09-10 2016-03-10 Robert Bosch Gmbh Energiespeichereinrichtung und Verfahren zum Betreiben einer Energiespeichereinrichtung
JP6396135B2 (ja) * 2014-09-17 2018-09-26 株式会社東芝 電力変換装置
US10184990B2 (en) 2014-10-30 2019-01-22 The Boeing Company Programmable alternating current (AC) load having regenerative and dissipative modes
US9611836B2 (en) 2014-11-26 2017-04-04 Siemens Aktiengesellschaft Wind turbine power conversion system
US9559541B2 (en) 2015-01-15 2017-01-31 Rockwell Automation Technologies, Inc. Modular multilevel converter and charging circuit therefor
US10732685B2 (en) 2015-02-27 2020-08-04 Ge Energy Power Conversion Technology Limited System and method for operating power converters
US10063134B2 (en) * 2015-05-05 2018-08-28 Abb Schweiz Ag Voltage source converter with improved operation
US9748862B2 (en) 2015-05-13 2017-08-29 Rockwell Automation Technologies, Inc. Sparse matrix multilevel actively clamped power converter
US10116159B1 (en) 2015-06-02 2018-10-30 The Florida State University Research Foundation, Inc. Family of isolated battery energy storage system (BESS) with multiple functions for DC grid application
US10033263B2 (en) * 2015-06-26 2018-07-24 Board Of Trustees Of Michigan State University System and method for optimizing fundamental frequency modulation for a cascaded multilevel inverter
CN105024574B (zh) * 2015-07-22 2017-09-08 上海交通大学 适用于载波移相调制的mmc子模块电容电压平衡控制方法
GB2541007B (en) * 2015-08-05 2017-12-13 General Electric Technology Gmbh Voltage source converter
CH713045B1 (de) 2015-08-24 2022-06-15 Imperix Sa Vorrichtung, verteiltes Modulationssystem und Verfahren für leistungselektronische Anwendungen.
CN105470978B (zh) * 2016-01-12 2017-10-13 国电南瑞科技股份有限公司 一种静止无功补偿装置成组协调控制方法
JP6512710B2 (ja) * 2016-03-25 2019-05-15 東芝三菱電機産業システム株式会社 電力変換装置
WO2018031642A1 (en) * 2016-08-11 2018-02-15 University Of Florida Research Foundation, Incorporated A four-quadrant modulation technique to extend modulation index range for multilevel selective harmonic elimination / compensation
US9812990B1 (en) 2016-09-26 2017-11-07 Rockwell Automation Technologies, Inc. Spare on demand power cells for modular multilevel power converter
KR20180064670A (ko) 2016-12-06 2018-06-15 엘에스산전 주식회사 무효전력보상장치 및 그 제어 방법
EP3605822B1 (en) * 2017-03-22 2022-03-02 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion device
EP3639361A4 (en) 2017-06-16 2021-03-24 TAE Technologies, Inc. MULTI-LEVEL HYSTERESIS VOLTAGE REGULATORS FOR VOLTAGE MODULATORS, AND RELATED CONTROL PROCEDURES
JP6884481B2 (ja) * 2017-09-27 2021-06-09 東芝三菱電機産業システム株式会社 電力変換装置
AU2019239085A1 (en) 2018-03-22 2020-10-08 Tae Technologies, Inc. Systems and methods for power management and control
US10158299B1 (en) 2018-04-18 2018-12-18 Rockwell Automation Technologies, Inc. Common voltage reduction for active front end drives
US11228257B2 (en) 2018-05-04 2022-01-18 Aalborg Universitet Power circuits for modular multi-level converters (MMC) and modular multi-level converters
DK180754B1 (en) 2018-05-25 2022-02-24 Kk Wind Solutions As Wind turbine converter with integrated battery storage
CN108767875B (zh) * 2018-05-30 2021-11-16 西南交通大学 一种虚拟同相供电系统及供电方法
WO2020056534A1 (es) * 2018-09-21 2020-03-26 Universidad Técnica Federico Santa María Un convertidor de potencia parcial sin transformador (ppc) para la etapa dc-dc de estaciones de carga rápida de vehículos eléctricos (ev)
JP7021624B2 (ja) * 2018-09-26 2022-02-17 株式会社明電舎 直列多重電力変換装置およびその制御方法
DE102018221518A1 (de) * 2018-12-12 2020-06-18 Siemens Healthcare Gmbh Hochspannungsgenerator zum Bereitstellen eines Hochspannungsimpulses
