JP5163673B2 - 制御回路、この制御回路を備えるパワーコンディショナ、ならびに太陽光発電システム - Google Patents

制御回路、この制御回路を備えるパワーコンディショナ、ならびに太陽光発電システム Download PDF

Info

Publication number
JP5163673B2
JP5163673B2 JP2010054246A JP2010054246A JP5163673B2 JP 5163673 B2 JP5163673 B2 JP 5163673B2 JP 2010054246 A JP2010054246 A JP 2010054246A JP 2010054246 A JP2010054246 A JP 2010054246A JP 5163673 B2 JP5163673 B2 JP 5163673B2
Authority
JP
Japan
Prior art keywords
voltage
capacitor
circuit
control circuit
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010054246A
Other languages
English (en)
Other versions
JP2011188704A (ja
Inventor
雅夫 馬渕
美緒 宮本
直輝 牧
耕太郎 中村
晶行 津永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP2010054246A priority Critical patent/JP5163673B2/ja
Priority to EP11153476.4A priority patent/EP2365625B1/en
Priority to KR1020110010908A priority patent/KR101246398B1/ko
Priority to US13/028,681 priority patent/US8542504B2/en
Priority to CN201110047702.1A priority patent/CN102195290B/zh
Publication of JP2011188704A publication Critical patent/JP2011188704A/ja
Application granted granted Critical
Publication of JP5163673B2 publication Critical patent/JP5163673B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45528Indexing scheme relating to differential amplifiers the FBC comprising one or more passive resistors and being coupled between the LC and the IC
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45594Indexing scheme relating to differential amplifiers the IC comprising one or more resistors, which are not biasing resistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45604Indexing scheme relating to differential amplifiers the IC comprising a input shunting resistor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Dc-Dc Converters (AREA)
  • Amplifiers (AREA)
  • Control Of Electrical Variables (AREA)