EP3713073A1 (de) * 2019-03-19 2020-09-23 Siemens Aktiengesellschaft Stromrichter und verfahren zu dessen regelung
JP2022527472A (ja) 2019-03-29 2022-06-02 ティーエーイー テクノロジーズ, インコーポレイテッド コンバータ・ソースモジュールを有するモジュールベースのエネルギーシステムおよびそれに関連する方法
CN109830968A (zh) * 2019-04-03 2019-05-31 山东大学 基于混合式分散控制的级联h桥型svg系统及方法
DE102019110177A1 (de) 2019-04-17 2020-10-22 instagrid GmbH Energiesparbetrieb für ein Energieversorgungssystem mit Batteriespeicher
JP6856099B2 (ja) * 2019-09-06 2021-04-07 株式会社明電舎 直列多重インバータの制御装置
US11211879B2 (en) 2019-09-23 2021-12-28 Rockwell Automation Technologies, Inc. Capacitor size reduction and lifetime extension for cascaded H-bridge drives
TWI721621B (zh) 2019-10-29 2021-03-11 財團法人工業技術研究院 基於電池重組之可展延式三相交流系統及其控制方法
JP2024511245A (ja) 2020-04-14 2024-03-13 ティーエーイー テクノロジーズ, インコーポレイテッド モジュールベースのカスケードエネルギーシステムを充電および放電するためのシステム、デバイス、および方法
CN115916581A (zh) 2020-05-14 2023-04-04 阿尔法能源技术公司 具有模块化级联能量系统的基于轨道的和其他电动车辆的系统、设备和方法
US10855201B1 (en) 2020-06-04 2020-12-01 King Saud University Cascaded multilevel inverter
CA3196955A1 (en) 2020-09-28 2022-03-31 Tae Technologies, Inc. Multi-phase module-based energy system frameworks and methods related thereto
MX2023003716A (es) 2020-09-30 2023-06-16 Tae Tech Inc Sistemas, dispositivos y métodos para el equilibrado intrafasico e interfasico en sistemas de energía en cascada basados en módulos.
US11677264B2 (en) 2020-11-09 2023-06-13 Electronic Power Design, Inc. System and method for a backup power supply
US11342878B1 (en) 2021-04-09 2022-05-24 Rockwell Automation Technologies, Inc. Regenerative medium voltage drive (Cascaded H Bridge) with reduced number of sensors
US11296509B1 (en) 2021-05-03 2022-04-05 Switched Source PB, LLC Zero-sequence current balancer with a real power injector for a three-phase power system
DE102021111861A1 (de) 2021-05-06 2022-11-10 instagrid GmbH Energieversorgungssystem
DE102021111864A1 (de) 2021-05-06 2022-11-10 instagrid GmbH Energieversorgungssystem und Verfahren zum Laden eines Energieversorgungssystems
CA3226136A1 (en) 2021-07-07 2023-01-12 Tae Technologies, Inc. Systems, devices, and methods for module-based cascaded energy systems configured to interface with renewable energy sources

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3581212A (en) 1969-07-31 1971-05-25 Gen Electric Fast response stepped-wave switching power converter circuit
US3867643A (en) 1974-01-14 1975-02-18 Massachusetts Inst Technology Electric power converter
US4052657A (en) 1976-04-22 1977-10-04 Rockwell International Corporation Distribution system for a. c. electrical energy derived from d. c. energy sources
US4052658A (en) 1976-10-18 1977-10-04 Sundstrand Corporation Inverter circuit for producing synthesized sinusoidal waveforms
FR2349231A1 (fr) 1976-04-23 1977-11-18 Thomson Csf Dispositif generateur de signaux periodiques et puissance elevee,a frequence variable et haut rendement,et systeme muni d'un tel dispositif
US4470005A (en) 1982-11-02 1984-09-04 Westinghouse Electric Corp. Static VAR generator having a thyristor circuit arrangement providing reduced losses
US4571535A (en) 1984-11-15 1986-02-18 Westinghouse Electric Corp. VAR Generator having controlled discharge of thyristor switched capacitors
US5270657A (en) 1992-03-23 1993-12-14 General Electric Company Split gradient amplifier for an MRI system
US5311419A (en) 1992-08-17 1994-05-10 Sundstrand Corporation Polyphase AC/DC converter
US5329221A (en) 1992-08-12 1994-07-12 Electric Power Research Institute Advanced static var compensator control system
US5345375A (en) 1991-12-16 1994-09-06 Regents Of The University Of Minnesota System and method for reducing harmonic currents by current injection
US5424627A (en) 1991-12-13 1995-06-13 Electric Power Research Institute Modular thyristor controlled series capacitor control system
US5481448A (en) 1990-09-14 1996-01-02 Hitachi, Ltd. Multilevel inverter having voltage dividing capacitors distributed across multiple arms
US5532575A (en) 1994-01-08 1996-07-02 Gec Alsthom Limited Multilevel converter with capacitor voltage balancing
US5535114A (en) 1991-10-22 1996-07-09 Hitachi, Ltd. Power converter
US5644483A (en) * 1995-05-22 1997-07-01 Lockheed Martin Energy Systems, Inc. Voltage balanced multilevel voltage source converter system

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3581212A (en) 1969-07-31 1971-05-25 Gen Electric Fast response stepped-wave switching power converter circuit
US3867643A (en) 1974-01-14 1975-02-18 Massachusetts Inst Technology Electric power converter
US4052657A (en) 1976-04-22 1977-10-04 Rockwell International Corporation Distribution system for a. c. electrical energy derived from d. c. energy sources
FR2349231A1 (fr) 1976-04-23 1977-11-18 Thomson Csf Dispositif generateur de signaux periodiques et puissance elevee,a frequence variable et haut rendement,et systeme muni d'un tel dispositif
US4052658A (en) 1976-10-18 1977-10-04 Sundstrand Corporation Inverter circuit for producing synthesized sinusoidal waveforms
US4470005A (en) 1982-11-02 1984-09-04 Westinghouse Electric Corp. Static VAR generator having a thyristor circuit arrangement providing reduced losses
US4571535A (en) 1984-11-15 1986-02-18 Westinghouse Electric Corp. VAR Generator having controlled discharge of thyristor switched capacitors
US5481448A (en) 1990-09-14 1996-01-02 Hitachi, Ltd. Multilevel inverter having voltage dividing capacitors distributed across multiple arms
US5535114A (en) 1991-10-22 1996-07-09 Hitachi, Ltd. Power converter
US5424627A (en) 1991-12-13 1995-06-13 Electric Power Research Institute Modular thyristor controlled series capacitor control system
US5345375A (en) 1991-12-16 1994-09-06 Regents Of The University Of Minnesota System and method for reducing harmonic currents by current injection
US5270657A (en) 1992-03-23 1993-12-14 General Electric Company Split gradient amplifier for an MRI system
US5329221A (en) 1992-08-12 1994-07-12 Electric Power Research Institute Advanced static var compensator control system
US5311419A (en) 1992-08-17 1994-05-10 Sundstrand Corporation Polyphase AC/DC converter
US5532575A (en) 1994-01-08 1996-07-02 Gec Alsthom Limited Multilevel converter with capacitor voltage balancing
US5644483A (en) * 1995-05-22 1997-07-01 Lockheed Martin Energy Systems, Inc. Voltage balanced multilevel voltage source converter system

Non-Patent Citations (26)

* Cited by examiner, † Cited by third party
Title
"A Comparison of Different Circuit Configurations for an Advanced Static VAR Compensator (ASVC)," by D. Wuest, H. Stemmler & G. Scheuer in IEEE Power Electronics Specialists Conference, Toledo, Spain, Jun. 29-Jul. 3, 1992 (PESC '92 Record) vol. 1, pp. 521-529.
"A New N-Level High Voltage Inversion System," by Young-Seok Kim, Beom-Seok Seo & Dong-Seok Hyun, in IEEE Doc No 0-7803-0891-3/93, pp. 1252-1258.
"A Novel Multilevel Structure for Voltage Source Inverter," by M. Carpita, S. Tenconi, & M. Fracchia in EPE Firenze, 1991, pp. 1-090 through 1-094.