Description

本発明は、制御回路、この制御回路を備えるパワーコンディショナ、ならびに太陽光発電システムに関するものである。
太陽光発電システムは、一般に、太陽電池からの直流電力を、パワーコンディショナによって系統に連系した商用周波数の交流電力に変換すると共に、変換後の交流電力を、商用電力系統に接続されている家庭内負荷に供給する一方で、交流電力が家庭内負荷の消費電力を上回る場合には余剰電力を系統側へ逆潮流することができるようになっている。こうしたパワーコンディショナでは、電力変換効率に優れた非絶縁型が多用されている。 (例えば、特許文献1参照。)。
図14に、非絶縁型のパワーコンディショナを備えた太陽光発電システムの構成例を示す。パワーコンディショナ100は、商用電源2と連系運転する。パワーコンディショナ100は、太陽電池パネル1からの発電出力を平滑化する平滑コンデンサ101と、PWM制御のインバータ102と、リアクトルからなるフィルタ103と、図示しない制御回路とを備える。パワーコンディショナ100においては、平滑コンデンサ101で太陽電池パネル1からの発電出力を平滑化する。インバータ102は、ダイオードをそれぞれが逆並列に接続した4個のMOSFET等からなるスイッチ素子104〜107によって構成されている。パワーコンディショナ100においては、インバータ102内のスイッチ素子104〜107を18kHz前後の高い周波数でON/OFFさせるスイッチング制御を行うことにより、平滑コンデンサ101で平滑化した太陽電池パネル1の発電出力を商用電力系統に同期した交流電力に変換出力する。パワーコンディショナ100は、こうして変換した交流電力を、フィルタ103を介して図示しない負荷に供給したり、あるいは、系統側に逆潮流したりする。
太陽電池パネル1を構成する太陽電池としては、変換効率に優れる結晶系太陽電池が主流である。一方、原料であるシリコンの使用量を大幅に削減できるとともに、生産工程も単純で大面積化が可能である安価な薄膜太陽電池も使用されてきている。アモルファスシリコンからなる薄膜太陽電池では、太陽電池の負極側が対地電位よりも低くなると、経年劣化を起こすことで知られる。
こうした薄膜太陽電池における劣化を防止するために、薄膜太陽電池の負極側をグランド電位にする必要がある。しかし、非絶縁型のパワーコンディショナ100では、直流側と交流側との基準電位のレベルが異なるために、パワーコンディショナ100の入力側である太陽電池の負極側をグランド電位にすることができない。
そこで、本件出願人は、薄膜太陽電池の劣化を防止できる非絶縁型のパワーコンディショナおよびそれを用いた太陽光発電システムをすでに提供(平成21年3月13日出願の特願2009−61916)している。
特開2002−10496号公報
ところで、上記本出願人の提供にかかる太陽光発電システムにおいては、太陽電池パネルからの直流電力を交流電力に変換し、商用電源と連系運転するパワーコンディショナを備える。このようなパワーコンディショナでは、2つのスイッチ素子を直列に接続してなるチョッパ回路と、チョッパ回路に並列接続されたコンデンサと、このチョッパ回路内のスイッチ素子のON/OFFを制御して前記コンデンサの充放電を制御する制御回路と、を含み、前記制御回路は、前記コンデンサの両端間電圧を計測する計測回路部と、前記計測回路部の計測出力から所定の制御動作を行う制御回路部と、を含み、前記計測回路部は、前記コンデンサの両端間電圧を差動増幅する差動増幅回路を含む一方、制御回路部は、差動増幅回路からの計測出力により前記スイッチ素子のON/OFF制御を行うようになっている。
そして差動増幅回路はコンデンサの一方コンデンサ電極点電位と他方コンデンサ電極点電位とを入力しこれら両入力を差動増幅すると共に、その差動増幅回路の出力値を制御回路部に出力するようになっている。
しかしながら、上記差動増幅回路への上記両入力成分に同相成分(これについては実施の形態での詳述を参照)が含まれている場合、その同相成分は、誤差成分として差動増幅回路の出力に現れ、制御回路部には差動増幅回路出力のA/D変換値であるデジタル計測信号においてもその誤差成分が現れ、その誤差成分によりスイッチ素子のON/OFF制御を行うから、パワーコンディショナの高精度な動作に影響を及ぼすこととなる。
したがって、本発明では、上記差動増幅回路出力中の同相成分を同相誤差として校正することで高精度な動作を可能としたパワーコンディショナおよびこれを備えた太陽光発電システムを提供することを課題とする。
(1)本発明による制御回路は、入力を交流出力に変換するべく設けられたコンデンサの両端間電圧を計測する計測回路部と、前記コンデンサを介して得られる出力が前記計測回路部の計測出力に基づいて正弦波交流出力へ変換生成されるように前記コンデンサの充放電を制御する制御動作を行う制御回路部と、を含み、前記計測回路部は、前記コンデンサの両端間電圧を差動増幅する差動増幅回路を含み、前記制御回路部は、前記コンデンサの充電期間中における該コンデンサの両端子間電圧と前記差動増幅回路の出力電圧との差分を前記差動増幅回路出力中の同相誤差として該差分のキャンセルを図るべく校正すると共に、前記校正した当該差動増幅回路からの計測出力により前記制御を行うようになっている、ことを特徴とする。
好ましい態様は、前記制御回路部は、前記同相誤差を、前記差動増幅回路を構成する抵抗の抵抗値と前記コンデンサの充電により昇圧変化する前記コンデンサの一方電極とグランドとの間電圧とに基づいて得られる同相誤差補正量によりキャンセルすることで前記校正を行うことである。
(2)本発明によるパワーコンディショナは、少なくとも2つのスイッチ素子を直列に接続してなるチョッパ回路と、チョッパ回路に並列接続されたコンデンサと、このチョッパ回路内のスイッチ素子のON/OFFを制御して前記コンデンサの充放電を制御する制御回路とを含み、前記制御回路は、前記コンデンサの両端間電圧を計測する計測回路部と、前記計測回路部の計測出力から所定の制御動作を行う制御回路部と、を含むパワーコンディショナであって、前記制御回路を、前記(1)に記載の制御回路により構成した、ことを特徴とする。
好ましい態様は、前記差動増幅回路への少なくとも2つの入力のうちの一方は、チョッパ回路内の一方のスイッチ素子のON期間に該スイッチ素子を介してコンデンサにその一方コンデンサ電極から直流電圧を充電させる場合の該一方コンデンサ電極のグランドからの電圧であり、同他方は、他方コンデンサ電極の同グランドからの電圧である。
別の好ましい態様は、第1、第2および第3手段を具備し、前記第1手段は、2つの第1、第2スイッチ素子を直列接続してなる第1スイッチ回路を含み、前記第1スイッチ回路は、直流電力源の正負両極間に接続された第1コンデンサに並列接続され、前記第1、第2スイッチ素子は、前記第1周波数で交互にON/OFFされ、前記第2手段は、第2コンデンサと第2スイッチ回路との並列接続回路を含み、前記並列接続回路の並列接続一方側が、前記第1、第2スイッチ素子の直列接続部に接続され、前記第2スイッチ回路は、2つの第3、第4スイッチ素子を直列接続してなり、前記第3、第4スイッチ素子は、前記第2周波数で交互にON/OFFされ、前記第3手段は、第3スイッチ回路と第3コンデンサとの並列接続回路を含むと共に、前記並列接続回路に並列に接続された第4スイッチ回路を含み、前記第3スイッチ回路は、2つの第5、第6スイッチ素子を直列接続してなり、前記第5、第6スイッチ素子の直列接続部が、前記第3、第4スイッチ素子の直列接続部に接続され、前記第5、第6スイッチ素子は、前記第3周波数で交互にON/OFFされ、前記第4スイッチ回路は、2つの第7、第8スイッチ素子を直列接続してなり、前記第7、第8スイッチ素子を前記第3周波数よりも高いPWM周波数でPWM制御するようになっており、
さらに、前記第1ないし第8スイッチ素子のON/OFFを制御する制御回路を具備し、前記制御回路は、前記各コンデンサそれぞれの両端間電圧を計測する計測回路部と、前記計測回路部の計測出力から所定の制御動作を行う制御回路部と、を含み、前記計測回路部は、前記各コンデンサそれぞれの両端間電圧を差動増幅する差動増幅回路を含み、前記制御回路部は、前記差動増幅回路出力中の同相成分を同相誤差として校正すると共に、前記校正した各差動増幅回路からの計測出力により前記制御を行うようになっている。