"A Static VAR Generator Using a Staircase Waveform Multilevel Voltage-Source Converter," by Fang Zheng Peng & Jih-Sheng Lai in Power Quality, Sep. 1994 Proceedings, pp. 58-66.
"A Study of Active Power Filters Using Quad-Series Voltage-Source PWM Converters for Harmonic Compensation," by Fang-Zhang Peng, Hirofumi Akagi & Akira Nabae in IEEE Transactions on Power Electronics, vol. 5, No. 1, Jan. 1990, pp. 9-15.
"Active AC Power Filters," by L. Gyugyi & E.C. Strycula, in IAS '76 Annual, 19-C, pp. 529-535.
"Advanced Static Compensation Using a Multilevel GTO Thyristor Inverter," by R.W. Menzies & Yiping Zhuang, in IEEE Transactions on Power Delivery, vol. 10, No. 2, Apr. 1995, pp. 732-738.
"An Active Power Quality Conditioner for Reactive Power and Harmonics Compensation," by N.R. Raju, S.S. Venkata, R.A. Kagalwala, & V. V. Sastry, in an unidentified publication, on Dec. 6, 1995, pp. 209-214.
"Analysis and Design of a Three-Phase Current Source Solid-State V Ar Compensator," by Luis T. Moran, Phoivos D. Ziogas, & Geza Joos in IEEE Transactions on Industry Applications, vol. 25, No. 2, Mar./Apr. 1989, pp. 356-365.
"Analysis of GTO-Based Static VAR Compensators," by D.R. Trainer, S.B. Tennakoon, & R.E. Morrison in IEEE Proceedings-Electric Power Applications, vol. 141, No. 6, Nov. 1994, pp. 293-302.
"Comparison of Multilevel Inverters for Static VAr Compensation," by Clark Hochgraf, Robert Lasseter, Deepak Divan, & T.A. Lipo, in IEEE Doc. No. 0-7803-1993-1/94, pp. 921-928.
"Control Strategy of Active Power Filters Using Multiple Voltage-Source PWM Converters," by Hirofumi Akagi, Akira Nabae, & Satoshi Atoh, in IEEE Transactions on Industry Applications, vol. 1A-22, No. 3, May/Jun. 1986, pp. 460-465.
"Controlling a Back-to-Back DC Link to Operate as a Phase Shift Transformer," by D.A. Woodford & R.W. Menzies, paper 14-202 in CIGRE 1994.
"Development of a ±100 MVAR Static Condenser for Voltage Control of Transmission Systems," by C. Schauder, M. Gernhardt, E. Stacey, T. Lemak, L. Gyugyi, T.W. Cease & A. Edris, a paper presented at the IEEE/PES 1994 Summer Meeting, San Francisco, California, Jul. 24-28, 1994.
"Development of a Large Static V Ar Generator Using Self-Commutated Inverters for Improving Power System Stability," by Shosuke Mori, Masatoshi Takeda et al. in IEEE Transactions on Power Systems, vol. 8, No. 1, Feb. 1993, pp. 371-377.
"Experimental Investigation of an Advanced Static VAr Compensator," by J.B. Ekanayake, N. Jenkins, & C.B. Cooper in IEEE Proceedings-Generation, Transmission and Distribution, vol. 142, No. 2, Mar. 1995, pp. 202-210.
"Force-Commutated Reactive-Power Compensator," by Loren H. Walker, in IEEE Transactions on Industry Applications, vol. 1A-22, No. 6, Nov./Dec. 1986, pp. 1091-1104.
"High-Performance Current Control Techniques for Applications to Multilevel High-Power Voltage Source Inverters," by Mario Marchesoni, in IEEE Transactions on Power Electronics, vol. 7, No. 1, Jan. 1992, pp. 189-204.
"Modeling Analysis and Control of Static VAr Compensator Using Three-Level Inverter," by Guk C. Cho, Nam S. Choi, Chun T. Rim & Gyu H. Cho, in Conference Record of the IEEE Industry Applications Society Annual Meeting, Houston, Texas, Oct. 4-9, 1992, vol. 1, pp. 837-843.