(3)本発明による太陽光発電システムは、薄膜太陽電池と、該薄膜太陽電池と商用電源との間に配されて、前記薄膜太陽電池からの直流電力を、前記商用電源に系統連系した交流電力に、変換して出力するパワーコンディショナとを備える太陽光発電システムであって、前記パワーコンディショナは、前記(2)のパワーコンディショナを具備した、ことを特徴とする。
本発明によれば、コンデンサ両端間電圧を差動増幅する差動増幅回路の出力から同相誤差を校正するようにしたので、差動増幅回路出力によりスイッチ素子のON/OFFを制御する制御回路においては、より高精度にスイッチ素子のON/OFF制御が可能となり、結果、この制御回路を備えたパワーコンディショナではより高精度な動作が可能となる。
本発明の実施形態に係る太陽光発電システムの構成図である。 図1のパワーコンディショナの動作説明に供する図である。 図1の第1チョッパ回路の動作原理を説明するための図である。 図1の第2チョッパ回路の動作原理を説明するための図である。 図1の第3チョッパ回路の動作原理を説明するための図である。 図5の各部の電圧波形を示す図である。 入力電圧が800Vの場合の各部の電圧を示す図である。 入力電圧が520Vである場合の各部の電圧を示す図である。 図1の各部の波形を示す図である。 制御回路の構成を示す図である。 制御回路の動作説明に供する図である。 制御回路の動作説明に供する図である。 制御回路の動作説明に供する図である。 従来例の構成図である。
以下、図面を参照して本発明の実施の形態について詳細に説明する。
図1は、本発明の一つの実施の形態に係る太陽光発電システムの構成図であり、単相2線の場合の構成を示している。
この実施形態の太陽光発電システムは、太陽電池パネル1と、太陽電池パネル1からの直流電力を交流電力に変換し、商用電源2と連系運転するパワーコンディショナ3と、を備えている。
太陽電池パネル1は、複数の太陽電池モジュールを直列、並列に接続して所要の発電電力を得られるように構成されている。
この実施形態の太陽電池パネル1は、アモルファスシリコン製の薄膜太陽電池から構成されている。
この実施形態のパワーコンディショナ3は、絶縁トランスを備えていない非絶縁型(トランスレス)のパワーコンディショナである。
このパワーコンディショナ3は、平滑コンデンサである第1コンデンサ4と、第1〜第3チョッパ回路5〜7と、ノイズフィルタ8と、各部の電圧等を計測して各チョッパ回路5〜7を制御する制御回路9と、を備えている。
第1〜第3チョッパ回路5〜7および制御回路9は、太陽電池パネル1に対してカスケード接続されたチョッパコンバータを構成する。
太陽電池パネル1の負極側はグランドされている。図中で示す(a)点はグランドであり、このグランドの電圧はゼロである。(b)点は、太陽電池パネル1の正極側である。
太陽電池パネル1の正負両極間に、第1コンデンサ4が並列に接続されている。
第1チョッパ回路5は、第1コンデンサ4に並列に接続されている。
第1チョッパ回路5は、直列接続した2つの第1、第2スイッチ素子10、11を含む。第1、第2スイッチ素子10、11にはダイオードが各々逆並列に接続されている。第1チョッパ回路5は、これら2つの第1、第2スイッチ素子10、11により第1スイッチ回路を構成している。
第1チョッパ回路5において、第1、第2スイッチ素子10、11は、制御回路9からのゲート信号によって、系統周波数、例えば50Hzと同じ第1周波数f1で交互にON/OFF制御される。これら第1、第2スイッチ素子10、11は、第2、第3チョッパ回路6、7のスイッチ素子12〜17と同様に、例えば、NチャンネルMOSFETで構成されている。なお、スイッチ素子は、MOSFETに限らず、IGBT、トランジスタ等の他のスイッチ素子であってもよい。
第2チョッパ回路6は、第2コンデンサ18と、ダイオードを逆並列に接続した2つの第3、第4スイッチ素子12、13を直列接続してなる第2スイッチ回路と、を含む。第2コンデンサ18と第2スイッチ回路とは互いに並列接続されている。第3、第4スイッチ素子12、13は、制御回路9からのゲート信号によって、第1周波数f1の2倍の周波数である第2周波数f2、例えば、100Hzで交互にON/OFF制御される。
この第2チョッパ回路6において第2コンデンサ18と第2スイッチ回路との並列接続一端側は、第1チョッパ回路5において第1、第2スイッチ素子10、11の直列接続部に接続されている。その接続点を図中(c)で示す。図中(c)(d)は第2コンデンサ18の両コンデンサ電極側に該当する。
第3チョッパ回路7は、ダイオードを逆並列に接続した2つの第5、第6スイッチ素子14、15を直列接続してなる第3スイッチ回路と、第3コンデンサ19と、ダイオードを逆並列に接続した2つの第7、第8スイッチ素子16、17を直列接続してなる第4スイッチ回路と、を含む。第3チョッパ回路7において、これら第3スイッチ回路、第3コンデンサ19および第4スイッチ回路は互いに並列接続されている。これら回路の並列接続一端側と他端側とをそれぞれ図中(f)(g)で示す。第3コンデンサ19の両コンデンサ電極側はこの(f)(g)に該当する。
第5、第6スイッチ素子14、15は、制御回路9からのゲート信号によって、第1周波数f1の3倍の周波数である第3周波数f3、例えば、150Hzで交互にON/OFF制御される。
第7、第8スイッチ素子16、17は、制御回路9からのゲート信号によって、高周波数f4、例えば、18kHzでPWM制御される。
第3チョッパ回路7の第5、第6スイッチ素子14、15の直列接続部は、第2チョッパ回路6の第3、第4スイッチ素子12、13の直列接続部に接続されている。その接続点を図中(e)で示す。
また、第3チョッパ回路7の第7、第8スイッチ素子16、17の直列接続部に、リアクトル20と第4コンデンサ21とからなるノイズフィルタ8が接続されている。その接続点を図中(h)で示す。
このノイズフィルタ8には、図示しない負荷および商用電源2が接続されている。
制御回路9は、系統電圧Vsおよび系統電流Isを、図示しない差動増幅回路等を介して計測し、従来と同様に商用電源2の系統周波数に同期した正弦波状の目標電圧の指令値V*を算出するとともに、第1〜第3コンデンサ4、18、19の両端の電圧Vd1、Vd2、Vd3を図10に示す差動増幅回路等を介して計測して、各チョッパ回路5〜7を制御するためのゲート信号を生成する。
前記電圧Vd1は、グランドである(a)点電圧を基準として(b)点に現れる太陽電池パネル1の直流出力電圧である。
電圧Vd2は、第2チョッパ回路6の第2コンデンサ18の一方のコンデンサ電極点(d)を基準とした他方のコンデンサ電極点(c)での充電電圧である。
電圧Vd3は、第3チョッパ回路7の第3コンデンサ19の一方のコンデンサ電極点(f)を基準とした他方のコンデンサ電極点(g)での充電電圧である。
図2は、この実施形態の各チョッパ回路5〜7の動作の概略を説明するための図であり、同図(A)は図1の要部の構成図、同図(B)〜(D)は、同図(A)中の電圧V1、V2、V3をそれぞれを示しており、同図(B),(C)には、上述の系統に同期した正弦波状の目標電圧の指令値V*の波形を細い実線で示している。
前記電圧V1は、グランドである(a)点の電位を第1基準電位とした第1チョッパ回路5の第1、第2スイッチ素子10、11の直列接続部である(c)点の電圧である。
電圧V2は、前記(c)点の電位を第2基準電位とした第2チョッパ回路6の第3、第4スイッチ素子12、13の直列接続部である(e)点の電圧である。
電圧V3は、第3チョッパ回路7の第5、第6のスイッチ素子14、15の直列接続部である(e)点を基準とした第7、第8のスイッチ素子16、17の直列接続部である(h)点の電圧である。
第1チョッパ回路5では、商用電源2の系統周波数と同じ50Hzの場合、系統周波数と同じ50Hzの第1周波数f1で第1、第2スイッチ素子10、11を交互にON/OFF制御する。
これにより、第1、第2スイッチ素子10、11の直列接続部である(c)点の電圧V1は、同図(B)に示すように、正側に立ち上がる複数の方形波電圧からなる第1方形波電圧列となる。この電圧V1の方形波の電圧レベルは、太陽電池パネル1の直流出力電圧Vd1となる。
第2チョッパ回路6では、第1周波数f1の2倍の周波数である100Hzの第2周波数f2で第3,第4スイッチ素子12、13を交互にON/OFF制御する。
これにより、第3、第4スイッチ素子12、13の直列接続部である(e)点の電圧V2は、同図(C)に示すように、第1、第2スイッチ素子10、11の直列接続部である(c)点を基準として、負側に立ち下がる複数の方形波電圧からなる第2方形波電圧列となる。
この電圧V2の方形波の電圧レベルは、直流出力電圧Vd1の1/2となるように制御される。
この第2チョッパ回路6の第3、第4スイッチ素子12、13の直列接続部である(e)点の電圧V2は、グランドである(a)点を基準とした場合、すなわち、第1基準電位を基準とした場合は、後述の図4(D)に示すように、(a)−(c)点間の電圧V1と、(c)−(e)点間電圧V2とを合計した正負に交互に変化する正弦波状に対応した階段状波形の電圧V1+V2となる。この階段状の電圧V1+V2は、図4(D)に細い実線で示される上述の正弦波状の目標電圧の指令値V*と同期して正負に交互に変化する。
第3チョッパ回路7では、この階段状波形の電圧V1+V2と、正弦波状の目標電圧の指令値V*との差電圧を補償するように第5、第6スイッチ素子14、15を、第1周波数f1の3倍の周波数である150Hzの第3周波数f3で交互にON/OFF制御し、また、第7、第8スイッチ素子16、17を、18kHzの周波数f4でPWM制御する。
これによって、図2(A)の第3チョッパ回路7の第7、第8のスイッチ素子16、17の直列接続部である(h)点の電圧V3は、第5、第6のスイッチ素子14、15の直列接続部である(e)点を基準としてPWMの平均値で示すと、図2(D)に示すように、階段状波形の電圧V1+V2と、正弦波状の目標電圧の指令値V*との差電圧に対応したものとなる。
したがって、第3チョッパ回路6の第7、第8スイッチ素子16、17の直列接続部である(h)点の電圧V3は、グランドである(a)点の第1基準電位を基準とした場合には、商用電源2に同期した目標電圧の指令値V*に対応した正弦波状の電圧となる。
以下、第1〜第3チョッパ回路5〜7の動作原理を更に詳細に説明する。
図3は、第1チョッパ回路5の動作原理を説明するための図であり、同図(A)は太陽電池パネル1、第1コンデンサ4および第1チョッパ回路5を、同図(B)は(a)−(c)間電圧V1をそれぞれ示している。特に、同図(B)には、正弦波状の目標電圧の指令値V*を細い実線で示している。
太陽電池パネル1の正極側である(b)点には、グランドである(a)点の電位を第1基準電位として第1コンデンサ4で平滑化された太陽電池パネル1の直流出力電圧Vd1が現れる。
第1チョッパ回路5において、直流出力電圧Vd1は、50Hzの第1周波数f1で交互にON/OFF制御される第1、第2スイッチ素子10、11によってチョッピングされる。
第1スイッチ素子10がON、第2スイッチ素子11がOFFのときは、(b)点電圧である第1コンデンサ4の充電電圧Vd1が、第1チョッパ回路5の第1、第2スイッチ素子10、11の直列接続部である(c)点に現れる。
第1スイッチ素子10がOFF、第2スイッチ素子11がONのときは、(a)点のグランド電圧が、第1チョッパ回路5の第1、第2スイッチ素子10、11の直列接続部である(c)点に現れる。
したがって、上述のように、第1、第2スイッチ素子10、11の直列接続部である(c)点の電圧V1は、同図(B)に示すように、グランド電位を第1基準電位として正側に立ち上がる複数の方形波電圧からなる第1方形波電圧列となる。この電圧V1は、(a)点を基準とした第1、第2スイッチ素子10、11の直列接続部である(c)点の電圧であり、方形波の電圧レベルは、太陽電池パネル1の直流出力電圧Vd1、例えば、800Vとなる。
この第1チョッパ回路5では、系統の電圧と位相が一致した方形波電圧列を生成するので、有効電力を出力することができる。
図4は、第2チョッパ回路6の動作原理を説明するための図であり、同図(A)は第1チョッパ回路5および第2チョッパ回路6を、同図(B)は電圧V1を、同図(C)は電圧V2を、同図(D)は電圧V1+V2をそれぞれ示しており、同図(B)〜(D)は、正弦波状の目標電圧の指令値V*を細い実線で併せて示している。
第2チョッパ回路6において、同図(B)に示される(c)点の電圧V1は、100Hzの第2周波数f2で交互にON/OFF制御される第3,第4スイッチ素子12、13により、チョッピングされる。
第3スイッチ素子12がON、第4スイッチ素子13がOFFのときは、第3、第4スイッチ素子12、13の直列接続部である(e)点は、第1チョッパ回路5の第1、第2スイッチ素子10、11の直列接続部である(c)点と同電位となり、第3スイッチ素子12がOFF、第4スイッチ素子13がONのときは、第3、第4スイッチ素子12、13の直列接続部である(e)点の電位は、(c)点の電位よりもマイナスとなる。したがって、第3、第4スイッチ素子12、13の直列接続部である(e)点の電圧V2は、上述のように、第1、第2スイッチ素子10、11の直列接続部である(c)点の電位を第2基準電位として同図(C)に示すように、負側に立ち下がる複数の方形波電圧からなる第2方形波電圧列となる。
なお、第1チョッパ回路5の第1スイッチ素子10がON、第2スイッチ素子11がOFFしたときに、第2チョッパ回路6の第3スイッチ素子12がOFF、第4スイッチ素子13がONすることによって、第2コンデンサ18が充電される。また、第1チョッパ回路5の第1スイッチ素子10がOFF、第2スイッチ素子11がONしているときに、第2チョッパ回路6の第3スイッチ素子12がOFF、第4スイッチ素子13がONすることによって、第2コンデンサ18の充電電荷はそれらONしているスイッチ素子11,13を介して放電される。このように第2コンデンサ18は、図4(C)に示すように、充電期間T1に亘る充電と、放電期間T2に亘る放電とを交互に繰り返し、(c)点の第2基準電位を基準にして負側に立ち下がる方形波電圧が生成される。この方形波の電圧レベルVd2は、太陽電池パネル1の直流出力電圧Vd1の1/2(Vd2=−Vd1/2)、例えば、400Vである。
前記電圧V2は、第1、第2スイッチ素子10、11の直列接続部である(c)点を基準とした第3、第4スイッチ素子12、13の直列接続部である(e)点の電圧である。したがって、第2チョッパ回路6では、グランドである(a)点の電位を第1基準電位として(e)点には、同図(B)の(a)−(c)点間電圧V1と、同図(C)の(c)−(e)点間電圧V2とを合計した、同図(D)に示す正弦波状の目標電圧の指令値V*の変化に対応して交互に正負に変化する階段状波形の電圧V1+V2が現れることになる。
この第2チョッパ回路6では、負側に立ち下がる方形波電圧列を生成するので、偶数次の高調波を除去することができ、また、等しい電力で充電と放電とを繰り返すので原理的な有効電力は、ゼロとなる。
また、充放電は,後述の図9(C)の系統電流Isが第2コンデンサ18を流れることで行われる。図9(C)の系統電流Isが正のとき図4(C)のT1の期間第2コンデンサ18は正弦波電流で充電される。このため、実際の動作ではT1期間徐々にV2は減少する。同様に、図9(C)の系統電流Isが負のとき図4(C)のT2の期間第2コンデンサ18は正弦波電流で放電される。このため、実際の動作ではT2期間徐々にV2は増加する。
図5は、第3チョッパ回路7の動作原理を説明するための図であり、図6(A)は前記階段状波形の電圧V1+V2を、同図(B)は、第5、第6のスイッチ素子14、15の直列接続部である(e)点を基準として、第7、第8スイッチ素子16、17の直列接続部である(h)点の電圧V3をPWMの平均値で示したものであり、図6(A)には、正弦波状の目標電圧の指令値V*を細い実線で併せて示している。