"Modeling and Analysis of a Multilevel Voltage Source Inverter Applied as a Static VAr Compensator," by Nam S. Choi, Guk C. Cho, & Gyu H. Cho, in International Journal of Electronics, 1993, vol. 75, No. 5, 1015-1034.
"Modeling and Analysis of a Static VAr Compensator Using Multilevel Voltage Source Inverter," by Nam S. Choi, Guk C. Cho & Gyu H. Cho, in Conference Record of the 1993 IEEE Industry Applications Conference, 28th IAS Annual Meeting, Toronto, Canada Oct. 1993, pp. 901-908.
"Naturally Commutated Thyristor-Controlled High-Pulse VAr Compensator," by J. Arrillaga, R.D. Brough, & R.M. Duke, in IEEE Proceedings-Generation, Transmission & Distribution, vol. 142, No. 2, Mar. 1995, pp. 219-224.
"Principles and Applications of Static Thyristor-Controlled Shunt Compensators," by L. Gyugyi, R.A. Otto, & T.H. Putman, in IEEE Transactions on Power Apparatus and Systems, vol. PAS-97, No. 5, Sep./Oct. 1978, pp. 1935-1945.
"Simulation and Experimental Study of a Reactively Loaded PWM Converter as a Fast Source of Reactive Power," by Jacobus D. Van Wyk, Dirk Adrian Marshall & Septimus Boshoff in IEEE Transactions on Industry Applications, vol. 1A-22, No. 6, Nov./Dec. 1986, pp. 1082-1090.
"Which is Better at a High Power Reactive Power Compensation System: High PWM Frequency or Multiple Connections?" by Nagataka Seki & Hiroshi Uchino, IEEE Doc No. 0-7803-1993-1/94, pp. 946-953.
Japanese article "Static Type Reactive Power Generator (SVG) of Shinbiwajima Transformer Station," by Shigeru Nakajima and Ichibei Komori in Tetsudo to Denki Gijutsu("Railroad and Electric Technology") vol. 5 No. 6 (1994) pp. 41-45 (w/translation).

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE41040E1 (en) 2001-11-19 2009-12-15 Power Paragon, Inc. Step switched PWM sine generator
US6556461B1 (en) * 2001-11-19 2003-04-29 Power Paragon, Inc. Step switched PWM sine generator
US20050127853A1 (en) * 2003-12-12 2005-06-16 Gui-Jia Su Multi-level dc bus inverter for providing sinusoidal and pwm electrical machine voltages
US6969967B2 (en) * 2003-12-12 2005-11-29 Ut-Battelle Llc Multi-level dc bus inverter for providing sinusoidal and PWM electrical machine voltages
US7847436B2 (en) * 2007-10-17 2010-12-07 Edwin Arthur Blackmond Modular power supply
US20090102288A1 (en) * 2007-10-17 2009-04-23 Edwin Arthur Blackmond Modular Power Supply
US20090302682A1 (en) * 2008-05-30 2009-12-10 Siemens Energy & Automation, Inc. Method and system for reducing switching losses in a high-frequency multi-cell power supply
US8169107B2 (en) 2008-05-30 2012-05-01 Siemens Industry, Inc. Method and system for reducing switching losses in a high-frequency multi-cell power supply
US8279640B2 (en) 2008-09-24 2012-10-02 Teco-Westinghouse Motor Company Modular multi-pulse transformer rectifier for use in symmetric multi-level power converter
US7830681B2 (en) 2008-09-24 2010-11-09 Teco-Westinghouse Motor Company Modular multi-pulse transformer rectifier for use in asymmetric multi-level power converter
US8045346B2 (en) 2008-09-24 2011-10-25 Teco-Westinghouse Motor Company Modular multi-pulse transformer rectifier for use in asymmetric multi-level power converter
US20100142234A1 (en) * 2008-12-31 2010-06-10 Mehdi Abolhassani Partial regeneration in a multi-level power inverter
US7940537B2 (en) 2008-12-31 2011-05-10 Teco-Westinghouse Motor Company Partial regeneration in a multi-level power inverter
US20110199033A1 (en) * 2008-12-31 2011-08-18 Mehdi Abolhassani Partial Regeneration In A Multi-Level Power Inverter
US8213198B2 (en) 2008-12-31 2012-07-03 Teco-Westinghouse Motor Company Partial regeneration in a multi-level power inverter
US20100213921A1 (en) * 2009-02-26 2010-08-26 Mehdi Abolhassani Pre-Charging An Inverter Using An Auxiliary Winding