第5,第6スイッチ素子14、15は、図6(A)に示す(e)点の階段状波形の電圧V1+V2と正弦波状の目標電圧の指令値V*との差電圧の正負に応じたタイミングでON/OFF制御される。その結果、上記電圧V1+V2は、そのON/OFF制御のタイミングで第3コンデンサ19に充放電される。
換言すれば、電圧V1+V2>正弦波状の目標電圧の指令値V*の関係式が成立するときは、差電圧は正であり、第5スイッチ素子14がON、第6スイッチ素子15がOFFに制御される結果、電圧V1+V2は第3コンデンサ19に充電される。
一方、電圧V1+V2<正弦波状の目標電圧の指令値V*の関係式が成立するときは、差電圧は負であり、第5スイッチ素子14がOFF、第6スイッチ素子15がONに制御される結果、第3コンデンサ19に充電された電圧は放電される。
上記差電圧の大小関係の周期は、第3周波数f3である150Hzであり、結果として、第5,第6スイッチ素子14、15は、その第3周波数f3で交互にON/OFF制御される。
更に、第3チョッパ回路7では、電圧V1+V2と正弦波状の目標電圧の指令値V*との差電圧を補正するデューティで、第1周波数f1よりも数百倍高い周波数である18kHzの第4周波数f4で第7、第8スイッチ素子16、17をPWM制御する。これによって、第7,第8スイッチ素子16、17の直列接続部である(h)点には、図6(B)に示すように、階段状波形の電圧V1+V2と正弦波状の目標電圧の指令値V*との差電圧に対応する電圧V3が現れる。この電圧V3は、PWMの平均値を示しており、この電圧V3は、第5、第6のスイッチ素子14、15の直列接続部である(e)点を基準とした第7、第8のスイッチ素子16、17の直列接続部である(h)点の電圧である。
したがって、第3チョッパ回路7では、グランドである(a)点の第1基準電位を基準として、第7、第8のスイッチ素子16、17の直列接続部である(h)点には、図6(A)に示される(a)−(e)点間電圧V1+V2と、図6(B)に示される(e)−(h)点間電圧V3とを合計した、図6(A)の細い実線で示される電力系統周波数の変化と同相の正弦波状の目標電圧の指令値V*が現れることになる。
この第3チョッパ回路7では、系統周波数の3倍の周波数でチョッピングするとともに、正弦波電圧との差分をなくしているので、第3次以上の高調波を抑制することができる。
次に、図1の制御回路9による各チョッパ回路5〜7のチョッパ制御について、更に詳細に説明する。
制御回路9は、第1チョッパ回路5の第1、第2スイッチ素子10、11に対するゲート信号によって、上述の図3(B)の正側に立ち上がる複数の方形波電圧のパルス幅を制御する。
すなわち、第1チョッパ回路5の出力電圧の基本波成分を、系統電源の基本波電圧と一致させるように制御するものであり、方形波電圧のパルス幅δが、例えば、次式で算出される値になるように制御する。
δ=sin-1[(√2πV)/(2Vd1)]
ここで、Vは、系統電源の電圧Vsの実効値である。
このパルス幅δを、Δδ1だけ調整すると、基本波電圧を増減することができ、このΔδ1を、計測した上述の電圧Vd3とその目標値Vd3*との誤差に係数を乗じて算出する。
制御回路9は、第2チョッパ回路6の第3、第4スイッチ素子12、13に対するゲート信号によって、上述の図4(C)に示される電圧Vd2が、第1チョッパ回路5の電圧Vd1の1/2になるように制御する。
すなわち、第2チョッパ回路6の第3、第4スイッチ素子12、13がゲート信号によってON/OFF制御されると、上述のように第2コンデンサ18が充電と放電とを繰り返し、図4(C)に示す負側に立ち下がる複数の方形波電圧列を生成するのであるが、充電期間T1、すなわち、充電に対応する方形波のパルス幅は、第1チョッパ回路5から出力される方形波のパルス幅と同じであり、放電期間T2、すなわち、放電に対応する方形波のパルス幅は、充電に対応する方形波のパルス幅を、Δδ2だけ微調整したものである。
このΔδ2は、計測した電圧Vd2と目標とする電圧Vd2*との誤差に係数値を乗じて算出する。この目標とする電圧Vd2*を、計測した電圧Vd1の1/2の電圧としている。
制御回路9は、太陽電池パネル1の発電出力の変動に応じて、方形波電圧のパルス幅を上述のように制御する。
図7および図8に、太陽電池パネル1からの入力電圧Vd1が変動した場合の正側および負側の方形波電圧V1,V2のシミュレーション波形を示す。図7は、入力電圧Vd1が800Vの場合を、図8は、入力電圧Vd1が520Vである場合をそれぞれ示している。
図7(A)、図8(A)は正弦波状の目標電圧の指令値V*を示す。図7(B)、図8(B)は第1チョッパ回路5による正側の電圧V1を示す。図7(C)、図8(C)は第2チョッパ回路6による負側の電圧V2を示す。
入力電圧Vd1が低くなると、図8(B)に示す正側の方形波および図8(C)に示す負側の方形波のいずれのパルス幅も、図7に比べて広くなるように制御することが分かる。
また、制御回路9は、上述の図6(A)に示す階段波状の電圧V1+V2と、正弦波状の目標電圧の指令値V*との差電圧の正負に応じてタイミングで、第3チョッパ回路7の第5、第6スイッチ素子14、15を交互にON/OFF制御し、更に、前記差電圧を補正するようなデューティで、第7、第8スイッチ素子16、17を高周波数でPWM制御し、上述のように目標電圧の指令値V*の正弦波電圧を生成する。
図9は、図1の各部のシミュレーション波形を示すものであり、いずれもグランドを基準としている。
図9(A)は系統電圧Vs、図9(B)は第3チョッパ回路7の出力電圧V、図9(C)は系統電流Is、図9(D)は電圧V1およびV2(破線)、図9(E)は電圧V3、図9(F)は電圧Vd2およびVd3(破線)である。
この実施形態では、上述のように、第1チョッパ回路5の第1、第2スイッチ素子10、11は、例えば、800Vの電圧を50Hzの第1周波数f1でスイッチングし、第2チョッパ回路6の第3、第4スイッチ素子12、13は、例えば、400Vの電圧を100Hzの第2周波数f2でスイッチングし、第3チョッパ回路7の第5、第6スイッチ素子14、15は、例えば、260Vの電圧を150Hzの第3周波数f3でスイッチングしている。すなわち、これらスイッチ素子10〜15は、従来のパワーコンディショナのPWM制御のインバータのPWM周波数に比べて、はるかに低い周波数でスイッチングしている。
また、第3チョッパ回路7の第7、第8スイッチ素子16、17は、階段波状の電圧V1+V2と、正弦波状の目標電圧の指令値V*との差電圧である260V程度の電圧を18kHzの高い周波数でPWM制御している。すなわち、第7、第8スイッチ素子16、17では、従来のパワーコンディショナのPWM制御のインバータに比べて、低い電圧をスイッチングしている。
このように、第1〜第3チョッパ回路5〜7の第1〜6スイッチ素子10〜15では、従来のPWM制御に比べて、はるかに低い周波数でスイッチングしているので、スイッチング損失を低減できるとともに、導通損失の低いスイッチ素子や安価なスイッチ素子を選択することができる一方、第3チョッパ回路7の第7、第8スイッチ素子16、17では、従来のPWM制御に比べて低い電圧をスイッチングするので、スイッチング損失を低減することが可能となる。
これによって、パワーコンディショナ3の電力変換効率を、従来例のパワーコンディショナに比べて向上させることができる。
なお、方形波電圧生成手段は、第1チョッパ回路5、第2チョッパ回路6、第3チョッパ回路7の第5、第6スイッチ素子14、15および第3コンデンサ19、並びに、それらを制御する制御回路9を含み、正弦波電圧生成手段は、第3チョッパ回路7の第7、第8スイッチ素子16、17およびそれらを制御する制御回路9を含む。
この実施形態では、太陽電池パネル1は、上述のようにアモルファスシリコン製の薄膜太陽電池から構成されている。
かかるアモルファスシリコン製の太陽電池では、その負極側電位がグランド電位より低くなると、経年劣化を起こすことが知られており、その対策のため、その負極側をグランド電位にする必要がある。
しかしながら、上述の図14に示される非絶縁型のパワーコンディショナ100では、直流側と交流側とでは、基準電位のレベルが異なるために、パワーコンディショナ100の入力側である太陽電池1の負極側をグランド電位にすることができない。これに対して、本実施の形態のパワーコンディショナ3では、直流側と交流側との基準電位のレベルが同じであるので、太陽電池1の負極側をグランド電位にすることが可能となる。
上述の実施形態では、単相2線の場合に適用して説明したけれども、本発明の他の実施形態として、単相3線、Δ型三相3線、Y型三相4線に適用してもよい。
次に、図10を参照して、本実施の形態の特徴である制御回路9について説明する。制御回路9は、図10で示すように、第1ないし第3コンデンサ4,18,19それぞれの両端間電圧Vd1,Vd2,Vd3を計測する計測回路部9aと、前記計測回路部9aの計測出力から所定の制御動作を行う制御回路部9bと、を含む。
計測回路部9aは、第1ないし第3コンデンサ4,18,19それぞれの両端間電圧を差動増幅する第1ないし第3差動増幅回路9a1,9a2,9a3を含む。
制御回路部9bは、第1ないし第3差動増幅回路9a1,9a2,9a3それぞれの出力中の同相成分を同相誤差として校正すると共に、前記校正した第1ないし第3差動増幅回路9a1,9a2,9a3それぞれからの計測出力により各スイッチ素子10−17へON/OFF制御出力を出力するようになっている。
以上の構成を具備したパワーコンディショナ3においては、第1ないし第3コンデンサ4、18、19の両端の電圧Vd1、Vd2、Vd3を差動増幅する差動増幅回路9a1,9a2,9a3においては、それらへの入力成分に同相成分が含まれている場合、その同相成分が、誤差成分として出力側に現れる。
制御回路部9bには差動増幅回路9a1,9a2,9a3からのアナログ計測信号をA/D変換し、そのA/D変換値であるデジタル計測信号においてはその誤差成分が含まれる。そのため、その誤差成分が含まれた状態にて各スイッチ素子のON/OFF制御を行うと、パワーコンディショナ3の高精度な動作に影響を及ぼすこととなる。
そこで、本実施の形態ではそうした同相誤差成分を校正するようにしたことを特徴とする。以下では、差動増幅回路9a2を代表し図11を参照して説明する。他の差動増幅回路9a3においても同様である。差動増幅回路9a2は、抵抗R1−R4とアンプ部AMPとを備え、アンプ部AMPの一方入力側は抵抗R1を介して第2コンデンサ18の一方コンデンサ電極((c)点)に接続され、他方入力側は抵抗R3を介して第2コンデンサ18の他方コンデンサ電極((d)点)に接続されている。そして、アンプ部AMPの一方入力側の電圧Vin1は第2コンデンサ18の一方コンデンサ電極((c)点)におけるグランド((a)点)からの電圧であり、他方入力側の電圧Vin2は第2コンデンサ18の他方コンデンサ電極((d)点)におけるグランド((a)点)からの電圧である。そして各抵抗R1ないしR4の抵抗値をR1ないしR4、差動増幅回路9a2の出力電圧をVoutとすると、差動増幅回路9a2の出力は、次式(1)で算出することができる。なお、電圧V1は、グランドである(a)点の電位を第1基準電位とした第1チョッパ回路5の第1、第2スイッチ素子10、11の直列接続部である(c)点の電圧である。電圧V2は、(c)点の電位を第2基準電位とした第2チョッパ回路6の第3、第4スイッチ素子12、13の直列接続部である(e)点の電圧である。
Vin1*R2/(R1+R2)+Vout*R1/(R1+R2)=Vin2*R4/(R3+R4)…(1)
上記式(1)において差動成分を(Vin2−Vin1)=Vd2とし、同相成分をVin2とすると、上記式(1)は第2コンデンサ18の両端間電圧Vd2の計測が目的であるので、差動成分と同相成分とに分離すると、次式(2)を得ることができる。
Vout=(Vin2−Vin1)*R2/R1+Vin2*(R1*R4−R2*R3)/{R1*(R3+R4)}+Vout‐offset …(2)
ここで、第1項(Vin2−Vin1)*R2/R1が差動成分であり、第2項Vin2*(R1*R4−R2*R3)/{R1*(R3+R4)}が同相成分(同相誤差と称する)であり、第3項Vout‐offsetが差動増幅回路9a2固有のオフセット値である。
そして、差動増幅回路9a2においては、第2項の同相誤差のVin2が変化すると、差動増幅回路9a2の出力Voutが影響する。この同相誤差はVin2に比例する。
図12を参照してこの同相誤差を説明すると、図12において、L1は第1コンデンサ4の両端間電圧Vd1を示すラインである。このラインL1は一定である。L2は、電圧V1を示すラインである。電圧V1はグランド((a)点)からの(c)点での電圧である。L3は電圧(V1−Vd2)=Vin2を示すラインである。L4は商用電源2の系統周波数に同期した正弦波状の目標電圧のラインである。L5は第2コンデンサ18の両端間電圧Vd2のラインを示す。この電圧Vd2は第2コンデンサ18の両端間電圧である。電圧Vd2はスイッチ素子10がONのときは充電カーブを描いて上昇し、スイッチ素子10がOFFのときは充電安定から放電カーブを描いて下降する。Q1は、スイッチ素子10のON/OFF期間、Q2はスイッチ素子11のON/OFF期間を示す。
以上において、図12で示すラインL5に対して、スイッチ素子10のON期間では、Vin2の値、すなわち、(V1−Vd2)の値に比例した同相誤差が差動増幅回路9a2の出力Voutに現れる。
この同相誤差について図13を参照して説明する。図13(a)は差動増幅回路9a2の出力Voutを示すラインL5´である。第2コンデンサ18の電圧Vd2はラインL5である。
差動増幅回路9a2で差動増幅すると、その出力Voutは図13(a)のラインL5´で示すように変化する。これは、上記式(2)の第2項成分による。スイッチ素子10のON期間において、ラインL5に対してラインL5´とを比較して、第2コンデンサ18の電圧Vd2に対して計測出力Voutの電圧はハッチングで示す差がある。このラインL5´で示す出力Voutが制御回路部9bに入力される。制御回路部9bでは図13(b)においその同相誤差補正量(r)を有し、差動増幅回路9a2から入力される出力Voutのスイッチ素子10のON期間における同相誤差をその同相誤差補正量(r)により校正(キャンセル)するようになっている。その結果、制御回路部9bにおいては図13(c)の同相誤差が補正されたラインL5´´に従い、スイッチ素子10,11のON/OFFを制御する。なお、図13(b),(c)は図解のためであり、制御回路部9bにおいては、計測回路部9aの差動増幅回路9a2から入力される図13(a)の出力Voutに従い、図13(b),(c)に対応した内容に応じてデジタル処理するようになっている。なお、同相誤差補正量(r)に関しては、図13(a)のスイッチ素子のON期間の終了直前におけるラインL5´のレベル(p)と、スイッチ素子のON期間の終了直後におけるラインL5´のレベル(q)とのレベル差を演算し、その演算の値から同相誤差補正量(r)を設定してもよい。
以上説明したように本実施の形態では、制御回路9では、計測回路部9aの差動増幅回路9a1−9a3出力中の同相成分を同相誤差として校正し、前記校正した計測出力により、制御回路部9bでは所定の制御を行うようになっているので、より高精度にスイッチ素子10−17のON/OFF制御が可能となり、結果、パワーコンディショナ3をより高精度に制御動作させることが可能となる。
なお、差動増幅回路9a3における第3コンデンサ19の両端間電圧Vd3の差動増幅出力においても上記と同様の考えで同相誤差を校正することができるのでその詳細説明は略する。
1 太陽電池パネル
2 商用電源
3 パワーコンディショナ
5 第1チョッパ回路
6 第2チョッパ回路
7 第3チョッパ回路
9 制御回路
9a 計測回路部
9a1−9a3 差動増幅回路
9b 制御回路部
10〜17 第1〜第8スイッチ素子