US8223515B2 (en) 2009-02-26 2012-07-17 TECO—Westinghouse Motor Company Pre-charging an inverter using an auxiliary winding
US8416595B2 (en) * 2009-06-18 2013-04-09 Abb Technology Ag Arrangement for exchanging power
US8259480B2 (en) * 2009-06-18 2012-09-04 Abb Technology Ag Arrangement for exchanging power
US20120081939A1 (en) * 2009-06-18 2012-04-05 Jean-Philippe Hasler Arrangement For Exchanging Power
US20120092906A1 (en) * 2009-06-18 2012-04-19 Jean-Philippe Hasler Arrangement for exchanging power
US9609777B2 (en) 2009-06-30 2017-03-28 Teco-Westinghouse Motor Company Pluggable power cell for an inverter
US8254076B2 (en) 2009-06-30 2012-08-28 Teco-Westinghouse Motor Company Providing modular power conversion
US8130501B2 (en) 2009-06-30 2012-03-06 Teco-Westinghouse Motor Company Pluggable power cell for an inverter
US8976526B2 (en) 2009-06-30 2015-03-10 Teco-Westinghouse Motor Company Providing a cooling system for a medium voltage drive system
US8575479B2 (en) 2009-06-30 2013-11-05 TECO—Westinghouse Motor Company Providing a transformer for an inverter
US8711530B2 (en) 2009-06-30 2014-04-29 Teco-Westinghouse Motor Company Pluggable power cell for an inverter
US9220179B2 (en) 2009-06-30 2015-12-22 Teco-Westinghouse Motor Company Pluggable power cell for an inverter
US9257916B2 (en) 2009-07-16 2016-02-09 Cyboenergy, Inc. Power inverters with multiple input channels
US8547718B2 (en) * 2009-07-21 2013-10-01 Hitachi, Ltd. Power converter apparatus
US20110019449A1 (en) * 2009-07-21 2011-01-27 Shuji Katoh Power converter apparatus
US8374009B2 (en) 2010-03-25 2013-02-12 Hamilton Sundstrand Corporation Multi-level parallel phase converter
US20110235376A1 (en) * 2010-03-25 2011-09-29 Feng Frank Z Multi-level parallel phase converter
US8536734B2 (en) 2010-04-14 2013-09-17 East Coast Research And Development, Llc Apparatus for inverting DC voltage to AC voltage
EP2667279A4 (en) * 2011-01-18 2016-12-21 Tokyo Inst Tech POWER CONVERTER AND METHOD FOR ITS CONTROL
US9093902B2 (en) * 2011-02-15 2015-07-28 Cyboenergy, Inc. Scalable and redundant mini-inverters
US20120212065A1 (en) * 2011-02-15 2012-08-23 George Shu-Xing Cheng Scalable and redundant mini-inverters
US8601190B2 (en) 2011-06-24 2013-12-03 Teco-Westinghouse Motor Company Providing multiple communication protocols for a control system having a master controller and a slave controller
US9331488B2 (en) 2011-06-30 2016-05-03 Cyboenergy, Inc. Enclosure and message system of smart and scalable power inverters
US9294003B2 (en) 2012-02-24 2016-03-22 Board Of Trustees Of Michigan State University Transformer-less unified power flow controller
US8730696B2 (en) * 2012-07-16 2014-05-20 Delta Electronics, Inc. Multi-level voltage converter
US20140016380A1 (en) * 2012-07-16 2014-01-16 Delta Electronics, Inc. Multi-level voltage converter
US9331489B2 (en) * 2013-03-07 2016-05-03 Cyboenergy, Inc. Maximizing power production at low sunlight by solar power mini-inverters
US20140252862A1 (en) * 2013-03-07 2014-09-11 Cyboenergy, Inc. Maximizing Power Production at Low Sunlight by Solar Power Mini-Inverters
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US11742777B2 (en) 2013-03-14 2023-08-29 Solaredge Technologies Ltd. High frequency multi-level inverter
US11545912B2 (en) 2013-03-14 2023-01-03 Solaredge Technologies Ltd. High frequency multi-level inverter
US10153685B2 (en) 2014-03-26 2018-12-11 Solaredge Technologies Ltd. Power ripple compensation
US10700588B2 (en) 2014-03-26 2020-06-30 Solaredge Technologies Ltd. Multi-level inverter
US11855552B2 (en) 2014-03-26 2023-12-26 Solaredge Technologies Ltd. Multi-level inverter
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US10404154B2 (en) 2014-03-26 2019-09-03 Solaredge Technologies Ltd Multi-level inverter with flying capacitor topology