Claims (5)

  1. 入力を交流出力に変換するべく設けられたコンデンサの両端間電圧を計測する計測回路部と、
    前記コンデンサを介して得られる出力が前記計測回路部の計測出力に基づいて正弦波交流出力へ変換生成されるように前記コンデンサの充放電を制御する制御動作を行う制御回路部と、
    を含み、
    前記計測回路部は、前記コンデンサの両端間電圧を差動増幅する差動増幅回路を含み、
    前記制御回路部は、前記コンデンサの充電期間中における該コンデンサの両端子間電圧と前記差動増幅回路の出力電圧との差分を前記差動増幅回路出力中の同相誤差として該差分のキャンセルを図るべく校正すると共に、前記校正した当該差動増幅回路からの計測出力により前記制御を行うようになっている、
    ことを特徴とする制御回路。
  2. 前記制御回路部は、前記同相誤差を、前記差動増幅回路を構成する抵抗の抵抗値と前記コンデンサの充電により昇圧変化する前記コンデンサの一方電極とグランドとの間電圧とに基づいて得られる同相誤差補正量によりキャンセルすることで前記校正を行う、請求項1に記載の制御回路。
  3. 少なくとも2つのスイッチ素子を直列に接続してなるチョッパ回路と、チョッパ回路に並列接続されたコンデンサと、このチョッパ回路内のスイッチ素子のON/OFFを制御して前記コンデンサの充放電を制御する制御回路と、を含むパワーコンディショナであって、
    前記制御回路を、前記請求項1または2に記載の制御回路により構成した、ことを特徴とするパワーコンディショナ。
  4. 前記差動増幅回路への少なくとも2つの入力のうちの一方は、チョッパ回路内の一方のスイッチ素子のON期間に該スイッチ素子を介してコンデンサに、その一方コンデンサ電極から直流電圧を充電させる場合の該一方コンデンサ電極のグランドからの電圧であり、同他方は、他方コンデンサ電極の同グランドからの電圧である、請求項3に記載のパワーコンディショナ。
  5. 薄膜太陽電池と、該薄膜太陽電池と商用電源との間に配されて、前記薄膜太陽電池からの直流電力を、前記商用電源に系統連系した交流電力に、変換して出力するパワーコンディショナとを備える太陽光発電システムであって、
    前記パワーコンディショナは、請求項3または4に記載のパワーコンディショナである、ことを特徴とする太陽光発電システム。
JP2010054246A 2010-03-11 2010-03-11 制御回路、この制御回路を備えるパワーコンディショナ、ならびに太陽光発電システム Active JP5163673B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010054246A JP5163673B2 (ja) 2010-03-11 2010-03-11 制御回路、この制御回路を備えるパワーコンディショナ、ならびに太陽光発電システム
EP11153476.4A EP2365625B1 (en) 2010-03-11 2011-02-07 Control circuit, power conditioner including the control circuit, and photovoltaic system
KR1020110010908A KR101246398B1 (ko) 2010-03-11 2011-02-08 제어 회로, 이 제어 회로를 구비하는 파워 컨디셔너, 및 태양광 발전 시스템
US13/028,681 US8542504B2 (en) 2010-03-11 2011-02-16 Control circuit, power conditioner including the control circuit, and photovoltaic system
CN201110047702.1A CN102195290B (zh) 2010-03-11 2011-02-28 控制电路、包括控制电路的功率调节器、太阳光发电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010054246A JP5163673B2 (ja) 2010-03-11 2010-03-11 制御回路、この制御回路を備えるパワーコンディショナ、ならびに太陽光発電システム

Publications (2)

Publication Number Publication Date
JP2011188704A JP2011188704A (ja) 2011-09-22
JP5163673B2 true JP5163673B2 (ja) 2013-03-13

Family

ID=44263075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010054246A Active JP5163673B2 (ja) 2010-03-11 2010-03-11 制御回路、この制御回路を備えるパワーコンディショナ、ならびに太陽光発電システム

Country Status (5)

Country Link
US (1) US8542504B2 (ja)
EP (1) EP2365625B1 (ja)
JP (1) JP5163673B2 (ja)
KR (1) KR101246398B1 (ja)
CN (1) CN102195290B (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140611A1 (ja) * 2012-03-23 2013-09-26 三菱電機株式会社 パワーコンディショナ、及び太陽光発電システム
JP5963531B2 (ja) * 2012-05-15 2016-08-03 オムロン株式会社 インバータ装置および太陽光発電システム
DK3011669T3 (da) 2013-06-17 2017-11-13 Abb Schweiz Ag Kondensatorkortslutning i en højspændingsomformer
JP5839011B2 (ja) * 2013-09-18 2016-01-06 株式会社デンソー 電力変換装置、および、これを用いた電動パワーステアリング装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424677A (en) * 1994-07-01 1995-06-13 Fluke Corporation Common mode error correction for differential amplifiers
GB2294821A (en) * 1994-11-04 1996-05-08 Gec Alsthom Ltd Multilevel converter
US5642275A (en) * 1995-09-14 1997-06-24 Lockheed Martin Energy System, Inc. Multilevel cascade voltage source inverter with seperate DC sources
SG68589A1 (en) * 1995-09-27 1999-11-16 At & T Corp Differential amplifier circuit for use in a read channel for a magnetic recording system
JP3874217B2 (ja) * 1997-10-13 2007-01-31 ソニー株式会社 指紋読取り装置及びその方法
JP3941346B2 (ja) 2000-06-16 2007-07-04 オムロン株式会社 太陽光発電システムにおけるパワーコンディショナ
US6854076B2 (en) * 2001-04-03 2005-02-08 Texas Instruments Incorporated Method and apparatus for calibration of an electronic device
JP2002354677A (ja) 2001-05-28 2002-12-06 Japan Storage Battery Co Ltd 太陽光発電用パワーコンディショナ
JP3979278B2 (ja) 2002-11-29 2007-09-19 松下電工株式会社 系統連系インバータ装置
DE102005041825A1 (de) * 2005-09-02 2007-03-15 Siemens Ag Regelvorrichtung für eine dreiphasige Drehstrommaschine
JP4661524B2 (ja) 2005-10-26 2011-03-30 Tdk株式会社 Dc−dcコンバータとその制御方法
JP4762824B2 (ja) * 2006-08-10 2011-08-31 株式会社豊田中央研究所 電力変換回路
JP5040013B2 (ja) 2007-09-06 2012-10-03 三菱自動車工業株式会社 車両の旋回挙動制御装置
EP2148417B1 (de) * 2008-07-22 2018-01-10 SMA Solar Technology AG Wechselrichterschaltungsanordnung für einen Photovoltaikgenerator mit mehreren eingangs seriell geschalteten Stromrichtern
JP4888817B2 (ja) 2009-03-13 2012-02-29 オムロン株式会社 パワーコンディショナおよび太陽光発電システム

Also Published As

Publication number Publication date
US20110222324A1 (en) 2011-09-15
CN102195290A (zh) 2011-09-21
KR20110102817A (ko) 2011-09-19
EP2365625B1 (en) 2020-04-08
CN102195290B (zh) 2014-04-23
KR101246398B1 (ko) 2013-03-21
JP2011188704A (ja) 2011-09-22
EP2365625A2 (en) 2011-09-14
EP2365625A3 (en) 2013-12-04
US8542504B2 (en) 2013-09-24

Similar Documents

Publication Publication Date Title
JP5071498B2 (ja) 電力変換装置およびパワーコンディショナ
JP4911733B2 (ja) 電力変換装置、パワーコンディショナ、および発電システム
JP4888817B2 (ja) パワーコンディショナおよび太陽光発電システム
US9871459B2 (en) Method and apparatus for deriving current for control in a resonant power converter
JP5045772B2 (ja) パワーコンディショナ内のコンデンサ容量抜け検出方法、それを実施するパワーコンディショナおよびそれを備えた太陽光発電システム
US20110299312A1 (en) Inverter for solar cell array
JP5163673B2 (ja) 制御回路、この制御回路を備えるパワーコンディショナ、ならびに太陽光発電システム
JP5477237B2 (ja) パワーコンディショナ
JP2024023924A (ja) 電源システム
JP5410551B2 (ja) 電力変換装置
KR101212264B1 (ko) 인버터 장치 및 제어 방법
JP4159642B2 (ja) 電気エネルギーを変換する電子装置
KR100372062B1 (ko) 전기에너지를변환하기위한전자장치
JP5375781B2 (ja) パワーコンディショナ
US20200127556A1 (en) Dead-time voltage compensation apparatus and dead-time voltage compensation method
CN110581581A (zh) 能够减少低频泄漏电流的充电装置
CN102820796B (zh) 电源转换模块
KR20150075599A (ko) Pfc 컨트롤러 장치 상기 장치를 갖는 전력 변환 장치
RU188573U1 (ru) Многофункциональный регулятор качества электроэнергии для трехфазных распределительных систем электроснабжения 0,4 кВ
Liu et al. A high efficiency linear power amplifier with switch-linear hybrid scheme
Pop et al. Near sinusoidal DSP based power inverter
KR20170009118A (ko) 태양광 인버터

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5163673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250