US10680506B2 (en) 2014-03-26 2020-06-09 Solaredge Technologies Ltd. Multi-level inverter
US10680505B2 (en) 2014-03-26 2020-06-09 Solaredge Technologies Ltd. Multi-level inverter
US11632058B2 (en) 2014-03-26 2023-04-18 Solaredge Technologies Ltd. Multi-level inverter
US10886831B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US10886832B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US11296590B2 (en) 2014-03-26 2022-04-05 Solaredge Technologies Ltd. Multi-level inverter
US20160134201A1 (en) * 2014-11-06 2016-05-12 Delta Electronics, Inc. Control method and control device for inverter system
US9634575B2 (en) * 2014-11-06 2017-04-25 Delta Electronics, Inc. Control method and control device for inverter system
US10079558B2 (en) 2016-04-08 2018-09-18 American Superconductor Corporation Switching scheme for static synchronous compensators using cascaded H-bridge converters
US10193340B2 (en) 2017-03-15 2019-01-29 American Superconductor Corporation Multi-level cascaded H-bridge STATCOM circulating cooling fluid within enclosure
US11422200B2 (en) * 2019-01-30 2022-08-23 Delta Electronics, Inc. Cascade converter and online monitoring method thereof

Also Published As

Publication number Publication date
US5642275A (en) 1997-06-24

Similar Documents

Publication Publication Date Title
USRE37126E1 (en) Multilevel cascade voltage source inverter with seperate DC sources
Peng et al. A multilevel voltage-source inverter with separate DC sources for static var generation
Chen et al. Research on the fault characteristics of HVDC based on modular multilevel converter
CA2558001C (en) Multilevel converter based intelligent universal transformer
Sirisukprasert Optimized harmonic stepped-waveform for multilevel inverter
Kenzelmann et al. A versatile DC/DC converter based on modular multilevel converter for energy collection and distribution
AU2009344066B2 (en) An arrangement for exchanging power
EP2671310B1 (en) Power electronic converter
GB2294821A (en) Multilevel converter
Sirisukprasert The modeling and control of a cascaded-multilevel converter-based STATCOM
Xu et al. Development considerations of DSP-controlled PWM VSC-based STATCOM
Hochgraf et al. A transformer-less static synchronous compensator employing a multi-level inverter
Taheri et al. Application of Synchronous Static Series Compensator (SSSC) on enhancement of voltage stability and power oscillation damping
Jin et al. Nine-level she-pwm vsc based statcom for var compensation
Morawiec et al. Power electronic transformer based on cascaded H-bridge converter
Shukla et al. A hysteresis current controlled flying capacitor multilevel inverter based DSTATCOM
Mihalic et al. Static Synchronous Compensator–Statcom
Xu et al. A STATCOM based on cascade multilevel inverter with phase-shift SPWM
NarayanaGadupudi Recent advances of STATCOM in power transmission lines–A review
Sajedi et al. New grid-tied cascaded multilevel inverter topology with reduced number of switches
EROGLU et al. Modelling and Control of a Three-Level Diode-Clamped Medium Voltage Distribution Static Synchronous Compensator using Space Vector Pulse Width Modulation.
EROĞLU et al. Modelling and control of a three-level diode-clamped medium voltage distribution static synchronous compensator using space vector pulse width modulation
Hiteshkumar Modeling of voltage source converter based HVDC transmission system in EMTP-RV
Geethalakshmi et al. A combined multipulse-multilevel inverter based SSSC
Alharbi Control and Performance Analysis for MMC Submodules Scale-up Methodology for HVDC and Multi-Terminal DC Applications

Legal Events

Date Code Title Description
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees